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Abstract

Fuzzy inference engine, as one of the most important components of fuzzy systems, can
obtain some meaningful outputs from fuzzy sets on input space and fuzzy rule base using
fuzzy logic inference methods. In multi-input-single-output (MISO) fuzzy systems, in order
to enhance the computational efficiency of fuzzy inference engine, this paper aims mainly
to investigate three MISO fuzzy hierarchial inference engines employed fuzzy implications
satisfying the law of importation with aggregation functions (LIA). We firstly find some
aggregation functions for well-known fuzzy implications such that they satisfy LIA. The fuzzy
implication satisfying LIA with respect to a given aggregation function is then characterized.
Finally, three fuzzy hierarchical inference engines in MISO fuzzy systems are constructed
according to aforementioned theoretical developments. Three examples are also provided to
illustrate our theoretical arguments.

Key words: Fuzzy implication; Fuzzy inference engine; Aggregation function; Law of im-
portation

1 Introduction

1.1 Motivation

As fuzzy systems can transform human knowledge into a nonlinear mapping, they have

been successfully utilized in control, expert system, signal processing, decision making and so

on. A fuzzy system mainly consists of fuzzyifier, fuzzy rule base, fuzzy inference engine and

defuzzifier [43]. The fuzzy rule base, which constitutes a set of fuzzy IF-THEN rules, is the

heart of a fuzzy system. Usually, the fuzzy IF-THEN rules in an MISO (single-input-single-

output (SISO)) fuzzy system have the following form

(SISO) IF x is Dj THEN y is Bj (j = 1, 2, · · · , n),

(MISO) IF x1 is D1j AND · · · AND xm is Dmj THEN y is Bj (j = 1, 2, · · · , n).

Where x = (x1, x2, · · · , xm) ∈ U = U1 × U2 × · · · × Um and y ∈ V are the input and output
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variables of the fuzzy system, Dij (Dj) and Bj are respective fuzzy sets on Ui (i = 1, 2, · · · ,m)

and V . From the fuzzy logical point of view, the fuzzy IF-THEN rules can be regarded as a

series of fuzzy relations on U ×V . And they are often specified by the fuzzy implications. This

brings about that more fuzzy implications are studied in order to meet the various needs for

fuzzy systems [2, 3, 10, 12, 21, 27, 46].

As another important component of the fuzzy system, the fuzzy inference engine can trans-

form the fuzzy IF-THEN rules and fuzzy sets on U into a fuzzy set on V by some fuzzy logical

principles [43]. Especially, the generalized modus ponens (GMP) is often utilized in case where

the rule base consists of unique fuzzy IF-THEN rule. The GMP introduced by Zadeh, as an

extension of modus ponens (MP) in the classical logic, can be indicated straightforwardly as

follows [47]:

Premise 1: IF x is D THEN y is B

Premise 2: x is D′

Conclusion: y is B′,

where D and D′, B and B′ are fuzzy sets on U and V , respectively.

To obtain B′, the compositional rule of inference (CRI) method is presented by Zadeh in

1973 [47]. After, the generalized CRI methods are discussed by many researchers. Unlike

the CRI method, Pedrycz proposes another inference method based on the Bandler-Kohout

subproduct (BKS) composition denoted by B′ = D′ ◦BKSR [35]. In Pedrycz’s method, Premise

1 was translated into a fuzzy relation R using a fuzzy implication, the conclusion of GMP

problem is then computed as

B′
BKS(y) =

∧

x∈U

I(D′(x), I(D(x), B(y))),

where I is a fuzzy implication.

Notice that there are still some deficiencies in the CRI method [5,33,42,44]. To compensate

these deficiencies, the similarity-based approximate reasoning (SBR) method and triple implica-

tion principle (TIP) are considered [33,36,40,42,44]. Moreover, some commonly acknowledged

axioms (also inferred as GMP rules) are presented by Magrez and Smets in order to measure

the availability of these inference methods for the GMP problem [23].

Similarly, some standards should be required in order to assess the goodness of fuzzy in-

ference engine. Considering the wide applications of fuzzy inference engine, the computational

efficiency is one of the important standards for fuzzy inference engine. However, the com-

putational complexity is a main drawback of the CRI method, Pedrycz’s method and TIP

method [7, 41]. In order to overcome this shortcoming, employed the t-norms and fuzzy impli-

cations satisfying the law of importation, Jayaram studied a hierarchical CRI fuzzy inference
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engine [15]. And it is shown that this hierarchical CRI inference engine is equivalent to the

classical CRI inference engine. This implies that the MISO fuzzy system using the hierarchical

CRI inference engine can be transformed into an SISO hierarchical fuzzy system. It is worth

mentioning that the fuzzy system with the hierarchical CRI inference engine has the advantage

of computational efficiency [15]. After, Stepnicka and Jayaram suggested another hierarchical

inferencing scheme based on Bandler-Kohout subproduct [41]. Clearly, the law of importa-

tion plays an important role in these hierarchical inference engines. This inspires people to

investigate the fuzzy implications satisfying the law of importation with t-norms and uninorms,

respectively [4, 24, 29–31].

It is well known that a fuzzy IF-THEN rule is a conditional statement expressed by fuzzy

propositions. The words are usually used to describe the fuzzy propositions. These words

not only include those for describing attributes, such as “low”, “medium”, “high”, etc., but

also include those connectives for connecting multiple propositions, such as “not”, “and” and

“or” [48]. The t-norms and t-conorms have been applied to interpret the words “and” and

“or”, respectively [2, 16, 17, 43]. However, due to the vagueness of natural language and the

subtleness of people’s thinking, the connectives cannot be precisely modeled by a single t-

norm or t-conorm under all circumstances, and sometimes they even do not correspond to

any t-norm or t-conorm [48]. Indeed, the operators extended from t-norms and t-conorms

can flexibly effectively handle the uncertainties in connectives that cannot be handled by t-

norms or t-conorms [14,45]. For instance, the operators which are not necessarily required the

associativity or commutativity have been used to model the words “and” and “or” in decision

making and classification problems [6, 10]. Moreover, as de Soto et al. pointed out, a fuzzy

mathematical model does not always have to be symmetric [8]. This motivates people to seek

some suitable operators describing the connectives. Aggregation functions, as the generalization

of t-norms and t-conorms (see Definitions 2.4 and 2.9), have been applied extensively in fuzzy

logic, decision making and classification problems [6, 9, 10, 13, 20, 24, 25, 34, 37–39]. Clearly,

aggregation functions become increasingly concerned substitute for the t-norms and t-conorms

in the actual decision making and classification.

In the case of a singleton MISO fuzzy system, if a t-norm is chosen to interpret the word

“and” while the fuzzy implication I is employed to translate the fuzzy IF-THEN rule, the

solution of CRI method B′(y) (≡ 1) is unless or misleading [18, 19]. The reason for it that

T (a, 0) ≡ 0 and I(0, b) ≡ 1 hold for any t-norm T and fuzzy implication I, respectively.

This triggers us to model the word “and” by an operator O meeting the condition O(a, 0) > 0

(O(0, a) > 0) for any a ∈ [0, 1]. Thus, we will investigate the law of importation with aggregation

functions corresponding with the actual needs. And we develop three hierarchical inference
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engines based on the fuzzy implications satisfying the law of importation. For this purpose the

law of importation is firstly extended as follows:

Definition 1.1 [38] Let A be an aggregation function and I a fuzzy implication. I is said to

satisfy the law of importation with an aggregation function A if for all x, y, z ∈ [0, 1],

I(A(x, y), z) = I(x, I(y, z)). (LIA)

1.2 Contribution of this paper

As the argument above, the aggregation functions and fuzzy implications satisfying the

law of importation play a pivotal role in computational efficiency of a fuzzy inference engine.

Moreover, the variety options of aggregation functions and fuzzy implications result in the

flexibility of fuzzy inference engines. Therefore, we mainly develop three hierarchical inference

engines employed the aggregation functions and fuzzy implications satisfying LIA in this paper.

We first investigate some properties of aggregation functions and fuzzy implications which

satisfy LIA. And then we seek the aggregation functions for the well-known fuzzy implications

such that they satisfy LIA. With such aggregation functions and fuzzy implications, three

hierarchical inference engines in MISO fuzzy system are developed. In a word, the contributions

of this paper include:

(1) To study the properties of aggregation functions and fuzzy implications satisfying LIA.

(2) To seek the aggregation functions for the well-known fuzzy implications such that they

satisfy LIA.

(3) To characterize the fuzzy implications satisfying LIA with a given associative aggregation

function.

(4) To construct three fuzzy hierarchical inference engines employed aggregation functions

and fuzzy implications satisfying LIA.

