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Abstract
In this paper, we establish a novel q-rung orthopair fuzzy (q-ROF) multi-attribute deci-
sion making (MADM) model on the basis of the proposed q-ROF interactive Hamacher 
weighted adjustable power average (q-ROFIHWAPA) and q-ROF interactive Hamacher 
weighted coordinated Heronian means (HMs), which (1) can reflect the correlations among 
multiple attributes; (2) weakens the impacts of the extreme evaluation values more rea-
sonably; (3) considers the interactions between the membership degree (MD) and non-
membership degree (N-MD) of different q-ROF numbers (q-ROFNs); (4) has the char-
acteristic of generality (It can generate different methods by different operations). Firstly, 
the q-ROF interactive Hamacher operations, improved score function and new q-ROF 
entropy (q-ROFE) formula, which are the necessary raw materials for the implementation 
of MADM, are presented. Secondly, we introduce the adjustable power average (APA) 
and its weight form (WAPA) to remedy the deficiencies of the classical power averages 
(PAs). Afterwards we extend the WAPA to q-ROF circumstance and propose the q-ROF 
interactive Hamacher WAPA (q-ROFIHWAPA), and its basic properties are analyzed. 
Further, the entropy weight fitting method is presented to determine the parameter car-
ried by the q-ROFIHWAPA. Thirdly, inspired by the evolutionary process of Bonferroni 
means (BMs), we define the weighted coordinated HM (WCHM) and weighted geomet-
ric coordinated HM (WGCHM) based on the traditional HMs, respectively, which elimi-
nate the redundancy of the dual generalized weighted BM (DGWBM) and dual general-
ized weighted Bonferroni geometric mean (DGWBGM), i.e., the case of 𝜏

1
> 𝜏

2
> ⋯ > 𝜏

n
. 

Then we develop the q-ROF interactive Hamacher WCHM (q-ROFIHWCHM) and q-ROF 
interactive Hamacher WGCHM (q-ROFIHWGCHM) by combining them with the q-ROF 
interactive Hamacher operations, and the common properties and special cases are also 
investigated. Finally, we create a MADM algorithm relied on the q-ROFIHWAPA and 
q-ROFIHWCHM (resp. q-ROFIHWGCHM), and a practical example is introduced to illus-
trate the effectiveness and superiority of the proposed method.
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1  Introduction

MADM is based on the available decision information to rank the limited alternatives in a 
certain way. For practical MADM problems, it is often difficult for decision makers (DMs) 
to quantify their views with crisp values. In 1965, Zadeh (1965) introduced the concept 
of fuzzy set (FS) on the basis of classical set, which vividly characterizes the fuzziness of 
attributes and opens a new era of fuzzy MADM. However, with regard to any fixed element 
in the universe of discourse, FS can only rely on the membership degree (MD) to indi-
cate its certainty, which obviously does not give a complete picture of the fuzzy problem. 
In view of this, Atanassov and Yager improved the FS and proposed the intuitionistic fuzzy 
set (IFS) (Atanassov 1986), Pythagorean fuzzy set (PFS) (Yager and Abbasov 2013; Yager 
2014) and q-ROF set (q-ROFS) (Yager 2017; Yager and Alajlan 2017) in succession by 
adding the parts of non-membership degree (N-MD) and hesitancy degree (HD). As a mat-
ter of fact, q-ROFS is a generalized concept, and IFS and PFS are its special cases (when 
q = 1 and q = 2 ). For a pair (u, v) separated from q-ROFS (i.e., q-ROFN (Liu and Wang 
2018)), it satisfies the restrictions:0 ≤ u, v ≤ 1 and uq + vq ≤ 1(q ≥ 1) , and thus the larger 
q , the wider the space of fuzzy information it delineates. Next, we give an overview on 
q-ROFS from these aspects: information measures, decision making techniques, the funda-
mentals of analysis and feasible extensions.

(1)	 Information measures Peng and Liu (2019) gave the axiomatic definitions of several 
information measures (distance measure, similarity measure, entropy measure and 
inclusion measure) for q-ROFSs, a series of corresponding calculation formulas and 
conversion relations among them, and then applied the proposed similarity measure 
to pattern recognition, clustering analysis and medical diagnosis. Tang et al. (2020) 
introduced the possibility degree measure for q-ROFNs, which is the basis of ranking 
q-ROFNs. Khan et al. (2021a, b) explored the knowledge measures for q-ROFS by 
utilizing inverse tangent function and inverse cosine function.

(2)	 Decision making techniques Usually, we can refine the decision making techniques 
into the following three divisions: classical methods, means and preference relations 
(PRs).

(1)	 Classical methods Wang and Li (2018) presented the q-ROF TOmada de Decisao 
Interativa e Multicritevio (TODIM) method to rank the green suppliers. Based on 
the proposed distance measure, Pinar and Boran (2020) developed two independ-
ent group decision making (GDM) algorithms, i.e., q-ROF Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS) and q-ROF elimination 
and choice translating reality (ELECTRE), and then applied them to selecting the 
best supplier for a construction company. Gong et al. (2020) explored the multi-
attribute border approximation area comparison (MABAC) method to evaluate 
the teaching quality of universities. The q-ROF preference ranking organization 
method for enrichment of evaluations (PROMETHEE) method was successfully 
applied to selecting the suitable contractor for a construction company (Akram 
2021). Appropriate region for carrying out mass vaccination campaigns against 
COVID-19 was chosen by q-ROF robust Vlsekriterijumska Optimizacija I Kom-
promisno Resenje (VIKOR) method (Khan et al. 2021c). Alkan and Kahraman 
(2021) also proposed two novel q-ROF TOPSIS methods to evaluate government 
strategies against COVID-19. Relied on the q-ROF environment, Arya and Kumar 
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(2021) consolidated the canonical TODIM and VIKOR methods into a q-ROF 
TODIM-VIKOR method and employed it to choose the most potential supplier 
of medical consumption products.

(2)	 Means Under the q-ROF context the weighted averages and weighted geomet-
rics are established on different operations, such as algebraic operations (Liu 
and Wang 2018), Hamacher operations (Darko and Liang 2020), Dombi opera-
tions (Jana et al. 2019) and neutral operations (Garg and Chen 2020). Peng et al. 
(2018) proposed the q-ROF weighted exponential aggregation (q-ROFWEA) with 
the help of exponential operational law. Du (2019) presented two generalized 
weighted averages, which are called q-ROF weighted power means. By combin-
ing the sine trigonometric operational law (STOL) with a sequence of weighted 
averages and weighted geometrics, Garg (2020) derived the q-ROF sine trigono-
metric weighted averages and weighted geometrics. Zeng et al. (2021) improved 
the induced ordered weighted logarithmic averaging distance (IOWLAD) based 
on q-ROF environment. Furthermore, in order to reflect the correlations between 
attributes, the typical correlation means, such as BM (Bonferroni 1950), HMs 
(Yu and Wu 2012; Yu 2013) and Maclaurin symmetric mean (MSM) (Maclaurin 
1729), have been applied to integrating q-ROF preference information with suc-
cess (Darko and Liang 2020; Liu and Wang 2019; Wei et al. 2018; Yang et al. 
2020; Liu et al. 2020).

