
Noname manuscript No.
(will be inserted by the editor)

Optical Flow for Video Super-Resolution: A Survey

Zhigang Tu1 · Hongyan Li2∗ · Wei Xie3∗ ·
Yuanzhong Liu1 · Shifu Zhang4 · Baoxin Li5 ·
Junsong Yuan6

Received: date / Accepted: date

Abstract Video super-resolution is currently one of the most active research topics in
computer vision as it plays an important role in many visual applications. Generally,
video super-resolution contains a significant component, i.e., motion compensation,
which is used to estimate the displacement between successive video frames for tem-
poral alignment. Optical flow, which can supply dense and sub-pixel motion between
consecutive frames, is among the most common ways for this task. To obtain a good
understanding of the effect that optical flow acts in video super-resolution, in this
work, we conduct a comprehensive review on this subject for the first time. This in-
vestigation covers the following major topics: the function of super-resolution (i.e.,
why we require super-resolution); the concept of video super-resolution (i.e., what is
video super-resolution); the description of evaluation metrics (i.e., how (video) super-
resolution performs); the introduction of optical flow based video super-resolution;
the investigation of using optical flow to capture temporal dependency for video
super-resolution. Prominently, we give an in-depth study of the deep learning based
video super-resolution method, where some representative algorithms are analyzed
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and compared. Additionally, we highlight some promising research directions and
open issues that should be further addressed.

Keywords Video super-resolution · Optical flow · Optical Flow-based video
super-resolution · Temporal dependency

1 Introduction

Image resolution reflects the visual details viewable in an image, thus typically, im-
ages with higher resolution capture more visual information than the low resolu-
tion ones for both human perception and machine interpretation (Park et al. 2003;
Fookes et al. 2004; Nguyen et al. 2018). That is to say, higher resolution images
supply clearer and more discriminative pictorial information for human to perceive,
and finer details for machine to interpret (Xiong et al. 2010; Singh and Singh 2020).
Consequently, capturing high resolution (HR) images is extremely important for both
human and machines (Park et al. 2003; Ledig et al. 2017a).

However, low resolution (LR) images are widespread in the real world due to two
main reasons related to the image sensors:

– The cost of an imaging sensor and its spatial resolution is directly related. Gen-
erally, an HR sensor is more costly than its LR counterpart, leading to the wide
deployment of LR sensors in cost-sensitive applications.

– The spatial resolution is constrained by image sensing technology. Increasing the
resolution may typically cause low signal-to-noise ratio (SNR) as less light can
fall upon each sensor cell.

Given that many images are acquired by LR cameras, it is imperative to find a way
for reconstructing HR images from captured LR images. This process is referred to as
“super-resolution (SR) image reconstruction” (Farsiu et al. 2004; Shi et al. 2016). It
has been an important and challenging technique in the field of computer vision and
image processing, and continues to attract attention from the research community
(Nasrollahi and Moeslund 2014; Thapa et al. 2016; Wang et al. 2021a).

Since the heuristic work of Tsai and Huang in 1984, SR has witnessed significant
progresses (see Figure 1) while being widely used in many domains (Yuan et al. 2010;
Borsoi et al. 2019):

– Visual entertainment: High-resolution images supply more comfortable visual ex-
perience, which is a long-term pursuit for human (Shen et al. 2015). Recently,
with the emergence of new display technology, the high-definition television (HDTV,
1920×1080) and more advanced ultra high definition television UHDTV (3840×2048
or 4K, 7680×4320 or 8k), will dominate the consumer market. There is an in-
creasing requirement for using SR method to transform LR videos into HR ver-
sions for being enjoyed on HR devices (Kappeler et al. 2016; Liu and Sun 2014;
Liu et al. 2017).

– Video surveillance: Super-resolution is desirably required in video surveillance
as it can supply more powerful and more distinguishable visual cues for many
visual tasks, e.g., face recognition (Mudunuri and Biswas 2016; Chen et al. 2018;
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Fig. 1 Timeline of the landmark work in the field of super-resolution.

Ma et al. 2020), action recognition (Zhang et al. 2019), pose estimation (Hong et
al. 2015; Sun et al. 2019), human activity recognition (Ryoo et al. 2017), person
re-identification (Jing et al. 2017).

– Multimedia image processing: Super-resolution is effective for improving image
and scene details, thus it is widely used in multimedia image processing, e.g.,
image denosing (Cruz et al. 2018; Huang et al. 2019), image inpainting (Meur et
al. 2013), image retrieval (Tan et al. 2018), image classification (Cai et al. 2019),
semantic segmentation (Zhao et al. 2018; Wang et al. 2020a), object detection
(Girshick et al. 2016; Na and Fox 2017), object recognition (Eekeren et al. 2010;
Sajjadi et al. 2017; Noor et al. 2019).

– Other applications: Super-resolution plays an important role in some other do-
mains, e.g., medical imaging (Huang et al. 2017; You et al. 2020), remote sensing
image processing (Tatem et al. 2001; Lei et al. 2020), infrared imaging (Choi et
al. 2011; Han et al. 2018), biometrics (Huang et al. 2003; Yuan et al. 2009; Bian
et al. 2017).

The main contributions of this work are four-fold:

1. Although some review papers about single image super-resolution have been pub-
lished, but in the past decades, few important survey work on VSR has come off
the press. We overview the definition, the application, and the landmark work of
VSR, particularly with an emphasis on the optical flow based VSR;

2. We discuss the role and performance of optical flow in VSR systematically and
comprehensively for the first time, and explain its principle;

3. We classify the traditional and recent optical flow based VSR techniques into
three categories, and investigate the current deep learning (+ optical flow) based
VSR algorithms. The advantages and limitations of each technique are summa-
rized;
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Fig. 2 A hierarchical-structured taxonomy about OF-VSR of this survey.

4. We analyze the challenges and open issues for both the optical flow based VSR
and VSR. The new trends and promising directions are stated to supply an in-
sightful guidance for the community.

The rest of the paper is organized as follows. We introduce the concept of video
super-resolution in Section 2. Section 3 describes the optical flow based video super-
resolution technique. The methods to capture the temporal dependency via optical
flow for VSR are discussed in Section 4, with more attention given to deep learning
(+ optical flow) methods. We present remaining challenges and future directions in
Section 5. Finally, the conclusion is given in Section 6. Figure 2 shows the overall
taxonomy about optical flow based video super-resolution (OF-VSR) covered in this
review paper in a hierarchical-structured framework.

2 What is Video Super-Resolution

Video (or multi-frame) super-resolution (VSR) is a technique that addresses the is-
sue of how to reconstruct high resolution (HR) images with better visual quality and
finer spectral details by combining complimentary information from multiple low-
resolution (LR) counterparts (Peleg et al. 1987; Lin et al. 2005; Sajjadi et al. 2018;
Daithankar and Ruikar 2020). VSR derives from a natural phenomenon that LR im-
ages are subsampled and contain sub-pixel shifts, and thus the complementary infor-
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Fig. 3 A typical sample of the modeling of the degradation process. From left to right, the degradation
process contains warping, blurring, downsampling, and noise. (a) is a ground-truth HR video frame, and (e)
is the corresponding degraded LR video frame of (a). The sample is taken from Nasrollahi and Moeslund
2014.

mation between LR images can be incorporated into a single image with higher reso-
lution than the original observations (Picku 2007; Mudenagudi et al. 2011). Enlarging
the resolution can be treated as either improving the signal-to-noise ratio while pre-
serving the size fixed, and/or depicting the image at a larger size with reasonable
approximations for frequencies higher than those represented at the original size (Lin
et al. 2005; Li et al. 2010).

Mathematically, let I represents a ground-truth HR video and It represents a HR
video frame at time t, Ft denotes a degraded LR video frame. The degradation process
of the HR video sequences can be expressed as follows:

F = D(I;η) (1)

where D is the degradation function, η represents the parameters of the degradation
function which includes various degradation factors, e.g. noise, motion blur, scaling
factor.

