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Abstract
With the progress of human daily interaction activities and the development of industrial 
society, a large amount of media data and sensor data become accessible. Humans collect 
these multi-source data in chronological order, called multi-view sequential data (MvSD). 
MvSD has numerous potential application domains, including intelligent transportation, 
climate science, health care, public safety and multimedia, etc. However, as the volume 
and scale of MvSD increases, the traditional machine learning methods become difficult to 
withstand such large-scale data, and it is no longer appropriate to use hand-craft features 
to represent these complex data. In addition, there is no general framework in the process 
of mining multi-view relationships and integrating multi-view information. In this paper, 
We first introduce four common data types that constitute MvSD, including point data, 
sequence data, graph data, and raster data. Then, we summarize the technical challenges of 
MvSD. Subsequently, we review the recent progress in deep learning technology applied to 
MvSD. Meanwhile, we discuss how the network represents and learns features of MvSD. 
Finally, we summarize the applications of MvSD in different domains and give potential 
research directions.
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1  Introduction

With the development of social media, more and more human activities have become 
public and accessible. In addition, the application of a large number of acquisition 
equipments and sensors has made it easier for us to obtain information about the sur-
rounding world. Humans collect these multi-source data in chronological order and 
obtain multi-view sequential data (MvSD). MvSD has broad researches and applica-
tions in various domains, including smart transportation, climate science, social media, 
health care, crime analysis, etc. However, as the volume and scale of MvSD increases, 
classical data mining methods are no longer applicable. On the one hand, the construc-
tion of hand-craft features is restricted by limited human knowledge, thus conventional 
methods are difficult to represent such complex data. On the other hand, MvSD changes 
dynamically over time and presents self-correlated, the traditional machine learning 
methods can not fully mine the knowledge mechanism in sequential data and it is dif-
ficult to effectively analyze the hidden attributes. Simultaneously, MvSD collected from 
various domains or obtained from diverse sensors leads to heterogeneity among views. 
Thus, how to make full use of the diversity among different views and fuse the latent 
knowledge in MvSD has attracted extensive research.

In recent years, deep learning has swept many fields and achieved remarkable achieve-
ments, such as object detection (Girshick 2015; Ren et al. 2015; He et al. 2016; Redmon 
et al. 2016; Liu et al. 2016a), image segmentation  (Long et al. 2015; Ronneberger et al. 
2015; Lin et al. 2017; He et al. 2017; Zhao et al. 2017c; Badrinarayanan et al. 2017), natu-
ral language processing (Kiros et al. 2014; Bahdanau et al. 2014; Cheng et al. 2016; Vas-
wani et al. 2017), etc. Deep learning has brought the possibility to solve the above prob-
lems with its general data understanding and parallel computing capabilities. First of all, 
the superiority of deep learning is based on its feature extraction ability, which breaks the 
performance of human-engineered features through end-to-end learning. Among them, 
convolutional neural network (CNN) achieves excellent performance on regular raster data, 
while recurrent neural network (RNN) is adapted to sequence data and model the correla-
tions. Second, classical methods based on small datasets are untenable in MvSD. In con-
trast, the performance of deep models will be further improved with massive data samples. 
Therefore, deep models perform better feature representation and learning on larger data-
sets. Third, conventional machine learning methods generally exploits some linear func-
tions to fit latent data structure and is not able to express complex models. As we all know, 
deep networks have nonlinear approximation capabilities and learn rules by optimizing the 
loss function as much as possible.

It is worth mentioning that MvSD is collected from multiple domains. For these multi-
source sequential data, the analysis method based on multi-view learning has more suf-
ficient feature representation capability than single-view learning. Multi-view deep learn-
ing can not only be used to analyze the implicit feature correlation and internal dynamic 
changes in sequential data, but also help solve the incompleteness and uncertainty in 
sequential data analysis. Taking video sentiment analysis as an example. It usually consists 
of three kinds of data: text sentences, images and audio clips. It is not comprehensive to 
analyze the expression only in text streams, because language is ambiguous in different 
situations. By combining facial features and speakers pronunciation, the speakers attitude 
is more accurately inferred. As for the traffic flow forecasting task, some external factors 
will also affect the prediction performance, such as weather, holidays and events. Injecting 
these factors into the network will further assist in prediction.



6663Deep learning on multi‑view sequential data: a survey﻿	

1 3

In the past few decades, a large number of machine learning techniques have been 
used for multi-view data, resulting in multi-view representation, multi-view clustering, 
multi-view fusion, etc. With the large amount of multimedia data available in recent 
years, multi-view learning has become a promising research. Benefiting from a large 
number of researches and sufficient theories of multi-view learning (Khan et al. 2022a; 
Yin and Sun 2019), some deep learning-based multi-view algorithms are gradually 
being studied  (Yin and Sun 2019; Sun and Zong 2020; Mao and Sun 2020), forming 
deep multi-view learning (Yao et al. 2018; Wang et al. 2015; Kan et al. 2016; Sun et al. 
2020d) and deep multi-view clustering  (Li et  al. 2019; Khan et  al. 2022b; Xia et  al. 
2022). For example, Deep CCA (Andrew et al. 2013), which is extended from canoni-
cal correlation analysis (CCA)  (Hotelling 1992), learns non-linear mappings between 
different views through stacked multi-layer neural networks. Deep matrix factoriza-
tion  (Zhao et  al. 2017b; Huang et  al. 2020a), which applies non-negative matrix fac-
torization (NMF) from traditional clustering to the deep framework. In addition, deep 
subspace clustering (Ji et al. 2017; Wang et al. 2020b) is also extended on the basis of 
traditional subspace clustering, which further expands the application (Abavisani et al. 
2020; Cai et  al. 2021; Wang et  al. 2020c). Therefore, adopting some ideas based on 
multi-view clustering can facilitate our research in the process of researching MvSD.

In the past few years, some works have investigated multi-modal data, demonstrat-
ing the effectiveness of deep learning for multi-modal data fusion. Several surveys 
reviewed the progress of multi-view deep learning (Wang 2021; Baltrušaitis et al. 2018; 
Chen et al. 2020c; Summaira et al. 2021; Rahate et al. 2021; Ramachandram and Tay-
lor 2017; Zhao et al. 2017a).  Wang (2021) discussed some recent researches on deep 
multi-modal models from two aspects of clustering and classification, focusing on the 
application of generative adversarial network (GAN) in clustering and cross-modal 
learning. Baltrušaitis et al. (2018) investigated the latest developments in multi-modal 
machine learning, and it stated five challenges: representation, translation, alignment, 
fusion and co-learning. Chen et  al. (2020c) analyzed the prevailing multi-modal net-
work structure and existing problems, including multi-modal feature extraction and 
latent feature learning. Summaira et  al. (2021) discussed the latest advancements and 
trends in multi-modal deep learning, and adopted a new fine-grained taxonomy to clas-
sify existing multi-modal networks. Rahate et al. (2021) reviewed the relevant literature 
in multi-modal deep learning and categorized multi-modal co-learning from multiple 
perspectives. These aforementioned surveys are instructive for our MvSD investiga-
tion, at the same time, some spatio temporal data (STD) analysis works provide us with 
application fields and current progress for reference. Wang et al. (2020d) reviewed the 
recent development of deep learning technology in STD and classified existing literature 
according to the types of STD, data mining tasks, and deep learning models. It classi-
fied the spatio temporal data into five types: event, trajectory, point reference, raster, and 
video. Alam et al. (2021) classified the STD analytics systems into three categories and 
provided definitions and related applications for STD. Moreover, it conducted investi-
gations and discussions on existing programming languages, development tools, and 
data platforms. Atluri et al. (2018) summarized traditional machine learning methods in 
STD, and discussed related data mining problems in analyzing different STD. Mazim-
paka and Timpf (2016) summarized the application of deep learning in trajectory data 
and traffic prediction.

In this paper, we conduct research on MvSD. Existing multi-view surveys mostly focus 
on the applications, neural networks and fusion methods, do not specifically consider com-
bining multi-view and sequential data for research. In addition, the aforementioned STD 
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researches do not consider investigating from multi-view perspective. Our contributions 
are as follows:

•	 This paper conducts research from the perspective of multi-view sequence and dis-
cusses the challenges in MvSD data.

•	 This survey reviews recent deep learning techniques for MvSD and categorizes MvSD 
into four data types. Then we organize different deep learning models for specific types 
of view data for representation and learning.

•	 This survey summarizes some application domains and emerging tasks of MvSD, and 
points out some potential future research directions.

The rest of this paper is organized as follows. In Sect. 2, we divide the source data that con-
stitutes MvSD into four categories and discuss the characteristics and challenges in each 
of these categories. In Sect. 3, we illustrate the existing deep representation methods for 
various types of view data. In Sect. 4, we investigate the deep learning models for MvSD. 
In Sect. 5, we summarize the applications of MvSD and related tasks. Finally, we discuss 
the future trends and conclude the survey. The taxonomy diagram of MvSD is presented in 
Fig. 1.

2 � Multi‑view sequential data

As illustrated in Fig. 2, we give the paradigm of MvSD, which is composed of m views 
from different sources. These view data consists of various types, such as continuous mul-
tiple images (video clips), character description (text sentences), spatial position changes 
(trajectory), and these view data lengths or time steps may not be aligned with each other. 
Among them, each view has order constraints and is arranged according to certain rules. 
The sequential data of different views usually comes from various domains, which has dif-
ferent statistical characteristics. Therefore, it is difficult for a single view model to handle 

Fig. 1   Taxonomy diagram of deep learning on MvSD
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heterogeneous data. We need to formulate corresponding representation methods accord-
ing to different views and select appropriate models for feature representation, extraction 
and fusion.