(3)	 PRs Zhang et al. (2019) defined the q-ROF preference relation (q-ROFPR) and 
additive consistent q-ROFPR, and then constructed two goal programming mod-
els to obtain the priority weight vectors from individual q-ROFPR and group 
q-ROFPRs; soon afterwards, Zhang et al. (2020) defined the multiplicative con-
sistent q-ROFPR, proposed two optimization models to attain the priority weight 
vectors from individual q-ROFPR and group q-ROFPRs, provided the methods 
for repairing the inconsistent q-ROFPRs and for generating the weight vector of 
DMs and finally established a GDM algorithm based on them. Li et al. (2019) 
developed a range of PRs relied on the q-ROF circumstance, including q-ROFPR, 
additive consistent q-ROFPR, multiplicative consistent q-ROFPR, incomplete 
q-ROFPR, additive consistent incomplete q-ROFPR, multiplicative consistent 
incomplete q-ROFPR and acceptable incomplete q-ROFPR. Zhang and Chen 
(2021a, b) presented quite a few optimization methods to dispose of incomplete 
and unacceptable (additive and multiplicative) consistent q-ROFPRs and then 
established the corresponding GDM algorithms.

(3)	 The fundamentals of analysis Gao et al. (2019, 2020) created the q-ROF calculus sys-
tem, which contains derivative, differential, indefinite and additive definite integrals, 
etc. Shu et al. (2019) constructed the structure of q-ROF additive and multiplicative 
double integrals, including their definitions, integrable criteria and fundamental proper-
ties; subsequently, Ai et al. (2021) extended the q-ROF additive double integral to the 
framework of Archimedean t-norms and t-conorms (ATT). Inspired by the membership 
and non-membership functions of q-ROF function (q-ROFF) in Gao et al. (2019, 2020), 
Shu et al. (2019), Ai et al. (2021), Ye et al. (2019) proposed the concept of q-rung 
orthopair single variable fuzzy function (q-ROSVFF) and investigated the differential 
calculus established on it.

(4)	 Feasible extensions: Joshi et al. (2018) and Wang et al. (2019a) developed the interval 
valued q-ROFS (IVq-ROFS) or q-rung interval-valued orthopair fuzzy set (q-RIVOFS) 
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by extending the MD and N-MD into interval numbers within [0, 1]. To adapt the situa-
tion that DMs describe their preferences by linguistic terms, the different linguistic con-
texts were introduced, such as q-rung picture linguistic set (q-RPLS) (Li et al. 2018), 
linguistic q-ROFS (Lq-ROFS) (Liu and Liu 2019), q-ROF linguistic set (q-ROFLS) 
(Wang et al. 2019b) and probabilistic linguistic q-ROFS (PLq-ROFS) (Liu and Huang 
2020). Xu et al. (2018) presented the q-rung dual hesitant fuzzy set (q-RDHFS) to 
indicate the DMs’ hesitation.

T-norm (TN) and T-conorm (TC) are the necessary ingredients to derive the general-
ized union and intersection for q-ROFNs. As the generalization of algebraic and Ein-
stein TN and TC, Hamacher TN and TC are more elastic. For this reason, Liu and Wang 
(2019) and Darko and Liang (2020) introduced the Hamacher sum ⊕ and product ⊗ for 
q-ROFNs with the help of them. However, it is easy to see that these two operations 
have the following defects: (1) If Q1 = ⟨u1, v1⟩

�
v1 ≠ 0

�
 and Q2 = ⟨u2, 0⟩ , then by addi-

tion operation, we have vQ1⊕Q2
= 0, which implies that v1 doesn’t work at all and that the 

operational regulation parameter � has no effect on vQ1⊕Q2
 ; (2) If Q1 = ⟨u1, v1⟩

�
u1 ≠ 0

�
 

and Q2 = ⟨0, v2⟩, then by multiplication operation, we get uQ1⊗Q2
= 0, which indicates 

that u1 is invalid and the parameter � is independent of uQ1⊗Q2
 ; (3) Neither of these two 

operations considers the situation where there exists a certain correction between the 
MD and N-MD of different q-ROFNs, which needs to be reflected by their interactions. 
In view of these shortcomings, we extend the interactive Hamacher operations for IFNs 
(Garg 2016) and PFNs (Wang et al. 2021) into the interactive Hamacher operations for 
q-ROFNs.

The PA was first introduced by Yager (2001), whose most striking feature is to 
endow each data with certain credibility by the support and strengthening among the 
input arguments, so as to highlight the role of the data close to the overall information 
and weaken the influence of the data deviating from the overall information. To be spe-
cific, if ai is close to the overall information, its total support T(ai) from other arguments 
is large, and thus ai obtain high credibility; otherwise, such data should be evaluated a 
small weight. After that, Zhou et al. (2012) put forward the generalized PA (GPA) by 
combining the PA with the generalized mean (Dyckhoff and Pedrycz 1984). It should 
be made clear that when given a set of input arguments, the GPA (Zhou et al. 2012) can 
only alter the aggregation result but not the nonlinear weight of each data, and thus it 
doesn’t reflect the most essential characteristic of the PA. Furthermore, we note that the 
classical weighted PA (WPA) does not satisfy reducibility. For these reasons, we pro-
pose the APA and its weight form (WAPA). Subsequently, employing the q-ROF inter-
active Hamacher operations on the WAPA, we present the q-ROFIHWAPA. Besides, we 
also propose an approach to determine the parameter carried by the q-ROFIHWAPA, 
which is called entropy weight fitting method. Incidentally, by this means the weighted 
nonlinear weights derived from the q-ROFIHWAPA are more objective.

The BM (Bonferroni 1950), whose typical feature is to consider the correlations 
between any two arguments, was introduced by Bonferroni. Also, Xia et  al. (2013) 
acquired its geometric form, i.e., geometric BM (GeoBM). Further, Beliakov et  al. 
(2010) expanded the BM to the generalized BM (GBM), which reflects the correlations 
among any three arguments. Then Xia et  al. (2012) pointed out that the GBM don’t 
consider the case where i = j or j = k or i = k , and it doesn’t stress the importance of 
each argument. To this end, Xia et  al. (2012) proposed the generalized weighted BM 
(GWBM) to revise it, as well as introducing the generalized weighted Bonferroni 
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geometric mean (GWBGM). Afterwards Zhang et  al. (2017) developed the dual gen-
eralized weighted BM (DGWBM) and dual generalized weighted Bonferroni geomet-
ric mean (DGWBGM), which can reflect the correlations among different numbers of 
attributes by embedding different numbers of parameters to R . Stimulated by the above 
development process, in this paper, we propose the WCHM and WGCHM on the basis 
of the HM and geometric HM (GHM), respectively, which can eliminate the redundancy 
of the DGWBM and DGWBGM, i.e., the case of 𝜏1 > 𝜏2 > ⋯ > 𝜏n. Then we extend 
the WCHM and WGCHM to q-ROF environment and propose the q-ROFIHWCHM and 
q-ROFIHWGCHM based on the interactive Hamacher operation rules.