In practice, the degradation process (i.e. D and η) is unknown, as only the LR
video frames F are given, but the degradation factors, which are quite complicated,
are unknown. Accordingly, we need to restore a HR video approximation Î of the
ground truth HR video I from the LR video F, which can be formulated as:

Î = S(F;ϑ) (2)

where S denotes the VSR model and ϑ represents the parameters of the model S.
The degradation process is usually affected by different factors (e.g., compression

artifacts, anisotropic degradations, sensor noise, speckle noise) (Wang et al. 2021a).
Many attempts have been tried to simulate this process (Zhang et al. 2018a), Fig-
ure 3 shows a typical example of the degradation process that is assumed in most SR
methods. Currently, the widely adopted strategy is defined as:

D(I;η) = (F⊗ k) ↓s +nζ ,{s,k,ζ} ⊂ η (3)

where ↓s represents a downsampling conduction which is performed with a scaling
factor s, ⊗ is a convolution operation and k is the blur kernel. nζ denotes some addi-
tive white Gaussian noise with a standard deviation ζ . (Wang et al. 2021a) stated that
this combinative degradation model Eq.(3) is closer to realistic conditions and brings
more benefits to VSR.
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Finally, the objective function of VSR can be formulated as following:

ϑ̂ = argϑ minL(I, Î)+λΦ(ϑ) (4)

where L(I, Î) denotes the loss function between the generated HR video Î and the
ground truth video I. Φ(ϑ) represents the regularization term and λ is the tradeoff
parameter.

From Eq. (4), we can find that VSR is an inversion problem as the process relies
on the determination of the HR video I from multiple low resolution observations Ft .

Summary. Both spatial information with a frame and temporal information across
different frames are important and useful for VSR (Li et al. 2016; Isobe et al. 2020).

3 Evaluation Metrics

Image quality assessment (IQA) refers to automatically evaluate the perceptual qual-
ity of a distorted image. IQA plays a crucial role in the low-level computer vision
community due to it has a wide range of applications in image restoration, image re-
trieval, image quality monitoring systems, etc (Zhu et al. 2020; Zhai and Min 2020).

Since IQA normally serves as a basis for video quality assessment (VQA) because
of videos are sequences of images, IQA is always the primary research topic. For
understanding more evaluation metrics about IQA and VQA, please refer to a most
recently survey paper (Zhai and Min 2020).

3.1 Full-Reference IQA (FR-IQA) Metrics

3.1.1 Peak-Signal-to-Noise Ratio (PSNR)

Peak-signal-to-noise ratio (PSNR), which is a crucial performance measure for lossy
transformation, has long-term been widely used to evaluate the quality of both single
image SR and VSR (Kim and Kwon 2010, Hore and Ziou 2010). For SR, PSNR is
calculated in terms of the maximum pixel value and the mean squared error (MSE)
between the ground truth image IGt and the restored image It :

PSNR = 10 · lg( M2

1
N ∑

N
i=1(IGt(i)− It(i))2

) (5)

where N represents the total number of pixels of the image e.g. IGt , and M denotes
the maximum pixel value (normally M = 255), i is a pixel position of the image. The
MSE is computed as:

MSE =
1
N

N

∑
i=1

(IGt(i)− It(i))2 (6)

The PSNR value approaches infinity if IGt − It = 0, i.e. the super-resolved image
It is similar to the ground truth image IGt . Which means that a higher PSNR value
accompany with a higher reconstructed image quality.

Summary. The characteristics of PSNR can be summarized as following:
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1. Depending on the pixel-level MSE and focuses on the corresponding pixels’ dif-
ference;

2. Ignoring the human visual perception;
3. Insensitively to distinguish the structural content of image since different types of

degradations can generate the same value of MSE;
4. Performing poor in complex real-world cases.

3.1.2 Structural Similarity Index Measure (SSIM)

To capture high quality perception, (Wang et al. 2004) proposed a structural similarity
index measure (SSIM), which takes into account contrast, luminance distortion, and
structure change between the two images. Since SSIM replaces the traditional error
summation approaches (i.e. MSE) as PSNR with the structural similarity measuring,
it can better simulate the human visual system (HVS) than PSNR. Specifically, SSIM
is designed by integrating three factors :

SSIM = [L(It ,IGt)]
α [C(It ,IGt)]

β [S(It ,IGt)]
γ (7)

where the first factor L(It ,IGt) is the luminance comparison function, the second
factor C(It ,IGt) is the contrast comparison function, and the third factor S(It ,IGt)
is the structure comparison function. α,β ,γ are the weight parameters that used to
adjust the relative importance of these three factors.
1) L(It ,IGt) evaluates the closeness of the two images’ mean luminance:

L(It ,IGt) =
2µIt

µIGt
+C1

µ2
It
+µ2

IGt
+C1

(8)

where µIt
and µIGt

respectively represents the mean luminance of It and IGt . For
instance, µIt

is computed as:

µIt
=

1
N

N

∑
i=1

It(i) (9)

L(It ,IGt) is maximal and equal to 1 if µIt
= µIGt

.
2) C(It ,IGt) assesses the similarity of the two images’ contrast.

C(It ,IGt) =
2σIt

σIGt
+C2

σ2
It
+σ2

IGt
+C2

(10)

where σIt
and σIGt

separately denotes the standard deviation of It and IGt . For exam-
ple, σIt

is evaluated as:

σIt
= [

1
N−1

N

∑
i=1

(It(i)−µIt
)2]

1
2 (11)

C(It ,IGt) is maximal and equal to 1 when σIt
= σIGt

.
3) S(It ,IGt) is exploited to measure the correlation coefficient of the two images.
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This is because the image structure can be expressed by the normalized pixel val-
ues (e.g. It −µIt

), leading to their correlations are useful for reflecting the structural
similarity. S(It ,IGt) is calculated as:

S(It ,IGt) =
σItIGt

+C3

σIt
σIGt

+C3
(12)

where σItIGt
is expressed as:

σItIGt
=

1
N−1

N

∑
i=1

(It(i)−µIt
)(IGt(i)−µIGt

) (13)

C1,C2,C3 are positive constants used for stability. SSIM ⊂ [0,1], SSIM = 0 means
there is no correlation between the two images, while SSIM = 1 means the super-
resolved image It equals to the ground-truth image IGt .

Summary. The characteristics of SSIM can be summarized as following:

1. Suitable for evaluating the methods that without supplying sufficient texture de-
tails;

2. Preferring blur over texture mismatching.

3.1.3 PSNR vs SSIM

1. SSIM and PSNR are more sensitive to noise degradation than the other degrada-
tions;

2. PSNR is more sensitive to additive Gaussian noise, while SSIM is more sensitive
to image compression.

3.1.4 Challenges of FR-IQA

1. FR-IQA measures unable to evaluate the perceptual quality precisely as they rely
on the pixel-level error measures (e.g. L1 and L2 distances or their combination),
leading to them focusing on pixel-level information locally;

2. FR-IQA measures lack of generalization as they are formulated with limited and
refined constraints, and required artificial intervention, causing them usually fail
to model unknown distortions;

3. FR-IQA measures are nearly unavailable in practice as they need non-distorted
ground-truth reference images, but it is hard or impossible to obtain desired ref-
erence images in most cases.

3.2 No-Reference IQA (NR-IQA) Metrics: Deep Learning-Based Methods

3.2.1 NIMA

(Talebi and Milanfar 2018) explored a no-reference method, which called NIMA.
It applies the CNN to predict the distribution of human opinion scores, leading to
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it can be trained on both the aesthetic and pixel-level quality datasets. Importantly,
the NIMA method predicts the distribution of ratings to a histogram, to replace the
conventional approaches that classify images to low/high score or regress to the mean
score. As a result, a high correlation to human perception is gained. The squared
earth mover’s distance (EMD) loss of (Hou et al. 2016) is selected, as it improves the
classification performance with ordered classes.

The normalized EMD based foss function is expressed as:

EMD(p, p̂) = (
1
N

N

∑
k=1
|CDFp(k)−CDFp̂(k)|r)1/r (14)

where CDFp(k) is a cumulative distribution function, which is computed as ∑
k
i=1 pSi .

Moreover, the predicted quality probabilities are input to a soft-max function to en-
sure ∑

N
i=1 p̂Si = 1. Same as (Hou et al. 2016), r is set to 2 for optimization with

gradient descent more convenient.

3.2.2 DeepQA

Inspired by the prior CNN-based visual-task approaches to learn the deep feature
map, (Kim and Lee 2017) proposed to use CNN to capture a visual sensitivity map,
i.e. a weighting map of reflecting the visual importance of each pixel to HVS. Ac-
cordingly a DeepQA model is formed, which in fact a CNN based full-reference
image quality assessment (FR-IQA) model. In contrast to the traditional IQA mea-
sures, DeepQA aims to learning the optimal visual weight from the IQA dataset itself
without requiring any prior knowledge of the HVS, where the training process re-
quires some information of the dataset: a triplet of distorted images, objective error
maps, and the subjective scores. Specifically:

1) The objective error map is defined as:

e =
log(1/((̂IR− ÎD)

2 +(ε/2552)))

log(2552/ε)
(15)

where IR and ID respectively denotes the reference image and the distorted image, ÎR
and ÎD are their normalized version.