This paper is organized as follows. Section 2 recalls some basic concepts utilized in this pa-

per. In Section 3, we study the properties of aggregation functions and fuzzy implications when

they satisfy LIA. Section 4 shows necessary and sufficient conditions for (A,N)-implication

generated by an associative disjunctor and R-implications generated by an associative and

commutative aggregation function satisfying LIA. In Section 5, some associative aggregation

functions are constructed for f -implication, g-implication, QL-implication, probabilistic impli-

cation, probabilistic S-implication and T -power implication satisfying LIA with them, respec-

tively. Section 6 characterizes the fuzzy implication satisfying LIA with a given associative

aggregation function. In Section 7, three MISO hierarchical inference engines based on fuzzy

implications satisfying LIA are developed. Section 8 provides three examples to illustrate our

proposed methods.
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2 Preliminaries

This section will recall the definitions of fuzzy negation, aggregation function and fuzzy

implication and their properties utilized in the remainder of this paper.

2.1 Fuzzy negation, aggregation function and fuzzy implication

Definition 2.1 [22] A fuzzy negation N is a mapping on [0,1] which satisfies

(N1) N(0) = 1, N(1) = 0,

(N2) N(x) ≥ N(y) if x ≤ y, ∀ x, y ∈ [0, 1].

A strict negation N fulfills

(N3) N is continuous,

(N4) N(x) > N(y) if x < y.

A fuzzy negation N is strong if

(N5) N(N(x)) = x, ∀ x ∈ [0, 1].

Moreover, a fuzzy negation N is said to be vanishing (non-vanishing) if N(x) = 0 for

some x 6= 1 (N(x) = 0 ⇐⇒ x = 1), and filling (non-filling) if N(x) = 1 for some x 6= 0

(N(x) = 1 ⇐⇒ x = 0).

Examples 2.2 [22]

• The standard fuzzy negation Nc(x) = 1 − x.

• The smallest and the greatest fuzzy negations

N⊥(x) =

{
1 x = 0
0 otherwise

and N⊤(x) =

{
0 x = 1
1 otherwise

.

• The natural negation of a fuzzy implication I (see Definition 2.11) is defined by NI(x) =

I(x, 0).

Lemma 2.3 [2] Let the fuzzy negation N be continuous. The mapping Ñ defined by

Ñ(x) =

{
N (−1)(x), x ∈ (0, 1]
1 x = 0

is a strict fuzzy negation, where N (−1) is the pseudo-inverse of N given by N (−1)(x) = sup{y ∈

[0, 1]|N(y) > x} for all x ∈ [0, 1]. Moreover,

i. Ñ (−1) = N ;

ii. N ◦ Ñ=id;

iii. Ñ ◦N |Ran(Ñ) = id|Ran(Ñ), where Ran(Ñ) stands for the range of Ñ and N |Ran(Ñ) denotes

the restriction of N to Ran(Ñ).

Definition 2.4 [11] An aggregation function is a mapping A : [0, 1]2 → [0, 1] which meets

(A1) Boundary conditions: A(0, 0) = 0 and A(1, 1) = 1,
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(A2) Non-decreasing in two variables, respectively.

Suppose that f is a binary function on [0,1] and ϕ an automorphism on [0,1] (that is, an

increasing bijection on [0,1]). Defining the function fϕ(x, y) = ϕ−1(f(ϕ(x), ϕ(y)), it is called as

the ϕ-conjugate of f . Obviously, the ϕ-conjugate of A, denoted by Aϕ, is again an aggregation

function. Especially, AN is known as the N -dual of A chosen ϕ as a strict negation N .

Definition 2.5 [16] Let A1 and A2 be two aggregation functions. We say A1 ≤ A2 if A1(x, y) ≤

A2(x, y) holds for any x, y ∈ [0, 1].

Definition 2.6 [11] e ∈ [0, 1] is a left (right) neutral element of the binary aggregation function

A if A(e, x) = x (A(x, e) = x) for any x ∈ [0, 1]. Further, e ∈ [0, 1] is a neutral element of A if

A(e, x) = A(x, e) = x.

Definition 2.7 [38] Let A be an aggregation function.

i. A is a conjunctor if A(1, 0) = A(0, 1) = 0,

ii. A is a disjunctor if A(1, 0) = A(0, 1) = 1,

iii. A has zero divisors if there exist x, y ∈ (0, 1] such that A(x, y) = 0,

iv. A has one divisors if there exist x, y ∈ [0, 1) such that A(x, y) = 1.

Definition 2.8 [37] Let A be a binary aggregation function and N a fuzzy negation. We say

that A satisfies the law of excluded middle principle (LEM) with respect to N if A(N(x), x) = 1

holds for any x ∈ [0, 1]. Obviously, A is a disjunctor if it satisfies LEM.

Definition 2.9 [11] Let A be a binary aggregation function. We say that A is

i. associative if A(x,A(y, z)) = A(A(x, y), z) for any x, y, z ∈ [0, 1],

ii. commutative if A(x, y) = A(y, x) for any x, y ∈ [0, 1],

iii. a semi-copula if 1 is its neutral element,

iv. a t-norm if it is an associative and commutative semi-copula,

v.a t-conorm if it is the N -dual of a t-norm,

vi. a uninorm if it is associative, commutative and e ∈ (0, 1) is its neutral element,

vii. a copula if it is a semi-copula which A(x1, y1) − A(x1, y2) − A(x2, y1) + A(x2, y2) ≥ 0

holds for all x1 ≤ x2 and y1 ≤ y2.

Example 2.10 [11, 39] The following are some distinguished conjunctors:

• The smallest conjunctor, C⊥(x, y) =

{
1 x = y = 1
0 otherwise

;

• The greatest averaging conjunctor, (Cavg)⊤(x, y) =

{
0 x = 0 or y = 0
x ∨ y otherwise

;

• Representable aggregation functions, A(x, y) = g−1((g(x ∧ y) − g(N(x ∨ y)) ∨ 0)), where

g : [0, 1] → [0,+∞] is continuous strictly increasing with g(0) = 0 and N is a strong

negation;
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• Weighted quasi-arithmetic mean (WQAM), Mλ,f(x, y) = f−1((1−λ)f(x)+λf(y)), where

f : [0, 1] → [−∞,+∞] is continuous and strictly monotone with f(0) = ±∞ and λ ∈ (0, 1);

• TS-functions, TSλ,f(x, y) = f−1((1−λ)f(T (x, y)) +λf(S(x, y))), where T is a t-norm, S

is a t-conorm, λ ∈ (0, 1) and f : [0, 1] → [−∞,+∞] is continuous and strictly monotone

with f(0) = ±∞.

Definition 2.11 [2] A fuzzy implication I is a mapping I : [0, 1]2 → [0, 1] satisfying

(I1) Non-increasing in the first variable, i.e., I(x, z) ≥ I(y, z) if x ≤ y,

(I2) Non-decreasing in the second variable, i.e., I(x, y) ≤ I(x, z) if y ≤ z,

(I3) I(0, 0) = 1,

(I4) I(1, 1) = 1,

(I5) I(1, 0) = 0.

According to Definition 2.11, for a fuzzy implication the following facts can be directly

obtained

(LB) Left boundary condition, I(0, y) = 1, ∀ y ∈ [0, 1],

(RB) Right boundary condition, I(x, 1) = 1, ∀ x ∈ [0, 1].

Definition 2.12 [2, 30] We say that the fuzzy implication I fulfills

(NP) Left neutrality property, I(1, y) = y, ∀ y ∈ [0, 1],

(IP) Identity principle, I(x, x) = 1, ∀ x ∈ [0, 1],

(EP) Exchange principle, I(x, I(y, z)) = I(y, I(x, z)), ∀ x, y, z ∈ [0, 1],

(CP(N)) Law of contraposition with a fuzzy negation N , I(x, y) = I(N(y), N(x)), ∀ x, y ∈

[0, 1],

(OP) Ordering property, I(x, y) = 1 ⇐⇒ x ≤ y, ∀ x, y ∈ [0, 1],

(OPU) Counterpart of ordering property for uninorms, I(x, y) ≥ e ⇐⇒ x ≤ y, ∀ x, y ∈ [0, 1]

with e ∈ (0, 1).

Definition 2.13 [38] An (A,N)-implication IA,N is a mapping IA,N : [0, 1]2 → [0, 1] defined by

IA,N (x, y) = A(N(x), y),

where A is a disjunctor and N a fuzzy negation. Further, IA,N is called an A-implication if

N = Nc. Moreover, IS,N is a strong implication or S-implication if it is generated by a t-conorm

S and a strong negation N .

Theorem 2.14 [38] I is a fuzzy implication if and only if I is an A-implication, i.e. there exists

a disjunctor A such that I(x, y) = IA,N (x, y) = A(1 − x, y).

Definition 2.15 [34] A function IA : [0, 1]2 → [0, 1] is called an R-implication if

IA(x, y) = sup{t ∈ [0, 1] | A(x, t) ≤ y}
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is a fuzzy implication, where A is an aggregation function.