Our ultimate goal is to establish a MADM algorithm relied on the q-ROFIHWAPA 
and q-ROFIHWCHM (resp. q-ROFIHWGCHM). More precisely, before aggregating all 
the individual attribute values of the alternatives into the overall attribute values with the 
q-ROFIHWCHM or q-ROFIHWGCHM, the weight of each data has been replaced with 
the weighted nonlinear weight carried by the q-ROFIHWAPA.

The rest of this paper is arranged as follows. In Sect. 2, some basic definitions involved 
in q-ROF environment are improved, such as Hamacher operations (Darko and Liang 2020; 
Liu and Wang 2019), score functions (Liu and Wang 2018; Li et al. 2019) and entropy axi-
omatic definition (Peng and Liu 2019). In Sect. 3, the APA and WAPA are defined to rem-
edy the deficiencies of the PA and WPA. Afterwards the q-ROFIHWAPA is introduced, 
and its basic properties are analyzed. Furthermore, a MADM model based on the q-ROFI-
HWAPA and its supporting application example are presented. Finally, the entropy weight 
fitting method is proposed to determine the parameter carried by the q-ROFIHWAPA. In 
Sect. 4, the WCHM and WGCHM are defined to eliminate the redundancy of the DGWBM 
and DGWBGM. Then the q-ROFIHWCHM and q-ROFIHWGCHM are developed, and 
their related properties and special cases are also explored. In Sects. 5 and 6, a novel q-
ROF MADM algorithm is devised by using the q-ROFIHWAPA and q-ROFIHWCHM 
(resp. q-ROFIHWGCHM), and an application example is presented to illustrate the effec-
tiveness and superiority of the introduced algorithm. Section 7 gives some conclusions.

2 � Preliminaries

In this section, we focus mainly on improving some basic definitions involved in q-ROF 
setting, including Hamacher operations, score functions and entropy axiomatic definition.

2.1 � Interactive Hamacher operation rules for q‑ROFNs

Definition 2.1  Yager (2017), Yager and Alajlan (2017).
Let X is a finite universe of discourse, a q-ROFS A on X is characterized as:

where uA ∶ X → [0, 1] and vA ∶ X → [0, 1] , for any x ∈ X,uA(x) and vA(x) repre-
sent the MD and N-MD of the element x to A , respectively, with the condition (
uA(x)

)q
+
(
vA(x)

)q
≤ 1 (q ≥ 1) . Besides,�A(x) = 

(
1 −

(
uA(x)

)q
−
(
vA(x)

)q) 1

q is called the 
HD of the element x to A.

For convenience,Q = ⟨u, v⟩ is called a q-ROFN (Liu and Wang 2018), with the condi-
tions:0 ≤ u, v ≤ 1, uq + vq ≤ 1 (q ≥ 1). Meanwhile, we denote the set of all q-ROFNs as Q.

(1)A =
�⟨x, uA(x), vA(x)⟩�x ∈ X

�
,
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Definition 2.2  Peng and Liu (2019), Liu et al. (2018).
Let Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be two q-ROFNs, the normalized Hamming distance 

between Q1 and Q2 can be defined as follows:

where �1 =
(
1 − u

q

1
− v

q

1

) 1

q and �2 =
(
1 − u

q

2
− v

q

2

) 1

q.
By the Hamacher TN and TC, Liu and Wang (2019) and Darko and Liang (2020) defined the 

generalized union and intersection for q-ROFNs, i.e., q-ROF Hamacher sum ⊕ and product ⊗.

Definition 2.3  Darko and Liang (2020), Liu and Wang (2019).

Let Q = ⟨u, v⟩, Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be three q-ROFNs, and 𝛾 > 0 , the 
Hamacher operations for q-ROFNs are shown as follows:

(1)	 Q1 ⊕ Q2 =

⟨(
u
q

1
+u

q

2
−u

q

1
u
q

2
−(1−𝛾)u

q

1
u
q

2

1−(1−𝛾)u
q

1
u
q

2

) 1

q

,
(

v
q

1
v
q

2

𝛾+(1−𝛾)(vq1+v
q

2
−v

q

1
v
q

2)

) 1

q

⟩
;

(2)	 Q1 ⊗ Q2 =

⟨(
u
q

1
u
q

2

𝛾+(1−𝛾)(uq1+u
q

2
−u

q

1
u
q

2)

) 1

q

,
(

v
q

1
+v

q

2
−v

q

1
v
q

2
−(1−𝛾)v

q

1
v
q

2

1−(1−𝛾)v
q

1
v
q

2

) 1

q

⟩
;

(3)	 𝜆Q =

⟨(
(1+(𝛾−1)uq)𝜆−(1−uq)𝜆

(1+(𝛾−1)uq)𝜆+(𝛾−1)(1−uq)𝜆

) 1

q

,
(

𝛾vq𝜆

(𝛾−1)vq𝜆+(1+(𝛾−1)(1−vq))𝜆

) 1

q

⟩
, 𝜆 > 0;

(4)	 Q𝜆 =

⟨(
𝛾uq𝜆

(𝛾−1)uq𝜆+(1+(𝛾−1)(1−uq))𝜆

) 1

q

,
(

(1+(𝛾−1)vq)𝜆−(1−vq)𝜆

(1+(𝛾−1)vq)𝜆+(𝛾−1)(1−vq)𝜆

) 1

q

⟩
, 𝜆 > 0.

It is worth pointing out that the above operations have several drawbacks:

(1)	 If Q1 = ⟨u1, v1⟩
�
v1 ≠ 0

�
 and Q2 = ⟨u2, 0⟩ , then for any 𝛾 > 0 , according to addition 

operation rule, we have

	   It is clear that v1 doesn’t work at all in this case. That is, if v2 = 0 , no matter what 
value v1 takes, the vQ1⊕Q2

 is always 0. Besides, the parameter � is independent of vQ1⊕Q2
 . 

In other words, the parameter � has no effect on the vQ1⊕Q2
 in this case.

