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Abstract
As a crucial food crop, potatoes are highly consumed worldwide, while they are also sus-
ceptible to being infected by diverse diseases. Early detection and diagnosis can prevent the 
epidemic of plant diseases and raise crop yields. To this end, this study proposed a weakly-
supervised learning approach for the identification of potato plant diseases. The founda-
tion network was applied with the lightweight MobileNet V2, and to enhance the learn-
ing ability for minute lesion features, we modified the existing MobileNet-V2 architecture 
using the fine-tuning approach conducted by transfer learning. Then, the atrous convolution 
along with the SPP module was embedded into the pre-trained networks, which was fol-
lowed by a hybrid attention mechanism containing channel attention and spatial attention 
submodules to efficiently extract high-dimensional features of plant disease images. The 
proposed approach outperformed other compared methods and achieved a superior per-
formance gain. It realized an average recall rate of 91.99% for recognizing potato disease 
types on the publicly accessible dataset. In practical field scenarios, the proposed approach 
separately attained an average accuracy and specificity of 97.33% and 98.39% on the 
locally collected image dataset. Experimental results present a competitive performance 
and demonstrate the validity and feasibility of the proposed approach.

Keywords Potato crop diseases · Image recognition · Atrous convolution · SPP module · 
Lightweight network

1 Introduction

In the global economy, agriculture is critical, and with population growth as well as the 
COVID-19 pandemic, the agricultural system faces more strain. After wheat and rice, 
potato is currently the third most important food crop in the world, and global produc-
tion of potatoes which are regarded by over a billion people as the primary stable exceeds 
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300 million metric each year (Oppenheim et al. 2019). In addition to being a considerable 
source of calories for humanity, potatoes are also widely utilized as industrial materials. 
However, the potato crop is susceptible to being infected by diverse diseases too. Early 
detection and diagnosis have a positive impact on suppressing the epidemic of potato plant 
diseases, while the traditional approach of visual observations requires constant supervi-
sion of plants. It is undoubtedly inefficient, intuitive, labor-intensive, and cannot be trans-
planted in a broad range (Marino et  al. 2019a; Al-Hiary et  al. 2011). Thence, there is a 
great need and significant realistic importance to seek a simple, quick, and effective tool 
for automatically recognizing potato plant diseases.