Definition 2.16 [38] A function IA1,A2 : [0, 1]2 → [0, 1] is called a QL-operation given by

IA1,A2(x, y) = A1(N(x), A2(x, y)),

where A1, A2 are two aggregation functions and N a fuzzy negation. Especially, a QL-operation

IA1,A2 is called a QL-implication if it satisfies I1 and I3-I5.

Definition 2.17 [46] An f -implication If is a mapping If : [0, 1]2 → [0, 1] defined as If (x, y) =

f−1(xf(y)) with the understanding 0 · ∞ = 0, where f : [0, 1] → [0,+∞] is a continuous and

strict decreasing function with f(1) = 0.

Definition 2.18 [46] Let g : [0, 1] → [0,+∞] be a continuous and strict increasing function

with g(0) = 0. A g-implication Ig generated by g is a mapping Ig : [0, 1]2 → [0, 1] defined as

Ig(x, y) = g(−1)
(

g(y)
x

)
with the understanding 0 · ∞ = ∞, where g(−1) is pseudoinverse of g

given by g(−1)(x) =

{
g−1(x) x ≤ g(1)
1 otherwise

.

Definition 2.19 [12] A probabilistic implication IC generated by a copula C is defined by

IC(x, y) =

{
C(x,y)

x
x > 0

1 otherwise
if it satisfies I1.

Definition 2.20 [12] A probabilistic S-implication ĨC is defined as ĨC(x, y) = C(x, y) − x + 1,

where C be a copula.

Definition 2.21 [27] Let T be a t-norm. A T -power implication is a function IT : [0, 1]2 → [0, 1]

given by IT (x, y) = ∨{r ∈ [0, 1]|y
(r)
T ≥ x} for all x, y ∈ [0, 1], where y

(r)
T =

r times

T (
︷ ︸︸ ︷
y, y, ..., y)

.

Lemma 2.22 [27] Let T be a continuous t-norm and IT its power implication.

i. If T = TM is the minimum t-norm, then ITM(x, y) =

{
1 x ≤ y
0 x > y

;

ii. If T is an Archimedean t-norm with additive generator t, i,e, there exists a continuous

strictly deceasing function t : [0, 1] → [0,+∞] with t(1) = 0, then IT (x, y) =

{
1 x ≤ y
t(x)
t(y) x > y

.

2.2 Similarity based reasoning and triple implication method

Let F (U) be the set of fuzzy sets on U . To solve the GMP problem, the algorithm for

similarity based reasoning presented by Raha et al. as follows [40]:

Step 1. Combine premise 1 and calculate R(D,B) by some appropriate translating rules

(such as a t-norm).

Step 2. Calculate S(D′, D) combining D′ and D using a similarity measure.

Step 3. Modify R(D,B) with S(D′, D) in order to get R(D,B|D′) utilized some schemes.

Step 4. Obtain B′ as

B′(y) =
∨

x∈U

R(D,B|D′)(x, y).
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To obtain R(D,B|D′), they also proposed the following three axioms:

(AX1) R(D,B|D′)(x, y) = R(D,B)(x, y) if S(D′, D) = 1;

(AX2) R(D,B|D′)(x, y) = 1 if S(D′, D) = 0;

(AX3) R(D,B|D′) ⊇ R(D,B) holds for any D′ ∈ F (U).

Then R(D,B) is consider in the following ways:

Case 1. R(D,B)(x, y) = T (D(x), B(y)), where T is a t-norm.

Case 2. R(D,B)(x, y) = I(D(x), B(y)), where I is a fuzzy implication.

Finally, the conclusions B′
SBR and B′′

SBR are obtained as

B′
SBR(y) =

∨

x∈U

I(S(D′, D), T (D(x), B(y))),

B′′
SBR(y) =

∨

x∈U

I(S(D′, D), I(D(x), B(y))).

The following triple implication principle (TIP) for the GMP problem is proposed by Wang

[44].

Triple implication principle for GMP Assume that the maximum of following formula

M(x, y) = I(I(D(x), B(y)), I(D′(x), B′(y))) (1)

exists for every x ∈ U and y ∈ V , where I is a fuzzy implication on [0,1]. The solution B′ of

GMP problem should be the smallest fuzzy set on V such that Eq.(1) achieves its maximum.

Lemma 2.23 [36] i. If I fulfills I2, then

max
x∈U,y∈V

M(x, y) = I(I(D(x), B(y)), I(D′(x), 1)),

ii. Moreover, if I is right-continuous with respect to the second variable, then the TIP

solution of GMP problem is unique.

Theorem 2.24 [36] Let IT be an R-implication generated by a left-continuous t-norm T . Then

the TIP solution of GMP problem is given by

B′
TIP(y) =

∨

x∈U

T (D′(x), IT (D(x), B(y))).

3 Satisfaction of LIA with fuzzy implications and aggre-

gation functions

This section will study some properties of fuzzy implications and aggregation functions when

they satisfy LIA.

Lemma 3.1 Let I satisfy LIA with A. If A is commutative, then I satisfies EP.

Proof. Straightforward.
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Lemma 3.2 Let I satisfy LIA with A. If NI(y1) = NI(y2), then NI(A(x, y1)) = NI(A(x, y2))

holds for arbitrary and fixed x ∈ [0, 1].

Proof. Let NI(y1) = NI(y2). We then have NI(A(x, y1)) = I(A(x, y1), 0) = I(x, I(y1, 0)) =

I(x,NI(y1)) = I(x,NI(y2)) = I(x, I(y2, 0)) = I(A(x, y2), 0) = NI(A(x, y2)).

Lemma 3.3 Let I satisfy EP and NI be injective. If I fulfills LIA with A, then A is commu-

tative.

Proof. It suffices to take z = 0 in LIA.

Lemma 3.4 Let I be a fuzzy implication such that I(x, y) = 1 iff x = 0 or y = 1. If I satisfies

LIA with A, then A is conjunctor.

Proof. By LIA, we have I(A(0, 1), z) = I(0, I(1, z)) = 1 for any z ∈ [0, 1). This implies

A(0, 1) = 0. We can similarly obtain A(1, 0) = 0. Thus, A is a conjunctor.

Lemma 3.5 Let I be a fuzzy implication such that NI is non-filling. If I satisfies LIA with A,

then A is conjunctor.

Proof. By LIA, we have NI(A(0, 1)) = I(A(0, 1), 0) = I(0, I(1, 0)) = 1. This implies

A(0, 1) = 0. We can similarly obtain A(1, 0) = 0. Thus, A is a conjunctor.

Lemma 3.6 Let the mapping h(z) = I(1, z) be continuous on [0, 1]. If I satisfies LIA with A,

then I satisfies NP.

Proof. For any y ∈ [0, 1], there exist some z ∈ [0, 1] such that y = I(1, z) by the continuity of

h. Therefore, I(1, y) = I(1, I(1, z)) = I(A(1, 1), z) = I(1, z) = y.

Definition 3.7 [20] Let I be a fuzzy implication and A an aggregation function. The pair

(I, A) is called an adjoint pair if they satisfy the residuation property (RP), i.e.

A(x, y) ≤ z ⇐⇒ x ≤ I(y, z), ∀x, y, z ∈ [0, 1].

Lemma 3.8 Let I satisfy OP and LIA with A. We have

i. A is conjunctor,

ii. (I, A) is an adjoint pair.

Proof. i. By LIA, we have I(A(0, 1), 0) = I(0, I(1, 0)) = 1. Since I fulfills OP, A(0, 1) = 0

holds. We can similarly obtain A(1, 0) = 0. Thus, A is a conjunctor.

ii. Since I satisfies OP, I(x, I(y, z)) = 1 ⇐⇒ x ≤ I(y, z) holds for any x, y, z ∈ [0, 1].

Similarly, I(A(x, y), z) = 1 ⇐⇒ A(x, y) ≤ z. By LIA, we have A(x, y) ≤ z ⇐⇒ x ≤ I(y, z).

Remark 1. We can similarly obtain that (I, A) forms an adjoint pair if I satisfies OPU and

LIA with A.

Lemma 3.9 Let A be associative and commutative. If I fulfills RP with A, then they satisfy

LIA.

Proof. By RP, A(I(x, y), x)) = A(x, I(x, y))) ≤ y holds for any x, y ∈ [0, 1]. We can then assert

that I(x, I(y, z)) ≤ I(A(x, y), z). Indeed, A(A(x, y), I(x, I(y, z))) = A(y,A(x, I(x, I(y, z))))
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≤ z. On the other hand, we have A(A(x, y), I(A(x, y), z)) ≤ A(y, I(y, z)) ≤ z. This means

A(x, I(A(x, y), z)) ≤ I(y, z). And then I(A(x, y), z) ≤ I(x, I(y, z)).

Lemma 3.10 Let Aϕ and Iϕ be the ϕ-conjugate of A and I, respectively. If I fulfills LIA with

A, then Iϕ satisfies LIA with Aϕ.