(2)	 If Q1 = ⟨u1, v1⟩
�
u1 ≠ 0

�
 and Q2 = ⟨0, v2⟩ , then for any 𝛾 > 0 , by multiplication opera-

tion rule, we get

	   In this case,u1 is invalid and the parameter � is independent of uQ1⊗Q2
.

(3)	 The Hamacher operations for q-ROFNs in Definition 2.3 don’t consider the situa-
tion where there exists a certain correction between the MD and N-MD of different 
q-ROFNs, which needs to be reflected by their interactions.

Given the above shortcomings, we now propose novel operation rules.

(2)d(Q1,Q2) =
1

2

(|||u
q

1
− u

q

2

||| +
|||v

q

1
− v

q

2

||| +
|||�

q

1
− �

q

2

|||
)
,

(3)Q1 ⊕ Q2 =

⟨(
u
q

1
+ u

q

2
− u

q

1
u
q

2
− (1 − 𝛾)u

q

1
u
q

2

1 − (1 − 𝛾)u
q

1
u
q

2

) 1

q

, 0

⟩
.

(4)Q1 ⊗ Q2 =

⟨
0,

(
v
q

1
+ v

q

2
− v

q

1
v
q

2
− (1 − 𝛾)v

q

1
v
q

2

1 − (1 − 𝛾)v
q

1
v
q

2

) 1

q
⟩
.



8961Generalized q‑rung orthopair fuzzy interactive Hamacher…

1 3

Definition 2.4  Let Q = ⟨u, v⟩, Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be three q-ROFNs, and 
𝛾 > 0 , the interactive Hamacher operations for q-ROFNs are defined as follows:

(1)	 Q
1
⊕ Q

2
=

�� ∏2

i=1 (1+(𝛾−1)u
q

i
)−

∏2

i=1 (1−u
q

i
)∏2

i=1 (1+(𝛾−1)u
q

i
)+(𝛾−1)

∏2

i=1 (1−u
q

i
)

� 1

q

,

�
𝛾
∏2

i=1 (1−u
q

i
)−𝛾

∏2

i=1 (1−u
q

i
−v

q

i
)∏2

i=1 (1+(𝛾−1)u
q

i
)+(𝛾−1)

∏2

i=1 (1−u
q

i
)

� 1

q

�
;

(2)	 Q
1
⊗ Q

2
=

��
𝛾
∏2

i=1 (1−v
q

i
)−𝛾

∏2

i=1 (1−u
q

i
−v

q

i
)∏2

i=1 (1+(𝛾−1)v
q

i
)+(𝛾−1)

∏2

i=1 (1−v
q

i
)

� 1

q

,

� ∏2

i=1 (1+(𝛾−1)v
q

i
)−

∏2

i=1 (1−v
q

i
)∏2

i=1 (1+(𝛾−1)v
q

i
)+(𝛾−1)

∏2

i=1 (1−v
q

i
)

� 1

q

�
;

(3)	 𝜆Q =

⟨(
(1+(𝛾−1)uq)𝜆−(1−uq)𝜆

(1+(𝛾−1)uq)𝜆+(𝛾−1)(1−uq)𝜆

) 1

q

,
(

𝛾(1−uq)𝜆−𝛾(1−uq−vq)𝜆

(1+(𝛾−1)uq)𝜆+(𝛾−1)(1−uq)𝜆

) 1

q

⟩
, 𝜆 > 0;

(4)	 Q𝜆 =

⟨(
𝛾(1−vq)𝜆−𝛾(1−uq−vq)𝜆

(1+(𝛾−1)vq)𝜆+(𝛾−1)(1−vq)𝜆

) 1

q

,
(

(1+(𝛾−1)vq)𝜆−(1−vq)𝜆

(1+(𝛾−1)vq)𝜆+(𝛾−1)(1−vq)𝜆

) 1

q

⟩
, 𝜆 > 0.

Notably, If � = 1 , the interactive Hamacher operations degenerate into the traditional 
interactive operations for q-ROFNs presented by Yang et  al. (2020), and if � = 2 , the 
interactive Hamacher operations degenerate into the interactive Einstein operations for 
q-ROFNs.

Theorem 2.1.  The results obtained by Definition 2.4 are still q-ROFNs.

In mathematics, Theorem 2.1 is stated as Q is closed under the addition, multiplication, 
scalar multiplication and power.

Theorem  2.2  Let Q = ⟨u, v⟩, Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be three q-ROFNs, and 
𝜆, 𝜆1, 𝜆2 > 0 , we have

The proofs of Theorems 2.1 and 2.2 are easy to derive, which are omitted here.

2.2 � A novel score function for q‑ROFNs

Definition 2.5  Let Q = ⟨u, v⟩ be a q-ROFN, the score function S is defined as.

where �Q = (1 − uq − vq)
1

q.

Theorem  2.3  For any q-ROFN Q = ⟨u, v⟩ , the score function S monotonically increases 
w.r.t.u and monotonically decreases w.r.t.v , respectively.

(1) Q1 ⊕ Q2 = Q2 ⊕ Q1; (2)
(
Q1 ⊕ Q2

)
⊕ Q3 = Q1 ⊕

(
Q2 ⊕ Q3

)
;

(3) 𝜆
(
Q1 ⊕ Q2

)
= 𝜆Q1 ⊕ 𝜆Q2; (4)

(
𝜆1 + 𝜆2

)
Q = 𝜆1Q⊕ 𝜆2Q;

(5) 𝜆1
(
𝜆2Q

)
= 𝜆1𝜆2Q; (6) Q1 ⊗ Q2 = Q2 ⊗ Q1;

(7)
(
Q1 ⊗ Q2

)
⊗ Q3 = Q1 ⊗

(
Q2 ⊗ Q3

)
; (8)

(
Q1 ⊗ Q2

)
𝜆

= Q𝜆

1
⊗ Q𝜆

2
;

(9) Q𝜆1+𝜆2 = Q𝜆1 ⊗ Q𝜆2 ; (10)
(
Q𝜆1

)
𝜆2 = Q𝜆1𝜆2 ;

(5)S(Q) =
1

2

(
1 + uq − vq −

1

2
sin

(
�Q

)q
�

2

)
,
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Proof  Calculate the partial derivatives of S w.r.t.u and v , respectively, i.e.,

Hence the score function S monotonically increases w.r.t.u and monotonically decreases 
w.r.t.v.

Corollary 2.1  For any q-ROFN Q = ⟨u, v⟩ , the score function S satisfies.

(1)	 0 ≤ S(Q) ≤ 1;
(2)	 S(Q) = 1 iff Q = ⟨1, 0⟩;S(Q) = 0 iff Q = ⟨0, 1⟩.

Corollary 2.2  Let Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be two q-ROFNs, if 
Q1 ≥ Q2

(
⇔ u1 ≥ u2 and v1 ≤ v2

)
 , then S

(
Q1

)
≥ S

(
Q2

)
.