2.1 � Data types

There are many types of sequential data, such as meteorological data, time-series data, gene 
sequences, sensor data, audio clips, etc, all of which are the research objects of MvSD. 
In order to facilitate subsequent work, we first introduce four data types: point, sequence, 
graph and raster. Each data type can be directly or indirectly converted to sequential data. 
Different from the classification method in Refs. Atluri et al. (2018), we generalize point 
data into two categories, that is, individual instances are regarded as points (e.g., event 
data), and the instances themselves are points (e.g., LiDAR data). In addition, we catego-
rize trajectory data and text data into sequence data.

2.1.1 � Point

Point data describes discrete points in space with specific location coordinates (e.g., geo-
graphic latitude and longitude), indicating the existence in space and attaching some addi-
tional information. A point is usually represented by a tuple ( pi , ei , ti ), where pi represents 
the position of the point, ti represents the time when the point occurrs and ei represents 
additional features (such as temperature, humidity, color, etc). Event-type data regards 
individual instance (e.g., a traffic incident) as point, which usually means that it occurs in 
a certain location and is accompanied by information such as time and event category. Fig-
ure 3a shows an example of the event data. In addition, there are some instance data them-
selves that are point sets, which are scanned by sensors. Point cloud data is usually repre-
sented by three-dimensional coordinates, with additional information such as reflectivity, 
intensity, and color, etc. Figure 3b shows an illustration of the 3D point cloud data (Hackel 
et al. 2017). Point data has applications in many fields, such as transportation (e.g., traffic 

Fig. 2   Illustration of MvSD. MvSD can be composed of m views, we enumerate three types view data, 
including video clips, text sentences, and mobile data. Each view is arranged in a certain order (for exam-
ple, chronological order, grammatical rules, etc)
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accidents), criminology (e.g., crime incidents), social media (e.g., social event), autono-
mous (e.g., point cloud data), etc.

2.1.2 � Sequence

Time series is a typical type of sequence data, which is a sequence obtained at consecutive 
and evenly spaced time points. For example, in mechanical fault diagnosis, the frequency 
of equipments is sampled at equal intervals. Figure 4a shows an example of audio signal. 
As shown in Fig. 4b, video data is viewed as a series of images arranged in chronological 
order. The trajectory data is also treated as a time series, which periodically records the 
moving position of the target. Figure  4c shows an example of the trajectory data. Time 
series is not the only case of sequence data, there are other cases such as text data, which 
need to consider the logic of language. We group trajectory data, audio, video, time series, 
and text into sequence data.

2.1.3 � Graph

Graph data is a collection of vertices connected by a series of edges, each of which is 
assigned a weight. Graph data is used in many fields, including traffic networks, social 
networks, and recommendation systems. In a social network, each person is a vertex, and 
people who have a relationship with each other are connected by edges. Each edge has a 
direction to form a directed graph. In traffic forecasting, the traffic road networks are natu-
rally modeled as graphs. Taking the road network as an example, where road segments are 
represented as edges, and nodes embedded in the spatial map represent intersections of 
these road segments.

2.1.4 � Raster

Raster data is presented in a grid of pixels, and each pixel has a value, which represents 
information at a specific location (color or other statistics). Figure 5a shows an example of 

(b)(a)

Fig. 3   An illustration of event and laser data
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Fig. 4   Illustration of sequence 
data

(a)

(b)

(c)

Fig. 5   Illustration of raster data
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an image data, the position of each pixel is regarded as a fixed point, and each pixel is an 
observation value. In neuroscience, as a new neuroimaging method, functional magnetic 
resonance imaging (fMRI) is based on measuring changes in hemodynamics caused by 
neuronal activity. The scanned signals form raster data used to analyze brain activity. In 
urban big data, various fixed-position sensors collect data to form spatial map, air quality, 
and weather data. Figure 5b shows an example of raster traffic data (Zhou et al. 2020).

2.1.5 � Converting data format

The data formats mentioned above often need to be converted into appropriate formats 
according to specific tasks and models. These formats are often convertible to each other. 
Point data is naturally converted to raster data by quantifying in each grid cell. For exam-
ple, the events (e.g., traffic accidents, crimes, etc) that occur in each grid are converted 
into event raster data, which in turn can be converted to point data. In autonomous driving, 
point cloud is converted into 3d voxel grid or 2d bird’s eye view (BEV) through quantiza-
tion operation. Further, point data are treated as nodes in graph data. In spatial map, traffic 
sensors are viewed as nodes of the graph, and the distances between the sensors are used 
to construct an adjacency matrix. In some cases, sequence data is viewed as a series of 
observations in continuous time (e.g., sensor data), and the sequence data is converted to 
point data by sampling at equal intervals. In addition, some types of sequence data (e.g., 
trajectory data) are converted into raster data, and the positions of different time instants 
correspond to the coordinates of the grid in raster data. For some raster data (such as mete-
orological data), sequence data is obtained by performing continuous time statistics on the 
observations at each site.

2.2 � Challenges

In this section, we discuss the challenges of MvSD and summarize the existing literature. 
We state the following five problems in MvSD: temporal dynamic, heterogeneity, cross-
view dynamics, data missing, misalignment of asynchronous multi-view.

2.2.1 � Temporal dynamics

For each sequential data, consequent changes are recorded in chronological order, show-
ing the dynamics at different time slots. The data points at different times in sequential 
data depend on each other. If the dynamic information of the temporal granularity is 
ignored, the regularity of sequence change becomes difficult to model and the accuracy 
will decrease. For example, in the sentiment analysis task, the expressed opinions such as 
“I think it’s...but...”, the semantics will be inconsistent or further enhanced, which is also 
known as intra-modality dynamic. Information at certain moments will drive sentiment 
recognition. In traffic forecasting, the detected flow in the same road section is affected by 
human travel and often shows closeness, period and trend. In crime prediction, the factors 
that cause crimes may change over time. For example, there are different crime patterns on 
weekdays and weekends. In air quality forecasting, air quality monitoring stations record 
changes in the next few hours or a day. These time series show dynamic changes, and even 
some unexpected factors attacks may lead to sudden changes.

Early sequence modeling methods were proposed under specific tasks. For example, 
Prophet (Taylor and Letham 2018) was proposed by Facebook in 2017 for the company’s 
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internal business time series. And the early air quality prediction tasks were modeled 
by random forest  (Fawagreh et  al. 2014) and inverse distance weighting  (Lu and Wong 
2008). Autoregression (AR) models, used to describe certain time-varying processes, such 
as stock forecasts  (Ferenstein and Gasowski 2004), climate changes  (Janjua et al. 2014). 
In addition, AR models and their variants are used in prognostication and health moni-
toring (PHM)  (Barraza-Barraza et  al. 2017), some variants such as autoregressive mov-
ing average (ARMA)  (Pham and Yang 2010), autoregressive integrated moving average 
(ARIMA) (Ordóñez et al. 2019). Further, some methods based on Gaussian process (Zhao 
and Sun 2016a, b), Markov chain model (Sun et al. 2015), ARIMA (Chen et al. 2011), etc., 
have been proposed for traffic prediction.

The current schemes for modeling the temporal dynamics of multi-view sequences is 
to use networks based on RNNs and their derivatives. In sentiment analysis, Refs. (Zadeh 
et al. 2017; Verma et al. 2020; Wang et al. 2019c) employed independent LSTM to model 
intra-modality dynamic separately for each view sequence. To model the context of the 
sequence, Refs. (Hazarika et al. 2020; Xu et al. 2019) introduced bi-directional LSTM to 
obtain feature representations for each view. In order to obtain the temporal dependence 
of each weather sequence, DAQFF (Du et al. 2019) utilized bi-directional LSTM to learn 
long-term temporal characteristics from multivariate time series. DeepAir (Yi et al. 2018) 
followed the method of DeepSD (Wang et al. 2017), using RNN to embed sequence data to 
find similarities in different time slots.

In addition, there are some literatures that combine attention-based structures to tackle 
temporal dynamics. Pham et al. (2018) learnt common representations for different modali-
ties via sequence-to-sequence (Seq2Seq) and introduced an attention mechanism to han-
dle long-term dependencies. To address temporal duplication content in the identical 
view, Tian et  al. (2020) adaptively aggregated useful information through self-attention. 
DCRNN (Li et al. 2017) captured temporal dependencies among time series through gated 
recurrent unit (GRU). ST-MetaNet  (Pan et  al. 2019) proposed a meta RNN, which uses 
meta-knowledge to generate GRU weights from node embeddings to model diverse tem-
poral dependencies. Forecaster Li and Moura (2019) applied graph transformer to model 
long-term temporal dependencie. In order to solve the cumulative error amplification in 
sequence prediction, GMAN  (Zheng et  al. 2020) directly encoded historical inputs and 
generated future time steps by transform attention, thereby mitigating the error propagation 
problem.

2.2.2 � Heterogeneity

MvSD consists of a sequence of views from multiple domains, and these views are often 
heterogeneous. As shown in Fig. 6, the various data mentioned in Sect. 2.1 have their own 
distributions. For example, image and text data are presented in different forms. Images are 

Fig. 6   Heterogeneity of MvSD. 
Different view data has different 
distribution
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usually composed of raster pixels, and the content is intuitive to humans. Whereas, textual 
data, which usually consists of words and symbols, follows linguistic logic and is therefore 
more complex than images.