Proof. Iϕ(Aϕ(x, y), z) = ϕ−1(I(ϕ(Aϕ(x, y)), ϕ(z))) = ϕ−1(I(A(ϕ(x), ϕ(y)), ϕ(z))) = ϕ−1

(I(ϕ(x), I(ϕ(y), ϕ(z)))) = Iϕ(x, ϕ−1(I(ϕ(y), ϕ(z)))) = Iϕ(x, Iϕ(y, z)).

4 LIA with (A,N)- and R-implications

In this section, we shall seek some aggregation functions such that (A,N)- and R-implications

satisfy LIA with them. We firstly consider the case when (A,N)-implications are generated by

the smallest and greatest fuzzy negations, respectively.

Lemma 4.1 Let IA,N be an (A,N)-implication generated by an associative disjunctor A and

the smallest fuzzy negation N⊥. Then, IA,N satisfies LIA with any conjunctor A′ without zero

divisors.

Proof. Let A′ be a conjunctor without zero divisors. We consider the following two cases.

i. A′(x, y) = 0. This case implies x = 0 or y = 0. Then, we have IA,N (A′(x, y), z) =

IA,N (0, z) = 1 = IA,N (x, IA,N (y, z)).

ii. A′(x, y) 6= 0. In this case, we have xy 6= 0. This implies IA,N (A′(x, y), z) = A(0, z). On

the other hand, IA,N (x, IA,N (y, z)) = A(0, A(0, z)) = A(0, z). Therefore, IA,N (A′(x, y), z) =

IA,N (x, IA,N (y, z)).

Lemma 4.2 Let IA,N be an (A,N)-implication generated by an associative disjunctor A and

the greatest fuzzy negation N⊤. Then, IA,N satisfies LIA with any conjunctor A′ without one

divisors.

Proof. This proof is similar to that of Lemma 4.1.

However, it is not easy to seek some aggregation functions such that (A,N)-implications

obtained from other non-continuous fuzzy negations satisfy LIA with them. So, we next focus

on the (A,N)-implications generated by continuous fuzzy negations.

Theorem 4.3 Let IA,N be an (A,N)-implication generated by an associative disjunctor A

and a continuous fuzzy negation N . Then IA,N satisfies LIA with the aggregation function A′

defined by A′(x, y) = Ñ(A(N(x), N(y)).

Proof. IA,N (A′(x, y), z) = A(N(A′(x, y)), z) = A(N(Ñ (A(N(x), N(y)))), z) = A(A(N(x),

N(y)), z) = A(N(x), A(N(y), z)) = A(N(x), IA,N (y, z)) = IA,N (x, IA,N (y, z)).

It is not difficult to see that other aggregation functions can be found such that the IA,N

satisfies LIA with them, because there exists other fuzzy negation N such that N ◦ Ñ = id

holds. However, the following result shows that AN is the only one for IA,N satisfying LIA if

11



NIA,N
is strict.

Theorem 4.4 Let IA,N be an (A,N)-implication generated by an associative disjunctor A and

a strict negation N . If NIA,N
is an injective mapping, then IA,N satisfies LIA with A′ if and

only if A′ is the N -dual of A.

Proof. (⇐=) This proof is similar to that of Theorem 4.3.

(=⇒) Assume that IA,N satisfies LIA with A′, that is, IA,N (A′(x, y), z) = IA,N (x, IA,N (y, z))

holds for any x, y, z ∈ [0, 1]. Setting z = 0, we have NIA,N
(A′(x, y)) = A(N(x), A(N(y), 0)) =

A(A(N(x), N(y)), 0) = NIA,N
(N−1(A(N(x), N(y)))) for any x, y ∈ [0, 1]. Since NIA,N

is injec-

tive, A′(x, y)) = N−1(A(N(x), N(y))) holds for any x, y ∈ [0, 1]. Therefore, A′ = AN .

Remark 3. It is easy to see that NIA,N
= N holds if 0 is a right neutral element of A and

N is strict. In this case, IA,N satisfies LIA with A′ iff A′ is the N -dual of A. Especially, an

S-implication satisfies LIA with a t-norm T iff T is the N -dual of S.

Theorem 4.5 Let IA,N be an (A,N)-implication generated by a strict negation N . Then IA,N

satisfies LIA with the N -dual of A if and only if A is associative.

Proof. It is sufficient to verify that A is associative. Since IA,N satisfies LIA with the

N -dual of A, we have IA,N (AN (x, y), z) = A(A(N(x), N(y)), z) = A(N(x), A(N(y), z)) =

IA,N (x, IA,N (y, z)). The continuity of N implies that A is associative.

In the rest of this section, we study the law of importation for R-implications generated by

an associative and commutative aggregation functions.

Theorem 4.6 Let IA be an R-implication generated by an associative, commutative and left-

continuous aggregation function A. We have

i. IA satisfies LIA with A.

ii. If IA fulfills OP, then IA satisfies LIA with A′ if and only if A′ = A.

Proof. i. The proof comes from Lemma 3.1 in [20] and Lemma 3.9.

ii. Let IA fulfill OP. Obviously, IA(A′(x, y), A′(x, y)) = 1 holds for any x, y ∈ [0, 1]. This

implies IA(x, IA(y,A′(x, y))) = 1 by LIA. Again, we obtain x ≤ IA(y,A′(x, y)). Thus, A(x, y) ≤

A′(x, y).

On the other hand, IA(A′(x, y), A(x, y)) = IA(x, IA(y,A(x, y))) ≥ IA(x, x) = 1 because

(IA, A) is an adjoint pair. Then, we have A′(x, y) ≤ A(x, y).

Remark 4. i. Indeed, A(x, 1) = A(1, x) = x holds for any x ∈ [0, 1] iff IA satisfies OP. This

means that IA is an R-implication generated by the t-norm T . And then IT satisfies LIA with

A′ iff A′ = T . This result can be also found in Ref. [15].

ii. Similarly, we can obtain the fact that A is a uninorm if IA satisfies OPU. Thus, IA is

an R-implication generated by the uninorm U . And then IU satisfies LIA with A′ iff A′ = U .

This result can be also found in Ref. [30].
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iii. By Lemma 3.8, (IA, A
′) is an adjoint pair if IA satisfies OP (or OPU) and LIA with A′.

Theorem 4.6 shows that A is a unique aggregation function such that IA satisfies RP with it in

this case.

iv. The R-implications generated by not left-continuous aggregation functions may not

satisfy LIA with any aggregation function A′ or satisfy LIA with many aggregation functions

as shown in the following examples.

Example 4.7 Consider the Weber implication IWB defined as IWB(x, y) =

{
1 x < 1
y x = 1

.

Similar to the proof of Lemma 4.2, we can verify that IWB satisfies LIA with any conjunctor

A′ without one divisors.

Example 4.8 Let A(x, y) =

{
0 xy < 0.5

x+y
2 otherwise

. It is obvious to see that A is a not-left-

continuous conjunctor. And then the R-implication IA generated by A can be obtained as

IA(x, y) =

{
1 x < 0.5

max(2y − x, 1
2x ) otherwise

.

For any aggregation function A′, a simple calculation reveals IA(A′(1, 1), 0.8) = 0.6 and

IA(1, IA(1, 0.8)) = 0.5. This means that IA does not satisfy LIA with any aggregation function.

5 Other implications satisfying LIA

In this section, we investigate if the QL-, f -, g-, probabilistic, probabilistic S- and T -

power implications satisfy LIA with some aggregation functions. Let IA1,A2 be a QL-operation.

Clearly, IA1,A2 satisfies I3 and I5 when A1 is a disjunctor and A2 is a conjunctor. Therefore,

we only consider the case where IA1,A2 is obtained from a disjunctor, a conjunctor and a fuzzy

negation in the rest of this section. Further, if A2 has a right neutral element 1, then IA1,A2

being a QL-implication implies that A1 satisfies LEM. And then the following statements hold.

Lemma 5.1 Let IA1,A2 be a QL-implication generated by an associative disjunctor without

one divisor A1, a semi-copula A2 and a fuzzy negation N . Then IA1,A2 satisfies LIA with any

aggregation function A without zero divisors.

Proof. Since A1 has not one divisors, it is not difficult to verify that A1 satisfies LEM with

respect to N if and only if N = N⊤. This implies that IA1,A2 becomes an (A,N)-implication

generated by an associative disjunctor A1 and the greatest fuzzy negation N⊤. By Lemma 4.2,

IA1,A2 satisfies LIA with any aggregation function A without zero divisors.

Theorem 5.2 Let IA1,A2 be a QL-implication generated by a disjunctor A1 such that the

mapping h(x) = A1(x, 0) is continuous on [0,1], a conjunctor A2 and a continuous fuzzy nega-

tion N . If the aggregation function A is commutative, then IA1,A2 satisfies LIA with A if

and only if A(x, y) = ÑIA1,A2
(IA1,A2(ÑIA1,A2

(NIA1,A2
(x)), NIA1 ,A2

(y))), where ÑIA1,A2
(x) =
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{
N

(−1)
IA1,A2

(x), x ∈ (0, 1]

1 x = 0
.