Apparently, Corollarys 2.1 and 2.2 can be directly derived from Theorem 2.3.

Theorem 2.4  Let Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be two q-ROFNs, if u1 = v1,u2 = v2 and 
�Q1

≥ �Q2
 , then S

(
Q1

)
≤ S

(
Q2

)
.

Definition 2.6  Let Q1 = ⟨u1, v1⟩ and Q2 = ⟨u2, v2⟩ be two q-ROFNs,

(1)	 If S
(
Q1

)
> S

(
Q2

)
 , then Q1 ≻ Q2;

(2)	 If S
(
Q1

)
< S

(
Q2

)
 , then Q1 ≺ Q2;

(3)	 If S
(
Q1

)
= S

(
Q2

)
 , then Q1 ≈ Q2.

In order to illustrate the rationality and superiority of the proposed score function, we 
compare it with the existing score functions, as shown in Table 1.

As can be seen from Table 1, the proposed score function S has higher distinguishing 
ability for q-ROFN in contrast with the score functions SLiu - Wang and SLi defined by Liu 
and Wang (2018) and Li et al. (2019), respectively. In other words, when SLiu - Wang and SLi 
do not work at all, the proposed score function S can also present significant differences 
of alternatives. Furthermore, if we continue to use the accuracy function HLiu - Wang  (Liu 
and Wang 2018) for the two cases in Table 1, we can obtain the ranking results consistent 
with the proposed score function S. This shows that our method is effective, and compared 
with the cumbersome recognition process introduced by Liu and Wang (2018) and Li et al. 
(2019), the proposed score function is more straightforward.

2.3 � Improved q‑ROF entropy axiomatic definition and formula

q-ROFE is a requisite tool to measure the fuzziness and uncertainty of q-ROFSs. In this 
subsection, we elaborate on the defects of the axiomatic definition of q-ROFE (Peng and 
Liu 2019) and revise them. Subsequently, we construct a q-ROFE formula based on the 
revised axiomatic definition.

(6)

�S

�u
=

quq−1

2

(
1 +

�

4
cos

(1 − uq − vq)�

2

)
≥ 0;

�S

�v
=

qvq−1

2

(
�

4
cos

(1 − uq − vq)�

2
− 1

)
≤ 0.
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Definition 2.7  Peng and Liu (2019).
For any A,B ∈ q - ROFSs(X) , where X =

{
xi|i = 1, 2,… , n

}
 is a universe 

of discourse and q - ROFSs(X) is the set of all the q-ROFSs on X , the mapping 
E ∶ q - ROFSs(X) → [0, 1] is a q-ROFE if E satisfies the conditions as follows:

(C1) E(A) = 0 iff A is a crisp set;
(C2) E(A) = 1 iff uA

(
xi
)
= vA

(
xi
)
 for any xi ∈ X;

(C3) E(A) = E
(
AC

)
 , where AC =

{⟨
xi, vA

(
xi
)
, uA

(
xi
)⟩||xi ∈ X

}
;

(C4) E(A) ≤ E(B) if A is less fuzzy than B , i.e.,
uA
(
xi
)
≤ uB

(
xi
)
≤ vB

(
xi
)
≤ vA

(
xi
)
 or vA

(
xi
)
≤ vB

(
xi
)
≤ uB

(
xi
)
≤ uA

(
xi
)
 for any xi ∈ X.

We now point out that the above axiomatic definition has several shortcomings:

(1)	 The condition (C2) only indicates that when the information contained in MD and 
N-MD is equal, the entropy is the largest, but it doesn’t emphasize the amount of 
information contained in MD and N-MD. For example,A = {⟨x, 0, 0⟩�x ∈ X } and 
B = {⟨x, 0.4, 0.4⟩�x ∈ X } are two q-ROFSs on X . It is evident that A contains more 
unknown information than B , hence E(A) should be larger than E(B) in intuitive sense.

(2)	 For the condition (C4), it is clear that

uA
(
xi
)
≤ uB

(
xi
)
≤ vB

(
xi
)
≤ vA

(
xi
)
or vA

(
xi
)
≤ vB

(
xi
)
≤ uB

(
xi
)
≤ uA

(
xi
)

Table 1   Comparison with existing score functions

Cases Score values Ranking results

Q1 = ⟨0.5, 0.5⟩
Q2 = ⟨0.3, 0.3⟩

SLiu - Wang

(
Q1

)
= SLiu - Wang

(
Q2

)
= 0 (q = 1) Q1 ≈ Q2 (q = 1)

SLiu - Wang

(
Q1

)
= SLiu - Wang

(
Q2

)
= 0 (q = 2) Q1 ≈ Q2 (q = 2)

SLiu - Wang

(
Q1

)
= SLiu - Wang

(
Q2

)
= 0 (q = 3) Q1 ≈ Q2 (q = 3)

SLi
(
Q1

)
= SLi

(
Q2

)
= 0.5000 (q = 1) Q1 ≈ Q2 (q = 1)

SLi
(
Q1

)
= SLi

(
Q2

)
= 0.5000 (q = 2) Q1 ≈ Q2 (q = 2)

SLi
(
Q1

)
= SLi

(
Q2

)
= 0.5000 (q = 3) Q1 ≈ Q2 (q = 3)

S
(
Q1

)
= 0.5000, S

(
Q2

)
= 0.3531 (q = 1) Q1 ≻ Q2 (q = 1)

S
(
Q1

)
= 0.3232, S

(
Q2

)
= 0.2599 (q = 2) Q1 ≻ Q2 (q = 2)

S
(
Q1

)
= 0.2690, S

(
Q2

)
= 0.2509 (q = 3) Q1 ≻ Q2 (q = 3)

Q1 = ⟨0.5, 0.1⟩
Q2 = ⟨0.6, 0.2⟩

SLiu - Wang

(
Q1

)
= SLiu - Wang

(
Q2

)
= 0.4000 (q = 1) Q1 ≈ Q2 (q = 1)

SLiu - Wang

(
Q1

)
= 0.2400, SLiu - Wang

(
Q2

)
= 0.3200 (q = 2) Q1 ≺ Q2 (q = 2)

SLiu - Wang

(
Q1

)
= 0.1240, SLiu - Wang

(
Q2

)
= 0.2080 (q = 3) Q1 ≺ Q2 (q = 3)

SLi
(
Q1

)
= 0.6429, SLi

(
Q2

)
= 0.6667 (q = 1) Q1 ≺ Q2 (q = 1)

SLi
(
Q1

)
= 0.5729, SLi

(
Q2

)
= 0.5858 (q = 2) Q1 ≺ Q2 (q = 2)

SLi
(
Q1

)
= 0.5455, SLi

(
Q2

)
= 0.5476 (q = 3) Q1 ≺ Q2 (q = 3)

S
(
Q1

)
= 0.5531, S

(
Q2

)
= 0.6227 (q = 1) Q1 ≺ Q2 (q = 1)

S
(
Q1

)
= 0.3906, S

(
Q2

)
= 0.4577 (q = 2) Q1 ≺ Q2 (q = 2)

S
(
Q1

)
= 0.3169, S

(
Q2

)
= 0.3693 (q = 3) Q1 ≺ Q2 (q = 3)
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	   where  d
(
Ai,A

C
i

)
=
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| i s  t he  d i s t ance  be tween 

Ai =
⟨
uA
(
xi
)
, vA

(
xi
)⟩

 a n d  i t s  c o mp l e m e n t  AC
i
=
⟨
vA
(
xi
)
, uA

(
xi
)⟩

, a n d 
S
(
Ai,A

C
i

)
= 1 − d

(
Ai,A

C
i

)
 indicates the similarity measure between Ai and AC

i
 ; the 

similar goes for d
(
Bi,B

C
i

)
 and S

(
Bi,B

C
i

)
.