In the latest literature, new methods of plant disease identification are being proposed 
with the rapid advancement of digital cameras and calculational capacity. More and more 
attention has been paid to the research and application of machine learning (ML) and 
image processing techniques, which are becoming attractive alternative approaches for the 
continuous monitoring of plant diseases (Chen et al. 2021a). For instance, by integrating 
image processing and ML techniques, Islam et al. (2017) introduced a potato disease rec-
ognition model and successfully identified over 300 images. They achieved a 95% recog-
nition accuracy. Using a hyperspectral imaging technique, Ji et al. (2019) recognized the 
bruised potatoes through discrete wavelet transform, and they attained the highest recogni-
tion accuracy of 99.82% for the damaged potatoes. Gassoumi et al. (2000) recommended 
an artificial neural network (ANN) based method for the identification of insect pests in 
cotton ecosystems. Their method was implemented with good stability and achieved 90% 
accuracy. Using ANN, random forest (RF), and support vector machine (SVM) methods, 
Patil et al. (2017) executed a comparative analysis for identifying potato disease images. 
In their experiments, the RF realized an accuracy of 79%, the SVM achieved an accuracy 
of 84%, and the ANN gained the highest accuracy of 92%. Although impressive results are 
reported in the literature, the conventional ML methods also have some demerits, such as 
the dependence on hand-crafted features, complicated image processing procedures, and 
low robustness. Recently, a novel ML technology named deep learning (DL), explicitly 
convolutional neural network (CNN), has been introduced to address the most challenging 
tasks associated with image identification and classification (Junde et  al. 2021; Pattnaik 
et  al. 2020; Cristin et  al. 2020; Shrivastava et  al. 2019). It has also been applied in the 
field of plant disease recognition. For example, using 2250 potato leaf images on the Plant-
Village dataset, Al-Amin et  al. (2019) trained a CNN model to identify different potato 
diseases. Their model realized the best recognition accuracy of 98.33%. By applying the 
method of transfer learning (TL), Islam et al. (2019) recognized three categories of potato 
leaf images, including 1000 late blight leaves, 1000 early blight leaves, and 152 normal 
leaves. Their experimental results revealed that TL outperformed the compared methods 
and they reached a 99.43% test accuracy with a 4:1 ratio for splitting the training and test 
sets. Marino et al. (2019b) inferred a CNN model to locate the regions of potato defects, 
which is realized by a heat map output. They performed the classification of potato defects 
and realized an average F1-score of 0.94. Besides, applying an ensemble CNN model, 
Nanni et al. (2020) performed the detection of plant insect pests and attained an advanced 
accuracy of 92.43%. Based on the squeeze-and-excitation (SE) MobileNet, Chen et  al. 
(2021b) proposed a method to identify paddy diseases and they attained an average identi-
fication accuracy of 99.78% for recognizing paddy disease types on the publicly accessible 
dataset, etc. Generally speaking, there are two varieties of DL methods, including strongly 
supervised and weakly-supervised approaches for crop disease recognition. The strongly-
supervised method primarily adopts object detection techniques based on more manually-
annotated information like coordinate data, bounding boxes, and crucial points of the 
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target objects. Undoubtedly, this approach is tedious and labor-intensive to gain numerous 
annotation data for training models. Instead, the other alternative approach is a weakly-
supervised scheme, which only requests the label information of images, e.g., the plant 
disease images with the same disease type are stored in the same folder, and the detailed 
annotation information is not needed. Therefore, more and more research has focused on 
fine-grained image classification using a weakly-supervised learning strategy, which is also 
adopted in our work. On another front, despite reasonably good findings reported in the 
literature, deep CNN (DCNN) based methods need a great number of annotated samples 
to train the model, which poses a challenging problem for DCNN models. Particularly, the 
great volume of deep CNN models also limits the portable device deployment for plant dis-
ease identification models than can run offline in practical applications. As a consequence, 
this study puts forward a lightweight network architecture for recognizing potato diseases. 
The pre-trained MobileNet-V2 was chosen as the basis feature extractor of the network, and 
to enhance the learning ability of minute plant lesion characteristics, we modified the clas-
sical MobileNet-V2 architecture. The atrous convolution along with the SPP module was 
incorporated into the network, which was followed by a hybrid attention module includ-
ing sequential channel-wise attention and spatial attention mechanisms. In this manner, the 
features of inter-channel dependencies and spatial points are grasped, thereby improving 
the accuracy of the model. Overall, our work makes the following specific contributions:

• A lightweight MobS_Net model was proposed for recognizing potato plant diseases 
with an accuracy of 97.73%, and it attained increasing effectiveness compared with 
other state-of-the-art methods.

• The traditional MobileNet-V2 was modified and the atrous SPP was incorporated into 
the pre-trained network, which was connected by a hybrid attention mechanism for 
improving the capability of feature extraction.

• We enhanced the Focal-Loss (FL) function to make it address multi-classification tasks. 
To alleviate the imbalance of data problems and make the model keep more attention to 
positive samples, we utilized the enhanced Focal-Loss (EFL) function to substitute the 
traditional Cross-Entropy one.

The remainder of this writing is organized below. Section 2 introduces the used materi-
als and the proposed approaches. This section importantly discusses the methodology. Sec-
tion 3 dedicates to the experimental analysis, and extensive experiments are performed in 
this section along with an ablation study. Section 4 concludes this paper with a summary 
and specific recommendations for further work.

2  Materials and methods

2.1  Materials

We have collected the materials from diverse sources and many images are derived from 
the open-access dataset of the 2018 AI Challenger Contest (www. chall enger. ai, AI data-
set), which is a wide acquisition of plant leaf images employed for ML algorithm test of 
plant disease identification. It is essential to emphasize that the potato plant leaf images 
of this dataset are sourced from the PlantVillage repository, where the samples are taken 
under controlled conditions, both in background and brightness. This potato image 

http://www.challenger.ai
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dataset contains 3276 potato leaf images categorized into five classes: early blight fun-
gus serious, early blight fungus general, late blight fungus serious, late blight fungus 
general, and health. In other terms, the species is composed of several disease types and 
a healthy category, and each disease type includes two varieties of severity levels such 
as serious and general types. Additionally, the other images are from the local dataset, 
which is collected under practical field wild scenarios with complicated backgrounds 
and uneven lighting intensities. Including 363 healthy samples, 207 early blight sam-
ples, 109 late blight samples, and 133 potato virus disease samples, a total of 812 image 
samples are collected in this local dataset. Note that these images have a wide variety, 
which means that some of the images taken have less noise background, while others 
have high noise interference. The potato plant images belonging to the same disease 
type are stored in the same folder. Only the category information is labeled for each 
folder, and the detailed annotation data are not required by the weakly-supervised meth-
ods. By this means, the sample dataset is formed and employed for the test of potato 
disease recognition. Figure 1 shows the partial sample images, and the details of these 
samples are summarized in Table 1.