Proof. Since A is commutative, IA1,A2 satisfies EP according to Lemma 3.1. The conti-

nuity of h(x) implies that NIA1,A2
(x) = A1(N(x), 0) is continuous. Therefore, IA1,A2 can

be rewritten as an (S,N)-implication generated by a t-conorm S and the natural negation

NIA1,A2
according to Theorem 2.4.10 in [2], where S(x, y) = IA1,A2(ÑIA1,A2

(x), y). By Theorem

4.3, IA1,A2 satisfies LIA with A if and only if A(x, y) = ÑIA1,A2
(S(NIA1,A2

(x), NIA1,A2
(y))) =

ÑIA1,A2
(IA1,A2(ÑIA1,A2

(NIA1,A2
(x)), NIA1,A2

(y))).

Theorem 5.3 Let If be an f -implication. If satisfies LIA with an aggregation function A if

and only if A(x, y) = xy.

Proof. (⇐=) This can be verified directly.

(=⇒) By Theorem 2.14, If can be rewritten as an A-implication IA,N generated by the

disjunctor A(x, y) = f−1((1 − x)f(y)). Suppose that If satisfies LIA with an aggregation

function A′. Then, A is associative according to Corollary 4.5. This means that f(1 − (1 −

x)(1 − y)) = (1− x)f(y) holds for any x, y ∈ [0, 1]. Therefore, we obtain A′(x, y) = AN (x, y) =

1 −A(1 − x, 1 − y) = xy. That is, If satisfies LIA with an aggregation function A′ if and only

if A′(x, y) = xy.

Lemma 5.4 Let Ig be a g-implication. If Ig satisfies LIA with an aggregation function A, then

A has not zero divisors.

Proof. On the contrary, we assume that there exist x, y ∈ (0, 1] such that A(x, y) = 0. Since

Ig satisfies LIA with A, we have Ig(A(x, y), 0) = 1. However, Ig(x, Ig(y, 0)) = Ig(x, 0) = 0 by

Proposition 3.2.7 in [2]. This is a contradiction.

Theorem 5.5 Let Ig be a g-implication. Ig satisfies LIA with an aggregation function A′ if

and only if A′(x, y) = xy.

Proof. (⇐=) This can be verified directly.

(=⇒) By Theorem 2.14, Ig can be rewritten as an A-implication IA,N generated by the dis-

junctor A(x, y) = g−1( g(y)1−x
∧ g(1)). Assume that Ig satisfies LIA with an aggregation function

A′. Then, A is associative and has not zero-divisors by Corollary 4.5 and Lemma 5.5. This

implies that A(x,A(y, z)) = 1 iff A(x,A(y, z)) = 1. And then g(z)
(1−x)(1−y) = g(z)

1−g−1( g(y)
1−x

)
holds for

any x, y, z ∈ [0, 1). Thus, A′(x, y) = AN (x, y) = 1 −A(1 − x, 1 − y) = xy. That is, Ig satisfies

LIA with an aggregation function A′ if and only if A′(x, y) = xy.

Remark 5. Theorems 5.3 and 5.5 also appeared in [2, 15], respectively. However, we provide

two distinct proofs. And our proofs can help to understand them from another perspective.

Theorem 5.6 Let IC be a probabilistic implication. If the equation x2C
(

1 − C(x,y)
x

, z
)

=

xC
(
x, C(1−y,z)

1−y

)
− C(x, y)C

(
x, C(1−y,z)

1−y

)
holds for any x, y, z ∈ [0, 1] with understanding

0
0 = 1, then IC satisfies LIA with an aggregation function A′ if and only if A′(x, y) =
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{
1 − C(x,1−y)

x
x 6= 0

0 x = 0
.

Proof. By Theorem 2.14, IC can be rewritten as an A-implication IA,N generated by the dis-

junctor A(x, y) =

{
C(1−x,y)

1−x
x 6= 1

1 x = 1
. The equation x2C

(
1 − C(x,y)

x
, z
)

= xC
(
x, C(1−y,z)

1−y

)
−

C(x, y)C
(
x, C(1−y,z)

1−y

)
can ensure that the disjunctor A is associative. According to Theorem

4.4, IC satisfies LIA with an aggregation function A′ if and only if A′ is the N -dual of A. That

is, A′(x, y) =

{
1 − C(x,1−y)

x
x 6= 0

0 x = 0
.

Remark 6. Notice that there exist some probabilistic implications which satisfy LIA with an

aggregation function A′ without the condition of Theorem 5.6 (See Example 5.2 in [13]).

Theorem 5.7 Let ĨC be a probabilistic S-implication. If the equation C(x,C(1 − y, z) + y) =

C(x, y)+C(x−C(x, y), z) holds for any x, y, z ∈ [0, 1], then ĨC satisfies LIA with an aggregation

function A′ if and only if A′(x, y) = x− C(x, 1 − y).

Proof. By Theorem 2.14, ĨC can be rewritten as an A-implication IA,N generated by the dis-

junctor A(x, y) = x+C(1−x, y). The equation C(x,C(1−y, z)+y) = C(x, y)+C(x−C(x, y), z)

implies that the disjunctor A is associative. According to Theorem 4.4, ĨC satisfies LIA with an

aggregation function A′ if and only if A′ is the N -dual of A. That is, A′(x, y) = x−C(x, 1− y).

Theorem 5.8 Let T be a nilpotent t-norm with additive generator t. Then, its power impli-

cation IT does not satisfy LIA with any aggregation function.

Proof. Suppose that IT satisfies LIA with an aggregation function A, that is, IT (A(x, y), z) =

IT (x, IT (y, z)). Taking z = 0, we have t(A(x,y))
t(0) = t(x)

t( t(y)
t(0) )

∧ 1. This means that A is formed as

A(x, y) = t−1

(
t(0)t(x)

t( t(y)
t(0) )

∧ t(0)

)
. This case implies that 1 is a right neutral element of A. And

then IT (A(x, 1), z) = t(x)
t(z) holds if 1 > x > z. However, IT (x, IT (1, z)) = IT (x, 0) = t(x)

t(0) . Thus,

IT does not satisfy LIA with any aggregation function.

Theorem 5.9 Let T be the minimum t-norm and a strict t-norm, respectively. Then, their

power implications does not satisfy LIA with any aggregation function having zero divisors or

being commutative.

Proof. We only consider the case where T is minimum t-norm. Another case can be similarly

proved. Suppose that the aggregation function A has zero divisors and A(x, y) = 0. Then, we

have ITM(A(x, y), 0) = 1. However, ITM(x, ITM(y, 0)) = 0.

Moreover, we assume that ITM satisfies LIA with a commutative aggregation function A.

By Lemma 3.1, ITM satisfies EP. However, ITM does not satisfy EP (See Proposition 13 in [27]).

Remark 7. We can similarly verify that the T -power implications do not satisfy LIA with any

aggregation function having a neutral element e, too. However, we cannot ensure whether they

do not satisfy LIA with any aggregation function.
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6 LIA with a given associative aggregation function

For a fixed associative aggregation function A, this section aims to characterize the fuzzy

implications satisfying LIA with A. We firstly extend Definition 6 in [31] as follows.

Definition 6.1 Let A be an aggregation function and N a fuzzy negation. We say that N is

A-compatible if N(y1) = N(y2) implies N(A(x, y1)) = N(A(x, y2)) for any x ∈ [0, 1].

Lemma 6.2 Let I be a fuzzy implication and NI a continuous fuzzy negation. If I satisfies

LIA with a given conjunctor A, then I has the form of I(x, y) = NI(A(x, ÑI(y)).

Proof. Since I satisfies LIA with a given conjunctor A, I(A(x, y), z) = I(x, I(y, z)) holds for

any x, y, z ∈ [0, 1]. Taking z = 0, we have NI(A(x, y)) = I(x,NI(y)). Let us consider the

following two options.

i. y ∈ Ran(ÑI). In this case, we have ÑI(NI(y)) = y. This implies that I(x,NI(y)) =

NI(A(x, ÑI(NI(y)))). Since NI is continuous, we have I(x, y) = NI(A(x, ÑI(y)).

ii. y /∈ Ran(ÑI). This case means that there exists y′ ∈ Ran(ÑI) such that NI(y) =

NI(y′). By Lemma 3.2, we have NI(A(x, y)) = NI(A(x, y′)). Therefore, I(x,NI(y)) =

I(x,NI(y′)) = NI(A(x, ÑI(NI(y′)))) = NI(A(x, ÑI(NI(y)))) holds. Since NI is continuous,

we obtain I(x, y) = NI(A(x, ÑI(y)).