2) The visual sensitivity map learned from CNN is defined as:

s1 =CCN1(̂ID;θ1) (16)

s2 =CCN2(̂ID,e;θ2) (17)

where θ1 and θ2 are the parameters of DeepQA. The perceptual error map is estimated
by:

p = s� e (18)

where � is the Hadamard product, s is s1 or s2.
Accordingly, the pooled score is computed by averaging the cropped perceptual

error map:

µp =
1

(H−8)(W −8) ∑
(i, j)∈ω

p (19)
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where H and W are the height and width of p, (i, j) is pixel index, and ω denotes the
cropped region.

3) The final objective function of the DeepQA model is expressed as:

Łs(̂ID;θ) = ‖( f (µp)−S)‖2
F (20)

where f (·) denotes a nonlinear regression function, and S represents the subjective
score of the input distorted image.

The structure of DeepQA is described in Figure 4.

Fig. 4 The architecture of the DeepQA model. Input: A distorted image and An error map, then producing
a sensitivity map. Output: a subjective score, which is regressed by multiplying with the error map.

Summary. The characteristics of DeepQA can be summarized as following:

– The DeepQA model, which with the usage of a triplet of a distorted image, its
objective error map, and the subjective score, can capture the human visual sen-
sitivity without any prior knowledge.

– A total variation regularization, which penalizes the high frequency components
of the estimated sensitivity map, enables the sensitivity map to more visually
plausible without reducing the performance.

– The model, which is optimized in an end-to-end manner, obtains the state-of-the-
art correlation with human subjective scores.

3.2.3 LPIPS

(Zhang et al. 2018b) construct a large-scale dataset for human perceptual similarity
evaluation. Importantly, they assess the perceptual image patch similarity (LPIPS) by
comparing the deep features with the classical metrics, where the deep features are
learnt by CNNs with different architectures and visual tasks. The experimental results
reveal that the deep features can model the perceptual similarity much better than the
prior metrics that without CNNs.
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The key component of LPIPS is the network activations to distance, which can
be expressed as:

D(p, p0) = ∑
l

1
HlWl

∑
h,w
‖wl� (F̂ l

hw− F̂ l
0hw)‖2

2 (21)

where D(p, p0) represents the cosine distance between the reference and the distorted
patches p and p0. l denotes a convolution layer. w is a vector used to scale a channel. h
represents the predict perceptual judgment. F̂ denotes the extracted deep feature, and
F̂ l , F̂ l

0 ∈ℜHl×Wl×Cl for layer l. (Zhang et al. 2018b) scale the activations channel-wise
via vector wl ∈ℜCl and calculate the l2 distance.

Summary. The characteristics of LPIPS can be summarized as following:

– The stronger a feature set is at classification and detection, the stronger it is as a
model of perceptual similarity judgments.

– A good feature is a good feature. Features that are good at semantic tasks also
provide good models of both human perceptual behavior and macaque neural
activity.

3.2.4 Hallucinated-IQA (HIQA)

(Lin and Wang 2018) presented a hallucination-guided quality regression network
(named HIQA), which takes the perceptual discrepancy into a deep neural network
for learning, to imitate HVS and defeat the ill-posed nature of NR-IQA. Specifically,
by making use of the perceptual discrepancy between the distorted image and the
hallucinated reference, HIQA achieves an accurate and robust perceptual prediction.

As shown in Figure 5, HIQA composes of three heavily related subnets.

A. Quality Aware Generative Network
The exploited Quality-Aware Generative Network aims to produce hallucinated

reference images, where the hallucinated reference image is used to compensate the
absence of true reference image. The gap between the hallucinated reference and the
true reference is less, the performance of the quality regression network is better.

Importantly, to obtain high quality hallucinated reference images, HIQA exploits
a quality-aware perceptual loss, which is able to incorporate the deep features of the
regression network dynamically. The loss function is defined as:

Ls(Gθ (Ii
d), I

i
r) = λ1Lv(Gθ (Ii

d), I
i
r)+λ2Lq(Gθ (Ii

d), I
i
r) (22)

where

Lv =
Cv

∑
Cv=1

1
WjH j

W j

∑
x=1

H j

∑
y=1
‖φ j(Gθ (Ii

d))x,y−φ j(Ii
r)x,y‖2 (23)

and

Lq =
Cq

∑
Cq=1

1
WkHk

Wk

∑
x=1

Hk

∑
y=1
‖πk(Gθ (Ii

d))x,y−πk(Ii
r)x,y‖2 (24)
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Fig. 5 The architecture of the Hallucinated-IQA (HIQA) framework. There are three main components:
(a) A Quality-Aware Generative Network G, which is utilized to produce hallucinated reference images;
(b) A Hallucination-Guided Quality Regression Network R, which is used to incorporate the discrepancy
information between the hallucinated image and the distorted image encoded in the discrepancy map; (c)
A IQA-Discriminator D, which is applied to refine the hallucinated image further.

Particularly, Id is the distorted image, and G(Id) is the generating function; Ii
d ,{i =

1,2, ...,N} denotes a set of distorted images, and Ii
r,{i= 1,2, ...,N} denotes the corre-

sponding true reference images; φ j(·) represents the feature map at the j− th layer of
VGG-19, and πk(·) represents the feature map at the k− th layer of the hallucination-
guided quality regression network R; W and H denote the dimensions of the feature
map, C is the number of feature maps at a particular layer.

B. IQA-Discriminative Network
IQA-Discriminator D aims to reduce the affect of bad hallucination images to the

deep regression network R, which is realized by distinguishing the fake samples from
the real samples based on their positive or negative impact to R.

G is optimized to fool the IQA-discriminator D by producing the qualified hal-
lucination scene to help improve R, and the adversarial loss of G can be expressed
as:

Ladv = E[log(1−Dω(Gθ (Id)))] (25)

The overall loss function of G for all training samples is defined by

LG = µ1Lp +µ2Ls +µ3Ladv (26)

where µ1,µ2,µ3 are the parameters which are aiming at keeping the trade off between
the three loss components.

C. Hallucination Guided Quality Regression Network
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The Hallucination-Guided Quality Regression Network R, which incorporates the
discrepancy information with the high-level semantic fusion from the generative net-
work G, to provide itself more plentiful and valid information. This is very useful to
guide the network training.

Discrepancy Map. (Lin and Wang 2018) treat the distorted images and their dis-
crepancy maps as pairs {Ii

d , I
i
map}N

i=1, a deep regression network can be trained ac-
cording to:

γ̂ = argmin
γ

1
N

N

∑
i=1

Lr(R(Ii
d , I

i
map),s

i) (27)

where the discrepancy map is defined as:

Imap = |Id−G
θ̂
(Id)| (28)

High-level Semantic Fusion. The fusion term is defined as:

F = f (H5,2(Id))⊗ (R1(Id , Imap)) (29)

where f is a linear projection to make the dimensions of H and R1 equally, R1 repre-
sents the feature extraction before the fully connected layers (R2) of R, and ⊗ repre-
sents concatenation.

The Overall Loss Function. The final loss of R is expressed as:

LR =
1
T

T

∑
t=1
‖R2( f (H5,2(Id)))⊗R1(Id , Imap)− st‖`1 (30)

3.2.5 MetaIQA

To model the human beings’ ability that “getting the quality prior knowledge from
images with various distortions easily and adapting to evaluate unknown distorted
images quickly”, (Zhu et al. 2020) proposed a NR image quality metric MetaIQA
based on the deep meta-learning, in which MetaIQA can capture the meta-knowledge
shared by human when to assess the quality of images with multifarious distortions.
In brief, the exploited MetaIQA enables the machines learn to learn, that is, to obtain
the capacity of learning quickly from a relatively small amount of training samples
for a related new task. Figure 6 shows the entire procedure of MetaIQA which is
summarized in Algorithm 1.

3.2.6 Challenges of NR-IQA

1. The definition is ill-posed: NR-IQA generally takes the distorted image as in-
put for evaluation without any additional data. However, this scheme is counter-
intuitive, as HVS requires a reference to measure the perceptual discrepancy by
comparing the distorted image either directly with the original undistorted image
or implicitly with a hallucinated scene in mind (Lin and Wang 2018);

2. The generalization ability is limited: The deep-learning based NR-IQA metrics
usually depend on pre-trained networks, however, these pre-trained networks are
not designed for IQA, leading to their generalization performance is unsatisfac-
tory when assessing unknown types of distortions.
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Fig. 6 The entire procedure of Meta-learning based IQA (MetaIQA). The procedure of Algorithm 1 is
copied from (Zhu et al. 2020).

4 Optical Flow Based VSR

Generally, most of the VSR methods contain three basic components (Lin et al. 2005):
(a) Motion compensation (alignment); (b) Interpolation; (c) Blur and noise removal
(restoration).