It can be concluded that the condition (C4) characterizes the relationship between the 
similarity measure Sxi and the entropy Ei . To put it more precisely, the higher the similarity 
measure Sxi , the more fuzzy the i th q-ROFN, thus generating a larger entropy value Ei . On 
the other hand, it is well known that the HD �xi is the direct reflection of the uncertainty of 
i th q-ROFN. Hence the constraint (C4) is incomplete without considering the effect of HD 
on q-ROFE. Besides, the cases with equal similarity measure cannot be distinguished.

In view of the above shortcomings, now we introduce a new axiomatic definition of 
q-ROFE which takes the similarity measure and the HD into account.

Definition 2.8  For any A,B ∈ q - ROFSs(X) , where X =
{
xi|i = 1, 2,… , n

}
 is a uni-

verse of discourse and q - ROFSs(X) is the set of all the q-ROFSs on X , the mapping 
E ∶ q - ROFSs(X) → [0, 1] is a q-ROFE if E satisfies the conditions as follows:

(C1) E(A) = 0 iff A is a crisp set;
(C2’) E(A) = 1 iff uA

(
xi
)
= vA

(
xi
)
= 0, for any xi ∈ X;

(C3) E(A) = E
(
AC

)
 , where AC =

{⟨
xi, vA

(
xi
)
, uA

(
xi
)⟩||xi ∈ X

}
;

(C4’) E(A) ≥ 1

n

n∑
i=1

�A

�
xi
�
;

(C5’) E(A) ≤ E(B) if one of the following conditions holds for any xi ∈ X ∶

(1)	 If 
(
�A

(
xi
))q

=
(
�B

(
xi
))q , then |||

(
uA
(
xi
))q

−
(
vA
(
xi
))q||| ≥

|||
(
uB
(
xi
))q

−
(
vB
(
xi
))q|||

;
(2)	 If |||

(
uA
(
xi
))q

−
(
vA
(
xi
))q||| =

|||
(
uB
(
xi
))q

−
(
vB
(
xi
))q||| , then 

(
�A

(
xi
))q

≤
(
�B

(
xi
))q

.

The improved axiomatic definition of q-ROFE has several advantages:

(1)	 The condition (C2’) states that when the information of a q-ROFS is completely 
unknown, the q-ROFE reaches its maximum, which is 1. Further, it’s clear that (C1) 
and (C2’) present the sufficient and necessary conditions for obtaining the maximum 
and minimum.

(2)	 The contribution of unknown information to the entropy is absolute, in other words, 
f o r  e a c h  Ai =

⟨
uA
(
xi
)
, vA

(
xi
)⟩

 s e p a r a t e d  f r o m  t h e  q - R O F S 
A =

{⟨
xi, uA

(
xi
)
, vA

(
xi
)⟩||xi ∈ X

}
, its entropy E

(
Ai

)
 must not be less than its HD 

�A

(
xi
)
 . Now let E(A) = 1

n

n∑
i=1

E
�
Ai

�
 , then E(A) ≥ 1

n

n∑
i=1

�A

�
xi
�
 holds. Therefore, we reach 

the conclusion that (C4’) provides the maximum lower bound of q-ROFE.

⇔
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| ≥

|||
(
uB
(
xi
))q

−
(
vB
(
xi
))q|||

⇔ d
(
Ai,A

C
i

)
≥ d

(
Bi,B

C
i

)

⇔ S
(
Ai,A

C
i

)
≤ S

(
Bi,B

C
i

)
,
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(3)	 The condition (C5’) reflects that each individual entropy Ei is a function containing 
the similarity measure Sxi and the HD �xi and increases monotonically w.r.t.Sxi and �xi , 
respectively. It is very intuitive, the higher the similarity measure Sxi , the more fuzzy 
the i th q-ROFN, thus leading to a larger entropy value Ei ; similarly, the larger the HD 
�xi

 , the higher the unknown degree of the i th q-ROFN, so there must be a larger entropy 
value Ei corresponding to it.

(4)	 Quite evidently, compared with Definition 2.7, the proposed axiomatic definition of 
q-ROFE considers the HD part, which can absorb more fuzzy information and generate 
objective results.

Theorem 2.5  For any A ∈ q - ROFSs(X),E(A) = 1

n

n∑
i=1

�
cos

��(uA(xi))q−(vA(xi))q�
2

+(�A(xi))
q

2

� 1

q

 is an 

entropy.

Proof  Since 0 ≤
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| ≤ 1 and 0 ≤

(
�A

(
xi
))q

≤ 1 for any xi ∈ X , then.

So we can get 0 ≤ E(A) ≤ 1.
(C1) Given that 0 ≤

|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| ≤ 1 and 0 ≤

(
�A

(
xi
))q

≤ 1 for any xi ∈ X,

(C2’) Since 0 ≤
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| ≤ 1 and 0 ≤

(
�A

(
xi
))q

≤ 1 for any xi ∈ X , 
then

(7)0 ≤
cos

�|(uA(xi))q−(vA(xi))q|
2

+
(
�A

(
xi
))q

2
≤ 1.