Further, considering A is a conjunctor, it can be verified that I(x, y) = NI(A(x, ÑI(y)) is a

fuzzy implication.

Lemma 6.3 Let A be an associative conjunctor and N an A-compatible continuous fuzzy nega-

tion. Then I(x, y) = N(A(x, Ñ (y)) satisfies LIA with A.

Proof. I(A(x, y), z) = N(A(A(x, y), Ñ (z))) = N(A(x,A(y, Ñ (z))). Let us consider the follow-

ing two cases.

i. A(y, Ñ(z)) ∈ Ran(Ñ). In this case, N(A(x,A(y, Ñ(z)))) = N(A(x, Ñ(N(A(y, Ñ (z)))))) =

N(A(x, Ñ (I(y, z)))) = I(x, I(y, z)).

ii. A(y, Ñ(z)) /∈ Ran(Ñ). This case implies that there exists y′ ∈ Ran(Ñ ) such that

N(A(y, Ñ(z))) = N(y′). Since N is A-compatible, N(A(x,A(y, Ñ (z)))) = N(A(x, y′)) holds for

any x ∈ [0, 1]. Therefore, I(x, I(y, z)) = N(A(x, Ñ (N(A(y, Ñ(z)))))) = N(A(x, Ñ (N(y′)))) =

N(A(x, y′)) = I(A(x, y), z).

Theorem 6.4 Let I be a fuzzy implication and A a conjunctor. If A is associative and NI

is continuous, then I satisfies LIA with A if and only if NI is A-compatible and I(x, y) =

NI(A(x, ÑI(y)).

Proof. (⇐=) The proof comes from Lemma 6.3.

(=⇒) Assume that I satisfies LIA with A. By Lemma 3.2, NI is A-compatible. And then

I(x, y) = NI(A(x, ÑI(y)) according to Lemma 6.2.

In the rest of this section, we will characterize fuzzy implications for some distinguished
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conjunctors such that they satisfy LIA.

Lemma 6.5 Let I be a fuzzy implication. Then I satisfies LIA with C⊥ if and only if I is the

greatest fuzzy implication, that is, I(x, y) =

{
0 x = 1, y = 0
1 otherwise

.

Proof. (=⇒) Assume that I satisfies LIA with C⊥. Then, I(C⊥(x, y), z) = I(x, I(y, z)) holds

for any x, y, z ∈ [0, 1]. For any x 6= 1, we have I(x, 0) = I(x, I(1, 0)) = I(C⊥(x, 1), 0) =

I(1, 1) = 1. This implies that I can be written as I(x, y) =

{
0 x = 1, y = 0
1 otherwise

.

(⇐=) It is easy to verify that I satisfies LIA with C⊥.

Lemma 6.6 Let I be a fuzzy implication and NI a continuous fuzzy negation. Then I satisfies

LIA with (Cavg)⊤ if and only if NI is non-filling and I(x, y) =






1 x = 0 or y = 1
NI(x) y = 0
NI(x) ∧ y otherwise

.

Proof. (=⇒) Suppose that I satisfies LIA with (Cavg)⊤. It can firstly be asserted that NI is

a non-filling fuzzy negation. Otherwise, there exists y0 6= 0 such that NI(y0) = 1. Notice that

NI(0) = NI(y0) = 1. This implies that NI((Cavg)⊤(1, 0)) = NI(0) = 1 > NI((Cavg)⊤(1, y0)) =

NI(1) = 0.

According to Lemma 6.2, we have I(x, y) =





1 x = 0 or y = 1
NI(x) y = 0
NI(x) ∧ y otherwise

.

(⇐=) Obviously, (Cavg)⊤ is associative. Further, we can ensure that NI is (Cavg)⊤-

compatible. Without loss of generality, we suppose that NI(y1) = NI(y2) < 1 holds for

0 < y1 < y2. In order to obtain NI((Cavg)⊤(x, y1)) = NI((Cavg)⊤(x, y2)) for any x ∈ [0, 1], let

us consider the following three options:

i. x ≤ y1 < y2. In this case, we have NI((Cavg)⊤(x, y1)) = NI(y1) = NI((Cavg)⊤(x, y2)) =

NI(y2).

ii. y1 < x ≤ y2. This case implies NI(y1) = NI(x) = NI(y2). Therefore, we obtain

NI((Cavg)⊤(x, y1)) = NI(x) = NI((Cavg)⊤(x, y2)) = NI(y2).

iii. y1 < y2 < x. In this case, we have NI((Cavg)⊤(x, y1)) = NI(x) = NI((Cavg)⊤(x, y2)).

Based on the argument above, I satisfies LIA with (Cavg)⊤ according to Lemma 6.3.

By Theorem 3.7 in [17], N is a fuzzy negation if and only if there exists a continuous strictly

increasing function g : [0, 1] → [0,+∞] with g(0) = 0 such that N(x) = g−1(g(1) − g(x))

for any x ∈ [0, 1]. In this case, the representable aggregation function can be rewritten as

A(x, y) = g−1((g(x) + g(y) − g(1)) ∨ 0). Then, we have the following result.

Lemma 6.7 Let I be a fuzzy implication and NI a strict fuzzy negation. I satisfies LIA with

the representable aggregation function defined as A(x, y) = g−1((g(x) + g(y)− g(1))∨ 0) if and

only if I(x, y) =

{
1 f(NI(x)) + f(y) ≤ f(0)
f−1(f(NI(x)) + f(y)) otherwise

with f = g ◦N−1
I .

Proof. (=⇒) Suppose that I satisfies LIA with A. By Lemma 6.2, we have I(x, y) =
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NI(A(x,N−1
I (y))) = NI(g−1((g(x) + g(N−1

I (y))− g(1))∨ 0)) = f−1((f(NI(x)) + f(y)− f(0))∨

0) =

{
1 f(NI(x)) + f(y) ≤ f(0)
f−1(f(NI(x)) + f(y)) otherwise

.

(⇐=) This proof comes from Lemma 6.3.

However, Lemma 6.2 cannot be used to characterize the fuzzy implications for Mλ,f and

TSλ,f by the aforementioned method because they are not associative.

7 Fuzzy hierarchical inference engine with fuzzy implica-

tions satisfying LIA

In this section, we will present three fuzzy hierarchical inference engines in MISO fuzzy

systems based on the fuzzy implications satisfying LIA. Therefore, we assume that the fuzzy

implication I satisfies LIA with an aggregation function A in this section. Firstly, let us study

the solution of GMP problem in Pedrycz’s, Raha’s and TIP methods, respectively.

7.1 Three fuzzy hierarchical inference engines with fuzzy implication

satisfying LIA

Lemma 7.1 The solution of GMP problem in Pedrycz’s method can be rewritten as

B′
BKS(y) = I(

∨

x∈U

A(D′(x), D(x)), B(y)).

Proof. B′
BKS(y) =

∧
x∈U

I(D′(x), I(D(x), B(y))) =
∧

x∈U

I(A(D′(x), D(x)), B(y)) = I(
∨

x∈U

A

(D′(x), D(x)), B(y)).

Lemma 7.2 The conclusion B′′
SBR of GMP problem in Raha’s method is

B′′
SBR(y) =

∨

x∈U

I(A(S(D′, D), D(x)), B(y)).

Proof. Obvious.

Lemma 7.3 Let I be a fuzzy implication which is right continuous with respect to the second

variable and satisfies OP. Then the TIP solution of GMP problem is

B′
TIP(y) =

∨

x∈U

A(I(D(x), B(y)), D′(x)).

Proof. Since I is right-continuous with respect to the second variable, the TIP solution of

GMP problem is unique and Eq.(1) takes its maximum 1 by Lemma 2.23. It is not difficult

to verify that I(I(D(x), B(y)), I(D′(x),
∨

x∈U

A(I(D(x), B(y)), D′(x))) ≡ 1 holds for any x ∈ V

and y ∈ U according to Lemma 3.8.

On the other hand, assume that C is an arbitrary fuzzy set on V such that I(I(D(x), B(y)),

I(D′(x), C(y))) ≡ 1 holds for any x ∈ V and y ∈ U . Since I satisfies LIA with the aggregation
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function A, we have I(I(D(x), B(y)), I(D′(x), C(y))) = I(A(I(D(x), B(y)), D′(x)), C(y)) ≡ 1

for any x ∈ V and y ∈ U . The ordering property of I implies that C(y) ≥
∨

x∈U

A(I(D(x), B(y)),

D′(x)). Therefore, B′
TIP(y) =

∨
x∈U

A(I(D(x), B(y)), D′(x)).

In order to construct the fuzzy hierarchical inference engine in MISO fuzzy system, we

combine the input and IF-THEN rules into the output by the above three methods. For

convenience to show three fuzzy hierarchical inference engines, we only consider this case when

m = 2 and n = 1 (that is, two-input-one-output fuzzy system and the fuzzy rule base including

only one rule). Assume that the fuzzifier is the singleton fuzzifier [43] and that the aggregation

function A is employed to combine the antecedent of fuzzy IF-THEN rule in fuzzy inference

engine. For an arbitrary input x0 = (x01, x02) ∈ U1 × U2, we have the following results.