4.1 Motion Compensation

The first component, i.e., motion compensation, which aims to obtain image align-
ment between multiple video frames, is a key component for VSR. Human vision
system is sensitive to motion, thus capturing and modeling the influence of motion
on visual perception is crucial for VSR (Li et al. 2016; Liu et al. 2018). To get ac-
curate video super-resolution result, the motion between video frames should be es-
timated as accurate as possible, because inaccurate motion distorts local structure
and degrades the final HR image reconstruction (Su et al. 2012; Liao et al. 2015).
Consequently, how to perform a good motion estimation has attracted great attention.

Numerous motion estimation techniques, e.g., the global parametric models, and
the local non-parametric models (e.g., block-motion approaches and optical flow
based methods), have been proposed to improve the performance of video super-
resolution (Schoenemann and Cremers 2012).

Furthermore, sub-pixel shifts is another key factor for VSR (Babacan et al. 2011).
If the LR images only include integer shifts, there is no new information can be
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produced when combing them to reconstruct the HR image. In other word, capturing
sub-pixel shifts is necessary in motion estimation for VSR (Dai et al. 2017).

Since optical flow is able to supply accurate and sub-pixel motion information
(Tu et al. 2014; Tu et al. 2019), the optical flow based VSR method has been studied
for a long time, leading to significant progresses in the past decade (Nguyen et al.
2018; Anwar et al. 2020). Optical flow can model the temporal dependency between
consecutive video frames (Wang et al. 2020b), where the temporal dependency is
normally considered as an essential component of VSR, and thus the estimation of
optical flow can significantly affect the final result of VSR (Huang et al. 2018). Be-
sides, the optical flow field is a dense motion field that can describe the deformation
or mapping of every pixel between two video frames, therefore the optical flow based
VSR is very suitable for extracting the mapping of non-rigid moving objects in the
video, and thus contributing to addressing the challenge of super-resolution for non-
rigid objects in VSR.

4.2 Optical Flow Based Motion Estimation and Compensation (MEC)

4.2.1 Optical Flow (Motion) Estimation

Optical flow estimation is based on the assumption that the brightness of a moving
pixel remains constant over time. Mathematically, optical flow estimation is formu-
lated as follows:

E(u,v) = F(It , It+1;ΘF) (31)

where It and It+1 are two successive input video frames, which separately denote the
current frame at time t (i.e. the target frame) and the next frame at time t + 1 (i.e.
the neighboring frame). E refers to the estimation operation of optical flow, F is a
function utilized to calculate optical flow and ΘF represents its parameters. W =(u,v)
denotes the calculated optical flow, with the horizontal and vertical flow components
u and v respectively.

Figure 7 shows the visualized optical flow. As (Tu et al. 2019) stated: “The 2D dis-
placement field, which describes the apparent motion of brightness patterns between
two successive images, is called the optical flow.” “The optical flow field is ideally a
dense field of displacement vectors (see Figure 7 (b), (c)), which maps all points of
the first image onto their corresponding locations in the second image.” Particularly,
Figure 7 (b) is the color-coded ground truth flow, and (Tu et al. 2019) explained: “The
color-coded flow field is a dense visualization of the optical flow field. A color hue is
associated to each direction and the saturation of the color increases with the magni-
tude of the flow vector.” Figure 7 (c) is the vector plot ground truth flow, and (Tu et al.
2019) described: “which directly represents the displacement vectors and provides a
good intuitive perception of physical motion.” To understand more knowledge about
optical flow, please refer to the optical flow survey paper of (Tu et al. 2019).
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Fig. 7 Optical flow: (a) and (d) respectively represents frame 10 and frame 11 of the RubberWhale se-
quence on the Middlebury benchmark (Baker et al. 2011); (b) is the color-coded ground truth flow; (c) is
the vector plot ground truth flow. The sample is taken from (Tu et al. 2019).

Fig. 8 The general flowchart of motion estimation and compensation (MEC) in VSR.

4.2.2 Optical Flow Relied Motion Compensation

As shown in Figure 8, motion compensation is generally conducted by performing
image transformation between an image sequence according to the estimated motion
information to make neighboring frames matching with the target frame spatially.
In particular, this operation can be achieved by certain methods, e.g., the geomet-
ric registration (Nasrollahi and Moeslund 2014; Liu et al. 2020). Mathematically, a
compensated frame is represented as:

IMC = FMC(I,W ;θME) (32)

where FMC(·) denotes a motion compensation function, I is the neighboring frame, W
represents the estimated optical flow, and θME denotes the parameters of optical flow
based motion estimation. Please refer to Figure 8 for motion estimation and motion
compensation in detail.

Summary. Motion cue plays a crucial role in capturing temporal dependency be-
tween LR video frames for VSR:

– Motion compensation, which is one of the main components in VSR, encodes
temporal dependency in compensated LR video frames in terms of estimating
temporal information from consecutive frames;
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– Optical flow, which supplies accurate, sub-pixel and dense motion information, as
well as also can capture the motion of objects that are non-rigid, non-planar and
self-occluded (Nasrollahi and Moeslund 2014), is good for modeling the temporal
information.

5 Temporal Dependency Capturing for VSR with OF

In contrast to a single image, adjacent video frames provide temporal correlations.
Therefore, to conduct VSR, it is essential to exploit temporal dependency between
consecutive frames efficiently and effectively (Wang et al. 2020b). To model the tem-
poral dependency, optical flow is extensively utilized (Caballero et al. 2017; Liu et al.
2018; Wang et al. 2020b). The VSR methods, which used optical flow to capture the
temporal dependency, can be broadly classified into three main categories: (1) recon-
struction based VSR method, (2) learning-based VSR method and, (3) deep learning
based VSR method. While the first two approaches can be treated as the traditional
VSR method, the deep learning based VSR method can be further classified into two
groups: (a) the CNN (+optical flow) based VSR method and; (b) the RNN (+optical
flow) based VSR method. Figure 9 shows the categories of optical flow based VSR
methods. The first three VSR methods always have explicit motion compensation,
while the RNN based VSR methods normally do not have explicit motion compen-
sation. The first two traditional VSR methods have been studied for decades, but are
surpassed by their deep learning based counterparts.

Fig. 9 The categories of optical flow based VSR methods.

Summary. Most of the optical flow related VSR methods exploit motion infor-
mation in two main aspects:

– Explicitly registering multiple video frames in terms of the estimated motion;
– Implicitly embedding motion estimation to regularize the process of HR image

reconstruction.
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Fig. 10 The flow-chat of the Reconstruction (+ optical flow) based VSR method. This method usually
includes 5 steps: 1) Performing interpolation to the LR image sequence to get higher resolution image
sequence; 2) Computing optical flow between successive images; 3) Registering images to the reference
image by using the motion information of the estimated optical flow; 4) Estimating the SR image by fusing
the reference image and the registered images; 5) Recovering the final SR image via deblurring.

5.1 Reconstruction based VSR Method

To model the temporal dependency in VSR, some algorithms first perform opti-
cal flow estimation explicitly to compute sub-pixel motion between consecutive LR
video frames and then warp each LR image to the target HR space according to the
computed optical flow. In this way, the difference caused by the movement between
the LR video frames can be captured, and the correspondence between the LR ob-
servations and the desired reconstructed HR image can be exploited, where they are
useful for guiding the reconstruction of the targeted HR image. This kind of algo-
rithms is reconstruction (+ optical flow) based VSR methods, which will be called
reconstruction-based VSR methods for short (Mitzel et al. 2009; Huang et al. 2015;
Liao et al. 2015).

For the reconstruction-based VSR methods involving optical flow estimation,
since LR video frames have different sub-pixel motions and rotations from each other,
it is crucial to obtain motion information precisely before fusing them to produce an
HR image. Inaccurate motion cue will lead to various types of visual artifacts that
subsequently damage the quality of the reconstructed HR image (Thapa et al. 2016).
In brief, the accuracy and efficiency of optical flow estimation critically affects the
performance of the reconstruction-based VSR. Figure 10 shows the framework of the
Reconstruction (+ optical flow) based VSR method.