In order to solve the heterogeneity of different views, models trained from specific 
domains are usually used to extract feature representations on corresponding view. For 
example, Refs. (Zadeh et al. 2017; Verma et al. 2020) extracted language, audio and visual 
features through three independent modality-specific LSTMs, and then explored the rela-
tionships between these modalities in the feature space. ADAIN (Cheng et al. 2018) com-
bined feedforward neural network (FNN) and RNN, where FNN extracted static features 
and RNN learnt time series features. The obtained features from different views are com-
bined for subsequent networks. stMTMV (Liu et al. 2016b) introducesd linear functions to 
deal with spatial and temporal features separately, and then aligned spatio-temporal views 
on nodes. DeepCrime  (Huang et  al. 2018) proposed a category-dependent encoder that 
encoded regions and crimes separately and finally mapped them in a common latent space.

An encoder-decoder structure is used to implement transitions between modalities 
to address view heterogeneity. Pham et  al. (2018) translated two modalities into another 
joint representation via Seq2Seq model. MCTN (Pham et al. 2019) converted one modal-
ity to another via circular translation. Furthermore, for the three modalities, the represen-
tation learned between the two modalities was further transformed into the other modal, 
thereby forming the final joint representation. Forecaster (Li and Moura 2019) adopted the 
encoder-decoder architecture, taking spatial information and auxiliary information as the 
encoder input, and the decoder predicted the future spatial information.

The heterogeneity gap between different views is minimized in the common feature 
space. ARGF (Mai et  al. 2020) introduced an adversarial approach to transform the dis-
tribution of the source modality into the distribution of the target modality. Inspired by 
domain adaptation, MISA (Hazarika et al. 2020) mapped multiple modalities into a shared 
subspace according to a weight-sharing encoder, and aligned these features by introducing 
metric distances.

2.2.3 � Cross‑view dynamics

MvSD has temporal dynamics within a single view sequence, while there are dynamic 
interactions between different view sequences. We consider cross-view dynamics into two 
categories, spatio-temporal correlations and semantic interactions.

Spatio-temporal correlations MvSD changes continuously in time and manifests dif-
ferently in space, with spatio-temporal dynamics within a single view sequence or across 
views. For example, each image in a video can be viewed as a continuous change in space 
over a time period. For another example, in traffic forecasting, the observations of each 
traffic sensor are closely related to the observations of the surrounding space, and each 
observation value is also related to its own historical observation. There are many studies 
exploring spatio-temporal correlations. A conventional way is to model the local space first 
and then mine the temporal dynamics with recurrent networks, such as combining local 
convolution with recurrent networks  (Yao et al. 2018; Zhou et al. 2020; Bai et al. 2019; 
Yu et al. 2017; Song et al. 2020; Wang et al. 2020e; Yuan et al. 2018; Chen et al. 2019; 
Zhang et al. 2017). Bai et al. (2019) combined graph convolutional network (GCN) with 
LSTM, where the local spatial correlations captured by the graph convolutional network 
were fed into a multi-layer LSTM to model the temporal relationships. In addition, com-
bining attention mechanism and encoder-decoder structure is also used for spatio-temporal 



6671Deep learning on multi‑view sequential data: a survey﻿	

1 3

dynamic modeling (Li and Moura 2019; Shi et al. 2020; Yin et al. 2021a; Wu et al. 2020). 
APTN (Shi et al. 2020) used an attention-based encoder to model spatial, temporal, and 
periodical. The decoder introduced temporal attention to explore the dependence of the 
time steps. Forecaster (Li and Moura 2019) integrated the dependency graph into Trans-
former for forecasting spatially and temporally related data.

Semantic interactions Semantic interactions are often manifested in interactions 
between multiple views. For specific tasks, these views contain supplemental informa-
tion that enhances specific views. Taking video sentiment analysis as an example, it usu-
ally treats language as the primary modality, as for images and audio as auxiliary modal-
ity. To model the semantic dynamics across views, memory-based methods are usually 
employed  (Tian et  al. 2020; Zadeh et  al. 2018b, c; Ismail et  al. 2020; He et  al. 2020b). 
Furthermore, encoder-based methods transform multiple views to a specific view to learn 
a common representation  (Pham et  al. 2018; Xu et  al. 2019; Mai et  al. 2020; Hazarika 
et al. 2020). In addition, some literatures employ contrastive learning to achieve feature-
level and semantic-level interactions  (Mai et al. 2021; Liu et al. 2021; Kim et al. 2021). 
Mai et al. (2021) performed intra-modal/inter-modal contrastive learning and semi-contras-
tive learning simultaneously to ensure that the intra-modal/inter-modal dynamics are fully 
learned.

2.2.4 � Data missing

MvSD collects data from different sources, some human factors, communication delays, 
and sensor failure usually cause partial or fully missing of temporal data, thus data missing 
is a very common phenomenon. In other words, ideally complete MvSD is rare. As shown 
in Fig. 7, we illustrate different types of missing data. Figure 7a is the complete multi-view 
sequence, each view is intact during training and testing, and different views are paired 
with each other. Figure 7b and Figure 7c represent missing data during training and testing 
phases, respectively. Figure 7d indicates that there are missing data in both training and 
testing phases. In this section, we introduce recent deep learning methods about data miss-
ing in MvSD.

Reconstructing missing data using autoencoders is one solution. The purpose of the 
autoencoder is to encode source data into latent features, and then use a decoder to decode 
the latent features into target domain data. DCC-CAE  (Dumpala et  al. 2019) combined 

(a) (b)

(d)(c)

Fig. 7   Different missing types of MvSD. Taking text and video sequences as examples, (a) is the complete 
multi-view sequence. We summarize the missing types as missing in the training phase (b), missing in the 
testing phase (c), and missing both in the training and testing phases (d)
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deep canonical correlation analysis (DCCA) with cross-modal autoencoders. DCC-CAE 
assumes that audio and visual modalities are available during training, but only one modal-
ity is available during testing. DCC-CAE is composed of two decoders, which input avail-
able modalities and reconstruct the corresponding missing modality representations. 
CPM-Nets (Zhang et al. 2020) reconstructed the complete view by constructing latent rep-
resentations through structural constraints. In the unsupervised situation, CPM-Nets pro-
posed adversarial strategies to further improve the complete representation. MCTN (Pham 
et  al. 2019) introduced cyclic consistency loss in the process of modality translation to 
make the learned joint representation contain as much of all modality information as pos-
sible. MFM (Tsai et al. 2018) decomposed the multimodal representation into two factors: 
multimodal discriminative and modality-specific generative factors. Among them, the dis-
criminant factors contain the shared joint features used to discriminate the task. The infor-
mation contained in generative factors is unique to generate specific modalities.

Meta-learning is a learning-to-learn algorithm that learns multiple tasks on training 
data and processes new tasks during testing. Meta-learning enables knowledge transfer for 
task-agnostic few-shot learning. SMIL (Ma et al. 2017) is the first work to study the lack 
of data in both training and testing phases. SMIL jittered the latent feature space through 
Bayesian meta-learning, making single modality embeddings approximate to full modality 
embeddings. Meta-learning based spatio-temporal network  (Yao et  al. 2019a) is suitable 
for solving the problem of unbalanced spatial distribution of collected data, and transfer-
ring knowledge from multiple cities to target cities.

2.2.5 � Misalignment of asynchronous multi‑view

Sequential data from different views are usually not strictly aligned. One is that the lengths 
of the view sequences are not equal. For example, affected by the sampling frequency, the 
number of images and the number of words in the video are not equal. The other is seman-
tic misalignment. There is no complete correspondence between images and text in video 
data. Each image does not correspond to each word, and one character can be associated 
with multiple images. Figure 8a shows the ideal condition, that is, the sequence length and 
semantics of multiple views are completely aligned. However, in reality, more scenarios 
are shown in Figure 8b and c, where Fig. 8b shows length aligned but semantics unaligned, 
and Fig. 8c shows both length and semantics misaligned.

Most of the existing work, such as (Zadeh et al. 2017; Wang et al. 2019c; Liang et al. 
2018a), are based on the multi-view sequence alignment. Some recent work focuses on 
multi-view sequence misalignment (Tsai et al. 2019; Yang et al. 2020; Aytar et al. 2017; 
Le et al. 2018). Recently, some literatures adopt attention-based structure to achieve multi-
view sequence alignment (Tsai et al. 2019; Yang et al. 2020; Le et al. 2018). Multimodal 
Transformer  (Tsai et  al. 2019) focused on the interaction between multi-view sequences 
of different time steps through cross-modal attention to transform one modality to another 
without explicitly aligning the data. Furthermore, multi-view sequence alignment is also 
achieved by using pretrained network. pre-trained networks. Aytar et al. (2017) trained a 
deep convolutional network, which used a large amount of alignment data (including lan-
guage, visual and acoustic) for aligned cross-modal representation. There are other litera-
tures that use multi-instance learning without explicit data alignment. Tian et  al. (2020) 
formulated weakly supervised video parsing as multi-modal multi-instance learning 
(MMIL), and proposed MMIL pooling to aggregate multi-modal information.
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3 � Multi‑view sequential representation

In Sect. 2.1, we introduce various data forms. In order to feed these data into the net-
work for feature learning, we need to choose appropriate methods to represent these 
data. In this paper, we mainly consider three representations for network input: raster-
ized representation, sequential embedding and graph embedding.