Theorem 7.4 Let I satisfy NP and A be a conjunctor having a left neutral element 1. If the

conjunctor A is employed to combine the antecedent of IF-THEN rule and I satisfies LIA, then

the BKS inference engine is B′
BKS = (D′

1, D
′
2) ◦BKS I((D1, D2), B) = D′

1 ◦BKS I(D1, D
′
2 ◦BKS

I(D2, B)).

Proof. By Lemma 7.1, B′
BKS(y) = I(

∨
(x1,x2)∈U1×U2

A(A(D′
1(x1), D′

2(x2)), A(D1(x1), D2(x2))),

B(y)) = I(A(D1(x01), D2(x02)), B(y)) = I(D1(x01), I(D2(x02), B(y))) = I(
∨

x1∈U1

A(D′
1(x1),

D1(x1)), I(
∨

x2∈U2

A(D′
2(x2), D2(x2)), B(y))). This can be shortened as B′

BKS = (D′
1, D

′
2) ◦BKS

I((D1, D2), B) = D′
1 ◦BKS I(D1, D

′
2 ◦BKS I(D2, B)).

For convenience, we shorten the conclusions B′′
SBR and B′

TIP in Lemmas 7.2 and 7.3 as

B′′
SBR = D′ ◦SBR I(D,B) and B′

TIP = D′ ◦TIP I(D,B), respectively. Similar to Theorem 7.4,

we obtain the following results.

Theorem 7.5 Let A be an associative and commutative conjunctor and S(A(D′
1, D

′
2), A(D1,

D2)) = A(S(D′
1, D1), S(D′

2, D2)). If A is employed to combine the antecedent of IF-THEN

rule and I satisfies LIA with A, then the SBR inference engine is B′′
SBR = (D′

1, D
′
2) ◦SBR

I((D1, D2), B) = D′
1 ◦SBR I(D1, D

′
2 ◦SBR I(D2, B)).

Proof. By Lemma 7.2, B′′
SBR(y) =

∨
(x1,x2)∈U1×U2

I(A(S(A(D′
1, D

′
2), A(D1, D2)), A(D1(x1),

D2(x2))), B(y)) = I(A(S(A(D′
1, D

′
2), A(D1, D2)), A(D1(x01), D2(x02))), B(y)) = I(A(A(S(D′

1,

D1), S(D′
2, D2)), A(D1(x01), D2(x02))), B(y)) = I(A(A(S(D′

1, D1), D1(x01)), A(S(D′
2, D2), D2

(x02))), B(y)) = I(A(S(D′
1, D1), D1(x01)), I(A(S(D′

2, D2), D2(x02)), B(y))) =
∨

x1∈U1

I(A(S(D′
1,

D1), D1(x1)),
∨

x2∈U2

I(A(S(D′
2, D2), D2(x2)), B(y))). This can be shortened as B′

BKS = (D′
1, D

′
2)

◦BKSI((D1, D2), B) = D′
1 ◦BKS I(D1, D

′
2 ◦BKS I(D2, B)).

Remark 8. Since D′
1 and D′

2 are singleton fuzzy sets, the condition S(A(D′
1, D

′
2), A(D1, D2)) =

A(S(D′
1, D1), S(D′

2, D2)) can be meet by some measures of similarity. For example, the several

measures of similarity mentioned in Ref. [40] satisfy this condition for any conjunctor.
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Theorem 7.6 Let the conjunctor A be employed to combine the antecedent of IF-THEN rule

and I satisfy LIA. If I is right-continuous with respect to the second variable and fulfills OP,

then the TIP inference engine is B′
TIP = (D′

1, D
′
2) ◦TIP I((D1, D2), B) = D′

1 ◦TIP I(D1, D
′
2 ◦TIP

I(D2, B)).

Proof. According to Lemma 7.3, B′
TIP(y) =

∨
(x1,x2)∈U1×U2

A(I(A(D1(x1), D2(x2)), B(y)), A(

D′
1(x1), D′

2(x2))) = I(A(D1(x01), D2(x02)), B(y)) = I(D1(x01), I(D2(x02), B(y))) =
∨

x1∈U1

A(I

(D1(x1),
∨

x2∈U2

A(I(D2(x2)), B(y)), D′
2(x2)), D′

1(x1)). This means B′
TIP = (D′

1, D
′
2) ◦TIP I((D1,

D2), B) = D′
1 ◦TIP I(D1, D

′
2 ◦TIP I(D2, B)).

7.2 Discussion

It is not difficult to see that these three hierarchical inference engines can be extended to any

MISO fuzzy system. This implies that the MISO fuzzy system with these three inference engines

can be converted into an SISO hierarchical fuzzy system with these three inference engines.

Similar to that mentioned in [15], it is sufficient to calculate the two-dimensional matrices at each

stage and to store the antecedent of fuzzy IF-THEN rules in the SISO hierarchical fuzzy system.

This means that the MISO fuzzy systems with these three inference engines have the advantages

in storing and computing. However, in an m-input-one-output single fuzzy system using the

classical CRI method, Pedrycz’s method and TIP method, when |Ui| = ni(i = 1, 2, · · · ,m) and

|V | = n, the complexity of a single inference system amounts to O(n
∏m

i=1 ni). Moreover, we

have to calculate an m-dimensional matrix having entries
∏m

i=1 ni if |Ui| = ni(i = 1, 2, · · · ,m).

Therefore, we need to store m-dimensional matrices for each fuzzy IF-THEN rule [7, 41].

Indeed, it owes to the law of importation that the MISO fuzzy system with these three

inference engines is converted into a SISO hierarchical fuzzy system. In the MISO fuzzy system,

chosen the fuzzy implications (such as R-implication, (A,N)-implication, QL-implication and

so on) to interpret the fuzzy IF-THEN rules in rule base, we can construct the aggregation

functions such that they satisfy LIA by which obtained in Section 4. To enhance the storage

and computational efficiency, people ought to accordingly employ these aggregation functions

to combine the antecedent of fuzzy IF-THEN rules in rule base.

By the results in Section 5, if a given aggregation function is employed to translate the

antecedent of fuzzy IF-THEN rules in rule base, we can also construct a fuzzy implication

satisfying LIA. Similarly, people should utilize the fuzzy implication to translate the fuzzy

IF-THEN rules in rule base in order to advance the computational and storage efficiency.
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8 Numerical examples

In this section, we will present three examples to illustrate the methods developed in the

previous sections.

Example 8.1 Let D1 = [0.9, 0.7, 0.9, 0.6, 0.8], D2 = [1, 0.7, 0.8, 0.9] and B = [0.2, 0.1, 0.3] are

fuzzy sets defined on U1 = {x11, x12, x13, x14}, U2 = {x21, x22, x23, x24} and V = {y1, y2, y3,

y4, y5}, respectively. We consider the two-input-one-output fuzzy system including the following

single fuzzy IF-THEN rule

IF x1 is D1 and x2 is D2 THEN y is B.

Suppose that I is the Kleene-Dienes implication IK(x, y) = (1 − x) ∨ y. By Theorem 4.5,

the Kleene-Dienes implication satisfies LIA with the minimum t-norm TM . Now, we employ

TM to combine the antecedent of IF-THEN rule. Let D′
1 = [0, 1, 0, 0, 0] and D′

2 = [0, 0, 1, 0] be

the fuzzy single input. In classical BKS inference method, we firstly compute TM (D′
1, D

′
2) and

TM (D1, D2) as

TM (D′
1, D

′
2) =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




, TM (D1, D2) =




0.9 0.7 0.8 0.9
0.7 0.7 0.7 0.7
0.9 0.7 0.8 0.9
0.6 0.6 0.6 0.6
0.8 0.7 0.8 0.8




.

Further, we have
∨

(x1,x2)∈U1×U2

TM (TM (D′
1(x1), D′

2(x2)), TM (D1(x1), D2(x2))) = 0.7. There-

fore, the output is B′
BKS = [0.3, 0.3, 0.3] according to Lemma 7.1. The computational com-

plexity to calculate the output B′
BKS using the classical BKS method in this example can be

considered as shown in Table 1.

Table 1 The computational complexity of the classical BKS method

Stage Process Times

1 TM (D′
1(x1), D′

2(x2)) 5 × 4 = 20

2 TM (D1(x1), D2(x2)) 5 × 4 = 20

3 TM (TM (D′
1(x1), D′

2(x2)), TM (D1(x1), D2(x2))) 20

4
∨

x1×x2

TM (TM (D′
1(x1), D′

2(x2)), TM (D1(x1), D2(x2))) 19

5 B′
BKS 3

Total 82

Moreover, some 5 × 4-dimensional matrices are required to store for every fuzzy IF-THEN

rule in order to compute the output.

