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Abstract The Artificial Fish Swarm Algorithm (AFSA) is inspired by the
ecological behaviors of fish schooling in nature, viz., the preying, swarming
and following behaviors. Owing to a number of salient properties, which in-
clude flexibility, fast convergence, and insensitivity to the initial parameter
settings, the family of AFSA has emerged as an effective Swarm Intelligence
(SI) methodology that has been widely applied to solve real-world optimization
problems. Since its introduction in 2002, many improved and hybrid AFSA
models have been developed to tackle continuous, binary, and combinatorial
optimization problems. This paper aims to present a concise review of the con-
tinuous AFSA, encompassing the original ASFA, its improvements and hybrid
models, as well as their associated applications. We focus on articles published

Farhad Pourpanah
College of Mathematics and Statistics, Guangdong Key Lab. of intelligent Information Pro-
cessing, Shenzhen University, China.
Department of Electrical and Computer Engineering, University of Windsor.
E-mail: farhad.086@gmail.com

Ran Wang
College of Mathematics and Statistics, Shenzhen Key Lab. of Advanced Machine Learn-
ing and Applications, Guangdong Key Lab. of intelligent Information Processing, Shenzhen
University, China.
E-mail: wangran@szu.edu.cn

Chee Peng Lim
Institute for Intelligent Systems Research and Innovation, Deakin University, Australia.
E-mail: chee.lim@deakin.edu.au

Xi-Zhao Wang
College of Computer Science and Software Engineering, Guangdong Key Lab. of intelligent
Information Processing, Shenzhen University, China.
E-mail: xizhaowang@ieee.org

Danial Yazdani
School of Computer Science and Engineering, Southern University of Science and Technol-
ogy, China.
E-mail: danial.yazdani@yahoo.com

ar
X

iv
:2

01
1.

05
70

0v
2 

 [
cs

.N
E

] 
 1

2 
M

ay
 2

02
2



2 Farhad Pourpanah et al.

in high-quality journals since 2013. Our review provides insights into AFSA
parameters modifications, procedure and sub-functions. The main reasons for
these enhancements and the comparison results with other hybrid methods
are discussed. In addition, hybrid, multi-objective and dynamic AFSA models
that have been proposed to solve continuous optimization problems are elu-
cidated. We also analyse possible AFSA enhancements and highlight future
research directions for advancing AFSA-based models.

Keywords Artificial fish swarm algorithm · fish schooling · swarm in-
telligence · hybrid models · continuous optimization · multi-objective
optimization · dynamic optimization.

1 Introduction

As part of artificial intelligence, the Swarm Intelligence (SI) [8,91] method-
ology is largely inspired by the collective behaviors of biological and natural
evolutional phenomena, e.g. swarms of worms, bees and ants, schools of fish
and flock of birds. The main reasons for the recent popularity of SI-based
algorithms in solving optimization problems include their capability of self-
learning, fast convergence, flexibility, simple structure, insensitivity to initial
parameters and adaptability to external variants [31,60]. They have been ap-
plied to undertake various problems successfully, such as image processing [1,
86], feature selection [36,89,93], medical diagnosis [2,149] and training machine
learning models [56,95], dynamic optimization problems [50,94]. In general,
SI-based models start with a set of random solutions. Each member of swarm
evolves individually, and is guided toward a better position iteratively in the
search space until the stopping criterion is satisfied [90,92,96]. The evolving
behavior towards optimality is usually achieved by the self-organizing capa-
bility of the swarm through simple interaction rules. The popular SI-based
optimization algorithms include particle swarm optimization (PSO) [55], ant
colony optimization (ACO) [18], firefly algorithm (FA) [31,120], grey wolf op-
timizer (GWO) [82], crow search algorithm (CSA) [3], artificial fish swarm
algorithm (AFSA) [67], cuckoo search (CS) [122], bat algorithm (BA) [121]
and brain storm optimization (BSO) [102].

Comparatively, AFSA [67] is inspired by the behaviors of a fish swarm,
which is a more recent SI-based optimization method introduced by Li in
2002. It is a stochastic algorithm that searches for a set of solutions in a ran-
domized procedure to solve NP-hard problems. The basic idea is to simulate
a number of ecological behaviors of fish schooling in the water. The first be-
havior is praying or foraging, where every fish in nature probes for its prey
individually within its visual distance. The second behavior is swarming or
clustering, where every fish tends to avoid danger by assembling in a group.
The third behavior is the following or rear-end, where once a fish finds a food
source with a high concentration, other fishes in its neighborhood tend to
reach the food. The AFSA considers each food position as a feasible solution
for the optimization problem in hand, and the density of the corresponding
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Fig. 1 The publication trend of AFSA from 2004 to 2021. The result obtained by conduct-
ing searches based on the exact phrases of “Artificial Fish Swarm Algorithm”, “Artificial
Fish Swarm Optimization”, “Artificial Fish Schooling Algorithm” in Title, Abstract, or
Keywords of the documents. Source: https://www.scopus.com

food indicates the quality of the solution that can be measured by a fitness
function. The AFSA uses the preying behavior to identify the optimal solu-
tion, the following behavior to escape from the local optimal solutions, and
the swarming behavior to gather the fish swarm around the optimal solution.

Since its introduction in 2002, many improved and hybrid models of AFSA
have been developed to solve real-world optimization problems, including data
clustering [129,29], image segmentation [59], fault diagnosis [146], power allo-
cation scheme [143], parameter optimization of the deep auto-encoder [101],
spoiled meet detection [12], manufacturing [78], risk probability prediction [61],
guidance error estimation [145], navigation [19], wireless sensor network [81,
38], and energy management [106]. Fig. 1 shows the publication trend of AFSA
from 2004 to early 2021. As can be seen, there is an upward trend in using
AFSA. A survey on the AFSA from its introduction to 2012 can be found
in [84]. However, more than 1000 articles, conference papers, and book chap-
ters have been published since 2013, which are yet to be reviewed.

In this study, we aim to review the AFSA modifications that have been
proposed to solve continuous optimization problems from 2013 onwards. We
mainly focus on articles published in key indexed journals by conducting
searches in ScienceDirect, Springer, IEEE Xplore, and Google Scholar. The
keywords include “artificial fish swarm algorithm”, “fish schooling”, “AFSA”,
“AFs”, “hybrid AFSA”, “dynamic AFSA”, “multi-objective AFSA” and “swarm
intelligence”. In addition, articles that report the original AFSA without mod-
ifications are excluded, in order to focus the review on recent advances per-
taining to the AFSA. The scope of our review is focused on the AFSA mod-
ifications, specifically parameters modifications, procedure and sub-functions,
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hybrid, multi-objective and dynamic AFSA that have been proposed to solve
continuous optimization problems.

Based on this taxonomy, this review consists of six sections. Section 2 ex-
plains various continuous optimization problems, the AFSA procedure and
the three associated behaviors in detail, and compares the AFSA with PSO.
Section 3 provides a taxonomy of the AFSA modifications and reviews each
modification. Section 4 discusses the real-world applications of the AFSA. Sec-
tion 5 first empirically compares AFSA and its variants with several population
based algorithms, and then provides several suggestions for future research.
The concluding remarks are given in Section 6.

2 Background

In this section, we firstly formulate various continuous optimization problems
including static optimization, static multi-objective optimization and dynamic
optimization problems. Then, the structure of the original AFSA along with
its behaviours are described in detail. A comparison between the AFSA and
PSO, which is the most popular SI algorithm, is also provided.

2.1 Optimization Problems

2.1.1 Static Optimization Problem

In general, a static optimization problem for solving the minimum problem can
be defined as follows: Let ~x = (x1, x2, . . . , xd) indicates a vector of d decision
variables in the space X, and f : X → R is the objective function. The goal
(for a minimum problem) is to find an optimal solution ~x ∈ X that minimizes
the objective function value f , as follows:

min
~x∈X

f(~x). (1)

2.1.2 Multi-Objective Optimization Problem

A multi-objective optimization problem (MOOP) consists of K objective func-
tions that need to be optimized, as follows:

min
~x∈X

fk(~x), k = 1, 2, . . . , k̂, (2)

where fk(~x) represents the k-th objective function.
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2.1.3 Dynamic Optimization Problem

A dynamic optimization problem (DOP) can be defined as:

min
~x∈X

f
(
~x, ~α(t)

)
, (3)

where ~α is a vector of time-varying control parameters with respect to the
objective function, and t ∈ [0, T ] is the time index. Most existing works in
the DOP literature consider the DOPs whose environmental changes happen
only in discrete time, i.e., t ∈ {1, . . . , T}. In this respect, for a DOP with T
environmental states, there is a sequence of T stationary environments:〈

f(~x, ~α(1)), f(~x, ~α(2)), . . . , f(~x, ~α(T ))
〉
. (4)

2.1.4 Constrained Optimization Problem

All aforementioned optimization problems can be subjected to constraints:

gj(~x) ≥ 0, j = 1, . . . , ĵ, (5)

hl(~x) = 0, l = 1, . . . , l̂, (6)

where gj and hl are inequality and equality constraints, respectively, which
define the feasibility of solutions.