Baker and Kanade 1999 proposed a pioneer work to estimate optical flow for
VSR to address the issue of complex motions in realistic videos. The correlation
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between super-resolution optical flow and pyramid-based image representations is
analyzed. Zhao and Sawhney 2002 gave a systematic study to discover the impact
of image alignment and warping errors on the VSR. Specifically, the performance of
VSR under alignment with piecewise parametric or optical flow based approaches are
investigated. They revealed that optical flow is especially significant for reconstruct-
ing high-frequency components in the HR image, and the flow consistency and flow
accuracy are two critical elements. Optical flow consistency across video frames are
important, and optical flow errors could cause super-resolution to become infeasible.
Mitzel et al. 2009 proposed a variational framework for VSR with arbitrary videos.
This work contains two important steps: firstly, a quadratic relaxation strategy, which
is able to compute high accuracy optical flow, is introduced to get motion for map-
ping LR images. Secondly, a variational method, which can impose a total variation
regularity to the computed intensity map, is used to estimate the HR image. Keller
et al. 2011 exploited a full motion-compensated variational framework to design a
simultaneous VSR method, which is able to jointly compute the HR image sequence
and its corresponding HR optical flow. In this way, the VSR performance is boosted
as more accurate details can be propagated from frame to frame. There are two main
contributions of Keller et al. 2011: (1) it is the first work to calculate super-resolved
optical flows; (2) this method is possible to be used to general video with arbitrary
scene content and/or arbitrary optical flows. In particular, the optical flow is estimated
according to a classical total variational energy function (Papenberg et al. 2006).

On the other side, to alleviate the degradation caused by the estimated inaccurate
dense optical flow in the reconstruction based VSR method, Su et al. 2012 proposed
to compute local flow with reliable accuracy based on the sparse feature point (e.g.
SIFT, corner point) correspondences. This strategy is effective even when the input
video frames are with noise, large-scale or other complex local motion.

Limitation. Reconstruction-based VSR methods with explicit optical flow esti-
mation generally suffer from the following limitations:

– High computational cost for optical flow estimation;
– Difficulty in obtaining high quality motion information even with the state-of-

the-art optical flow approaches;
– Visual artifacts inevitably caused by inaccurate registration of erroneous motions

during the reconstruction;
– Degenerated cases: Inaccurate optical flow may sometimes lead a poor recon-

struction performance worse than direct image interpolation.

5.2 Learning based VSR method

Reconstructing the HR image from LR video frames is an ill-posed problem and
needs to be regularized (Kappeler et al. 2016). Consequently, some probabilistic mod-
els, e.g., Expectation-Maximization (EM) framework and Bayesian framework, are
proposed to introduce priors to control the smoothness or the total variation of the
image (Mudenagudi et al. 2011). This kind of VSR approaches are considered as the
learning (+ optical flow) based VSR method, called learning based VSR method for
short (Liu and Sun 2014; Ma et al. 2015).
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Generally, VSR methods make some simplifying assumptions. For example, the
underlying motion may be assumed to have an oversimplified parametric form, or the
blur kernel and noise levels are assumed to be known. But in practice, the movement
of objects and cameras can be arbitrary, the motion blur and point spread functions
can result in an unknown blur kernel, and the noise levels in video are unknown.
Therefore, the learning based VSR methods attempt to integrate all these factors in
a single framework without making oversimplified assumptions, and optimized them
simultaneously.

Liu and Sun 2014 exploited a Bayesian method for adaptive VSR by estimating
optical flow, blur kernel and noise level in addition to reconstruct the original HR
video frames simultaneously in a single framework. They optimize the optical flow
and the noise level jointly in a coarse-to-fine manner on a Gaussian image pyramid.
At each pyramid level, the optical flow and noise level are computed iteratively in the
maximum a posterior (MAP) way. To address the issue of motion blur in VSR, Ma
et al. 2015 proposed to search least blurred pixels in VSR optimally. An EM frame-
work was designed to guide residual blur estimation and HR image reconstruction.
The classical optical flow regularizer (Sun et al. 2010) was selected for supplying the
motion prior. To reduce the computational cost of motion estimation, they used the
interpolated TV-L1 optical flow (Sun et al. 2010) on the LR images for approxima-
tion.

Limitation. The learning-based VSR methods usually formulate VSR as an opti-
mization problem, and estimate the HR image, optical flow and blur kernel alternately
or simultaneously. Since a large number of iterations are needed to reach conver-
gence, the learning-based VSR methods are also time-consuming.

5.3 Deep Learning based VSR Method

As we analyzed above, the hand-crafted VSR approaches treat SR as a sophisticated
optimization problem, which require expensive computational time and suffer consid-
erable inference cost. Furthermore, the hand-crafted VSR approaches are not always
applicable for practical scenarios where the imaging process may have different prop-
erties than assumed in the learning stage, leading to degraded performance (Yang et
al. 2018).

Recently, deep learning based VSR methods have been proposed, with explicit
or implicit temporal alignment. They have become the dominant technique for VSR
(Jo et al. 2018; Lucas et al. 2019) since deep networks have strong model capacity to
learn useful priors for VSR from a large video dataset, and can be trained end-to-end.
Figure 11 shows the framework of the Deep Learning (+ optical flow) based VSR
method.

According to how the temporal dependency among successive LR frames is ex-
ploited, the deep learning based VSR techniques have two main strategies (Liao et
al. 2015; Kappeler et al. 2016; Liu et al. 2018): (a) utilizing convolutional neural
networks (CNNs), and performing motion compensation explicitly to align LR video
frames as the input for the CNN model (Liu et al. 2018), (b) using recurrent networks
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Fig. 11 The flow-chat of the Deep Learning (+ optical flow) based VSR method. Specifically, in the “Flow
estimation and Alignment” module, optical flow estimation is conducted on LR video frames for motion
compensation, and the alignment is achieved by learning a mapping from compensated LR video frames.
In the “Feature extraction” module, the deep feature is extracted with a deep neural network (e.g. CNN,
RNN). In the “Reconstruction” module, the HR video frames are super-resolved for the corresponding LR
video frames.

(RNNs) to capture the temporal dependency (Haris et al. 2019) to avoid perform mo-
tion estimation explicitly.

5.3.1 CNN (+ Optical Flow) based VSR Method

The CNN based VSR methods are usually conducted in the following way: firstly,
estimating optical flow from LR video frames for motion compensation; secondly,
adjacent LR frames are motion compensated and utilized as the input to a CNN to
produce HR images (Kappeler et al. 2016; Sajjadi et al. 2018; Wang et al. 2020b).
We termed this kind of approaches as the CNN (+ Optical Flow) based VSR method,
called CNN based VSR method for short.

Since Dong et al. 2014 proposed to use CNN to conduct single image SR and
achieved the state-of-the-art performance, CNN is widely investigated for SR. Cur-
rently, the CNN based VSR method has become the dominant technique due to the
following advantages:

– Once a CNN is trained, super-resolving an image is just a feed-forward process,
making it is much more efficient than the traditional VSR methods;

– Neural networks have powerful learning capacity to model the spatial relation of
the video frames, especially when with sufficient video data;

– The CNN framework usually can be trained end-to-end.

(A). Temporal Concatenation

To model temporal information in VSR, one of the most popular methods is to con-
catenate the frames (Liao et al. 2015; Kappeler et al. 2016; Caballero et al. 2017;
Wang et al. 2020b). However, this strategy is unable to represent multiple motion
regimes on a sequence as the input video frames are directly concatenated together
(Haris et al. 2019). Furthermore, it is hard to train the network since many frames are
processed simultaneously.

Deep-DE: Liao et al. 2015 proposed a deep draft-ensemble (Deep-DE) learning
SR framework for fast VSR. They integrate SR drafts via the nonlinear process in
a convolutional neural network (CNN) to recover high-frequency details. The SR
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draft-ensemble process can generate several SR drafts according to a set of motion
estimates, i.e., optical flows, where the optical flows are computed via different pa-
rameter settings. The architecture of the Deep-DE model is depicted in Figure 12.

Fig. 12 The architecture of the Deep-DE model.

VSR-Net: Kappeler et al. 2016 presented to use CNN for VSR, where the CNN
is trained on both the spatial and the temporal dimensions of videos to boost their
spatial resolution. To obtain motion compensated frames as input for CNN, an adap-
tive motion compensation approach is introduced, in which the motions of input LR
frames are compensated via a traditional optical flow algorithm. Then, the compen-
sated frames are concatenated and fed to a pre-trained CNN SR network to recon-
struct the SR frame. The optical flow algorithm (Drulea and Nedevschi 2011), which
is a combination of the Local-Global approach with Total Variation (CLG-TV), is
used. Besides, this adaptive motion compensation approach is able to address the
issues of fast moving objects and motion blur in videos. The architecture of the VSR-
Net model is depicted in Figure 13.

Fig. 13 The architecture of the VSR-Net model.