3.1 � Rasterized representation

As shown in Fig.  9, the rasterized data quantifies the points in each grid (such as 
events, track points, traffic flow, meteorological data, etc.). Each cell in the raster grid 
is regarded as the statistics of a region. For example, in autonomous driving, points in 
the scene are divided into 3D rectangular grids with a given resolution (Zhou and Tuzel 
2018; Yang et al. 2018; Laddha et al. 2021; Fadadu et al. 2022) to obtain voxel grids or 
BEVs, and then 3D CNN can be naturally applied. In traffic flow forecasting, the whole 
city is split to n × n grids according to latitude and longitude, and each region is indexed 
by rows and columns, and each grid is aggregated according to time intervals  (Zhou 
et al. 2020; Yuan et al. 2018; Wu et al. 2020; Liao et al. 2018; Wang et al. 2020f; Zhang 
et al. 2019, 2021a). Through rasterization, CNN extracts the spatial features of different 
regions. Using recurrent networks to model raster data across multiple time slices ena-
bles analysis of dynamic relationships between different regions.

(a)

(b)

(c)

Fig. 8   Misalignment of asynchronous multi-view sequence
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3.2 � Sequential embedding

For sequence data, such as text, trajectory data, and time series data, some feature 
transformation and feature embedding methods need to be used to process these data. 
For time series data, multi layer perceptron (MLP) is usually used to map it into latent 
vectors. Yi et al. (2018) transformed the raw features of each domain data into a low-
dimensional space through embedding methods. Cheng et al. (2018) applied fully con-
nected layers (FC) to extract features of points of interests (POIs) and meteorological 
features (such as weather, temperature, humidity, etc.). DAQFF (Du et al. 2019) set 1 × 1 
convolution to transform multiple time series data. In the language model, pre-trained 
models are usually used to perform feature transformation on the language sequence. 
For example, Word2Vec (Mikolov et  al. 2013), GloVe  (Pennington et  al. 2014), and 
BERT (Devlin et al. 2018) are commonly used in natural language processing. Some lit-
eratures use pretrained 300-dimensional Glove word embeddings to encode a sequence 
of transcribed words into a sequence of word vectors  (Zadeh et  al. 2017; Wang et  al. 
2019c; Liu et al. 2018; Zadeh et al. 2019, 2018b). Still others use the pretrained Trans-
former model BERT to extract utterance level textual features (Ismail et al. 2020; Rah-
man et al. 2020; Yu et al. 2021b; Sun et al. 2020e).

3.3 � Graph representation

Graph models a set of objects and their correlations in sentences, images, and spatial. Embed-
ding the graph into vector representation and then seamlessly connect with GCN in subsequent 
processing. The graph representation reflects the association of different areas of the spatial 
map (Yao et al. 2018; Li and Moura 2019; Bai et al. 2019; Huang et al. 2020b; Yu et al. 2017; 
Wu et al. 2020). Forecaster (Li and Moura 2019) learnt the weights of the non-zero entries 
of the adjacency matrix by introducing a sparse linear layer, taking into account that differ-
ent locations may have different dependency strengths. In the spatial map, DMVST-Net (Yao 
et al. 2018) employed CNN to extract local feature representation of each local region and its 
surrounding neighbors, and embeded the local representation into a low-dimensional repre-
sentation through FC to supplement the information of the graph nodes. In spatial event pre-
diction, Wu et al. (2020) designed an embedding component to generate an embedding vector 
for each event time step in each time slot. The graph representation reflects the relationship 

Fig. 9   Illustration of rasterized representation
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between sentence and image (Wang et al. 2020a). Additionally, the graph representation also 
reflects the activity on social media (Islam and Goldwasser 2021).

4 � Deep neural networks

In this Section, we mainly review deep network techniques commonly used to extract features 
of multi-view sequences. In the network, different data representations need to choose suitable 
network models.

4.1 � CNN‑based networks

Figure  10 shows the CNN structure, which usually consists of convolutional layers, pool-
ing layer, and fully connected layer. BatchNorm (Ioffe and Szegedy 2015) can be appended 
after convolutional layers. CNN has excellent performance in processing regular grid data. 
By stacking multiple convolutional layers, the learning from the bottom-level information to 
the high-level semantic features is realized in bottom-up. It moves fixed-size filters (e.g., 3 × 3, 
5 × 5) on the input grid from left to right and from top to bottom. The filters performs inner 
product operation on corresponding position and generates high-dimensional features.

Some works try to convert traffic networks at different time intervals into raster images, 
and use CNN to extract spatial correlations  (Zhang et  al. 2017, 2019). ST-ResNet  (Zhang 
et al. 2017) designed a CNN to capture the spatial dependency of closeness, period, and trend. 
MDL (Zhang et al. 2019) converted the directed graph at each time slot into a tensor represen-
tation, which was used by CNN to extract the spatial relationship, and then fully convolutional 
network (FCN) (Long et al. 2015) was introduced to obtain the temporal dependencies.

4.2 � RNN‑based networks

RNN and its variants are models for processing sequence data, which use the previous out-
put state of the sequence to predict the next state, as is shown in Fig. 11a. LSTM is an 
extension of RNN. It has a specially customized memory unit to remember longer input 

Fig. 10   Structure of CNN
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(a)

(b)

(c)

Fig. 11   Structures of RNN, LSTM and Seq2Seq
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history information, as shown in the Fig. 11b. They are widely used in speech recognition, 
natural language processing and time series data analysis.

A series of RNN-based methods are used in traffic forecasting (Bai et al. 2019; Yuan 
et al. 2018; Wang et al. 2020f). In passenger demand prediction, three LSTMs are used to 
model spatiotemporal maps, external meteorological data, and temporal metadata, respec-
tively  (Bai et  al. 2019). Hetero-ConvLSTM  (Yuan et  al. 2018) extracted spatial features 
through ConvLSTM (Xingjian et al. 2015), and then fed the obtained features to LSTM to 
model temporal dynamics. MT-ASTN (Wang et al. 2020f) modeled the temporal features 
of dynamic graph sequence with different scales to capture crowd flow at different scales. 
In the sentiment analysis task, Refs.  (Zadeh et al. 2017; Verma et al. 2020; Ismail et al. 
2020) utilized three independent LSTMs to construct modality embedding subnetworks for 
language, visual, and acoustic respectively to model intra-modality.

Figure 11c shows the structure of Seq2Seq (Sutskever et al. 2014). The Seq2Seq model 
is designed for sequence data and is an encoder-decoder structure, where the encoder 
encodes the input sequence to obtain hidden state, and the decoder generates variable-
length output according to the hidden state. Pham et  al. (2018) performed unsupervised 
learning of joint multimodal representations via Seq2Seq. Liao et  al. (2018) proposed a 
hybrid Seq2Seq model, which integrated auxiliary information in the encoder-decoder 
sequence learning framework.

4.3 � Graph‑based networks

GCNs are often used to model non-Euclidean structural data, and GCNs are usually 
divided into two categories, namely spectral-based graph networks and spatial-based 
graph networks. The spectral-based method defines convolution operation in the Fourier 
domain  (Kipf and Welling 2016). The spatial-based method directly applies convolution 
on the graph to aggregate information from neighbors. We categorize recent literatures 
according to the above two methods.

Spectral-based GCN introduces filters from a signal processing perspective to define 
graph convolution. Song et  al. (2020) proposed a spatio-temporal synchronization graph 
convolutional network, which could effectively capture complex local spatio-temporal cor-
relations through spatio-temporal synchronization modeling mechanism. In order to meet 
the requirements of medium and long-term prediction tasks, Yu et al. (2017) introduced a 
spatio-temporal graph convolution network, which modeled the traffic network as a graph, 
and used spectral convolution to extract spatial features. Geng et  al. (2019) encoded the 
correlations of different regions to obtain multiple graphs, which were then used for cor-
relation modeling based on ChebNet-based multi-graph convolution.

Spatial-based GCN simulates the convolution operation of traditional CNN, and graph 
convolution is based on the spatial relationship of nodes. Wang et  al. (2020f) converted 
the flow Origin-Destination (OD) matrix into a semantic graph, and then performed con-
volution operation on the semantic graph. Li et al. (2017) treated traffic flow as a directed 
graph and captured spatial dependencies according to the diffusion process on the graph 
through a diffusion convolutional recurrent neural network. Graph attention network 
(GAT)  (Veličković et  al. 2017) is another graph neural network, which calculates the 
weights of neighbor nodes through an attention mechanism, without knowing the structure 
of the graph. Pan et al. (2019) proposed a meta-graph attention network, which used atten-
tion mechanism to capture the dynamic spatial correlation between nodes, and the attention 
weights were generated from meta-knowledge.
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4.4 � Attention‑based networks

Attention is originally proposed for natural language processing, and is now widely used in 
sequence-based tasks, where it models the relevant parts of the information and amplifies 
the most important parts. Attention can be used not only to focus on spatial dependencies, 
but also on spatio-temporal correlations.

Shi et  al. (2020) proposed an attention mechanism to model spatial, short-term and 
long-term cyclic dependencies. Huang et  al. (2020b) developed a graph attention net-
work integrated with GCN into a spatial gated block to capture spatio-temporal features. 
GMAN  (Zheng et  al. 2020) introduced a transform attention layer between encoder and 
decoder to model the relationship between historical and future time steps. Refs.  (Tian 
et al. 2020; Wu et al. 2021) developed hybrid attention network to jointly model temporal 
recurrence, co-occurrence, and asynchrony. Specifically, temporal recurrence was solved 
by self-attention, while co-occurrence and asynchrony were addressed by cross-modal 
attention. Zadeh et al. (2018b) studied a delta-memory attention network, which focused 
on cross-view interactions, and aggregated interactions over time with multi-view gated 
memory.

Transformer based on attention has been successfully applied (Tsai et al. 2019; Zadeh 
et al. 2019; Hasan et al. 2021; Wang et al. 2020g). The structure of the Transformer is 
shown in Fig 12. Tsai et al. (2019) developed a multi-modal transformer to model una-
ligned multi-modal language sequences, and integrated multi-modal time series from 
multiple pairs of cross-modal transformers. Zadeh et al. (2019) designed a multimodal 

Fig. 12   Structure of Trans-
former (Vaswani et al. 2017)
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transformer layer to capture the decomposition dynamics of multi-modal data and 
aligned temporally asynchronous information intra-modality and inter-modality. Hasan 
et al. (2021) encoded multi-modal sequences separately via Transformer, and learnt to 
represent punchline according to the background context.