2.2 Artificial Fish Swarm Algorithm

In AFSA, candidate solutions are called artificial fish (AF). Fig. 2 shows a
schema of an AF and its surrounding environment, where ~x = (x1, x2, . . . , xd)
is an AF in a d-dimensional continuous space, Step (s) shows the maximum
Euclidean distance that an AF can relocate at each step, Visual (v) is the
maximum length of vision (Euclidean distance) of an AF, and ~xv denotes a
position inside the line of sight of the AF, ~xn,i is a neighbor of the n-th AF
located within the line of sight of the i-th AF, i.e., their Euclidean distance
is less than v. Each AF searches inside a hyper-ball whose center and radius
are the AF position and v, respectively. If an AF finds a position inside the
hyper-ball that has a better fitness value than its current position, the AF
moves a step toward it.

The AFSA starts by initializing n randomly distributed AFs across the
search space, where n is the population size. Each AF searches for positions
with higher fitness values using three behaviors: preying, swarming, and fol-
lowing. The AFSA uses a bulletin board to record the best found position so
far. At the end of each iteration, the best AF (i.e., the AF with the best fitness
value) is compared with the archived solution in the bulletin board, and if the
new AF is better, the bulletin’s position will be updated. This search cycle
continues until the stop criterion is met.
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Step

Visual
xi(t)

xi(t+1)

xv

xn,1(t)

xn,2(t)

xn,3(t)

Fig. 2 An artificial fish and its environment. Where x
(t)
i and x

(t+1)
i represent the current

and next positions of the i-th AF, respectively, xv is a random position inside the line of

sight, and x
(t)
n,1, x

(t)
n,2 and x

(t)
n,3 are AFs which are located inside the field of vision of the i-th

AF.

2.2.1 Behavior Descriptions

The three possible behaviors of an AF are described in the following.

Preying behavior Preying is the basic behavior for a fish to move to a location
with a higher concentration of food. In AFSA, this behavior is modeled based
on the current position of an AF and its surrounding area based on its field of
view. The i-th AF searches inside its field of vision randomly by:

~xv = ~x
(t)
i +

(
v · U(0, 1) · ~u

‖~u‖

)
, (7)

where ~x
(t)
i is the current position of the i-th AF, ~xv is a random position inside

the field of vision of the ith AF, v is the visual length, U(0, 1) is a random
number drawn from a uniform distribution in (0,1), ~u is a vector of uniformly
distributed numbers in (−1, 1), ‖~u‖ is the L2-norm (Euclidean length) of ~u,
and ~u

‖~u‖ provides a unit vector.

If f(~xv) ≤ f(~x
(t)
i ) (in minimization problems), the i-th AF moves a step

toward ~xv using the following formula:

~xp,i = ~x
(t)
i +

(
s · U(0, 1) · ~xv − ~x(t)i

‖~xv − ~x(t)i ‖

)
, (8)

where ~xp,i is the position of the i-th AF after executing praying behaviour,

which is a position alongside the ~xv − ~x(t)i , and ‖~xp,i − ~x(t)i ‖ ≤ s. Otherwise,
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if f(~xv) > f(~x
(t)
i ), another position ~xv is randomly selected using (7). The

aforementioned process is repeated until a position with a better fitness value
is found. In the case where the i-th AF cannot found a better position after
trying t positions, which is called try-number, it moves a random step:

~xp,i = ~x
(t)
i +

(
v · U(0, 1) · ~u

‖~u‖

)
. (9)

Swarming behavior In nature, a fish tends to assemble in a group to avoid
danger, while avoids over-crowded areas. This behavior of fish swarms is also
modeled in AFSA. Let ~xc be the central position of the swarm which is the
average of the positions of all AFs:

~xc =
1

n

n∑
k=1

~xk. (10)

The i-th AF moves toward ~xc if f(~xc) ≤ f(~xi) and the area around ~xc is
not over-crowded. In AFSA, the over-crowding status around a position ~x is
determined by:

C(~x) =

1, if
N(~x)

n
> δ

0, otherwise
, (11)

where C(~x) = 1 indicates that the area around the ~x is overcrowded, N(~x)
represents the number of AFs whose Euclidean distances to the i-th AF is less
than v, and δ ∈ [0, 1] is the crowding factor. By avoiding movements toward
over-crowded places, AFSA tries to maintain the swarm diversity to avoid
collapsing AFs in a limited areas and premature convergence. If C(~xc) = 0
and f(~xc) ≤ f(~xi), the i-th AF moves a step toward the center position:

~xs,i = ~x
(t)
i +

(
s · U(0, 1) · ~xc − ~x(t)i

‖~xc − ~x(t)i ‖

)
, (12)

otherwise, the i-th AF will execute the preying behavior.

Following behavior When an AF finds a location with a better concentration
of food, other fish will follow it. For the i-th AF, if there is at least another AF
(indicated by j) where ‖~xj − ~xi‖ ≤ v, then the i-th AF moves a step toward
the j-th AF position by:

~xf,i = ~x
(t)
i +

(
s · U(0, 1) · ~xj − ~x(t)i

‖~xj − ~x(t)i ‖

)
, (13)

otherwise, the i-th AF will execute the preying behavior.
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2.2.2 The AFSA procedure

The AFSA starts with generating n random AFs within the search space.
Next, it simultaneously executes the swarming and following behaviors for
each AF. In the situation when the criteria to execute the behaviors are not
satisfied, or no improvement is observed after executing these behaviors, the
AFSA executes preying behavior. Then, replacement takes place if any of the
generated positions performs better than the best found position recorded in
the bulletin board. This procedure continues until the stop condition is met.
Fig. 3 summarizes the AFSA procedure.

2.3 A short comparison between AFSA, PSO and FA

The AFSA and its variants are useful for solving continuous optimization
problems. They have demonstrated good results as compared with those from
other population-based optimization models. A comparison among the AFSA,
PSO and FA is made. PSO is one of the most popular SI algorithms. Fig. 4
shows the popularity of PSO as compared with other SI-based algorithms,
which include FA, CS, BA, AFSA, BSO and CSA. The results are obtained
through a search in title, abstract, or keywords of the associated publications
(over 100,000 articles). It can be observed that PSO occupies 84% of all the
articles. While FA uses a similar mechanism as the AFSA, i.e., distance-based
metrics, to determine its neighborhood fireflies. Specifically, several key dif-
ferences from the structure, procedure, and update rules among these three
algorithms can be observed, as follows:

– In PSO, the candidate solutions are particles. Each particle keeps the infor-
mation of its personal best (~p) position found over the previous iterations,
which is used as an attractor to determine the subsequent position. Com-
paratively, each AF in the AFSA and each firefly in the FA do not keep
any previous information, except their current positions, in the memory
structure.

– In PSO, the neighborhood particles are determined according to their in-
dices. In the AFSA and FA, however, the neighborhood AFs and fireflies
are determined according to the Euclidean distances.

– In all three algorithms, the candidate solutions are attracted toward the
better neighbor candidate solution. In PSO, the attractors are chosen
among the personal best solutions of particles and the neighborhood topol-
ogy. In the FA, fireflies are attracted to another (fitter) firefly, where the
attractiveness of each firefly is proportional to its light intensity. In the
AFSA, however, the attractors of each AF are the best AF in its visual
range and the center position of the swarm.

– In the AFSA, the movement length is limited by parameter s, while there is
no limitation in the movement size in the FA and PSO. In PSO, the move-
ment length is defined by the velocity vector, which can lead to a higher
convergence speed as compared with that of the AFSA. Nevertheless, the
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Start

Generate n random AF within the
search space

Compute the fitness value of all
AFs

Record the best AF in the bulletin
board

Execute the follwing
behavior

Execute the swarming
behavior

Improved? Improved?

Execute the preyning
behavior

Execute the preyning
behavior

Update AF position

Termination?

Return the best found
position

End

yes

yesyes

no

no no

Update the bulletin
board

Fig. 3 Flowchart of the original AFSA.

trade-off is a possible pre-mature convergence in PSO. In contrast, in the
FA, each firefly moves according to three factors, i.e., its current position,
another attractive firefly and random walk.
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84%

5%

4%
4%2%

PSO
FA
CS
BA
AFSA
BSO
CSA

Fig. 4 The popularity of PSO as compared with other SI-based algorithms, i.e., FA, CS,
BA, AFSA, BSO and CSA. Source: https://www.scopus.com

– Both the FA and PSO rapidly loose the diversity of their populations, which
can lead to an increased probability of being trapped in local optima. On
the other hand, in the AFSA, the selection rules, which are defined based
on δ, do not allow the AFs to concentrate on an optimum location. This
results in maintaining a higher degree of diversity over time and increasing
the AFSA exploration capability. However, the trade-off is a reduction in
the AFSA convergence speed.