Next, we use the hierarchical BKS method proposed by Theorem 7.4 to compute the output

B′
BKS. We have TM (D′

2, D2) = [1, 0.7, 0.8, 0.9]. Then, IK(
∨

x2∈U2

TM (D′
2(x2), D2(x2), B(y)) =
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[0.2, 0.1, 0.3]. Further, we obtain B′
BKS = IK(

∨
x1∈U1

TM (D′
1(x1), D1(x1)), IK(

∨
x2∈U2

TM (D′
2(x2),

D2(x2)), B(y))) = [0.3, 0.3, 0.3]. Indeed, the result of the hierarchical BKS method proposed

by Theorem 7.4 is equal to that of the classical BKS inference method. Let us consider the

computational complexity to calculate the output B′
BKS using the hierarchical BKS method in

this example. It is shown in Table 2.

Table 2 The computational complexity of the hierarchical BKS method

Stage Process Times

1 TM (D′
2(x2), D2(x2)) 4

2
∨
x2

TM (D′
2(x2), D2(x2)) 3

3 IK(
∨

x2∈U2

TM (D′
2(x2), D2(x2), B(y)) 3

4 TM (D′
1(x1), D1(x1)) 4

5
∨
x1

TM (D′
1(x1), D1(x1)) 3

6 B′
BKS 3

Total 20

Moreover, we only need to store the different antecedent fuzzy sets (that is, some 3-

dimensional vectors) for every fuzzy IF-THEN rule when the output is computed. Compared

Table 1 with Table 2, it is obvious to see that the hierarchical BKS method helps to enhance

the computational efficiency of the fuzzy inference engine.

Example 8.2 Let the fuzzy sets D1, D2 and B be as defined in Example 8.1. We consider the

same two-input-one-output fuzzy system.

Assume that the aggregation function is the greatest averaging conjunctor (Cavg)⊤. We can

find that the fuzzy implication I(x, y) =





1 x = 0 or y = 1
1 − x y = 0
(1 − x) ∧ y otherwise

satisfies LIA with

(Cavg)⊤ by Lemma 6.6. Thus, we utilize (Cavg)⊤ to combine the antecedent of fuzzy IF-THEN

rule. And S(A,B) = 1−max
x∈U

|A(x)−B(x)| is used to measure the similarity between two fuzzy

sets A and B. Let D′
1 = [0, 1, 0, 0, 0] and D′

2 = [0, 0, 1, 0] be the fuzzy single input. In classical

SBR inference method, we firstly compute (Cavg)⊤(D′
1, D

′
2) and (Cavg)⊤(D1, D2) as follows

(Cavg)⊤(D′
1, D

′
2) =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




, (Cavg)⊤(D1, D2) =




1 0.9 0.9 0.9
1 0.7 0.8 0.9
1 0.9 0.9 0.9
1 0.7 0.8 0.9
1 0.8 0.8 0.9




.

Further, we have S((Cavg)⊤(D′
1, D

′
2), (Cavg)⊤(D1, D2)) = 0.8. Then, (Cavg)⊤(S((Cavg)⊤(D′

1,
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D′
2), (Cavg)⊤(D1, D2)), (Cavg)⊤(D1, D2)) can be obtained as

(Cavg)⊤(S((Cavg)⊤(D′
1, D

′
2), (Cavg)⊤(D1, D2)), (Cavg)⊤(D1, D2)) =




1 0.9 0.9 0.9
1 0.8 0.8 0.9
1 0.9 0.9 0.9
1 0.8 0.8 0.9
1 0.8 0.8 0.9




.

Finally, we obtain the output B′′
SBR = [0.2, 0.1, 0.2] by Lemma 7.2.

Next, we calculate the output B′
BKS with the hierarchical SBR method proposed by Theorem

7.5. Obviously, S(D′
2, D2) = 0.8. Therefore, we have D′

2 ◦SBR I(D2, B) = [0.2, 0.1, 0.2]. After

some tedious computations, we obtain B′′
SBR = D′

1 ◦SBR I(D′
2 ◦SBR I(D2, B)) = [0.2, 0.1, 0.2].

Obviously, the result of hierarchical SBR method is equal to that of the classical SBR inference

method. Indeed, we only need to calculate a 5 × 4-dimensional matrix at every stage involved

in the hierarchical SBR method. This improves the computational efficiency of fuzzy inference

engine.

Example 8.3 Let the fuzzy sets D1, D2 and B be as in Example 8.1, with the same structure

for the given fuzzy IF-THEN rule.

Let I be the  Lukasiewicz implication IL(x, y) = (1 − x + y) ∧ 1. According to Remark

4, the  Lukasiewicz implication satisfies LIA with  Lukasiewicz t-norm TL, that is, TL(x, y) =

(x+ y− 1)∨ 0. Thus, TL is used to combine the antecedent of fuzzy IF-THEN rule. In classical

TIP inference method, we firstly compute the Cartesian product of D1 and D2 with respect to

TL as follows

TL(D1, D2) =




0.9 0.6 0.7 0.8
0.7 0.4 0.5 0.6
0.9 0.6 0.7 0.8
0.6 0.3 0.5 0.5
0.8 0.5 0.6 0.7




.

Further, we have IL(TL(D1, D2), B) = IL(TL(D1, D2), [0.2, 0.1, 0.3]). Concretely,

IL(TL(D1, D2), B(y1)) =




0.3 0.6 0.5 0.4
0.5 0.8 0.7 0.6
0.3 0.6 0.5 0.4
0.6 0.9 0.7 0.7
0.4 0.6 0.6 0.5




,

IL(TL(D1, D2), B(y2)) =




0.2 0.5 0.4 0.3
0.4 0.7 0.6 0.5
0.2 0.5 0.4 0.3
0.5 0.8 0.6 0.6
0.3 0.5 0.5 0.4




,

IL(TL(D1, D2), B(y3)) =




0.4 0.7 0.6 0.5
0.6 0.9 0.8 0.7
0.4 0.7 0.6 0.5
0.7 1 0.8 0.8
0.5 0.7 0.7 0.6




.
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Let D′
1 = [0, 1, 0, 0, 0] and D′

2 = [0, 0, 1, 0] be the fuzzy single input. Then

TL(D′
1, D

′
2) =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




.

By Lemma 7.3, we obtain the output B′
TIP = TL(D′

1, D
′
2) ◦TIP IL(TL(D′

1, D
′
2), B) = [0.7, 0.6, 0.8].

Next, we apply the hierarchical TIP method proposed by Theorem 7.6 to compute the

output B′
TIP. Given the input (D′

1, D
′
2), we have

IL(D2, B) =




0.2 0.1 0.3
0.5 0.4 0.6
0.4 0.3 0.5
0.3 0.2 0.4


 .

And then D′
2 ◦TIP IL(D2, B) = [0.4, 0.3, 0.5]. Further, IL(D1, D

′
2 ◦TIP IL(D2, B)) can be calcu-

lated as follows

IL(D1, D
′
2 ◦TIP IL(D2, B)) =




0.5 0.4 0.6
0.7 0.6 0.8
0.5 0.4 0.6
0.8 0.7 0.9
0.6 0.5 0.7




.

Finally, we obtain the output B′
TIP = D′

2◦TIPIL(D1, D
′
2◦TIPIL(D2, B)) = [0.7, 0.6, 0.8]. Clearly,

the result of the hierarchical TIP method proposed Theorem 7.6 is equal to that of the classical

TIP inference method.

9 Conclusions

We firstly have studied the fuzzy implications satisfying LIA. And then three hierarchical

inference engines employed aggregation functions and fuzzy implications such that they satisfy

LIA have been investigated. Specifically, we have

(1) Analyzed the properties of aggregation functions and fuzzy implications when they

satisfy LIA;

(2) Given the necessary and sufficient conditions for (A,N)-implications generated by an

associative disjunctor and R-implications generated by an associative and commutative aggre-

gation function satisfying LIA with some aggregation functions;

(3) Found some associative aggregation functions for f -implication, g-implication, QL-

implication, probabilistic implication, probabilistic S-implication and T -power implications such

that they satisfy LIA;

(4) Characterized the fuzzy implications satisfying LIA with a given associative aggregation

function;
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(5) Constructed three fuzzy hierarchical inference engines in MISO fuzzy system utilized

the aggregation functions and fuzzy implications satisfying LIA.

(6) Demonstrated that our proposed methods are efficient.

Our results can help to improve the effectiveness of fuzzy inference engine in MISO fuzzy

systems. In the future, we wish to study the capability of fuzzy systems with these hierarchical

inference engines. We also will apply them in real-life control problems and decision making.
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[1] M. Baczyński, P. Grzegorzewski, P. Helbin, W. Niemyska, Properties of the probabilistic

implications and S-implications, Information Sciences 331(2016)2-14.
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