4.5 � Hybrid networks

Some works are dedicated to combining multiple modules, such as combining CNN and 
LSTM  (Xingjian et  al. 2015; Zhao et  al. 2019; Yao et  al. 2019b). Chen et  al. (2019) 
combined GCN with GRU, GCN was used for spatial feature extraction, and GRU was 
used for capturing temporal dynamics. GC-LSTM (Chen et al. 2018) introduced LSTM 
to model the characteristics of the dynamic graph sequence and captured the temporal 
characteristics of the graph sequence. Poria et  al. (2017) proposed a contextual atten-
tion-based LSTM network that focuses on contextual relations, and the attention-based 
fusion mechanism amplified higher quality and informative modalities. Huang et  al. 
(2020b) adopted GCN to extract spatial features and graph attention network to extract 
road similarity, and finally integrated these two modules through a gate structure. Pan 
et al. (2019) designed a combination of meta-graph attention network and meta-recur-
rent network, where the meta-graph attention network captured spatial correlation, and 
the meta-recurrent network modeled temporal correlation.

Zadeh et  al. (2018c) proposed a multi-attention recurrent network, composed of 
long-short term hybrid memory and multi-attention block, to discover the interac-
tions between modalities and store them in hybrid memory. Wang et al. (2019c) com-
bined LSTM and gating mechanism, where LSTM was used to model different view 
sequences, and the gated modality-mixing network was used for infering nonverbal shift 
vector. Xu et al. (2019) adopted a combination of bi-LSTM and attention mechanism, 
where bi-LSTM extracted text sequences and attention mechanism learnt the alignment 
weights between speech and text.

4.6 � Discussion

In this section, we analyze the above-mentioned deep models, as shown in Table 1. We 
demonstrate popular deep models, and describe them in terms of model architecture, 
data form, model characteristic, and application areas.

It can be seen that for sequence data processing, whether it is text, traffic flow or bio-
logical signals, RNN-based networks are general frameworks. The reason is that RNN-
based networks can model the dependencies of these temporal information. For raster-
ized data, such as images, spatial maps, etc., CNN-based models are usually used for 
spatial modeling. In traffic prediction, specific nodes of some grid maps are turned into 
graph networks, which are suitable for GCN, spatial attention networks, etc. For multi-
media data, such as text streams, audio, etc., in terms of feature representation, candi-
date extractors such as CNN, Transformer are available. Furthermore, it can be found 
that combining CNNs and recurrent networks becomes a paradigm for spatio-temporal 
modeling. For multi-view sequence modeling, the paradigm uses view-private recurrent 
networks for feature extraction, followed by cross-view interaction.



6680	 Z. Xie et al.

1 3

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f d
ee

p 
m

od
el

s

M
od

el
s

A
pp

ro
ac

h
A

pp
lic

at
io

n
D

et
ai

ls

A
rc

hi
te

ct
ur

e
da

ta
ch

ar
ac

te
ris

tic

TF
N

 (Z
ad

eh
 e

t a
l. 

20
17

)
LS

TM
Te

xt
, a

ud
io

, i
m

ag
e

R
N

N
-b

as
ed

Se
nt

im
en

t a
na

ly
si

s
U

si
ng

 th
re

e 
in

de
pe

nd
en

t L
ST

M
s t

o 
m

od
el

 
th

e 
te

m
po

ra
l i

nf
or

m
at

io
n 

of
 e

ac
h 

m
od

al
ity

 
se

pa
ra

te
ly

ST
-R

es
N

et
 (Z

ha
ng

 e
t a

l. 
20

17
)

C
N

N
R

as
te

riz
ed

 m
ap

, t
im

e 
se

rie
s

C
N

N
-b

as
ed

Tr
affi

c 
fo

re
ca

sti
ng

Th
is

 p
ap

er
 c

on
str

uc
ts

 3
 v

ie
w

s:
 c

lo
se

ne
ss

, p
er

io
d 

an
d 

tre
nd

, a
nd

 u
se

s C
N

N
 to

 m
od

el
 sp

at
io

-
te

m
po

ra
l c

or
re

la
tio

ns
G

ST
N

et
 (F

an
g 

et
 a

l. 
20

19
)

G
C

N
Ti

m
e 

se
rie

s, 
gr

ap
h

G
ra

ph
-b

as
ed

Tr
affi

c 
fo

re
ca

sti
ng

Th
is

 p
ap

er
 c

on
str

uc
ts

 a
 g

lo
ba

l s
pa

tio
-te

m
po

ra
l 

ne
tw

or
k,

 w
hi

ch
 u

se
s t

em
po

ra
l c

on
vo

lu
tio

n 
to

 
ca

pt
ur

e 
te

m
po

ra
l f

ea
tu

re
s a

nd
 a

 g
ra

ph
 m

od
el

 
to

 c
ap

tu
re

 sp
at

ia
l d

ep
en

de
nc

ie
s

M
LR

F 
(L

ia
ng

 e
t a

l. 
20

18
b)

LS
TM

Im
ag

e,
 a

ud
io

R
N

N
-b

as
ed

Em
ot

io
n 

re
co

gn
iti

on
M

ul
tim

od
al

 lo
ca

l r
an

ki
ng

 is
 u

se
d 

to
 o

bt
ai

n 
re

la
-

tiv
e 

se
nt

im
en

t s
tre

ng
th

, t
he

n 
a 

B
ay

es
ia

n 
ra

nk
-

in
g 

al
go

rit
hm

 in
fe

rs
 g

lo
ba

l r
an

ki
ng

, a
nd

 fi
na

lly
 

co
m

bi
ne

s m
ul

tim
od

al
 b

eh
av

io
r a

nd
 re

la
tiv

e 
se

nt
im

en
t r

an
ki

ng
 fo

r i
nf

er
en

ce
A

D
A

IN
 (C

he
ng

 e
t a

l. 
20

18
)

LS
TM

, a
tte

nt
io

n
Ti

m
e 

se
rie

s
H

yb
rid

C
lim

at
e 

sc
ie

nc
e

Th
is

 p
ap

er
 m

od
el

s d
iff

er
en

t l
oc

al
 te

m
po

ra
l i

nf
or

-
m

at
io

n 
th

ro
ug

h 
LS

TM
, a

nd
 th

es
e 

la
te

nt
 lo

ca
l 

fe
at

ur
es

 a
re

 fi
na

lly
 fu

se
d 

th
ro

ug
h 

at
te

nt
io

n
D

ee
pC

rim
e 

(H
ua

ng
 e

t a
l. 

20
18

)
G

RU
, a

tte
nt

io
n

Ti
m

e 
se

rie
s

H
yb

rid
C

rim
e 

an
al

ys
is

Th
is

 p
ap

er
 m

od
el

s c
rim

e 
dy

na
m

ic
s t

hr
ou

gh
 h

ie
r-

ar
ch

ic
al

 G
RU

 a
nd

 u
se

s a
tte

nt
io

n 
to

 c
ap

tu
re

 th
e 

sp
at

ia
l a

nd
 te

m
po

ra
l a

ss
oc

ia
tio

ns
 o

f d
iff

er
en

t 
cr

im
e 

pa
tte

rn
s

Ph
am

 e
t a

l. 
(2

01
8)

Se
q2

Se
q

Te
xt

, a
ud

io
, i

m
ag

e
R

N
N

-b
as

ed
Se

nt
im

en
t a

na
ly

si
s

U
si

ng
 S

eq
2S

eq
 fo

r u
ns

up
er

vi
se

d 
jo

in
t m

ul
ti-

m
od

al
 re

pr
es

en
ta

tio
n 

le
ar

ni
ng

M
IS

A
 (H

az
ar

ik
a 

et
 a

l. 
20

20
)

LS
TM

Te
xt

, a
ud

io
, i

m
ag

e
R

N
N

-b
as

ed
Se

nt
im

en
t a

na
ly

si
s

U
si

ng
 3

 in
de

pe
nd

en
t L

ST
M

s t
o 

ex
tra

ct
 th

e 
fe

at
ur

es
 o

f t
ex

t, 
au

di
o 

an
d 

im
ag

e 
re

sp
ec

tiv
el

y.
 

Sp
ec

ifi
ca

lly
, t

o 
m

od
el

 in
tra

-m
od

al
 a

nd
 in

te
r-

m
od

al
 re

la
tio

ns
hi

ps
, M

IS
A

 p
er

fo
rm

s d
ist

an
ce

 
m

et
ric

s i
n 

tw
o 

su
bs

pa
ce

s



6681Deep learning on multi‑view sequential data: a survey﻿	

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

M
od

el
s

A
pp

ro
ac

h
A

pp
lic

at
io

n
D

et
ai

ls

A
rc

hi
te

ct
ur

e
da

ta
ch

ar
ac

te
ris

tic

H
yb

rid
A

tt 
(Y

ua
n 

et
 a

l. 
20

19
)

C
N

N
, A

tte
nt

io
n

Ti
m

e 
se

rie
s

H
yb

rid
Sl

ee
p 

st
ag

in
g

1D
 C

N
N

 is
 u

se
d 

to
 p

ro
ce

ss
 m

ul
tiv

ar
ia

te
 p

ol
y-

so
m

no
gr

ap
hy

 re
co

rd
s, 

an
d 

th
e 

de
si

gn
ed

 h
yb

rid
 

at
te

nt
io

n 
m

ec
ha

ni
sm

 fu
rth

er
 fu

se
s m

ul
ti-

vi
ew

 
fe

at
ur

es
M

et
aS

T 
(Y

ao
 e

t a
l. 