– In both the FA and PSO, the social attractors and personal best informa-
tion are unified in a formula, in which the next position is dependent on
both individual and group attractors simultaneously. In contrast, in the
AFSA, the update rules are separated as behaviors that are performed
on the AFs according to certain conditions. Therefore, in each iteration,
each AF can either perform local search around itself or a social-based be-
havior and move towards other attractors, therefore, enhancing its search
capability.

3 A Taxonomy of the AFSA Modifications

In this section, a taxonomy of the AFSA modifications is provided. According
to the taxonomy (Fig. 5), these modifications are classified into the following
categories.

– Parameter control : This group of modifications focuses on controlling the
parameter values of the AFSA, especially the visual distance (v), maximum
step length (s) and the crowding factor (δ), in order to control the trade-off
between the exploration and exploitation capabilities of the AFSA. To this
end, different methods such as adaptive parameter tuning methods [32]
have been developed in the literature. We have provided a comprehensive
review of the used methods to control the parameters of AFSA in Sec-
tion 3.1.
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AFSA modifications

Multi-objective
AFSA

Hybrid AFSA

Dynamic AFSA

Parameters
modification

Population-based
methods

Non-population-
based methods

Procedure and 
sub-functions Merged models

Co-operative
models

Fig. 5 The taxonomy of the AFSA modifications.

– Procedure and sub-functions: The main AFSA procedure for updating the
positions of AFs is constructed by several so-called behaviors. Improve-
ments on these behaviors or developing new ones, is among the most im-
portant modifications of the AFSA. These modifications of behaviors are
reviewed in Section 3.2.

– Hybridization: Many works have hybridized AFSA with other methods to
benefit from their strength and address their possible shortcomings. This
category can be further classified into: hybridization with population-based
and non-population-based methods (e.g., clustering approaches). Further-
more, the population-based methods can be further divided into merged
and co-operative models. On the one hand, in the merged models, the
AFSA and the associated population-based methods are combined into a
unified optimizer that uses the update rules and/or procedures of the com-
bined algorithms. On the other hand, in the co-operative models, the al-
gorithms work independently and share some information with each other.
For example, in some cooperative methods, the algorithms run in a serial
manner and the output of one of them is used as the input of another [24].
The hybrid AFSA methods are reviewed in Section 3.3.

– Multi-objective AFSA: To tackle multi-objective optimization, an optimizer
needs to find a set of non-dominated solutions. The AFSA is originally
designed to perform global optimization in single-objective optimization
problems. Consequently, in order to tackle multi-objective optimization
problems, several works have modified the AFSA to adapt it to the re-
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quirements of such problems. Section 3.4 gives a review of multi-objective
AFSA models.

– Dynamic AFSA: To solve optimization problems in dynamic environments,
it is important that the optimizer can efficiently find the optimal solution
and also track it over time after environmental changes. Due to the specific
challenges of dynamic optimization problems, optimizers that have been
originally designed for static environments often fail to efficiently tackle
such problems [7]. Some works have modified the AFSA for tackling dy-
namic optimization problems A detailed review of dynamic AFSA models
are presented in Section 3.5.

In the following subsections, we provide a detailed review of each modifi-
cation, and Table 1 provides a summary of these modifications.

3.1 Parameters modification

In general, population-based algorithms are able to maintain a good trade-
off between exploration and exploitation. Exploration refers to the ability to
discover various solutions in the entire search space, while exploitation is the
ability to search within the vicinity of the best solution found so far. These
two abilities can be controlled through the algorithm parameters [16]. In the
AFSA, the balance between exploration and exploitation is controlled by δ,
v, and s. In particular, v and s affect the AFSA convergence performance, as
both parameters are related to almost all behaviors. Large δ, v, and s values
increase the exploration ability, and reduce the stability and exploration ability
in subsequent iterations. These settings enable AFs to change their locations
with a large range. As such, they move faster toward the global optimum in the
early stage and they are not able to search for more accurate positions during
the subsequent stages, causing the AFs to oscillate around the global optimum
until the termination criterion is met. In contrast, while small v and s settings
enable the AFs to improve local search capability, they can be trapped in local
optimum solutions. When v is large, the AFs tend to execute the following and
swarming behaviors more frequently than the preying behavior, and vice versa.

To alleviate these issues, adaptive s and v settings are proposed; which
use large values at early stages, and small values at later stages. For example,
Yan et al. [118] used large v and s values for the preying behavior to obtain
a better global search capability in the early stages, and consequently small
v and s values for the following and swarming behaviors to improve the local
search capability. Gao et al. [35] employed a broader v setting for the foraging
behavior to increase the global search capability and convergence speed. Qin
and Xu [97] reduced s and v if no improvement is observed after certain number
of iterations. In [113], a predefined threshold was used to reduce v at each
iteration.

Besides, several studies used linear [26,70] or non-linear [11,22,88,107,133]
functions to dynamically adjust the AFSA parameters. These functions can be
based on the number of iterations, fitness value, distance or other conditions.
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For example, Fei et al. [26] used a linear function based on the current iteration
number (t) to gradually reduce the s and v values as follows:

v(t) = v0 − kv.t, (14)

s(t) = s0 − ks.t, (15)

where kv and ks are the changing slope rates of v and s, respectively. Using
(14) and (15) result in having larger v and s values in the early stages and
smaller v and s values in the later stages, thus attempting to balance the
trade-off between exploration and exploitation.

Similar to the linear functions, several studies [13,29,32,88,133,139] adopted
exponential functions based on the current (t) and maximum iteration (tmax)
numbers to gradually reduce s and v, i.e.,

v(t) = vin × αv + vmin, (16)

s(t) = sin × αs + smin, (17)

where vin and sin are input values for calculating v and s over time, respec-
tively, vmin and smin are values computed according to the accuracy of the
problem; and they indicate the minimum values that v(t) and s(t) can take,
respectively, while αv and αs are exponential functions representing the chang-
ing parameter of the model operation. As an example, Gao et al. [32] used the
following function:

αv = αs = exp(−3 · ( t

tmax
)). (18)

Liu et al. [72] adopted a function according to the problem, i.e., hydraulic-
connectivity, to update αv and αs at each iteration, while Zhang et al. [139]
used the attenuation function to update v in (16) and the Gaussian distribution
function to update s in (17), as follows:

αv = exp(−25 · ( t

tmax
)k), (19)

αs =
1

σ
√

2π
e−(

t
tmax

−µ)2/2σ2

, (20)

where k is a value between 1 and 20, σ represents the standard deviation, and
µ = 0. Using Eqs. (19) and (20) can minimize the values of v and s while
allowing the AFs to move closely to the optimal solution during the iteration
process.

Mao et al. [79] introduced adaptive v and s based on five neighborhood
AFs, as follows:

v
(t)
i = U(0, 1) · 1

5
· α(t) ·

5∑
j=1

di,j + vmin, (21)
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s
(t)
i =

1

8
· α(t) · v(t)i + smin, (22)

where vmin and smin are the minimum visual and step sizes, respectively, and
α(t) is defined as follows:

α(t) = exp(−r · ( t

tmax
)2), (23)

where r indicates the limited factor.
Huang et al. [45] used three adaptive s to define the AFSA behaviors, as

follows:

s
(t)
1 = (1− t− 1

β1 − tmax
) · s(t−1), (24)

s
(t)
2 = β2 · s(t−1), (25)

and

s
(t)
3 = s(t−1) +

s0
β3 · tmax

, (26)

where β1, β2 and β3 are the attenuation factors of the three adaptive steps. Eqs.
(24), (25) and (26) gradually decrease s, in order to increase the convergence
speed and enhance the optimization precision.

A multi-strategy AFSA (MSAFSA) [148] model introduced an adaptive s,
as follows:

s(t) = smax −
t

tmax
(smax − smin), (27)

where smax and smin are the maximum and minimum step sizes, respectively.
Yuan et al. [132] used the distance between the location of the i-th AF and

the best found position (~g) to adjust si in each iteration, as follows:

s
(t)
i = ‖~g(t−1) − ~xi‖ · U(−1, 1), (28)

where ~g(t−1) is the best found position up to the last iteration. This allows
the AFs to move within a reasonable region, in a way to adjust the trade-off
between the exploration and exploitation abilities.