1. Early blight(local) 2. Early serious 3. Late general 4. Late serious

1. Early general (AI)  2. Early serious 3. Late general 4. Late serious

(a) Open-access PlantVillage dataset. (b) Potato disease sample images.

Fig. 1  The samples of plant disease images

Table 1  The details of the dataset

Plant disease types No. of samples

No. of origi-
nal images

No. of training and 
validation images

No. of augmented training 
and validation samples

No. of test-
ing samples

Potato healthy 1634 1430 1430 204
Early_blight 207 200 1000 7
Early blight fungus serious 583 510 1000 73
Early blight fungus general 232 203 1000 29
Late blight fungus serious 510 446 1000 64
Late blight fungus general 287 251 1000 36
Total 3246 2840 5430 406
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2.2  Related work

2.2.1  MobileNet‑V2

Mobile-nets, which can be deployed on portable devices for image recognition and 
classification, is a series of lightweight healthy depending on the depth-wise separa-
ble convolution (DSC) and streamlined structure (Sifre and Mallat 2014). Among them, 
DSC splits a standard convolution into a depth-wise convolution (DC) and a point-wise 
convolution (PC), respectively. DC executes the convolution operation on each channel 
with one filter for input maps, and PC performs the 1 × 1 convolving on the output of 
DC. The formulas of DC and PC are calculated in Eqs. (1, 2), respectively.

where H and W separately stand for the height and width of the input feature map, θ is the 
weights of filters, (i, j) index position of input x. By this means, DC does not modify the 
channel number and PC unifies the outputs of the DC, as expressed in Eq. (3).

Consequently, the output results of DSC can be gained, and in addition to DSC, 
MobileNets also embed batch normalization (BN) behind the convolution layer to alle-
viate the problem of disappearing gradient in the back-propagation (BP) procedure. On 
the ground of this, MobileNet V2 (Sandler et al. 2018) introduces the concepts of linear 
bottleneck framework along with inverted residual block to address the risk of vanishing 
gradients and attains some advancement over V1.

2.2.2  Atrous spatial pyramid pooling

Spatial pyramid pooling (or SPP in short) (He et  al. 2015a) is a pooling method that 
maps local characteristics to diverse dimension spaces and merges them. Except for 
generating fixed-size feature vectors, SPP can make the CNN architecture adapt the 
image input with different dimensions and extract multi-scale feature information of 
plant diseases or pests. The module of SPP accepts features extracted from the backbone 
network and executes convolution operations at multiple scales for extracting global 
contextual information. Suppose w and h separately represent the width and height of 
an input feature map, and thus with a G × G grid size of SPP, the size of the convolu-
tion kernel represented by f = fh = fw can be computed using fh = [h/G] and fw = [w/G], 
where [·] symbolizes the ceiling operation. However, because of increasing parameters 
and computational loads, the convolution kernel cannot be as large as desired, and the 
normal convolution kernel has the demerit that the spatial resolution of the feature map 
is halved at each step. Therefore, atrous SPP was designed to alleviate this challenge 
and the hyper-parameter of rate r = 2 was set for the atrous convolution. Compared with 

(1)DC(�, x)(i,j) =

W∑

w=0

H∑

h=0

�(w,h) ⋅ x(i+w,j+h)

(2)PC(�, x)(i,j) =

K∑

k=0

�k ⋅ x(i,j),

(3)DSC(�p, �d, y)(i,j) = PC(i,j)(�p,DC(i,j)(�d, y))
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traditional SPP, the atrous SPP increases receptive fields of convolution while remain-
ing the same computational cost (Fig. 2).

2.2.3  Channel‑wise and spatial attention

Similar to the human visual attention mechanism, the attention module in deep learning 
can help the model focus on useful features while suppressing unwanted information. For 
this purpose, researchers have introduced many attention mechanisms, which can be clas-
sified as channel-wise attention (e.g. SE-block) (Hu et al. 2018), spatial attention (Wang 
et al. 2019), time attention mechanisms (Woo et al. 2018), etc. Among them, channel-wise 
attention is prominent in capturing the desirable objects in multi-scale feature maps while 
spatial attention is positive in locating the object regions in feature maps. In this study, 
unlike a single attention network such as channel-wise or spatial attention networks used in 
recent research, we incorporated a hybrid attention mechanism that combined the merits of 
channel-wise or spatial attention into the plant disease identification model.