VESPCN: Methods Deep-DE (Liao et al. 2015) and VSR-Net (Kappeler et al.
2016) use a two-step framework, which separate the motion estimation from the net-
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work training. Consequently, they are hard to get an overall optimal solution. To
address this issue, Caballero et al. 2017 proposed a VESPCN method, which exploits
a trainable motion compensation network, and utilizes a CNN to produce HR pre-
dictions from multiple LR frames in an end-to-end manner. It is the first end-to-end
CNN based VSR framework. It takes advantage of sub-pixel convolution, temporal
redundancy extraction via the spatio-temporal network, and the motion compensa-
tion, resulting in improved VSR performance in both accuracy and efficiency. Par-
ticularly, they designed an efficient spatial motion compensation transformer (MCT)
module to estimate and compensate the motion between video frames in terms of op-
tical flow, where the optical flow is computed in a coarse-to-fine strategy. After that
the compensated frames are fed into the convolutional network for feature extrac-
tion and fusion. At last, the super-resolution process is conducted through a sub-pixel
convolutional layer. The architecture of the VESPCN model is depicted in Figure 14.

Fig. 14 The architecture of the VESPCN model.

STTN: Most optical flow techniques process only a pair of video frames (Kim
et al. 2018), which are sensitive to complex situations like noise, occlusion and illu-
mination change, and thus optical flow is limited for VSR. To overcome this disad-
vantage of the optical flow approaches, Kim et al. 2018 presented a spatio-temporal
transformer network (STTN), which is able to handle multiple frames at a time. STTN
consists of three main components: (a) a spatiotemporal flow estimation module, (b) a
spatio-temporal sampler module, and (c) a super-resolution module. In particular, (a)
the spatio-temporal flow estimation module is a U-Net style network (Ronneberger et
al. 2015), which can estimate the optical flow of successive input frames including the
target frame and multiple neighboring frames. The final result is a 3-channel spatio-
temporal flow that describes the spatial and temporal changes between multiple video
frames. (b) The spatio-temporal sampler module is in fact a trilinear interpolation ap-
proach, which is used to conduct warping for the current multiple neighboring frames
and obtain the aligned video frames in terms of the spatio-temporal optical flow that
is gained by the spatio-temporal flow module. (c) The super-resolution module is
applied to perform feature fusion and super-resolution reconstruction for the target
frame. The architecture of the STTN model is depicted in Figure 15.
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Fig. 15 The architecture of the STTN model.

TOFlow: Xue et al. 2019 designed a task-oriented flow (TOFlow) architecture,
which combines the optical flow estimation network with the super-resolution re-
construction network, and trains these two networks jointly to compute optical flow.
TOFlow adopts the framework of SpyNet (Ranjan and Black 2017) for optical flow
estimation, and uses a spatial transformer approach to warp the neighboring frames
based on the calculated optical flow. The final super-resolution is implemented by
a image processing module. The architecture of the TOFlow model is depicted in
Figure 16.

Fig. 16 The architecture of the TOFlow model.

MMCNN: To better extract spatiotemporal correlations between successive LR
video frames and find more realistic details, Wang et al. 2019 presented a multi-
memory CNN (MMCNN) for VSR, in which an optical flow network and an image-
reconstruction network are cascaded. By embedding convolutional long short-term
memory into the residual block, they designed a multi-memory residual block to re-
place the ordinary single-memory module to learn and retain inter-frame temporal
correlations between the adjacent LR frames gradually. Specifically, the optical flow
network can allow consecutive frames to serve as reference frames, thus it is bene-
ficial for fusing multi-frame information. The architecture of the MMCNN model is
depicted in Figure 17.

SoSR-ToSR: Zhang et al. 2019 applied VSR as a preprocessing step before feed-
ing LR video frames into a two-stream action recognition network to address the issue
that action recognition methods are un-applicable on low resolution videos. Specifi-
cally, to improve the performance of VSR, for the spatial stream, they designed an op-
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Fig. 17 The architecture of the MMCNN model.

tical flow guided weighted MSE loss to guide a spatial-oriented SR (SoSR) network
to focus more on the regions with motion. For the temporal stream, they exploited a
temporal-oriented SR (ToSR) network to enhance the adjacent frames together to en-
sure the temporal consistency. The architecture of the SoSR-ToSR model is depicted
in Figure 18.

Fig. 18 The architecture of the SoSR-ToSR model.

MEMC-Net: Inspired by EDSR (Lim et al. 2017), Bao et al. 2019 proposed a mo-
tion estimation and motion compensation network (MEMC-Net) for VSR. The main
contribution of MEMC-Net is the exploited adaptive warping layer, which warps the
neighboring video frames by the computed optical flow and the convolutional kernel.
The FlowNet (Dosovitskiy et al. 2015) is used for the motion estimation network, and
a modified U-Net (Ronneberger et al. 2015), which consists of five max-pooling lay-
ers, five un-pooling layers and skip connections from the encoder to the decoder, is
utilized for the kernel estimation network. To handle the occlusion problem, MEMC-
Net extracts the feature of input frames by a pre-trained ResNet18, and feeds the
output of the first convolutional layer of ResNet18 as the context information into the
adaptive warping layer to conduct the warping again. the architecture of the MEMC-
Net model is depicted in Figure 19.

MultiBoot-VSR: Kalarot et al. 2019 proposed a multi-stage multi-reference boot-
strapping method for VSR (MultiBoot-VSR). MultiBoot-VSR is a two-stage frame-
work, where the output of the first stage is utilized as the input of the second stage to
further boost the performance. Initially, the FlowNet 2.0 (Ilg et al. 2017) algorithm
is adopted to estimate optical flow and operate motion compensation. After that, the
processed video frames are fed into the first-stage network to super-resolve the target
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Fig. 19 The architecture of the MEMC-Net model.

frame. Lastly, the output from the first-stage is downsampled, concatenated with the
original LR frame, and input to the second stage MultiBoot network to compute the
final super-resolution result of the target frame. The architecture of the MultiBoot-
VSR model is depicted in Figure 20.

Fig. 20 The architecture of the MultiBoot-VSR model.

SOF-VSR: To handle the problem of resolution conflict between LR optical flows
and HR outputs, where the resolution conflict prevents the recovery of fine temporal
details, Wang et al. 2020b presented an end-to-end network to super-resolve optical
flows for VSR, which is named SOF-VSR. In particular, this work contains three
main steps: (a) an optical flow reconstruction network (OFR-Net) is used to infer HR
optical flows in a coarse-to-fine way; (b) motion compensation is conducted via the
estimated HR optical flows to encode temporal dependency; (c) the compensated LR
images are input to a super-resolution network (SR-Net) to produce SR images. The
architecture of the SOF-VSR model is depicted in Figure 21.

DDAN: Li et al. 2020 explored a deep dual attention network (DDAN), which
consists of two main components, i.e., a motion compensation network (MCNet) and
a SR reconstruction network (ReconNet), to fully exploit the spatio-temporal depen-
dencies and learn discriminative spatio-temporal features for accurate VSR. To be
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Fig. 21 The architecture of the SOF-VSR model.

specific, (1) the MCNet progressively learns multi-scale optical flow representations
to synthesize the motion information across adjacent frames in a pyramid coarse-to-
fine manner. To reduce the mis-registration errors caused by the optical flow based
motion compensation, DDAN (Li et al. 2020) took two effective measures. First, ex-
cept adopting the commonly used downscaling motion estimation strategy, it also uti-
lizes a module without any downsampling operation to capture full resolution optical
flow representations for better motion compensation. Second, the prior optical flow
based methods usually simply concatenate the compensated frames and center frame
for feature extraction and reconstruction, where the errors in the estimated optical
flow or wrapping will adversely impact the subsequent SR reconstruction and bring
artifacts. In contrast, DDAN extracts the detail components of original LR neighbor-
ing frames as complementary information to alleviate the errors of motion estima-
tion. (2) In the ReconNet, DDAN incorporates the dual attention mechanism along
channel and spatial dimensions with residual learning to focus on the intermediate
informative features for high-frequency details recovery. The MCNet and ReconNet
can be trained jointly in an end-to-end way for motion compensation and video SR
reconstruction. The architecture of the DDAN model is depicted in Figure 22.

Fig. 22 The architecture of the DDAN model.

(B). Temporal Aggregation
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To address the issue of dynamic motion in VSR, some methods presented multiple SR
inferences to work on different motion regimes (Liu et al. 2018), where the outputs of
all branches are aggregated at the last layer to construct the SR frame. However, these
methods are difficult for global optimization because they also need to concatenate
some input frames.