Similarly, a number of studies [65,69,117] adjust the AFSA parameters
adaptively according to the fitness value. In studies [69,117] the following func-
tion to calculate s based on the fitness value of the newly generated position
and the current AF is proposed:

s
(t)
i =

∣∣∣∣1− f(~xi)

f(~xj)

∣∣∣∣ · s(t−1)i . (29)

Yan et al. [117] also provided a function to calculate v in each iteration
for the i-th AF with respect to the distance of other AFs locating within the
visual distance of the current AF, as follows:
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v
(t)
i =

1

N(~xi)

∑
j∈Ni

‖~xi − ~xj‖, (30)

where N(~xi) is a set of neighbors of the ith AF (i.e., other AFs which lie
inside the field of view (v) of the i-th AF), f(~xi) and f(~xj) are fitness value
of current and newly generated AF, in which f(~xj) is better than f(~xi). Since
the value of f(~xi)/f(~xj) is small in the early stages, si is larger. The value of
f(~xi)/f(~xj) increases with approaching to the optimal solution, resulting in a
small value of si. Meanwhile, Li et al. [65] introduced a s function based on the
fitness value of the current and previous iterations of the corresponding AF,
and a conditional v value. If the improvement is higher than a user-defined
threshold, a large v setting is used, and vice versa.

In [33,34], inspired by the random inertia weight of PSO [103], the α value
is determined randomly in each iteration for the i-th AF:

α
(t)
i = αmin + U(0, 1) · (αmax − αmin), (31)

v
(t)
i = v

(t−1)
i · α(t)

i , (32)

where αmax and αmin indicate the maximum and minimum values of α, re-
spectively. Eq. (31) generates random values between αmax and αmin, which
can avoid local extreme points during the AF optimization process.

Zhu et al. [147] exploited the Lorentzian and exponential functions to adap-
tively adjust the values of v and s, respectively, as follows:

~v
(t+1)
i = ~v

(t)
i · (2 · (

t

tmax
)2 + 1)−1, (33)

s
(t+1)
i = s

(t)
i · e

−π( t
tmax

)2 . (34)

Liu et al. [73] used the best found position ~g to update v:

v
(t+1)
i = v

(t)
i + U(−1, 1) ·

~g − ~x(t)i
‖~g − ~x(t)i ‖

. (35)

Kang et al. [53] divided the population into two groups, i.e., elite and
normal, and assigned different adaptive s and v settings to each group. Inspired
by the ocean current power (OCP), the AFSAOCP [110] model divided the
AFs into three groups, and assigned a different s setting to each group. This
strategy enhances species diversity and allows the algorithm to escape from
local optima during the iteration process.

Moreover, a rational value of δ helps the AFSA to avoid the local optimal
solutions [9]. A large δ setting permits a lower crowding level, which causes the
AFSA to jump out of local optima, but it reduces the convergence speed owing
to executing the random behavior to avoid overcrowding. In the subsequent
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stage, if the food location is too crowded, the AFs cannot swim to the area
to probe for more accurate optimum solutions. The experiment results in [30]
indicated that the convergence speed can be accelerated by gradually reducing
δ. In this regard, Cheng and Xiang [13] adaptively reduced the δ value as the
number of iteration increased using:

δt+1 = e(−µ.t)δmax, (36)

where µ ∈ (0, 1).

3.2 Procedure and Sub-Functions

This category of modifications aims to improve the AFSA performance by
modifying its behaviors, such as incorporating the updating mechanisms from
other population based methods into the AFSA behaviors or introducing new
ones. Apart from the three behaviours of the original AFSA, leaping [25] and
swallow [14] behaviours have been introduced to improve the performance of
the algorithm. Leaping behaviour randomly selects a fraction of the AFs, and
re-initialize them within their visual distance. Note that the best AF should
not be included among the selected AFs. The leaping behavior is executed
if after a certain number of iterations, the objective function of the best AF
is not improved or the improvement is smaller than a threshold [25]. The
MSAFSA [148] model introduced both the swallow [14] and leaping behaviors
to reduce complexity and escape from the local optima, respectively. It applies
the swallow behavior after a certain number of iterations, i.e., when the fitness
value of an AF is smaller (for maximum problem) or larger (for minimum
problem) than a user-defined threshold, it is swallowed. In addition, it activates
the leaping behavior in situations when no improvement is observed in the
objective function of two adjacent iterations. When the fitness value of an AF
is β times more than the global optimum, the AF is aborted to release the
memory and reduce the model complexity.

Since the convergence speed in the later stage of AFSA is too slow, i.e.,
increasingly more AFs perform invalid search that requires more time . To alle-
viate this issue, the population inhibition behavior was proposed in [47]. In this
behavior, after a certain number of iterations, big fishes eat small fishes, and
the occupied space of small fishes is cleared, helping to accelerate the conver-
gence speed. Li et al. [62] modified the behaviors with a Bloch spherical-based
quantum coding to realize individual evolution quantity. With a three-chain
quantum bit encoding mechanism, each AF simultaneously searches three new
locations during each iteration. Each search behavior must involve measure-
ment and projection based on a bit rotation matrix structure. Although this
mechanism significantly increases the computational load, it can produce bet-
ter results as compared with the original AFSA. Jia et al. [48] used a bulletin
board to show the distance between the AFs and each privacy-sensitive service
selection in an internet-of-things (IOT) environment.
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Gao et al. [35] developed an elimination and regeneration mechanism to
improve the quality of AFs. As such, AFs whose fitness values are lower than a
user-defined threshold are removed, and the same number of AFs are generated
for replacement purposes. This strategy helps the AFs to conduct effective
search and avoid being trapped in local optima. In addition, a Cauchy mutation
is applied to the foraging behavior of the AFSA to jump out of the local optima.
If the AF cannot move toward a better position after t attempts of executing
the foraging behavior, instead of performing random behavior, the Cauchy
mutation is used to mutate the ith AF as follows:

v
(t)
i = v0 · (1 +

t

t
), (37)

~xp,i = ~x
(t)
i (1 + c), (38)

where c is a variable that obeys the Cauchy distribution. The use of (37)
and (38) gradually expands the search space, thus enabling the AF to escape
from the local optimum. In [17], the Gaussian distribution function was used
to initialize the AFs with the preying behaviour, in order to obtain a more
precise location in the feeding stage. The preying behavior can be considered
as a random movement that depends on the current location of the AF and
probability of moving to the next position. On one hand, the preying behavior
can be considered as a random movement that depends on the current location
of the AF and probability of moving to the next position. In this regard, Peng
et al. [88] applied a lévy search strategy [87], which is an effective strategy
with random movement, to the preying behavior, i.e.,

~xp,i = ~x
(t)
i + γ · L(λ), (39)

where γ is the step factor between 0 and 1, L(λ) is a random vector generated
by the lévy strategy, as follows:

L(λ) =
φ · µ
|r|1/β

·
(
~x
(t)
i − ~g

)
, (40)

where 1 < λ < 3, 0 < β < 2, ~g is the best found position, µ = t−λ, µ ∼
N (0, φ2) and r ∼ N (0, 1) obey the normal distribution, and:

φ =

{
Γ (1 + β) sin(πβ/2)

Γ [(1 + β)/2]β.2(β−1)/2

}1/β

, (41)

where Γ indicates the standard Gamma function. In addition, the moving
strategy of the AF is integrated into the preying and following behaviors, as
follows:

~xp,i = w(t) · ~x+i βij(~xj , ~x
(t)
i ) + α · (U(−1, 1)− 0.5), (42)
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where α is a step factor, α · (U(−1, 1) − 0.5) prevents falling into the local

optimum, and βij(~xj , ~x
(t)
i ) and w(t), respectively, are the attraction level and

inertia weight, defined as follows:

βij(~xj , ~x
(t)
i ) = β0 · e−γrij , (43)

w(t) = wmax −
wmax − wmin

tmax
· t, (44)

where rij is the the Cartesian distance between the i-th and the j-th AFs,
β0 is the attraction degree of an AF at rij = 0, wmax and wmin are the
maximum and minimum inertia weights. Note that for the preying behavior,
~xj is obtained by (7), while the following behavior serves as a better companion
within the visual distance of the current AF. Using the lévy search and the
FA moving strategies help the model to avoid local optima.