Suppose a feature map f ∈ RW×H×C is input into the attention module, the channel-wise 
attention shrinks the feature map using a global average pooling (GAP) to form a statistic 
z, and thus an excitation operation is executed to grasp the features of channel dependency 
with the information accumulated in the shrinking phase, as calculated in Eq. (4).

where σ symbolizes the Sigmoid function, δ is the ReLU function (He et  al. 2015b), 
W2 ∈  RC×c/r, W1 ∈  R(c/r)×C, and r is a hyper-parameter of reduction ratio. In particular, W1 
and W2 are inferred by two completely linked layers around the non-linearity, and thus the 
results of the channel-wise attention module can be gained through rescaling uc using the 
activations s:

where 
[
x̃1, x̃2,⋯ , x̃c

]
 indicates the output X̃ . Subsequently, the spatial attention module exe-

cutes the pooling for the input feature map, thereby gaining the spatial attention map. The 
formula is expressed in

(4)s = Fex(W, z) = �(g(W, z)) = �
(
W2�

(
W1z

))
,

(5)x̃c = Fscale

(
sc, uc

)
= uc ⋅ sc

Fig. 2  The structure of Atrous 
SPP
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where GMP and GAP denote the global maximum pooling and global average pooling, 
respectively. c7×7 implies a 7 × 7 convoluting. After that, the channel-wise attention (CWA 
) and spatial attention (SPA) is concatenated using a sequential cascade manner in our net-
work, as written by

In Eq. (7), f denotes the input feature map, and * symbolizes a dot product operation.

2.3  Proposed approach

2.3.1  MobS_Net

To the best of our knowledge, the DL-based models, which usually involve a great num-
ber of parameters and have large volumes, require big computational memories for train-
ing models. Therefore, they are not suited to be deployed in mobile phone applications 
because of the limited capacities and computation capability of mobile smartphones. In 
this study, we select the lightweight CNNs as the backbone network, and the MobileNet-
V2 is selected as the backbone extractor in our model for recognizing plant disease types. 
To improve the learning capability of minute plant disease features, we altered the classi-
cal architecture of the MobileNet-V2 using the fine-tuning approach conducted by transfer 
learning. The atrous convolution along with the SPP module was embedded into the pre-
trained network, which was followed by a hybrid attention mechanism containing channel-
wise and spatial attention submodules to efficiently extract high-dimensional features of 
plant disease images.

More specifically, the atrous convolution layer designed in this study consisted of 512 
convolution kernels with the size of 3 × 3, and the atrous rate was assigned as r = 2, which 
was used to increase the convolutional receptive fields. Then, following the BN layer for 
alleviating the vanishing gradient problem, the SPP module was integrated into the net-
work to generate fixed-size feature vectors and make the CNN adapt to the input images 
with different sizes, thereby extracting multiple-scale features of images efficiently. Other 
than that, a hybrid attention mechanism that concatenated channel-wise and spatial atten-
tion in a cascade manner was embedded into the network, which makes the network infer 
the interdependence between channels and the importance of spatial points for intermediate 
features. Ultimately, the completely linked (CL) layer was substituted by a GAP layer, and 
a new CL Softmax layer with the actual number of classes was embedded as the classifica-
tion layer of the network. By doing this, the newly formed network, which we termed the 
MobS_Net, was utilized to execute the task of potato disease recognition. It is noteworthy 
that the initial parameters of the network were injected by the following (He et al. 2015b).

Figure  3 portrays the network architecture of the proposed MobS_Net, where 
MobileNet-V2 pre-trained on ImageNet is utilized as the bottom convolution layers, and 
the atrous SPP module is incorporated into the network for multi-scale feature extrac-
tion. Plus, a hybrid attention module comprised of channel-wise and spatial attention is 
introduced into the network to maximize the reuse of inter-channel relations and infer the 
importance of spatial points, thereby recalibrating the channel-wise and spatial features. 
In this manner, we aim to realize a trade-off between the memory requirement and rec-
ognition accuracy in the CNN model, i.e., the model volume was compressed while the 

(6)FS

(
X̃
)
= sigmoid

(
c7×7

([
GMP

(
X̃
)
;GAP

(
X̃
)]))

,

(7)Fatt = CWA(f ) + SPA(f ) = FC(f ) ∗ f + f ∗ Fs(f )
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accuracy was improved as much as possible. Table 2 summarizes the relevant parameters 
of the MobS_Net.