20
19

a)
C

N
N

, L
ST

M
R

as
te

riz
ed

 m
ap

H
yb

rid
W

at
er

 q
ua

lit
y 

pr
ed

ic
tio

n
A

 m
et

a-
le

ar
ni

ng
 p

ar
ad

ig
m

 sp
at

io
te

m
po

ra
l n

et
-

w
or

k 
is

 d
es

ig
ne

d 
to

 so
lv

e 
th

e 
da

ta
 im

ba
la

nc
e 

pr
ob

le
m

 th
ro

ug
h 

tra
ns

fe
r l

ea
rn

in
g

Y
ua

n 
et

 a
l. 

(2
01

8)
C

on
vL

ST
M

R
as

te
riz

ed
 m

ap
H

yb
rid

A
cc

id
en

t p
re

di
ct

io
n

A
 H

et
er

o-
C

on
vL

ST
M

 is
 p

ro
po

se
d 

to
 h

an
dl

e 
bo

th
 sp

at
ia

l h
et

er
og

en
ei

ty
 a

nd
 te

m
po

ra
l a

ut
o-

co
rr

el
at

io
n

G
ra

ph
Sl

ee
pN

et
 (J

ia
 e

t a
l. 

20
20

)
G

C
N

, a
tte

nt
io

n
R

as
te

riz
ed

 m
ap

H
yb

rid
Sl

ee
p 

st
ag

in
g

B
as

ed
 o

n 
sp

at
io

te
m

po
ra

l g
ra

ph
 c

on
vo

lu
tio

n 
ne

tw
or

k,
 g

ra
ph

 c
on

vo
lu

tio
n 

ex
tra

ct
s s

pa
tia

l 
fe

at
ur

es
 a

nd
 te

m
po

ra
l c

on
vo

lu
tio

n 
is

 u
se

d 
to

 
ca

pt
ur

e 
tra

ns
iti

on
 ru

le
s b

et
w

ee
n 

sl
ee

p 
st

ag
es

H
as

an
 e

t a
l. 

(2
02

1)
Tr

an
sf

or
m

er
Te

xt
, a

ud
io

, i
m

ag
e

A
tte

nt
io

n-
ba

se
d

H
um

or
 d

et
ec

tio
n

La
ng

ua
ge

-, 
ac

ou
sti

c-
, v

is
ua

l-,
 a

nd
 h

um
or

-c
en

tri
c 

fe
at

ur
es

 a
re

 e
xt

ra
ct

ed
 se

pa
ra

te
ly

 u
si

ng
 T

ra
ns

-
fo

rm
er

s, 
fo

llo
w

ed
 b

y 
cr

os
s-

at
te

nt
io

n 
la

ye
rs

 fo
r 

in
fo

rm
at

io
n 

in
te

ra
ct

io
n

Ti
an

 e
t a

l. 
(2

02
0)

A
tte

nt
io

n
Im

ag
e,

 a
ud

io
A

tte
nt

io
n-

ba
se

d
V

id
eo

 p
ar

si
ng

A
 h

yb
rid

 a
tte

nt
io

n 
ne

tw
or

k 
is

 p
ro

po
se

d 
to

 si
m

ul
-

ta
ne

ou
sly

 e
xp

lo
re

 u
ni

m
od

al
 a

nd
 c

ro
ss

-m
od

al
 

te
m

po
ra

l c
on

te
xt

. A
 m

ul
tim

od
al

 m
ul

tip
le

 
in

st
an

ce
 le

ar
ni

ng
 (M

M
IL

) p
oo

lin
g 

m
et

ho
d 

is
 

de
ve

lo
pe

d 
to

 a
da

pt
iv

el
y 

ex
pl

or
e 

us
ef

ul
 a

ud
io

 
an

d 
vi

de
o 

co
nt

en
t



6682	 Z. Xie et al.

1 3

5 � Applications

In this section, we summarize related work in different domains, including intelligent trans-
portation, crime analysis, sentiment analysis, climate science and health care. We discuss 
these application areas separately and provide an overview of recent related techniques. In 
Table 2, we enumerate the application areas along with the aforementioned models.

5.1 � Intelligent transportation

With the development of mobile communication and human daily travel, a large amount of 
traffic data is generated, which usually includes traffic volume, speed, accidents, trajecto-
ries, spatial maps, and road networks, etc. Traffic data mining and analysis has become an 
urgent problem to be solved. Traffic forecasting plays an important role in smart cities, pro-
viding constructive guidance for urban planning, intelligent management and public safety, 
thereby promoting urban construction and avoiding waste of resources. Table 3 summa-
rizes the performance of spatio-temporal models on several publicly available benchmark 
datasets. In TaxiBJ1 and NYC Bike2, we report root mean square error (RMSE) in terms 
of both flow and demand. For the two types of graph structure data, PeMSD43 and MeTR-
LA4, we mainly summarize RMSE and mean absolute error (MAE).

As mentioned in Sect.  2.1, traffic data is typically represented as trajectories, events, 
and raster data. Among them, data such as trajectories and events are usually converted 
to raster data for processing, and then this type of data is consumed by networks such as 
CNN (Lv et al. 2019; Chen et al. 2020; Guo et al. 2019a; Sun et al. 2020a). The traffic fore-
casting of a single road segment can be regarded as sequence data, which is fed to RNN 
or LSTM (Huang et al. 2014; Yang et al. 2016). The road network is represented using a 
graph, and these road network associations are modeled by GCN (Yu et  al. 2017; Geng 
et al. 2019; Fang et al. 2019; Sun et al. 2020b; Bai et al. 2021). In addition to the diver-
sity of data forms, complex spatial-temporal correlations hinder traffic prediction. Among 
them, the spatial correlation is mainly reflected in different regions and different road seg-
ments. Traffic in adjacent areas is spatially causal, i.e. flows from one area to another. The 
temporal correlation is reflected in the fact that the flow of the area is affected by different 
time intervals, such as short-term or long-term changes. Therefore, spatial-temporal based 
models are used to deal with this problem (Bai et al. 2019; Zhao et al. 2019; Guo et al. 
2019b).

Further, traffic data is affected by external factors (such as weather, accidents), and 
the data comes in various forms. Some literatures  (Zhou et al. 2020; Wang et al. 2020f; 
Zhang et al. 2019) model the temporal dynamics into three views: closeness, period, and 
trend. In traffic flow forecasting, Guo et  al. (2019b) combined spatio-temporal attention 

1  TaxiBJ is the taxicab GPS data and meteorology data in Beijing from four time intervals: 1st Jul. 2013–
30th Otc. 2013, 1st Mar. 2014–30th Jun. 2014, 1st Mar. 2015–30th Jun. 2015, 1st Nov. 2015–10th Apr. 
2016.
2  The bike trajectories are collected from NYC CitiBike system. There are about 13000 bikes and 800 sta-
tions in total.
3  PeMSD4 describes the San Francisco Bay Area, and contains 3848 sensors on 29 roads dated from 
1/1/2018 until 2/28/2018, 59 days in total.
4  MeTR-LA records four months of statistics on traffic speed, ranging from 3/1/2012 to 6/30/2012, includ-
ing 207 sensors on the highways of Los Angeles County.
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and spatio-temporal convolution to construct three basic components to model the recent, 
daily-periodic and weekly-periodic of traffic flow, respectively. In demand forecasting, Bai 
et al. (2019) took the structured city as one view, external meteorological data and time 
meta as the other two views. For the spatial view, the spatial features of each time slot were 
extracted by GCN, and then the spatio-temporal correlations were captured by LSTM. For 
the other two views, these factors were used to model passenger demand. Yao et al. (2018) 
built three views: spatial view, temporal view, and semantic view. Geng et al. (2019) stud-
ied multiple graphs to model the relationship between different regions, including neigh-
borhood, functional similarity, and connectivity.

Example 1  Zhou et al. (2020) proposed a deep flexible structured spatial–temporal model 
(DFSSTM) for taxi capacity prediction. The structure of DFSSTM is shown in Fig.  13. 
First, the traffic data was rasterized into a n × n grid, and the flow relationships of vehi-
cles were characterized by inflows and outflows. Due to the short-term and long-term 
dependencies of traffic data, DFSSTM divided temporal dependencies into three views: 
period, trend and closeness. Subsequently, DFSSTM tailored a siamese spatio-temporal 
network (SSTN), which took both inflows and outflows as inputs, to model spatio-temporal 
dependencies. Three SSTNs were used to model three temporal dynamics (period, trend 

Fig. 13   Structure of DFFSTM (Zhou et al. 2020)
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and closeness). Finally, DFSSTM designed a fusion layer that automatically adjusted the 
weights to integrate different views.

5.2 � Health care

In the medical system, clinicians diagnose patients through comprehensive consideration 
of multiple factors (for example, previous medical history, various biological indicators, 
patient physique, etc). This process is complicated and time-consuming. In order to better 
assist clinicians in diagnosis, many works apply deep learning technology in the field of 
medical intelligence (Yuan et al. 2019; Jia et al. 2020; Akman et al. 2021; Phan et al. 2022; 
Olesen et al. 2021; Piriyajitakonkij et al. 2020; Feng et al. 2021; Torres et al. 2016). The 
intelligent system discovers disease patterns by learning historical data and various clini-
cal indicators, supplemented by experts knowledge. Table 4 summarizes the performance 
of the automatic sleep staging models on the SleepEDF-205, MASS6, and SHHS7 datasets. 
We report overall accuracy (Acc), Cohen’s kappa ( � ), and macro F1-score (MF1).