Zhu et al. [147] divided the population into several sub-populations. Each
sub-population searches independently within its search area, and the best
individuals of all sub-populations are allowed to interact efficiently. As such,
new positions are generated based on two individuals as follows:{

~x
′(t)
i = 1

2 ((1 + U(0, 1))~x
(t)
i + (1− U(0, 1))~x

(t)
j ))

~x
′(t)
j = 1

2 ((1− U(0, 1))~x
(t)
i + (1 + U(0, 1))~x

(t)
j ))

, (45)

where ~x
(t)
i and ~x

(t)
j are two different AFs. Then, replacement take place under

the following conditions:~x
(t+1)
i = ~x

′(t)
i , if f(~x

′(t)
i ) < f(~x

(t)
i )

~x
(t+1)
j = ~x

′(t)
j , if f(~x

′(t)
j ) < f(~x

(t)
j )

. (46)

The original AFSA uses a bulletin to record the best AF. This is because
the random behavior can move the best solution to a sub-optimum location.
As such, other AFs cannot use the benifits of the current best solution to move
toward the best position; consequently, they do not effectively search within
the vicinity of the local position. To overcome this issue and improve the local
search ability of the AFSA, several studies implement the global best or local
best position into the behaviors of the AFSA. For example, Fei et al. [26]
modified the preying behavior by combing the current AF and the best found
AF (i.e., ~g), as follows:

~xp,i = ~x
(t)
i + s

(t)
i · U(0, 1) ·

(
~xj − ~x(t)i
‖~xj − ~x(t)i ‖

+
~g − ~x(t)i
‖~g − ~x(t)i ‖

)
. (47)

The AFSA model in [33,34] consisted of two behaviors, i.e., individual and
group behaviors. The individual behavior is based on the preying behavior.
Specifically, it generates a new position ~xj by the praying behavior. If ~xj is

better than ~x
(t)
i , the AF moves toward ~xj . Otherwise, it randomly generates
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a new position. The group behavior generates a new AF based on the center
position if the fitness value of the center position is better than that of the
current AF, otherwise, it generates a new AF based on the best found position,
i.e.,:

~x
(t+1)
i =


~x
(t)
i + v

(t)
i · U(0, 1) · ~xc − ~x(t)i

‖~xc − ~x(t)i ‖
, if f(~xc) > f(~x

(t)
i )

~x
(t)
i + v

(t)
i · U(0, 1) ·

~g − ~x(t)i
‖~g − ~x(t)i ‖

, Otherwise,

. (48)

Inspired by the PSO [103], Huang and Chen [47] introduced an inertia
weight-based adaptive movement behavior and a log-linear scheme to select
the behaviors, i.e.,

w(t) = 0.6 · e(−10·(1−P
(t)
r )), (49)

where P
(t)
r is the log-linear function derived from three feature functions i.e.,

diversity function, dimensional distribution function, and average distance
metrics function. Then, they formulated new preying (50), following (51) and
swarming (52) behaviors according to (49), as follows:

~xp,i = (1− w(t)) · ~x(t)i + w(t) · s(t)i · U(0, 1) ·
~x
(t)
j − ~x

(t)
i

‖~x(t)j − ~x
(t)
i ‖

, (50)

~xf,i = (1− w(t)) · ~x(t)i + w(t) · s(t)i ·
~xc − ~x(t)i
‖~xc − ~x(t)i ‖

, (51)

~xs,i = (1− w(t)) · ~x(t)i + w(t) · s(t)i ·
~g − ~x(t)i
‖~g − ~x(t)i ‖

. (52)

Zhang et al. [139] used the inertia weight factor similar to (44) to improve
the movement of AFs in the search space, and balance the trade-off between
exploration and exploitation. Then, they adopted (51) and (52) to perform
swarming and following behaviors, respectively. In addition, the preying be-
havior is formulated as follows:

~xp,i = (1− w(t)) · ~x(t)i + w(t) · s(t)i · U(−1, 1). (53)

Cheng and Lu [15] modified the preying behavior of the AFSA based on
the velocity-displacement strategy of the PSO. As such, the velocity of each
AF is computed, as follows:

~v
(t+1)
i = w ·~v(t)i + c1U(0, 1)(~p

(t)
i − ~x

(t)
i ) + c2U(0, 1)(~g − ~x(t)i ), (54)



20 Farhad Pourpanah et al.

where c1 and c2 are the learning rates, w is the inertia wight, and ~p
(t)
i is the

best position of the i-th AF. Then, a new position is generated, i.e.:

~xp,i = ~x
(t)
i + α ·~v(t+1)

i , (55)

where α is a constraint factor.
In a similar way, Cao et al. [10] modified the swarming and following be-

haviors of the AFSA. Specifically, for the swarming behavior, they replaced ~xc
with ~p

(t)
i in (54). For the following behavior, they replaced the best AF in the

visual range with ~p
(t)
i in (54), leading to a new position, i.e.,

~xf,i = ~x
(t)
i + s

(t)
i ·

~v
(t)
i

‖~v(t)i ‖
. (56)

Mao et al. [79] applied the velocity and best found position of the PSO
with extended memory (PSOEM) [21] to the AFSA behaviors. As such, the
velocity of each AF pertaining to their swarming, memory and communication
behaviors are updated according to (57), (58) and (59), respectively. Then, the
new positions are generated based on formulation in (55), i.e.,

~v
(t+1)
i = w~v

(t)
i + s

(t)
i · U(0, 1) · ~xc − ~x(t)i

‖~xc − ~x(t)i ‖
, (57)

~v
(t+1)
i = w~v

(t)
i + s

(t)
i · U(0, 1) · [ξ(t)(~p

(t)
i − ~x

(t)
i ) + ξ(t−1)(~p

(t−1)
i − ~x(t−1)i )]

‖[ξ(t)(~p(t)
i − ~x

(t)
i ) + ξ(t−1)(~p

(t−1)
i − ~x(t)−1i )]‖

,

(58)

~v
(t+1)
i = w~v

(t)
i + s

(t)
i · U(0, 1) · [ξ(t)(~g − ~x(t)i ) + ξ(t−1)(~g(t−1) − ~x(t−1)i )]

‖[ξ(t)(~g − ~x(t)i ) + ξ(t−1)(~g(t−1) − ~x(t−1)i )]‖
,

(59)

where ~p
(t−1)
i and ~g(t−1) are, respectively, the best position of the i-th AF

and best found position after (t− 1) iteration, ξ(t) and ξ(t−1) are the effective
factors of the extended memory at iterations t and (t− 1), respectively.

3.3 Hybrid AFSA

Many hybrid models of the AFSA combined with other methods have been
proposed. The goal of hybrid models is to exploit the strengths of each method
by integrating them into one single model. Hybrid AFSA-based models can be
divided into two groups: (i) hybrid models with population-based methods;
and (ii) hybrid models with non-population-based methods. These two groups
are reviewed as follows.
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Fig. 6 Flowchart of the merged hybrid AFSA models. The AFSA dynamic is embedded
within the structure of other population-based models, or vice versa, to generate new solu-
tions iteratively until the termination condition is satisfied.

3.3.1 Population-based methods

Hybrid AFSA models with population-based algorithms can be further divided
into two groups. In the first group, two or more methods are merged into a
unified model, while in the second group, the methods co-operate in parallel
or serial to find the global optimum.

Merged models: These models, as shown in Fig. 6, generate new solutions
by merging the AFSA dynamic within the structure of other population-based
algorithms, or vice versa. PSO has been widely merged with the AFSA. An
AFSA-PSO model [112] to optimize the basic structure of the deep belief
network was proposed. The AFSA’s behaviors are implemented in the PSO
structure to improve the movement of particles. Yassen et al. [123] integrated
the follow and swarm behaviors of the AFSA in PSO. To achieve this, PSO is
used to find the global best and local best positions, and then, the particles
are divided into two sub-populations. The following behavior of the AFSA
is applied to one group, and the swarm behavior is carried out on the other
group. Finally, the best particle obtained by these two behaviors is compared
with the recorded particle in memory. If the new particle is better than the
recorded one, replacement takes place. In MPSO [119], the preying and ran-
dom behaviors of the AFSA were embedded in PSO, in order to increase its
local search capability for the purpose of K-means clustering optimization.
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In [15], the velocity and position update of PSO was used to improve the
preying behavior of the AFSA. In addition, a non-uniform mutation operator
was used as a reference to enhance the local searchability. CIAFSA [79] com-
bined PSO with an extended memory (PSOEM) [21] and the AFSA. CIAFSA
implemented the velocity of particles into the behaviors of the AFSA. Later,
normative AFSA (NFSA) [107], namely a hybrid model of PSOEM-FSA and
normative knowledge [98], was proposed. Yuan and Yang [131] implemented
the swarming and following behaviors of the AFSA in the search strategy
of PSO. Zhang et al. [136] implemented the speed-up behavior of PSO in the
AFSA. MSAFSA [148] implemented the search strategy of DE and PSO in the
AFSA’s behaviors. Cao et al. [10] applied the velocity-displacement strategy
of PSO in the AFSA to increase the convergence speed.