DRVSR: To address two important sub-problems in VSR, i.e., (a) aligning mul-
tiple frames to construct accurate correspondence and (b) fusing image details to
produce high-quality results, Tao et al. 2017 proposed a detail-revealing deep video
super-resolution (DRVSR) method, in which a “sub-pixel motion compensation”
(SPMC) layer is exploited to conduct the up-sampling and motion compensation
jointly for adjacent input frames according to the estimated optical flow. Specifi-
cally, DRVSR includes three main components, i.e., (a) a motion estimation module,
(b) a motion compensation module, and (c) a fusion module. DRVSR respectively
uses the motion compensation transformer (MCT) (Caballero et al. 2017) for motion
estimation and the SPMC layer for motion compensation. Specifically, the SPMC
layer applies sub-pixel information from the optical flow field to get sub-pixel mo-
tion compensation and resolution enhancement. For the fusion module, a detail fu-
sion (DF) network is utilized to fuse image details from multiple video frames after
SPMC alignment effectively. Additionally, the fusion module also utilizes a ConvL-
STM module (Glorot and Bengio 2010) to tackle the spatio-temporal information.
However, the SPMC layer costs large memory and has limited function, which pre-
vents DRVSR to go deeper. The architecture of the DRVSR model is depicted in
Figure 23.

Fig. 23 The architecture of the DRVSR model.

TANN: Liu et al. 2017 presented a temporal adaptive neural network (TANN),
which can tackle various types of movement robustly and choose the optimal range
of temporal dependency automatically. In this way, useful information among suc-
cessive video frames can be captured and the damage caused by erroneous motion
can be reduced. They simplify the motion estimation in the patch level to incorporate
translations to avoid interpolation. The rectified optical flow alignment is better than
the traditional optical flow based image alignment in reconstructing the HR image.
The architecture of the TANN model is depicted in Figure 24.

Limitation. The CNN based VSR methods generally suffer from the following
limitations:
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Fig. 24 The architecture of the TANN model.

– Dividing the VSR into a large number of separate multi-frame SR subtasks, re-
sulting in temporal inconsistent, and unsatisfactory flickering artifacts would be
produced.

– For the commonly used frame-concatenation strategy, many frames are processed
simultaneously in the network, leading to hard training.

– Much time is wasted as each input frame is processed several times in the net-
work.

5.3.2 RNN (+ Optical Flow) based VSR Method

Optical flow estimation usually costs high computational cost. To boost the efficiency,
recurrent neural networks (RNNs) are now widely used for VSR, after the pioneering
work of (Huang et al. 2015; Xiang et al. 2020). Generally, compared to CNN based
VSR approaches, in the RNN based VSR framework, implicit temporal alignment is
performed in terms of optical flow to replace explicit temporal alignment that depends
on optical flow based motion estimation and compensation (Sajjadi et al. 2018; Yang
et al. 2018). We termed this kind of approaches as RNN (+ Optical Flow) based VSR
method, called RNN based VSR method for short.

FRVSR: Sajjadi et al. 2018 exploited an effective end-to-end trainable frame-
recurrent VSR method (named FRVSR), which uses previously inferred HR esti-
mates to super-resolve the subsequent video frames. Due to the application of the
recurrent architecture, two benefits are gained: (a) Reducing the computational cost
as each input frame is only processed once. (b) Enhancing the ability of the network
to produce temporally consistent frames. Because the information from past frames
will be passed to later frames through the HR estimates which are recurrently prop-
agated over time. The FRVSR framework contains two important components, i.e.,
(a) the optical flow estimation network FlowNet, and (b) the super-resolution net-
work SRNet. One distinct characteristic of FRVSR is its alignment strategy, where it
does not warp the prior frame of the target directly while warps the HR version of
the prior frame instead. However, since FRVSR simply refers to previously inferred
HR frames, serious jitter and jagged artifacts are generated due to the former super-
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resolving errors are accumulated to the subsequent frames. The architecture of the
FRVSR model is depicted in Figure 25.

Fig. 25 The architecture of the FRVSR model.

STR-ResNet: Yang et al. 2018 exploited a Spatial Temporal Recurrent Residual
Network (STR-ResNet) for video SR, which is able to model intra-frame redundancy
and inter-frame motion context jointly in a unified deep framework, due to the frame-
work combines the spatial convolutional and temporal recurrent architectures. This
network does not require explicit optical flow estimation for motion compensation.
The architecture of the STR-ResNet model is depicted in Figure 26.

Fig. 26 The architecture of the STR-ResNet model.

RRCN: Li et al. 2019 presented a very deep non-simultaneous fully recurrent
convolutional network for VSR. Specifically, they applied very deep fully recurrent
convolutional layers and late fusion on motion compensated video frames to make
full use of the temporal information in their non-simultaneous recurrent convolu-
tional network architecture. A CLG-TV optical flow method (Drulea and Nedevschi
2011) is utilized for motion estimation, and the centering frame is chosen as the refer-
ence frame to compensate the adjacent frames, then both the centering frame and the



Optical Flow for Video Super-Resolution: A Survey 31

motion compensated frames are fed into their network for VSR. Remarkably, the very
deep recurrent convolutional network has powerful representation ability. Besides, it
is good at modeling the spatial and temporal non-linear mappings. The architecture
of the RRCN model is depicted in Figure 27.

Fig. 27 The architecture of the RRCN model.

RBPN: Haris et al. 2019 proposed a Recurrent Back-Projection Network (RBPN),
which consists of three main components: a feature extraction module, a projection
module, and a reconstruction module. RBPN collects the spatial and temporal in-
formation from video frames surrounding the target one. Back-projection in the re-
current process is used to organize the temporal information, where high-resolution
features can be gradually refined and applied to reconstruct the high resolution target
frame. Optical flow is used for initial feature extraction. Specifically, before entering
projection modules, they contact the pre-computed optical flow motion maps with
the target frame It in the corresponding neighborhood [It−N , . . . , It−k, . . . , It ], N is the
temporal neighborhood frame numbers. The optical flow motion map can encour-
age the projection module to capture missing details between It and its neighbors
It−k. For the reconstruction part, DBPN (Haris et al. 2018) is employed as the single
image super-resolution network, and ResNet (He et al. 2016) with deconvolution is
utilized as the multi-image super-resolution network. The architecture of the RBPN
model is depicted in Figure 28.

Limitation. RNN based VSR methods generally suffer from the following limi-
tations:

– It is good at modelling global slow-varying motions but not those short-term fast-
varying ones. This is because the recurrent connections operate on hidden states,
while significant fine-grained details for depicting fast-varying motions mostly
exist in input video frames other than the hidden states (Baker and Kanade 1999;
Huang et al. 2018).

– Without explicit temporal alignment, the RNN based VSR methods have limited
ability to deal with complex and large motions.

– The structure information, which is important for super-resolving LR video frames,
is lost. This is caused by the dimensionality reduction when transforming the in-
put 2D LR video frames to the 1D vectors of RNN hidden states.
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Fig. 28 The architecture of the RBPN model.
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6 Challenge and Future Direction

Although great progress has been made for VSR in the past decades, there remain
some open research questions. In this section, we will discuss these challenges ex-
plicitly and outline some promising directions for future study. The challenges and
trends are investigated in two aspects.

6.1 Challenges for optical flow-based temporal alignment

Since accurate optical flow estimation remains challenging for real videos, the op-
tical flow-based temporal alignment is still a key problem in VSR, where the main
challenges including:

– Inaccurate flow will result in distortion and errors, deteriorating the final VSR
performance.

– Image-level warping strategy introduces artifacts into the aligned frames.
– Fast moving and large displacement are difficult to handle, which significantly

affect the performance of both optical flow estimation and flow warping.
– Per-pixel motion estimation suffers a heavy computational cost.

6.2 Future direction for video super-resolution

6.2.1 Lightweight VSR Model

Currently, most VSR methods emphasize on pursuing high performance, leading to
large models (contain a huge number of parameters) that take a long time for training
while require high computing and storage resources. These characteristics prevent
their use on mobile devices in practical applications, where small models and fast
inference speed are preferred. Therefore, how to design lightweight VSR models
while still maintaining high performance is a promising research topic.

6.2.2 Applicable to Real-world Scenarios

VSR methods face difficulties in real-world scenarios as they often suffer from issues
like unknown degradation, scene change, occlusion, etc. Boosting the ability of VSR
methods to handle such real-world scenarios is urgent.

– Handling Degradation. Existing VSR methods normally generate LR video frames
according to the manners of downsampling directly with interpolation (e.g. bicu-
bic interpolation) or downsampling after Gaussian blurring, manually. However,
it is well-known that the real-world degradation process is very complicated which
includes many uncertainties. As a result, VSR models, which are trained on artifi-
cially produced degradation by blurring and interpolation, cannot well conformed
to actual LR video frames in practice. Consequently, better ways of modeling and
handling degradation are needed.
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– Handling complex scene changes. In reality, a video often contains some dif-
ferent scenes. However, the current VSR methods cannot deal with such changes
well. A typical approach is split the videos into multiple segments, each without
scene changes, and then process them individually. This kind of strategy increases
the computational cost, therefore new ways to handle videos with scene changes
are necessary for realistic VSR applications.