Clinical data usually comes from multiple views and is heterogeneous (for example, 
verbal description, medical imaging, polysomnography, etc.). To handle asynchronous 
view sequences, Le et al. (2018) investigated memory technology to establish cross-view 
interactions and dependencies. It encoded the input view separately through two encod-
ers and saved to two external memories. In sleep monitoring, Phan et al. (2021) took the 
original signal and time-frequency information as input. In order to solve the over-fitting 
rate between different views, it dynamically adjusted the learning steps between different 
modalities, and derived weights based on specific views for fusion different views. Jia et al. 
(2021b) proposed a temporal fully convolutional network based on U 2-Net (Qin et al. 2020) 
for multimodal salient waves detection, which converted the time series classification prob-
lem into a salient detection problem. At the same time, the multi-scale features of the sleep 

Table 4   Performance of sleep staging models on SleepEDF-20, MASS, and SHHS

Models SleepEDF-20 MASS SHHS

Acc � MF1 Acc � MF1 Acc � MF1

DeepSleepNet (Supratak et al. 2017) 82.0 0.760 76.9 86.4 0.805 82.2 – – –
FCNN+RNN (Phan et al. 2021) 83.5 0.775 77.7 86.4 0.806 82.1 88.1 0.832 80.9
TinySleepNet (Supratak and Guo 2020) 85.4 0.800 80.5 83.1 0.77 78.1 – – –
RobustSleepNet (Guillot and Thorey 2021) – – 81.7 – – 82.5 – – 80.0
SleepTransformer (Phan et al. 2022) – – – – – – 87.7 0.828 80.1
SeqSleepNet (Phan et al. 2019) 86.0 0.809 79.7 87.0 0.815 0.833 88.4 0.838 80.1
XsleepNet (Phan et al. 2021) 86.4 0.813 80.9 87.6 0.823 83.8 89.1 0.847 82.3
SalientSleepNet (Jia et al. 2021b) 87.5 – 83.0 – – – – – –

5  SleepEDF-20 is the Sleep Cassette subset of the Sleep-EDF Expanded dataset Kemp et al. (2000), con-
sisting of 20 subjects (10 males and 10 females) aged 25–34.
6  MASS is pooled from different hospital-based sleep laboratories, consisting of whole-night recordings 
from 200 subjects (97 males and 103 females) aged 18–76.
7  The SHHS database Zhang et al. (2018) has two rounds of PSG records, namely Visit 1 and Visit 2. The 
former, consisting of 5791 subjects aged 39–90, was employed in this work.
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stage are captured by the multi-scale extraction module. In recent years, the coronavirus 
(COVID-19) has spread worldwide, causing a large number of human casualties and eco-
nomic losses. Some works use coughing and breathing audio to determine whether COVID 
is positive or negative (Akman et al. 2021; Nessiem et al. 2021; Coppock et al. 2021).

5.3 � Crime analysis

Crime prediction plays a vital role in crime prevention. Recent works (Huang et al. 2018; 
Okawa et al. 2019; Stec and Klabjan 2018; Vomfell et al. 2018) can dig out the spatial-
temporal patterns and trends of crimes through historical data combined with information 
such as crime incidents, time and location. This contributes to the early warning, allowing 
police to conduct inspections in high-risk regions, reducing the impact on society. How-
ever, unlike traffic data, the distribution of crime incidents in spatial and temporal is sparse, 
and there are fewer spatial-temporal associations between different crime incidents.

In order to solve the high heterogeneity of crime spatial distribution, the city is usually 
converted to raster data to extract spatial attributes, and then a recurrent network is used 
to capture the temporal dynamics. Wang et al. (2019a) selected crime incidents in a spe-
cific area, and divided the area into 16× 16 raster images. Motivated by ST-ResNet (Zhang 
et al. 2017); Wang et al. 2019a) constructed three views to extract nearby, periodic, and 
trend features separately. To model the association between crime and different regions, 
DeepCrime  (Huang et  al. 2018) proposed a category-interactive encoder, which embeds 
information such as spatial and event categories into latent vectors for representation. In 
addition, DeepCrime (Huang et al. 2018) adopted three GRUs to separately encode crime 
sequences, abnormal sequences, and interdependent sequences to model the temporal 
dynamics. In order to make the model interpretable, Rayhan and Hashem (2020) consid-
ered an attention-based spatio-temporal network, which captured the dynamic spatio-tem-
poral correlation of crimes based on past criminal events, external features and recurring 
trends. Specifically, two GAT variants were used to embed spatial hierarchical informa-
tion and specific category features respectively. CASTNet (Ertugrul et al. 2019) designed a 
community-attentive spatio-temporal model to capture the spatio-temporal pattern of crim-
inal events, which was used to predict opioid overdose. Specifically, CASTNet  (Ertugrul 
et al. 2019) extracted opioid overdose at different locations through a multi-head attention 
network, and introduced hierarchical attention to allow interpretation of the contribution of 
features from different communities to local incident prediction. Table 5 summarizes the 
performance of the deep crime models on the New York City8 and Chicago9 datasets. Note 
that most of these models are derived from spatio-temporal models.

5.4 � Sentiment analysis

The opinions expressed by humans in daily communication are usually complex and multi-
modal, and it is of great significance for computer intelligence to understand these data. 
Sentiment analysis is also an important branch of future human-computer interaction.

In multi-modal sentiment analysis, these multi-view data are usually represented 
by vision, acoustic, and language. There are two challenges to be overcome in this task: 

8  https://​data.​cityo​fnewy​ork.​us/​Public-​Safety/​NYPD-​Compl​aint-​Data-​Histo​ric/​qgea-​i56i
9  https://​www.​kaggle.​com/​datas​ets/​chica​go/​chica​go-​crime

https://data.cityofnewyork.us/Public-Safety/NYPD-Complaint-Data-Historic/qgea-i56i
https://www.kaggle.com/datasets/chicago/chicago-crime
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intra-modality dynamics and inter-modality dynamics. Sun et al. (2020c) proposed a multi-
view CRF model, which captured the correlation between features within a single view 
and considered the relationships between different views. Refs.  (Zadeh et  al. 2017; Liu 
et al. 2018) modeled the dynamics of specific modality sequences through three LSTMs 
and captured the interactions between modalities through a three-fold Cartesian product. 
Zadeh et al. (2018b) proposed a memory enhancement network, which modeled the inter-
action of multiple view sequences over time by introducing gated memory. Since different 
modalities are heterogeneous, MISA (Hazarika et al. 2020) mapped different modalities to 
a common subspace to learn shared feature representations. Mai et al. (2020) designed an 
adversarial encoder-decoder structure to embed different modalities into a common space 
and learn invariant representations of modalities. In order to deal with unaligned view 
sequences, Xu et al. (2019) introduced an attention mechanism to align speech and text, 
and realized the integration of speech and text at the word level. Table 6 summarizes the 
model performance on MOSI10, MOSEI11, and SIMS12, and the evaluation metrics follow 
previous work Rahman et al. (2020).

In audio-visual event recognition, Brousmiche et al. (2021) studied a multi-level atten-
tion fusion network, which could dynamically integrate visual and audio information for 
event recognition. Tian et al. (2020) presented a new task, named audio-visual video pars-
ing (AVVP), which detected video events (labels them as audible, visible, or audible and 
visible) and located the duration via a weakly supervised approach. In this task, events may 
occur repeatedly in different views, so there are three challenges: unimodal-modal temporal 
recurrence, cross-modal co-occurrence, and cross-modal asynchronous. Tian et al. (2020) 
simultaneously employed a hybrid attention network to solve these problems, that is, using 
a self-attention mechanism to model unimodal-modal temporal recurrence, and using a 
cross-modal attention mechanism to simultaneously deal with cross-modal co-occurrence 
and cross-modal asynchronous.

5.5 � Climate science

Weather data is usually collected by various sensor devices, including temperature, humid-
ity, wind speed, pressure, air quality, etc. By studying the interrelationship of these mete-
orological data, it is helpful for human to further understand the earth’s environment and 
prevent natural disasters in advance.

Recently, some deep learning methods have been successfully applied to air quality pre-
diction (Yi et al. 2018; Zhong et al. 2020; Sasaki et al. 2021; Ouyang et al. 2021; Lin et al. 
2020). Refs. (Cheng et al. 2018; Du et al. 2021; Han et al. 2021c) adopted FC to extract 
local spatial features and LSTM to capture temporal dynamics. Yi et al. (2018) proposed 
a patial transformation component to aggregate spatial monitoring data of different scales. 
In addition, in order to model dynamic changes between cross-modal data, these features 
are fused in a distributed manner. Zhong et al. (2020) introduced reinforcement learning 
to predict air quality. The model mainly consisted of two components: site selector and air 
quality regressor. Among them, the site selector adaptively selected the relevant sites, and 

10  CMU-MOSI Zadeh et al. (2016) dataset is one of the most popular benchmark datasets for MSA.
11  Compared to CMU-MOSI, CMU-MOSEI Zadeh et al. (2018a) dataset extends its data with more utter-
ances, more samples, speakers, and topics.
12  SIMS Yu et al. (2020b) dataset is a Chinese MSA benchmark with fine-grained modal annotations.
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the quality regressor received the selected sites for air quality estimation. In water quality 
prediction, Liu et al. (2016b) studied a multi-task multi-view method to fuse the data from 
different domains to predict the water quality of a site. In extreme weather forecasting, Civ-
itarese et al. (2021) proposes a temporal fusion transformer, which uses multiple variables 
(such as static, historical, and future) as input. In order to solve the imbalance in the spatial 
distribution of the collected data, Yao et al. (2019a) constructed a spatio-temporal network 
based on meta-learning, which transfered knowledge from multiple cities to help the target 
city make spatio-temporal predictions. Table 7 summarizes the performance of the deep air 
models on Beijing13 and Longdon14 dataset, we focus on the overall performance and the 
performance on PM2.5.