2.3.2  Loss function

Generally speaking, the Cross-Entropy (CE) loss function is frequently employed in CNN 
models, and the formula of CE loss can be expressed by

Fig. 3  The structure of MobS_Net

Table 2  The major parameters of MobS_Net

Types (blocks) Input sizes Extension 
factors

Output sizes Repeat times Strides

Inputs 224 × 224 × 3 – 224 × 224 × 3 1 –
Conv1_pad 224 × 224 × 3 – 225 × 225 × 3 1 –
Conv1:Conv2d 225 × 225 × 3 – 112 × 112 × 32 1 2
Bottleneck 112 × 112 × 32 1 112 × 112 × 16 1 1
Bottleneck 112 × 112 × 16 6 56 × 56 × 24 2 2
Bottleneck 56 × 56 × 24 6 28 × 28 × 32 3 2
Bottleneck 28 × 28 × 32 6 14 × 14 × 64 4 2
Bottleneck 14 × 14 × 64 6 14 × 14 × 96 3 1
Bottleneck 14 × 14 × 96 6 7 × 7 × 160 3 2
Bottleneck 7 × 7 × 160 6 7 × 7 × 320 1 1
Conv1:Conv2d 7 × 7 × 320 – 7 × 7 × 1280 1 1
Atrous Conv 7 × 7 × 1280 – 7 × 7 × 512 1 1
BatchNormalization 7 × 7 × 512 – 7 × 7 × 512 1 –
PyramidPoolingModule 7 × 7 × 512 – 7 × 7 × 516 1 –
Channel-wise attention 7 × 7 × 512 – 7 × 7 × 516 1 –
Spatial attention 7 × 7 × 516 – 7 × 7 × 516 1 –
Multiply layer: Multiply 7 × 7 × 516, 7 × 7 × 1 – 7 × 7 × 516 1 –
global avg pooling 7 × 7 × 516 – 516 1 –
Visualized layer: dense 516 – k 1 1
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where C signifies the class number, and yk is an indicator variable. If k is the same as the 
true class of the sample, then yk = 1, otherwise yk = 0. pk denotes the predicted probability 
that the observed sample belongs to class k. Because the class loss weights of positive and 
negative samples are considered the same for the CE loss function, Reference (Lin et al. 
2017) reports an FL function to alleviate this unbalanced sample issue. The formula of the 
FL function is presented in Eq. (9).

where γ symbolizes a hyper-parameter of the modulating factor, and θk is the weighting 
factor when the class is 1. It is worth pointing out that the classical FL function is devel-
oped to handle the tasks of binary classification in object detection. However, the recogni-
tion of plant diseases belongs to a multi-classification task, and thus we modified the FL 
function and employed the enhanced FL (EFL) in place of the traditional CE function in 
the plant disease recognition model, as expressed in Eq. (10).

where x denotes the sample.

3  Experimental analysis and results

3.1  Experimental setup

Apart from the image pre-processing task performed by the software of Photoshop, the 
major algorithms were executed by Python 3.6, where the frequently-used libraries like 
OpenCV3, Tensorflow, and Keras were employed and accelerated by GPU. The experi-
mental hardware configuration includes GeForce RTX 2080 Graphics Card, 64 GB RAM, 
and E5-2620V4 CPU, which are utilized for algorithm operation.

3.2  Model training

As mentioned in Sect. 2.1, the potato leaf disease images are utilized in our experiments. 
Considering the imbalanced samples and the number limitation of sample images, we uti-
lized the data augmentation scheme to enrich the dataset. The commonly-used augmen-
tation methods like color jetting, random rotation, flipping, translation, and other geo-
metric transformation were executed to augment the dataset. Note that color jittering is 

(8)L
(
pk
)
= −

C∑

k=1

yk log
(
pk
)
,

(9)FL
(
pk
)
= −

(
1 − pk

)�
�k log

(
pk
)
,

(10)EFL
(
pk
)
= −

C∑

k=1

�k(1 − p(k|x ))�yk log (p(k))

(11)wk = count(x)∕count(x ∈ k)