The AFSA has also been merged with other population-based algorithms.
He et al. [41] implemented the crossover and mutation strategies of DE in the
later stage of the AFSA to improve the global search ability by escaping from
local optima. Hajisalem and Babaei [40] introduced ABC-AFSA for anomaly
detection by incorporating the preying behavior of the AFSA into ABC. Since
the preying behavior can determine the direction of food, it helps the model
to avoid pre-matured convergence. Zhang et al. [135] proposed FDMABC for
function optimization by exploiting the AFSA crowding factor to present the
ABC algorithm from falling into local optima. SA-IAFSA [42], namely a hybrid
model of the AFSA and simulated annealing (SA), was proposed to device a
fuzzy-based clustering approach. SA-IAFSA used the AFSA with the leaping
behavior, and it applied the simulated annealing (SA) in the preying behavior
of the AFSA to increase stability and convergence speed of the model.

AF-GBFO [142] combined the following and swarming behaviors of the
AFSA with the chemotaxis part of the bacterial foraging algorithm (BFO). The
bacteria positions are updated based on an evaluation of their own positions
as well as others to solve the poor convergence speed of the BFO and avoid
being trapped in local optima in dealing with some complex problems. While,
AFSA-BFO [27] adapted the BFO in the later stage of the AFSA to improve
its local search ability. LFFSA [88] applied the moving strategy of the FA
in the preying and following behaviors of the AFSA to address the issue of
random moving after determining the direction in AFSA. In addition, the lévy
flight strategy is used during search to improve the preying behavior and avoid
trapping into local optimum. In a similar way, Xian et al. [114] integrated the
chemotactic behavior of BFO in the preying behavior of the AFSA, and a
mutation strategy-based lévy flight search.

Co-operative models: These models (as shown in Fig. 7) employ the
AFSA and other population based methods separately to generate new so-
lutions, and combine the generated solution based on a formulated criterion.
A hybrid model of the AFSA with PSO based on Gaussian learning to im-
prove the parameters of active disturbance rejection was proposed by Kang et
al. [53]. This method divides the solutions into several groups and then ranks
the members of each group based on their fitness value. The top 20% of indi-
viduals are defined as the elites, and the rest as normal. In addition, Gaussian
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Fig. 7 Flowchart of the co-operative hybrid AFSA models. Each co-operative algorithm is
utilized separately (either in parallel or in series) to find an optimal solution.

learning is applied to further improve the position of the final particles. Fang et
al. [24] proposed a hybrid model of the AFSA with PSO to detect the onset of
ultrasonic signals. This model, which uses a multi-modal objective function,
firstly employs the AFSA to find all possible search space. After extracting
the optimal solutions in every space, PSO is used for exploitation. In contrast,
HAFPSO [54] first applies PSO to allow the AFSA to utilize the final best
population from PSO as its initial population for performing the local search.
Other hybrid models of PSO and the AFSA [51,137] use both algorithms sep-
arately to search for the best position, i.e., the global best and local best in
PSO, and the best AF in the AFSA, before comparing the obtained best po-
sitions at the end of each iteration. If a better position is found, the current
best AF is replaced and the overall result of the AFSA is updated.
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RCGA-AFSA [23], which is a hybrid model of real-coded genetic algo-
rithm (RCGA) and AFSA, for solving short-term hydrothermal scheduling is
proposed. RCGA-AFSA uses RCGA as a global search algorithm to explore
better solution spaces, and then AFSA is applied as a local search to exploit
an accurate optimal solution. Guo et al. [39] propose a hybrid model of AFSA,
ACA, and backpropagation network (BPN), i.e., AFSAACA-BPN, to control
thermal error. It, firstly, uses AFSA to adjust BPN’s weight, and then, AFs
with top 5% concentration is used to initialize the pheromone value of ACA.
Li et al. [66] develop a hybrid parallel model of AFSA and ABC. This model,
in the early stage, randomly divides swarms into two groups, and then applies
different search strategy, i.e., AFS and ABC, to each group. In the late stage,
DN-AFS [63] and RP-ABC [6], which are variants of AFSA and ABC, are used
to further improve the optimization performance. In [15], the Metropolis rule
of the simulated annealing (SA) is implemented in AFSA to avoid model from
premature convergence. In [65], chaos adaptive AFSA for fault detection op-
timization problems is proposed. This model applies Chaos search at the end
of each iteration to further improve the best AF that is stored in the bulletin
board.

In [28], a hybrid model of AFSA and bacterial colony Chemotaxis (BCC),
namely BCC-AFSA, for selection and optimization of distribution center lo-
cation was proposed. BCC-AFSA applies BCC when the results of the AFSA
do not change significantly after a certain number of iterations, in order to
improve its global optimization. On the other hand, RNA-AFSA [134] uses
the characteristics of RNA (ribonucleic acid) to solve the oscillation problem
in the late stage of the AFSA algorithm. In [108], a hybrid model of the AFSA
and flower pollination algorithm (FPA) for obtaining the best dense cluster
was introduced. This model employs either the AFSA or FPA at each iteration
to find the best solution based on a defined criterion.

3.3.2 Non-population-based methods

The AFSA has also been integrated with non-population-based methods. In [113,
77], hybrid models of the AFSA with fuzzy C -means (FCM) for clustering were
proposed. The AFSA is used to avoid FCM from being trapped in local optima.
Serapião et al. [100] combined a variant of the AFSA proposed in [5] with K -
means and K -harmonic methods for data clustering. El-Said [22] combined the
AFSA with FCM for image quantization. GAFSA-SVR [74], namely a hybrid
model of GAFSA [109] and the support vector regression (SVR), for predic-
tion of network traffic was proposed. This model uses GAFSA to optimize the
parameters of SVR. Hybrid fish-swarm logic regression (FSLR) was proposed
in [138]. On the other hand, Krishnaraj et al. [57] proposed a clustering tech-
nique based on the AFSA and hill climbing for throughput maximization in
wireless multimedia sensor networks.

In [44,115], the AFSA was adopted to optimize the SVM parameters.
In [99], the AFSA was combined with an artificial neural network (ANN)
to find the best weights. Goluguri et al. [37] used the AFSA to optimize
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the weights of a deep convolutional neural network for identifying rice dis-
eases. In [148], MSAFSA-SVR was introduced to calculate the stability of
rocks in tunnel engineering. MAFSA-SVR [118] was also used to predict the
heat transfer capacity of radiators. In [43], the AFSA was applied to train a
wavelet neural network (WNN). In [49], the AFSA was used for feature se-
lection and parameter optimization of a random forest for detecting Cervical
cancer. In [35], a hybrid model of twin SVM (TSVM) with an improved AFSA
model for flame recognition problem was proposed, in which the improved
AFSA model was used to solve the parameter selection problem of TSVM.

ZAFSA [111], namely a hybrid model of the AFSA and normal distribu-
tion, was proposed to evaluate the interfacial heat transfer coefficient. ZAFSA,
firstly, diminishes the search space using the normal distribution before ap-
plying the AFSA to find the best solution. A hybrid model of the AFSA with
singular value decomposition (SVD) for enhancing weak digital signals was
proposed in [140]. Tirkolaee et al. [4] formulated a hybrid model based on the
AFSA and an interactive fuzzy solution technique for flowshop scheduling. The
AFSA is able to provide the Pareto optimal solutions. CPAFSA [144] was pro-
posed to optimize water quality monitoring sensor networks by creating new
underwater sensor coverage algorithms. Specifically, CPAFSA uses chaotic se-
lection for parameter initialization and integrates the global search capabilities
of parallel operators. In addition, CPAFSA applies the elite selection to avoid
local optimization and solve the problem of 3D target coverage. AFSA-CA [46]
was developed to optimize parameters of an urban growth model.

3.4 Multi-objective AFSA

MOOP considers problems involving more than one objective function to be
optimized. It aims to find a trade-off between two or more conflicting ob-
jectives. Several studies have been adopted AFSA and its variants to solve
MOOP. For examples, Sun et al. [105] proposed a multi-objective optimiza-
tion algorithm based on the AFSA for undertaking the trajectory problems.
Later, Xu et al. proposed an iterative deletion AFSA (IDAFSA) to solve multi-
objective problems [116]. IDAFSA integrated the global optimal solution into
the behaviors of the original AFSA. In addition, the Pareto optimally pro-
posed by [141] was adopted as a sorting mechanism to select a Pareto optimal
solution set. Ma and He [76] combined an adaptive GA [58] with the AFSA
to solve green wave traffic control. When the recorded solution in the AFSA
remained unchanged or improved slightly, the adaptive crossover and muta-
tion operators were used to retain the optimal solution state of the AFs and
conduct mutation pertaining to a small number of dimensions for other AFs.
In addition, Liu at al. [71] developed a Pareto AFSA embedded with the GA
to solve the urban electric transit network problem.
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Table 1 A summary of the modifications AFSA.