Example 2  Du et al. (2019) proposed a deep air quality forecasting framework (DAQFF) for 
PM2.5 prediction. Figure 14 illustrates the network architecture of DAQFF. First, DAQFF 
customized multiple 1D convolutional neural networks for multivariate time series to 
model local features. Different from some spatio-temporal models, DAQFF concatenated 
the temporal features of multiple stations, which could simultaneously capture local fea-
tures and spatial relationships across stations. Subsequently, to model long-term dependen-
cies, DAQFF introduced bi-LSTM to extract long-term temporal dependencies. Finally, the 
obtained shared features were concatenated and fused for prediction.

Table 7   Air quality models performance on Beijing and LongDon

Datasets Models Overall PM2.5

RMSE MAE RMSE MAE

Beijing RF (Fawagreh et al. 2014) 26.68 15.59 – –
IDW (Lu and Wong 2008) 48.09 34.79 28.41 18.35
KNN 37.99 23.94 18.24 10.58
ADAIN (Cheng et al. 2018) 29.39 18.83 15.06 8.28
ANCL (Patel et al. 2022) 24.28 15.23 – –
MCAM (Han et al. 2021c) – – 12.57 6.83

LongDon RF (Fawagreh et al. 2014) 4.69 3.06 – –
IDW (Lu and Wong 2008) 8.01 5.50 – –
KNN 4.75 3.20 5.77 3.90
ADAIN (Cheng et al. 2018) 4.78 3.36 3.11 2.02
ANCL (Patel et al. 2022) 4.65 3.20 – –
MCAM (Han et al. 2021c) – – 2.81 1.78

13  This data collected in Beijing, China. The air quality data are recorded at 36 air quality stations every 
hour, from 2014/05/01 to 2015/04/30.
14  https://​data.​london.​gov.​uk/​air-​quali​ty/

https://data.london.gov.uk/air-quality/
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6 � Future directions

In this Section, we enumerate some challenging deep learning techniques in MvSD in 
recent years, and point out potential future research directions.

6.1 � Interpretable model research

Despite the impressive achievements of deep learning, the working principle of the model 
is in a black box, and the decision-making is difficult to establish a reasonable basis. There-
fore, interpretability models have become a research hotspot, which builds trust with users 
to understand why decisions are made in different domains such as medical diagnosis, 
autonomous driving, or recommender systems.

Multi-view data tends to introduce bias because these views are heterogeneous and 
each view may have deviations, resulting in model error accumulation and amplification. 
Some works focus on feature-level interpretability  (Rayhan and Hashem 2020; Ertugrul 
et  al. 2019; Khanehzar et  al. 2021), which achieves global interpretation by modeling 
local feature relationships. Meanwhile, attention is given to providing reliable explana-
tions behind the predictions (Jia et al. 2021a; Zheng et al. 2021; Ma et al. 2018; Agyemang 
et  al. 2020). Furthermore, it is also an approach to achieve interpretability by designing 

Fig. 14   Structure of DAQFF (Du et al. 2019)
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network architectures that conforms to human cognition  (Choe et  al. 2021). At present, 
there are no mature techniques and standards to estimate the performance of interpretabil-
ity. Thus, it is impossible to compare the pros and cons of interpretable methods. In the 
future, interpretability will be further refined to guide the agent’s behavior or multi-view 
fusion decision-making.

6.2 � Multi‑modal architecture research

As the network structure becomes more and more complex, the cost and time of manually 
designing the network will be unbearable. Especially for MvSD, in the feature extraction 
stage, a feature extractor needs to be designed for a single view and there are many alterna-
tive network structures for different views. In the multi-view feature fusion stage, we need 
to consider aggregating multiple views strategies. The automated process of neural archi-
tecture search (NAS) can speed up research on MvSD.

Auto-MVCN  (Li et  al. 2020) tailored a multi-view architecture for 3D shape recog-
nition, which explored correlations between view features by automatically searching 
for fused cells. In electronic health records, MUFASA  (Xu et  al. 2021) simultaneously 
searched modality-specific networks and feature fusion strategies. BM-NAS  (Yin et  al. 
2021b) designed a bilevel search scheme, BM-NAS selected feature pairs from pre-trained 
unimodal and searched a feature fusion strategy. To make the model applicable to various 
multimodal tasks, MMnas (Yu et al. 2020a) defined a general network search framework 
to design task-specific heads for different tasks on a unified backbone. MFAS (Pérez-Rúa 
et  al. 2019) found a reasonable network structure for multimodal fusion by constraining 
the search space and employing sequential model-based exploration methods. Although 
many recent works try to design fusion strategies, how to perform fusion of multi-view 
sequences is not well studied and needs more research in the future. Through multi-modal 
network architecture search, better models and fusion methods are obtained..

6.3 � Data annotations

Deep learning benefits from massive amounts of data, however large-scale data annotation 
brings prohibitive costs, which becomes more severe when annotating MvSD. Therefore, 
some techniques based on unsupervised, semi-supervised, etc., are introduced to facilitate 
MvSD research.

Unsupervised learning uses unlabeled data. In multi-view representation learning, 
DUA-Nets  (Geng et al. 2021) combined inverse networks through unsupervised learning 
to automatically evaluate the quality of different views. Through unsupervised training, 
contrastive learning has achieved great success in the computer vision domain (He et al. 
2020a). In multi-modal sentiment analysis, Mai et al. (2021) performed intra-modal/inter-
modal contrastive learning and semi-contrastive learning simultaneously to ensure that 
the intra-modal/inter-modal dynamics are fully learned. In semi-supervised learning, a 
small amount of labeled data is combined with a large amount of unlabeled data (Khane-
hzar et  al. 2021; Chen et  al. 2021a, b). ASM2TV  (Chen et  al. 2021a) designed a semi-
supervised learning algorithm for fragmented time series that utilizes a large amount of 
unlabeled data to improve model performance. In weakly supervised learning, data labels 
are usually low quality. In the AVVP task, video-level labels are used for training, and 
precise labels are used at test time (Tian et al. 2020; Wu and Yang 2021; Yu et al. 2021a). 
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Unsupervised, weakly supervised, etc., will continue to be researched in the future to solve 
the problem of manual multi-view data annotations.

6.4 � Unaligned multi‑view sequence learning

As mentioned in Sect.  2.2.5, multi-view sequence asynchronous (sequence length is not 
equal or semantic misalignment) is common in real applications. Therefore, ignoring the 
asynchrony between these sequences will hinder subsequent tasks.

Multi-view alignment is performed by using pre-trained models. Aytar et al. (2017) pro-
vided a model for downstream tasks, using a large amount of synchronized data to learn 
three modes (visual, sound, and language) aligned and modally robust deep representa-
tions. In addition, the attention mechanism provides a feasible solution for sequence align-
ment and cross-view alignment (Tian et al. 2020; Le et al. 2018). Le et al. (2018) designed 
a memory-augmented network to model the interaction between two unaligned sequences. 
Some works implements asynchronous sequence alignment by using Transformer  (Tsai 
et  al. 2019; Delbrouck et  al. 2020). Delbrouck et  al. (2020) investigated a Transformer-
based joint encoding method to jointly encode one or more modalities, which established 
global dependencies between input and output through an attention mechanism. The study 
of unaligned multi-view sequences is no longer limited by prior manual data alignment, 
and will be further applied to practical scenarios.

6.5 � Trusted multi‑view learning

MvSD is collected from different data sources. Various sensors or environmental factors 
may affect the quality of these views and bring noise. Analyzing these low-quality data, 
especially when unreliable views are presented, will seriously hinder multi-view tasks. In 
addition, for a specific task, the value of information expressed by multiple views is differ-
ent, so the weight of each view is not fixed. Therefore, uncertainty estimation of MvSD is 
helpful to improve the robustness of multi-view.

Han et al. (2021d) proposed a unified trusted multi-view classification framework that 
applied a Dirichlet distribution to model the probability of each class and parameter-
ized evidence from different views to estimate the uncertainty of each view. Finally, the 
Dempster Shafer theory was used to integrate the multi-view opinions. Geng et al. (2021) 
designed an unsupervised multi-view learning method that estimated views quality online 
through uncertainty modeling and integrated inherent information from multiple views to 
obtain a noise-free representation, thereby reducing the impact of quality imbalances of 
different views. Wang et  al. (2019b) studied a negative log-likelihood error loss, which 
achieved single-value prediction and uncertainty quantification simultaneously. It pre-
dicted the mean and variance of the parameterized Gaussian distribution at each time step. 
Through uncertainty estimation, the model utilizes valuable information as much as pos-
sible and reduces the impact of low-quality views.

7 � Conclusions

In this paper, we review the latest deep learning techniques in MvSD. We introduce four 
common data types that make up MvSD, including point data, sequence data, graph data, 
and raster data. We also enumerate the technical challenges of MvSD: temporal dynamic, 
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heterogeneity, cross-view dynamics, data missing and misalignment of asynchronous 
views. In addition, we summarize the representation methods of different data types in neu-
ral networks. Further, we reviewe the latest deep learning technology applied in MvSD. 
We also summarize some application areas of MvSD, and finally give several potential 
research directions in the future.

Acknowledgements  This work was supported by the National Natural Science Foundation of China 
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