(12)yk =

{
1, k = actual_class

0, k ≠ actual_class
,



7994 J. Chen et al.

1 3

altering the contrast, saturation, and brightness of color with a random adjustment vari-
able in (0, 3.1), the rotation range is in [0,360°], the translation range is in ± 20%, and the 
scale is changed from 0.9 to 1.1. Except for preserving some original images to assess the 
effect of the model, the proportion of the sample images randomly assigned to the vali-
dation and training sets was 1:4. Besides, to compare the proposed approach with other 
advanced methods, the five influential deep DCNNs including Xception, VGGNet-19, 
DenseNet-121, ResNet-50, and MobileNet-V2 were chosen as the benchmarks to imple-
ment the comparison experiments. Using transfer learning (TL), the original classification 
layers of the networks were truncated and the new CL layers with Softmax activation func-
tions were embedded into the networks for the classification, where the class number was 
set as the actual number of potato plant disease types.

With this method, the diverse DCNN models were built and the weights were initialized 
with the parameters pre-trained on ImageNet (Russakovsky et al. 2015). The hyper-param-
eters of model training were assigned as a learning rate of 1 ×  10–3, a mini-batch size of 64, 
30 epochs, and a stochastic gradient descent (SGD) optimizer. There is standard measure 
param for image recognition to check the efficiency of the network. These are Accuracy 
(Acc.), Sensitivity (Recall, Rec.), Specificity (Spe.), FPR (false positive rate, Fpr.), and 
F1-Score (F1). The formulas of these evaluation metrics are expressed in Eqs. (13–17).

where TP represents the number of correct recognition for positive samples. FN is the 
reverse, which denotes the number of mistakenly recognized. FP is the number of wrong-
identified samples. TN implies the number of properly-recognized negative samples. 
Table 3 summarizes the training results and the performance of diverse methods is depicted 
in Fig. 4.

From Table 3, it can be visualized that the proposed approach has delivered an increas-
ing performance relative to other advanced methods. After training for 10 and 30 epochs, 
the proposed MobS_Net has attained the training Acc. of 98.63% and 99.87%, respectively. 
Especially, after 30 epochs of training, the proposed approach realizes a validation accu-
racy of 94.57%, which is the top performance of all the algorithms. The crucial explanation 
for the substantial efficiency of the proposed method is that the atrous SPP coupled with 
a hybrid attention mechanism is embedded into the network, which enhances the capabil-
ity to extract multi-dimensional features and maximize the reuse of inter-channel relation 
and spatial point characteristics. Moreover, the TL and enhanced Focal Loss function are 
applied in the model training, which makes the network gain the optimum weights and 

(13)Acc. =
TN + TP

TN + FN + TP + FP

(14)Rec. =
TP

TP + FN

(15)Spe. =
TN

TN + FP

(16)FPR =
FP

TN + FP

(17)F1 =
2TP

2TP + FP + FN
,
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alleviates the problem of data imbalance, thereby improving the performance of the model. 
By comparison, the other methods are single networks and don’t attain the ideal perfor-
mance, although the TL and fine-tuned approach are utilized in model training. Addition-
ally, the running time of the proposed method is 6.30 min, which is the competitive time-
consuming of all the compared methods.

3.3  Ablation study

We implemented the ablation study on our model, where we analyzed the efficacy of 
Atrous SPP and hybrid attention modules on the test dataset of potato disease images. 
In the first ablation experiment, we separately removed the modules of Atrous SPP 
and hybrid attention in the network to investigate the performance of the model train-
ing. We notice a minor decrease in the results of the ablated model, where the valida-
tion accuracy of removing Atrous SPP and hybrid attention modules drop to 92.76% 
(decrease by 1.80%) and 93.67% (decrease by 0.90%), respectively. Although the effec-
tiveness of ablated models is still better than that of the baseline model, it suffers a 
minor decline compared with the proposed architecture of MobS_Net. Therefore, this 
ablation experiment indicates that both the Atrous SPP and attention modules contrib-
ute to the performance gain of the proposed approach, and relatively, removing the 
Atrous SPP has a significant impact on the accuracy compared to the MobS_Net. In 
the second ablation experiment, we evaluate the effect of the optimized loss function in 
the recognition of plant diseases on the potato leaf image dataset. To do so, we substi-
tute the enhanced Focal Loss function with the existing Cross-Entropy (CE) one, and 
we notice a minor decrease in the results of the ablated model, where the validation 
accuracy drops to 92.41% (decrease by 2.16%). This ablation experiment demonstrates 
that the enhanced Focal Loss (EFL) function delivers slightly better results than that of 
the CE loss function used in our model for potato plant disease identification. Table 4 
summarizes the comparison results of ablation experiments.