E(A) = 0 ⇔ cos
�
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q|||

2
+
(
�A

(
xi
))q

= 0

⇔

⎧⎪⎨⎪⎩
cos

�
���
�
uA
�
xi
��q

−
�
vA
�
xi
��q���

2
= 0

�
�A

�
xi
��q

= 0

⇔

{|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| = 1

1 −
(
uA
(
xi
))q

−
(
vA
(
xi
))q

= 0

⇔ uA
(
xi
)
= 1,vA

(
xi
)
= 0 or uA

(
xi
)
= 0,vA

(
xi
)
= 1

⇔ A is a crisp set



8966	 J. Li et al.

1 3

(C3) Since AC =
{⟨

xi, vA
(
xi
)
, uA

(
xi
)⟩||xi ∈ X

}
 , then

(C4’) To prove E(A) ≥ 1

n

n∑
i=1

�A

�
xi
�
 , we just need to verify

Besides,

Apparently, we only need to prove

Now we consider the function f (x, y) = cos
�(x−y)

2
+ x + y − 1 , where 0 ≤ x, y ≤ 1 and 

x + y ≤ 1 . Let �f
�x

= −
�

2
sin

�(x−y)

2
+ 1 = 0 and �f

�y
=

�

2
sin

�(x−y)

2
+ 1 = 0 , then it’s clear that 

f (x, y) has no critical points in the constraint region, i.e., the minimum points of f (x, y) 
are only derived on the boundary x = 0 or y = 0 or x + y = 1 . Further, we can easily 
verify that f (x, y) reaches its minimum at (0, 0) or (0, 1) or (1, 0) , which is 0. Thus, we 
have proved f (x, y) ≥ 0 , i.e., Eq. (10) holds.

E(A) = 1 ⇔

cos
�|(uA(xi))q−(vA(xi))q|

2
+
(
�A

(
xi
))q

2
= 1

⇔
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| = 0,

(
�A

(
xi
))q

= 1

⇔ uA
(
xi
)
= vA

(
xi
)
= 0.

(8)

E(A) =
1

n

n�
i=1

⎛⎜⎜⎝
cos

��(uA(xi))q−(vA(xi))q�
2

+
�
�A

�
xi
��q

2

⎞⎟⎟⎠

1

q

=
1

n

n�
i=1

⎛⎜⎜⎝
cos

��(vA(xi))q−(uA(xi))q�
2

+
�
�A

�
xi
��q

2

⎞⎟⎟⎠

1

q

= E
�
AC

�
.

(9)
⎛⎜⎜⎝
cos

��(uA(xi))q−(vA(xi))q�
2

+
�
�A

�
xi
��q

2

⎞⎟⎟⎠

1

q

≥ �A

�
xi
�
.

⎛⎜⎜⎝
cos

��(uA(xi))q−(vA(xi))q�
2

+
�
�A

�
xi
��q

2

⎞⎟⎟⎠

1

q

≥ �A

�
xi
�

⇔

cos
��(uA(xi))q−(vA(xi))q�

2
+
�
�A

�
xi
��q

2
≥
�
�A

�
xi
��q

⇔ cos
�
|||
(
uA
(
xi
))q

−
(
vA
(
xi
))q|||

2
≥
(
�A

(
xi
))q

⇔ cos
�

((
uA
(
xi
))q

−
(
vA
(
xi
))q)

2
+
(
uA
(
xi
))q

+
(
vA
(
xi
))q

− 1 ≥ 0.

(10)cos
�

((
uA
(
xi
))q

−
(
vA
(
xi
))q)

2
+
(
uA
(
xi
))q

+
(
vA
(
xi
))q

− 1 ≥ 0.
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(C5’) For any xi ∈ X , the following two cases are straightforward:

(1)	 If 
(
�A

(
xi
))q

=
(
�B

(
xi
))q , and given |||

(
uA
(
xi
))q

−
(
vA
(
xi
))q||| ≥

|||
(
uB
(
xi
))q

−
(
vB
(
xi
))q||| , 

then

(2)	 If |||
(
uA
(
xi
))q

−
(
vA
(
xi
))q||| =

|||
(
uB
(
xi
))q

−
(
vB
(
xi
))q||| , and given 

(
�A

(
xi
))q

≤
(
�B

(
xi
))q , 

then

	   Hence E(A) ≤ E(B) holds.

Thus, we have completed the proof of Theorem 2.5.	� ◻

3 � Generalized q‑ROF interactive Hamacher PA for processing MADM

In this section, we first introduce the APA and its weight form (WAPA) to remedy the deficiencies 
of the PA and its weight form (WPA). Then we apply the q-ROF interactive Hamacher operations 
to the WAPA and propose the q-ROFIHWAPA. Moreover, we present a MADM algorithm and its 
application example based on the q-ROFIHWAPA. Finally, according to the results of the applica-
tion example, we propose a method to determine the parameter carried by the q-ROFIHWAPA.

3.1 � APA and WAPA

Definition 3.1  Yager (2001).
Let a1, a2,… , an be n real numbers, the PA:ℝn

→ ℝ is defined as follows:

where T(ai) =
n∑

j=1,j≠i

Sup(ai, aj) , and Sup(ai, aj) denotes the support for ai from aj . In par-

ticular,Sup(ai, aj) satisfies the following properties:

(1)	 Sup(ai, aj) ∈ [0, 1];
(2)	 Sup(ai, aj) = Sup(aj, ai);
(3)	 Sup(ai, aj) ≥ Sup(as, at) , if 

|||ai − aj
||| < ||as − at

||.

The most noteworthy feature of the PA is to endow each data with certain credibility by 
the support and strengthening among the input arguments, so as to highlight the role of the 

(11)

⎛
⎜⎜⎝
cos

��(uA(xi))q−(vA(xi))q�
2

+
�
�A

�
xi
��q

2

⎞
⎟⎟⎠

1

q

≤

⎛
⎜⎜⎝
cos

��(uB(xi))q−(vB(xi))q�
2

+
�
�B

�
xi
��q

2

⎞
⎟⎟⎠

1

q

;

(12)
⎛
⎜⎜⎝
cos

��(uA(xi))q−(vA(xi))q�
2

+
�
�
A

�
x
i

��
q

2

⎞
⎟⎟⎠

1

q

≤

⎛
⎜⎜⎝
cos

��(uB(xi))q−(vB(xi))q�
2

+
�
�
B

�
x
i

��
q

2

⎞
⎟⎟⎠

1

q

.

(13)PA(a1, a2,… , an) =
�n

i=1

1 + T(ai)∑n

r=1

�
1 + T(ar)

�ai,
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data close to the overall information and weaken the influence of the data deviating from the 
overall information. To be concrete, if ai is close to the overall information, its total support 
T(ai) from other arguments is large, and thus ai obtain high credibility; otherwise, such data 
should be evaluated a small weight. However, given the input arguments, the total support of 
each data from other data is correspondingly fixed, so that the nonlinear weight of each data 
is also determined. In view of this, we can match different adjustment coefficients for the total 
supports T(ai) (i = 1, 2,… , n) to make them dynamic, and thus yielding various weights.

Definition 3.2  Yager (2001). Let a1, a2,… , an be n real numbers with the weights 

�1,�2,… ,�n such that �i ≥ 0 and 
n∑
i=1

�i = 1 , the WPA:ℝn
→ ℝ is defined as follows:

where T�(ai) =
n∑

j=1,j≠i

�jSup(ai, aj) , and Sup(ai, aj) is exactly the same as Definition 3.1.