6.2.3 Effectively Exploring Spatio-temporal Information

Except the appearance RGB information, video includes the temporal information.
How to effectively explore temporal information across video frames will directly
affect the performance of VSR. Current methods, like 3D convolution and non-local
modules are computationally inefficient, and the quality of optical flow cannot be
guaranteed. Consequently, proposing new methods to effectively make use of spatio-
temporal information in video is worth further study.

6.2.4 More Reasonable Evaluation Metrics

Evaluation metric is the most fundamental component in each computer vision task,
which greatly influences the task’s progress. Exploring more reasonable evaluation
metrics is of equal importance to exploit more advanced algorithms.

Similar to image SR, nowadays, the performance of video SR is also evaluated
mainly by the FR-IQA metrics like peak signal-noise ratio (PSNR) and structural
similarity index (SSIM) (Wang et al. 2004; Yang et al. 2019). These FR-IQA mea-
sures face some fatal challenges: (1) They are unable to reflect the video quality for
human perception quite well. Because these methods depend on the pixel-level er-
ror measures, like L1 and L2 distances or their combination (Timofte et al. 2018),
causing them concentrate on local pixel-level information, thus they cannot measure
perceptual quality accurately (Ledig et al. 2017b; Ma et al. 2017). (Blau et al. 2018)
has demonstrated that images with high PSNR and SSIM produce overly smooth im-
ages with low perceptual quality; (2) They are designed in a limited and refined con-
dition, which require manual intervention, thus they lack of feasibility for modeling
unknown distortions (Anwar et al. 2020). (3) They require non-distorted ground-truth
images for comparison, which are almost unavailable in practice, because it is diffi-
cult or impossible to acquire ideal reference images in most conditions, especially for
the real video data.

To address this issue, some new perceptual-based NR-IQA metrics have been pro-
posed (Kim and Lee 2017; Talebi and Milanfar 2018; Zhang et al. 2018b; Prashnani
et al. 2018; Tang et al. 2019; Zhu et al. 2020). However, there are still no univer-
sally accepted evaluation criteria that can work in various situations and perfectly
assess SR quality. Even worse, we do not make clear what kind of perceptual quality
is real important and useful for assessing SR currently. Nevertheless, proposing new
effective metrics which can be broadly used is remaining an open research problem.
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6.2.5 Unsupervised VSR

The state-of-the-art VSR approaches are deep neural network based and trained in the
supervised manner. However, deep learning networks require a large number LR-HR
video frame pairs for training. On the one hand, the paired datasets are rare or costly
to acquire in practice. On the other hand, when the input video frames are poor in
resolution, the super-solution cannot work well. Furthermore, the current VSR mod-
els trained on these artificial labeled datasets can only learn the inverse process of the
predefined degradation, which is too simple to characterize the real-world situation.
One promising direction is to exploit unsupervised VSR methods which can be well
performed on unpaired LR-HR video sets.

7 Conclusion

Video super-resolution (VSR), which aims to improve the clarity and visual appear-
ance of video frames, is a crucial task in computer vision and has been deeply in-
vestigated. One core problem for VSR is how to capture temporal dependency to
achieve efficient and accurate temporal alignment. Noticeably, the most popular way
is to use optical flow to acquire motion information for explicit or implicit temporal
alignment. In this work, we provide a comprehensive review of optical flow based
VSR methods by introducing previous work and analyzing current advances, and
discussing their limitations incidentally. In particular, we firstly explain what is video
super-resolution. Secondly, we give a detailed explanation about what is optical flow
based VSR. Thirdly, both the representative traditional (i.e. reconstruction based VSR
method and learning based VSR method) and the current deep learning based VSR
algorithms that make use of optical flow are compared and explored. Remarkably,
we deeply investigate the deep neural network related VSR methods. Fourthly, we
find that although deep learning based VSR algorithms have achieved great progress,
there are still some practical issues and unsolved problems. Accordingly, we discuss
the challenges and point out the promising future research trend for VSR. To the best
of our knowledge, this is the first systematical work on surveying the effect of op-
tical flow in VSR. We hope this survey would not only provide a better and deeper
understanding of optical flow based VSR, but also serve as a catalyst to spur future
research activities in this domain.

To promote the future research activity, we hope to play as a forerunner and start
the discussion from the following aspects:

1) Lightening VSR Model with Knowledge Distillation. There is a considerable
performance gap between the lightweight VSR model and the normally used com-
plex VSR model, while the latter one requires a much larger amount of resources
(Xiao et al. 2021). This problem is particularly acute on resource-limited devices,
e.g., smartphones and wearable devices. Where a compact VSR model can be easily
used on these devices, but due to its limited capacity to model spatial-temporal corre-
lations, the VSR performance is unsatisfactory. Knowledge distillation, which is able
to transfer knowledge from a complicated model (teacher network) to a simplified one
(student network), and without altering the original architecture of the teacher net-
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work, supplies a possible way to handle this problem. Designing a spatial-temporal
distillation (STD) scheme, which is suitable for VSR, is a promising research topic.

2) Promoting VSR for Real-world Scenarios. Although VSR methods have achieved
remarkable progress recently, they are still unapplicable in reality. One reason is
that most of the existed VSR models are trained and assessed on synthetic datasets,
where the videos are generated by simple synthetic degradation methods. Badly, these
degradation methods unable to well simulate the complicated degradation processes
in realistic videos, and accordingly leading to the trained VSR models noneffective
for real-world applications (Yang et al. 2021). Research Topic 1: building a real-
world video super-resolution dataset, which can bridge the synthetic-to-real gap in
VSR and supply a valid benchmark for training and evaluating the real-world VSR
models generally. The second reason is that the prior degradation models take some
factors into account, e.g. blur, downsampling, noise, but they are still cannot cover the
diverse degradations of real video data (Pan et al. 2021). Research Topic 2: exploit-
ing a practical degradation model that consists of random degradations. For example,
designing a VSR which can simultaneously estimate unknown blur kernels, motion
fields, and latent HR videos effectively is prospective. Lots of VSR models have been
proposed, but there is not a unified framework being dominant for VSR in practice
yet (Chan et al. 2021; Yi et al. 2021). Research Topic 3: Exploring a generic, efficient,
and easy-to-implement baseline framework for VSR, which can serve as a standard
for various comparison and evaluation.

3) Exploiting More Useful Spatio-temporal Information. Capturing spatio-temporal
information accurately and efficiently is critical important for VSR. Recently, using
the deformable convolution backbone to conduct spatio-temporal VSR on the feature
space directly is popular as this strategy is fast (Xiang et al. 2020). However, these
VSR models would only produce pre-defined intermediate frames, causing them con-
strained to highly-controlled scenarios with fixed frame-rate videos. Consequently,
exploiting controllable spatio-temporal VSR approaches, which with the deformable
convolution network, for smooth motion synthesizing it is necessary (Xu et al. 2021).

In addition, current VSR models underrated the short-term motion cues between
successive video frames, therefore how to exploit both the short-term and long-term
motion cues in videos is desirable.

4) Designing Natural Evaluation Metrics. Since the ground truth reference im-
age is almost absent for real data, it means that the widely used FR-IQA metrics are
unreasonable in fact, human evaluation is the only rational way to evaluate the per-
formance of VSR models. Mean-Opinion-Score (MOS), i.e. the average rating that
human raters assigned to super-resolved images via a certain SR model, is the typi-
cal human evaluation measure. However, the MOS values of different models are not
directly comparable due to the changing of rater numbers and rater’s subjectivity, etc
(Khrulkov and Babenko 2021). Consequently, it is urgent to propose new NR-IQA
metrics, which enable to break through the current evaluation predicament in some
aspects: (1) comparing with various VSR models automatically, (2) approximating
human preferences naturally; (3) tuning hyperparameters without artificial assistance
effectively, etc.

5) Improving Unsupervised VSR. For unsupervised VSR, there are main two
ways. First, super-resolving video images without introducing predefined degrada-
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tion by using unpaired LR-HR datasets. Despite great progress, it is hard to synthe-
size good “real” LR images for super-resolution yet (Wang et al. 2021b). Formulating
unpaired SR training as a domain adaptation issue, and enabling the VSR network to
match LR images from different domains into a shared degradation-imperceptible
feature space deserved to be discussed. Second, learning model with unsupervised
deep networks, where Generative Adversarial Network (GAN) is the currently pri-
mary method. However, GAN usually brings noise and causes some details of dis-
location. Exploring more advanced unsupervised deep networks is another research
topic.
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