3.4  Recognition results

Therefore, using the trained model of the MobS_Net, we further performed the identifica-
tion of potato plant diseases on new unseen samples (test set), where unseen samples in 

Table 3  The accuracy of diverse methods

Pre-trained 
models

Training for 10 epochs Training for 30 epochs

Training 
Acc. %

Valida-
tion Acc. 
%

Training 
loss

Valida-
tion loss

Training 
Acc. %

Valida-
tion Acc. 
%

Training 
loss

Valida-
tion loss

Run time 
(min)

Xception 91.99 89.72 2.8887 2.6725 96.25 92.99 1.3123 2.9794 09:16
VGGNet-19 89.07 86.92 0.2787 0.3526 95.02 91.59 0.1346 0.2474 06:17
DenseNet-121 98.61 92.52 0.5956 2.1573 99.86 90.65 0.1652 2.6765 11:03
ResNet-50 94.56 93.46 0.1573 0.1928 98.26 93.93 0.0759 0.1521 06:26
MobileNet-V2 98.06 91.12 0.7973 2.8657 99.72 91.52 0.3204 2.3299 06:24
This study 98.63 91.86 0.4688 2.2855 99.87 94.57 0.1299 1.8525 06:30
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this context indicate potato leaf images that have never been used by the model during the 
training and validation. Figure 5 is the identification results depicted by the Receiver Oper-
ating Characteristic (ROC) curve and confusion matrix. The related measurement metrics 
are summarized in Table 5.

As seen in Fig. 5a, the curves of most classes are close to the upper left corner of the 
figure, which exhibits the satisfied operating points of the ROC curve. Plus, it can be 
also observed from the confusion matrix (Fig. 5b) that MobS_Net has accurately identi-
fied most of the sample images. The sample images in the category of Potato healthy and 
Early_Blight have all been properly identified by the proposed method. For the category 

Fig. 4  The training performance of the models



7997Weakly‑supervised learning method for the recognition of potato…

1 3

of early blight fungus general, 18 samples have been correctly recognized in 29 samples. 
Also, 67 images are properly recognized by the proposed method in 73 early blight fungus 
serious samples, and the accuracy rate reached 98.05%. In summary, a total of 319 images 
have been properly identified in 413 test samples, and the average recognition Acc. attains 
97.33%. The average Rec. and Spe. have also reached no less than 91.99% and 98.39% 
respectively, as presented in Table 5.

Furthermore, the comparative analysis of our experimental results with that of some 
latest literature has been summarized in Table 6, where most of the experimental materi-
als are sourced from the potato leaf images of the PlantVillage dataset. As mentioned 
in Sect.  2.1, the public dataset we tested also comes from the PlantVillage repository, 
which is the same as the materials used by other methods. In addition, we have identified 
some local potato disease images with cluttered backgrounds and uneven illumination 
intensity, which undoubtedly increases the difficulty of potato disease recognition. Nev-
ertheless, a competitive performance has been achieved by our method. The comparison 
results demonstrate the validity of the proposed approach compared with other state-of-
the-art methods.

On the contrary, there are also several misidentified samples, such as 7 misdetections 
in the category of “Early blight fungus general”, which are incorrectly recognized as the 
type of “Early blight fungus serious”. Despite individual misidentifications, most of the 
sample images have been accurately recognized and the misidentifications are primar-
ily the misclassification of disease severity instead of the potato disease types. Conse-
quently, this reveals the proposed MobS_Net has a certain ability to recognize potato 
plant diseases. Figure 6 presents the samples of recognized potato disease types.

As shown in Fig. 6, the samples in the top layer are the raw potato disease images, 
the samples in the middle layer are the disease regions exhibited by visual technology 
of classification activation map (CAM), and the samples in the bottom layer are the 
images recognized by the proposed method. It can be observed from Fig.  6 that the 
recognized classes of most samples are compatible with their actual disease types. For 
example, the real disease type of Fig. 6a is early serious and this sample is accurately 
identified by the proposed method with a probability of 0.8513. Likewise, the sample 
of Fig.  6b is properly identified by the MobS_Net with a high probability of 0.9052. 
The other samples, such as Fig. 6d and e, have also been properly identified by the pro-
posed method. Despite the impressive performance, there are also some misidentified 
instances, including the sample of Fig. 6c, which belongs to the category “potato early 
general” but is wrong classified as category “potato early serious”. A certain ambiguity 
for the severity division of plant disease images may result in this issue. Additionally, 
the irregular lightweight intensities, which affect the feature extraction of plant disease 
images, can lead to the misidentification of plant diseases too. Though individual sam-
ples were incorrectly recognized, most of the samples have been correctly identified 
by the proposed approach and the misidentified samples are primarily for the severity 
level rather than the detailed disease types. Moreover, the predicted probability of misi-
dentification is also relatively low, such as the 0.3609 of the sample in Fig. 6c. Conse-
quently, depending upon the experimental findings, it can be assumed that the proposed 
approach has successfully performed the identification of potato plant diseases and can 
also be applied to other domains.
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4  Conclusions