Modification Study

Parameters
[32,148,118,97,113,26,70,88,133,22,11,107,139,29,13,69],

[72,79,132,117,65,33,34,147,53,110,17,66,77,127,45]

Procedure and [32,148,24,97,26,88,133,11,139,33,34,147,73,47],
sub-functions [62,48,15,10,136,41,42,27,114,100,74,109,127,64]

Hybrid

Population [24,88,11,79,65,53,15,10,112,123,131,135,108,54],
based [136,41,40,42,142,27,114,51,23,39,66,28,134]

Non-population [129,32,118,113,70,107,34,77,100,74,46,43,37,57],
based [138,99,111,140,127,126,125,44,115,144,4]

Multi-objective [4,71,76,105,116]

Dynamic [124,128,130]

3.5 Dynamic AFSA

The AFSA also has been used to tackle dynamic optimization problems (DOPs).
In DOPs, the search space changes over time, due to the changes in the ob-
jective function, constraints, variable interactions, and/or the number of vari-
ables [80]. A DOP requires an algorithm to not only find the global optimum,
but also track it after environmental changes. In view of the specific challenges
of DOPs, such as diversity loss and outdated memory, optimization algorithms
that have been designed to tackle static optimization problems cannot be di-
rectly used for tackling DOPs. The AFSA is no exception to this maxim.

Yazdani et al. [124,128,130] introduced a multi-population AFSA (mAFSA)
model for optimization in dynamic environments where several additional com-
ponents have been used to address the DOP challenges. In all three versions of
mAFSA, several AFSA sub-populations are responsible for covering multiple
moving promising regions in the search space to improve the capability of the
algorithm in reacting to the environmental changes and tracking the optimum
position. To improve the performance of each sub-population in mAFSA and
increase their convergence speed, which is vital for tracking the optimum move-
ment in each environment, several modifications have been incorporated into
the to AFSA behaviors and parameters. In the modified AFSA, δ is removed
and s is replaced by v, i.e., the step size and the visual length are unified. In
the preying behavior, the AFs are allowed to directly move to a better-found
position; therefore, an AF may update its position t times where it executes
the preying behavior. Besides that, in the following behavior, the best AF
is used as the global attractor in each sub-population and is used to replace
the neighbor AFs. Although the modifications improve the exploitation ability
of sub-populations significantly, their exploration ability is deteriorated. This
shortcoming is addressed by using the multi-population approach as well as
some randomization operators performed by other components such as the
exclusion [7] and initialization of new sub-populations.
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Fig. 8 The AFSA application domains between 2004 and early 2021, as returned by con-
ducting searches using the exact phrases of “Artificial Fish Swarm Algorithm”, “Artificial
Fish Swarm Optimization”, and “Artificial Fish Schooling Algorithm” in title, abstract, or
keywords of the retrieved articles. Source: https://www.scopus.com

4 Applications

Fig. 8 shows the application domains of AFSA and its variants from 2002 to
early 2021. In addition, Table 2 shows the applications of the reviewed articles.
As can be seen (Fig. 8), the AFSA and its variants have been applied to a
wide range of application domains. Among them, “engineering”, “computer
science” and “mathematics” are the most popular disciplines, with 31%, 28%
and 12%, respectively.

The reviewed articles (Table 2) indicate the specific applications within en-
gineering, computer science, and mathematics disciplines. In engineering, the
AFSA and its variants are frequently used in the following areas: (i) sensor
networks, which include communication optics system, wireless sensor net-
work (WSN) coverage optimization, routing protocol in WSN, scheduling of
multi-access edge networks, holes recovery and water quality monitoring using
sensor networks; (ii) control systems, which include Proportional-Integral
and Derivative control of the electronic stability program (ESP), field calibra-
tion, re-calibration of fiber optic gyroscope, tuned mass damper (TMD) opti-
mization, underwater vehicle control, active disturbance rejection controller,
distributed control and green wave traffic control; (iii) power systems, which
include home energy management system, economic dispatching of electric
power system, power allocation schemes; and (iv) miscellaneous problems,
which include heat transfer, localization, tracking and navigation tasks.

The most popular applications of AFSA-based algorithms in computer sci-
ence include (i) image processing, e.g., classification and segmentation; (ii)
signal processing, e.g., classification and approximation; (iii) forecasting,
e.g., composite production, thermal error optimization, risk probability predic-
tion, network traffic forecast, time series forecasting, annual water consump-
tion prediction, and privacy services. On the other hand, many benchmark
problems in mathematics e.g., classification, clustering and regression, have
been used to evaluate the effectiveness of AFSA-based algorithms.
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Table 2 Applications of reviewed articles.

Application Study

Benchmark
[130,129,146,101,145,148,35,113,88,107,147,73,110,47,62,112,108]

[123,40,42,142,23,66,100,109,99,116,124,128,126,125]
Sensor networks [81,29,117,97,17,10,64,45,144,57,38]
Control systems [32,11,65,34,53,15,41,51,76]
Image processing [59,70,133,22,77,127,37]
Signal processing [24,140]
Forecasting [61,118,13,132,114,39,74,138]
Localization, tracking

[19,79,139,33,27,105]
and navigation
Power systems [143,106,11,131,136,44]

Others
Circuit design [78], motion estimation [26], water supply

network [72], privacy service [48], heat transfer [111]

In addition to abovementioned application domains, “physics and astron-
omy”, “energy”, “materials”, “earth and planetary” and “decision” are the
subsequent application domains with 5%, 4%, 4%, 2% and 2% coverage, re-
spectively. The remaining 11% are covered by “Others”, where each domain
constitutes lower than 1%, namely “social sciences”, “environmental science”,
“biochemistry, genetics and molecular biology”, “agricultural and biological
sciences”, “chemistry”, “multidisciplinary”, “chemical engineering”, “neuro-
science”, “business, management and accounting”, “medicine”, “arts and hu-
manities”, “economics, econometrics and finance”, “immunology and micro-
biology”, “pharmacology, toxicology and pharmaceutics”, “psychology” and
“health professions”, as indicated in Fig. 8.

5 Empirical Study and Potential Future Research Directions

In this section, we first conduct an empirical study to compare the original
AFSA and its variants with other population-based algorithms, then discuss
potential future research directions.

5.1 Empirical Study

In this section, the original AFSA and four recently published AFSA-based
algorithms, namely NAFSA [107], CIAFSA [79], PSO-FSA [20] and PSOEM-
FSA [20], are compared with PSO, DE [104], FA [83], GWO [82] and CSA [3].
The main reason of selecting NAFSA, CIAFSA, PSO-FSA and PSOEMFS, is
their better performance as compared with other AFSA-variants reported in
the literature. Among the comparison methods, PSO is the most popular SI-
based algorithms (Fig. 4) used for solving a variety of optimization problems.
PSO guides each solution (particle) by the best individual position (personal
best) as well as the best population position (global best) to move toward
a better position in the search space. It updates the velocity of each particle
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Table 3 Parameters of AFSA, PSO, DE, FA, GWO and CSA that are required to be
optimized.

Algorithm Parameters

AFSA Crowding factor (δ), visual range (v) and step (s)

PSO Inertia weight (w), cognitive parameters C1 and social parameter C2

DE Scaling rate (f), top p% individuals and crossover rate

FA Maximum attractiveness value (β0), absorption coefficient (γ) and rij

GWO a and C

CSA Flight length (fl)

based on its previous velocity, personal best and global best positions. In PSO,
the inertia weight (w) plays an important role, where it specifies how the par-
ticle’s previous velocity is modified in the next iteration. Other parameters of
PSO are C1 and C2, i.e., the cognitive and social parameters, respectively. DE
is a simple yet effective evolutionary computation (EC)-based optimization al-
gorithm. It continuously improves the individuals through an iterative process
that consists of three operations, i.e., mutation, crossover and selection. These
operations are performed in a sequence at each iteration to produce a better
solution. The scaling rate (f), top p% individuals, and crossover rate are three
important parameters in DE that need to be fine-tuned.

Besides that, FA, GWO and CSA are three recently proposed SI-based al-
gorithms. The FA [120] is a stochastic, nature-inspired algorithm that imitates
the characteristics of fireflies. Fireflies use flashing lights to attract mating
partners and warn potential predators. There are three governing rules in the
FA: (i) fireflies are unisex, (ii) attractiveness is proportional to brightness,
and (iii) the brightness of fireflies are proportional to the value of the fitness
function. In the FA, a firefly’s attractiveness plays an important role, which
depends on the maximum attractiveness value (β0), absorption coefficient (γ)
and distance between two fireflies rij .

GWO [82] mimics the leadership hierarchy and hunting mechanism of grey
wolves in nature. GWO employs four types of grey wolves, i.e., alpha, beta,
delta, and omega, to simulate the leadership hierarchy. Alpha, beta and delta,
which indicate the first, second and third best positions, respectively, are used
to guide hunting (optimization), while the remaining solutions are considered
as omega. GWO implements three steps for hunting: (i) searching for prey, (i)
encircling prey, and (iii) attacking prey.