Various plant diseases can result in a disastrous impact on crop growth and food secu-
rity. To guarantee an adequate supply of foods, the timely and effective identification of 
plant diseases is of great realistic significance. The latest development in DL has deliv-
ered an impressive alternative approach for the automatic identification of plant diseases 
instead of the traditional manual approaches. Among them, DCNNs are the most popu-
lar methods because they can extract features of images automatically and implement 
the classification. However, due to the great number of parameters and large volumes, 
the classical DCNNs are not suitable to be deployed on portable device applications 
and require a large number of annotated images to train models, which is undoubtedly 
a challenging problem. To this end, this study proposes a novel lightweight network 
architecture named MobS_Net and uses transfer learning to implement the recogni-
tion of potato plant diseases. The pre-trained MobileNet-V2 was chosen as the back-
bone network of the model, and to enhance the learning ability of minute plant lesion 
characteristics, we altered the classical architecture of MobileNet-V2 by incorporating 

Table 4  The comparison results of ablation experiments

Ablation 
approach

Training for 10 epochs Training for 30 epochs

Training 
Acc.%

Validation 
Acc. %

Train-
ing 
loss

Valida-
tion 
loss

Training 
Acc. %

Validation 
Acc. %

Train-
ing 
loss

Valida-
tion 
loss

Run time (min)

Delete 
atrous 
SPP

98.83 91.86 0.4150 1.3623 99.93 92.76 0.1152 2.0425 06:12

Delete 
attention

99.67 91.52 0.2867 2.6520 99.87 93.67 0.1045 2.8042 06:02

CE loss 
function

87.17 90.50 0.4896 0.4110 94.86 92.41 0.2822 0.2919 05:23

This study 98.63 91.86 0.4688 2.2855 99.87 94.57 0.1299 1.8525 06:30

Fig. 5  The visualization of the tested results
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Table 5  The metrics assessment for the recognition results

ID Potato plant types Identified 
sample 
no.

Correct 
sample 
no.

Acc. (%) Rec. (%) Spe. (%) FPR F1 (%)

1 Potato healthy 204 204 99.27 100.00 98.55 0.01442 99.27
2 Early_blight 7 7 100.00 100.00 100.00 0.00000 100.00

Early blight fungus serious 73 67 98.05 91.78 99.41 0.0059 94.36
3 Early blight fungus general 29 18 95.87 62.07 98.43 0.01566 67.92
5 Late blight fungus serious 64 61 94.66 95.31 94.54 0.05459 84.72
6 Late blight fungus general 36 22 96.12 62.85 99.20 0.0079 73.33
 − Average  −  − 97.33 91.99 98.39 0.0160 91.99

Table 6  Comparison with recent work

ID References Year Description Accuracy (%)

1 Athanikar and Badar (2016) 2016 K-means clustering + image 
segmentation + backpropaga-
tion ANN

92.00

2 El Massi et al. (2017) 2017 K-means clustering + image 
segmentation + feed-forward 
ANN

95.30

3 Khalifa et al. (2021) 2019 Deep CNN 94.80
4 Sholihati et al. (2020) 2020 VGGNet-16 91.31
5 Barman et al. (2020) 2020 Self-build CNN (SBCNN) 96.98
6 This study 2021 MobOca_Net 97.73

Fig. 6  The samples of recognized potato disease types
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the atrous convolution along with the SPP module into the network. Further, a hybrid 
attention module containing the channel-wise attention and spatial attention submod-
ules sequentially was embedded into the network to grasp the features of inter-channel 
dependencies and the significance of spatial points. Experimental findings demonstrate 
the effectiveness of the proposed method. In future development, we want to assign the 
model on mobile devices to monitor broader ranges of crop disease information. Moreo-
ver, we would like to transplant the model to other domains like online failure detection, 
computer-aided diagnosis, and virtual defect assessment, etc.
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