CSA [3] is another SI-based algorithm inspired by the intelligent group
behavior of crows. Crows live in a group and hide their food in secret locations.
Crows can recall looks and warn other crows if they identify any unfriendly
looks. In addition, they watch other crows’ food hiding places and steal them.
If a crow suspects the presence of a thief (another crow), it moves (with an
awareness probability, AP ) to a location far from the hidden place of food to
fool the thief. CSA is based on four principles of crows in the nature: (i) they
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Table 4 Details of benchmark functions.

No. Test function Expression Domain Dimension

f1 Sphere
∑n

i=1 x
2
i [-100, 100] 30

f2 Ackley
−20 exp(−0.2

√
1
n

∑n
i=1 x

2
i )

[-32,32] 30
− exp( 1

n

∑n
i=1 cos(2πxi) + 20 + e)

f3 Alipine
∑n

i=1 |xi sin(xi) + 0.1xi| [-1,1] 30

f4 Griewank 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

x2
i√
i
) + 1 [-600,600] 30

f5 Quadric
∑n

i=1

(∑i
j−1 xj

)2
[-100,100] 30

live in the form of a group, (ii) they remember the location of their hiding
spots, (iii) they chase other crows to steal their food, and (iv) they protect
their storages with a probability. The searching capability of CSA depends on
the flight length (fl). A high value of fl increases the global search ability of
the algorithm, and vice versa.

Table 3 summaries the parameters of AFSA, PSO, DE, FA, GWO and
CSA that are required to be optimized in order to produce the best results.

Five benchmark functions are employed for performance evaluation, as
summarized in Table 4. Table 5 shows the results (mean and standard devi-
ation, SD) of the compared methods, where the results of AFSA, PSO and
DE are derived in this study by implementing the codes, and those of others
are extracted from the corresponding references. Overall, the AFSA and its
variants perform comparatively well with other population-based algorithms.
AFSA and its variants are able to approximately reach the global minimum
for most of the benchmark problems. In addition, relatively small standard
deviations (SD) on most of the benchmark functions indicate that the AFSA
and its variants are highly robust and precise.

5.2 Potential Future Research Directions

Based on the current research status of the field, the following potential future
research directions are discussed.

5.2.1 Improving AFSA

Despite a large body of work, the AFSA and its variants are normally com-
putationally complex due to the computation of many Euclidean distances for
determining the neighborhood AFs and obtaining the unit vectors to limit
the movement lengths to s in the update rules of different behaviors. In addi-
tion, the convergence speed of the AFSA and its variants is usually slow, since
the movement length is limited by s. Therefore, there are rooms for further
improvement of the AFSA in terms of computational speed.
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Table 5 Performance comparison (mean and standard deviation, SD) of the AFSA and
its variants with other population-based methods. “NA” indicates that the function is not
used for evaluation with the corresponding method in the respective publication.

Algorithm
f1 f2 f3 f4 f5

mean SD mean SD mean SD mean SD mean SD

AFSA 1.21e-07 1.84e-07 3.09e-02 1.94e-02 4.14e-06 3.62e-06 7.11e-6 7.57e-05 5.44e-05 1.29e-04

NAFSA [107] 1.14e-52 1.64e-52 3.73e-15 1.50e-15 3.56e-26 9.75e-08 3.49e-02 1.68e-02 4.75e-09 9.13e-09

CIAFSA [79] 6.51e-03 2.59e-03 3.56e-04 3.95e-04 8.98e-06 1.18e-05 1.52e-02 3.47e-01 9.34e+00 2.11e+01

PSO-FSA [20] 1.12e-06 1.3107e-06 2.32e-04 2.60e-04 1.27e-05 8.10e-06 1.44e-06 2.47e-06 2.28e-04 2.90e-04

PSOEM-FSA [20] 6.19e-08 1.11e-07 1.02e-04 1.11e-04 6.87e-06 5.39e-06 1.07e-01 1.84e-01 1.16e-04 2.63e-05

FA [83] -2.2e1 1.13 -2.001e2 0 NA NA 4.44e-16 0 NA NA

CSA [3] 6.9e-2 3.01e-2 4.468 0.676 1.816 0.280 0.066 201.307 201.307 43.371

GWO [82] 6.59e-28 6.34e-05 1.06e-13 7.7e-2 8.75e-06 1.95e-05 4.4e-3 6.65e-3 3.29e-6 79.14

DE 8.2e-14 5.9e-14 9.7e-08 4.2e-08 2.29e-5 1.34e-5 4.66e-4 1.21e-4 6.8e-11 7.4e-11

PSO 9.97e-09 1.40e-08 4.1e-4 9.10e-4 5.01e-4 5.16e-4 5.19e-06 2.32e-05 1.54e+03 4.91e+02

5.2.2 Modifying AFSA for tackling different types of the optimization
problems

– Large-scale optimization Problems (LSOPs): The AFSA is yet to be com-
prehensively utilized for addressing LSOPs. LSOPs are high-dimensional
problems (usually more than 100 dimensions) that pose the curse of di-
mensionality or scalibility issues [85]. Many SI algorithms including the
AFSA can easily be trapped in local optima in such problems. Considering
the capability of the AFSA in maintaining diversity with the crowding fac-
tor and the individual local search of the AFs by performing the preying
behavior, the AFSA has the potential to address the typical challenges of
LSOPs. In this regard, effective formulae to ensure the scalability of the
AFSA and its variants need to be derived.

– Multi-modal optimization problems (MMOPs): The AFSA has not been ad-
equately investigated for MMOPs. It can be used to find multiple optimum
solutions in multi-modal optimization problems. In fact, by enhancing the
adaptation of the crowding factor pertaining to the swarming behavior,
the AFSA can maintain its overall diversity. Furthermore, by using the
following behavior with distance-base neighborhoods, the population can
be naturally divided into multiple species (sub-populations), which are at-
tracted by different regions (peaks). In addition to the following behavior,
a local search capability can be incorporated, in order to allow the AFSA
to find multiple peaks in complex multi-modal environments.

– Dynamic optimization problems (DOPs): To date, few studies on modifying
the AFSA for tackling DOPs are available in the literature. In addressing
DOPs, the AFSA and its variants can offer effective solutions. One im-
portant challenge of the DOPs is diversity loss in the population. Indeed,
algorithms whose populations collapse with respect to previous optimum
solutions (due to the convergence issue) normally are ineffective in tracking
the new optimum position after environmental changes. One way to address
diversity loss is to maintain the population diversity over time [75]. Using
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the crowd factor, the AFSA can maintain its diversity to improve its capa-
bility of tracking the optimum movement. Designing dynamic optimization
algorithms with the AFSA as the core optimizer is a fruitful direction of
future work.

5.2.3 Analyzing the AFSA performance in different search spaces

In the current literature, the AFSA performance pertaining to problems with
different characteristics is yet to be fully investigated. As an example, the ef-
fectiveness of the AFSA with respect to rotated problems where the variable
interaction structure is highly non-separable is not entirely clear. In addition,
the AFSA performance on composition-based problems [68] where the prob-
lem is partially separable or perhaps contains components with overlapping
variables [85] needs to be comprehensively studied. Besides that, the useful-
ness of the AFSA on problems with ill-conditioning and asymmetric prop-
erties requires further investigations. Therefore, a comprehensive analysis of
the AFSA performance in different classes of optimization problems with dif-
ferent characteristics is an important future research direction. Besides that,
the usefulness of the AFSA on problems with ill-conditioning and asymmetric
properties requires further investigations. Therefore, a comprehensive analysis
of the AFSA performance in different classes of optimization problems with
different characteristics is an important future research direction.

5.2.4 Theoretical investigations

The AFSA has often been investigated empirically, and little attention has
been given to the theoretical studies. Due to the importance of principled in-
vestigations in understanding the characteristics of the optimization capability
of the AFSA and the associated advantages and disadvantages, additional de-
tailed studies pertaining to theoretical aspects of the AFSA are necessary.
Specifically, a theoretical proof of convergence is vital to better understand
the search behavior of the AFSA and its variants. This can be conducted by
leveraging the stochastic process theory [52]. In addition, the Big-O notation
analysis can be conducted to evaluate the runtime efficiency with respect to
the growth in the input size, which is important for use in real-world environ-
ments.

6 Conclusions

In this paper, a detailed review of the AFSA, which is a SI-based optimization
algorithm inspired by the ecological behaviors of the fish swarm in nature,
has been presented. We have focused on the AFSA and its variants that have
been used to tackle continuous optimization problems. A taxonomy of the
AFSA literature and a discussion with respect to the modifications and im-
provements of the AFSA parameters, procedures and sub-functions, hybrid
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formulations, multi-objective optimization, as well as dynamic AFSA models
along with their applications have been provided. A discussion on future re-
search trends has also been provided. Our further work will focus on providing
a comprehensive review of the discrete AFSA models.
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