Obviously, when �i =
1

n
(i = 1, 2,… , n), the weighted nonlinear weights 

�i(1+T�(ai))
n∑

r=1

�r(1+T�(ar))
(i = 1, 2,… , n) degenerate to 

1+
1

n
T(ai)

n∑
r=1

�
1+

1

n
T(ar)

� (i = 1, 2,… , n), which are not 

equal to 1+T(ai)
n∑

r=1
(1+T(ar))

(i = 1, 2,… , n), i.e., the WPA does not satisfy reducibility.

Considering the above deficiencies, we now propose the APA and WAPA.

Definition 3.3  Let a1, a2,… , an be n real numbers, the APA:ℝn
→ ℝ is defined as follows:

where � ≥ 1 , and T(ai) is exactly the same as Definition 3.1.
Compared with the classical PA, the added parameter � in Definition 3.3 can be regarded 

as an adjustment coefficient for the total supports T(ai) (i = 1, 2,… , n).

Definition 3.4  Let a1, a2,… , an be n real numbers with the weights �1,�2,… ,�n such 

that �i ≥ 0 and 
n∑
i=1

�i = 1 , the WAPA:ℝn
→ ℝ is defined as follows:

where � ≥ 1 , and T�(ai) is exactly the same as Definition 3.2.

Remark 3.1  The following special cases can be directly derived from Definition 3.4.

(1)	 If � = 1 , then the WAPA is called the revised WPA (RWPA);
(2)	 If �1 = �2 = ⋯ = �n =

1

n
 , then the WAPA degenerates into the APA;

(3)	 If � = 1 and �1 = �2 = ⋯ = �n =
1

n
 , then the WAPA degenerates into the PA.

(14)WPA(a1, a2,… , an) =
�n

i=1

�i

�
1 + T�(ai)

�
∑n

r=1
�r

�
1 + T�(ar)

�ai,

(15)APA(a1, a2,… , an) =

n�
i=1

1 +
�
T(ai)

�
�

∑n

r=1

�
1 +

�
T(ar)

�
�

�ai,

(16)WAPA(a1, a2,… , an) =
�n

i=1

�
�

i
+
�
T�(ai)

�
�

n∑
r=1

�
��

r
+
�
T�(ar)

�
�

�ai,



8969Generalized q‑rung orthopair fuzzy interactive Hamacher…

1 3

Theorem 3.1  The WAPA satisfies the following properties:

(1)	 (Idempotency) If a1 = a2 = ⋯ = an = a , then WAPA(a1, a2,… , an) = a;
(2)	 (Monotonicity) If a�

i
(i = 1, 2,… , n) are another set of real numbers, which have exactly 

the same weights as ai(i = 1, 2,… , n) , and T�(ai) = T�(a�
i
) and ai ≤ a′

i
 for each i , then.

(3)	 (Boundedness)min
i

{
ai
}
≤ WAPA(a1, a2,… , an) ≤ max

i

{
ai
}
;

(4)	 (Commutativity)WAPA(a1, a2,… , an) is not changed if a1, a2,… , an and the weights 
�1,�2,… ,�n are permuted simultaneously.

The proof of Theorem 3.1 is easy to derive, which is omitted here.

3.2 � q‑ROFIHWAPA

Definition 3.5  Let Q1,Q2,… ,Qn be n q-ROFNs with the weights �1,�2,… ,�n such that 

�i ≥ 0 and 
n∑
i=1

�i = 1, the q-ROFIHWAPA:Qn
→ Q is defined as follows:

where � ≥ 1,T�(Qi) =
n∑

j=1,j≠i

�jSup(Qi,Qj) , and Sup(Qi,Qj) denotes the support for Qi from 

Qj . Especially, Sup(Qi,Qj) satisfies the following properties:

(1)	 Sup(Qi,Qj) ∈ [0, 1];
(2)	 Sup(Qi,Qj) = Sup(Qj,Qi);
(3)	 Sup(Qi,Qj) ≥ Sup(Qs,Qt) , if d

(
Qi,Qj

)
< d

(
Qs,Qt

)
.

Let Δ�

i
=

�
�

i
+(T�(Qi))

�

n∑
r=1

�
��

r
+(T�(Qr))

�

� , Eq. (17) is simplified to

Lemma 3.1  Let Qi = ⟨ui, vi⟩ (i = 1, 2,… , n) be n q-ROFNs, and 𝛾 > 0 , we get.

Proof  We prove Eq. (19) by the mathematical induction.
Setting n = 2 , it is clear that

WAPA
(
a1, a2,… , an

)
≤ WAPA

(
a�
1
, a�

2
,… , a�

n

)
,

(17)q - ROFIHWAPA(Q1,Q2,… ,Qn) =
n

⊕

i=1

𝜔
𝜆

i
+
�
T𝜔(Qi)

�
𝜆

n∑
r=1

�
𝜔𝜆

r
+
�
T𝜔(Qr)

�
𝜆

�Qi,

(18)q - ROFIHWAPA(Q1,Q2,… ,Qn) =
n

⊕

i=1
Δ𝜔

i
Qi.

(19)

n

⊕

i=1
Q

i
=

�⎛
⎜⎜⎜⎜⎝

n∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
−

n∏
i=1

�
1 − u

q

i

�

n∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

n∏
i=1

�
1 − u

q

i

�

⎞
⎟⎟⎟⎟⎠

1

q

,

⎛
⎜⎜⎜⎜⎝

𝛾

n∏
i=1

�
1 − u

q

i

�
− 𝛾

n∏
i=1

�
1 − u

q

i
− v

q

i

�

n∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

n∏
i=1

�
1 − u

q

i

�

⎞
⎟⎟⎟⎟⎠

1

q �
.
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and thus Eq. (19) holds for n = 2.
Suppose that Eq. (19) holds for n = k , i.e.,

Then we derive

and it follows that Eq. (19) holds for n = k + 1.
Thus, it is concluded that Eq. (19) holds for all n.	�  □

Theorem  3.2  Let Qi = ⟨ui, vi⟩ (i = 1, 2,… , n) in Eq.  (18), the aggregated value of the 
q-ROFIHWAPA is shown in Eq. (23), which is still a q-ROFN.

Proof  According to scalar multiplication rule for q-ROFNs, we have.

(20)

2

⊕

i=1
Qi = Q1 ⊕ Q2

=

�⎛⎜⎜⎜⎜⎝

2∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
−

2∏
i=1

�
1 − u

q

i

�

2∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

2∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

𝛾

2∏
i=1

�
1 − u

q

i

�
− 𝛾

2∏
i=1

�
1 − u

q

i
− v

q

i

�

2∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

2∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q�
,

(21)

k

⊕

i=1
Qi =

�⎛⎜⎜⎜⎜⎝

k∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
−

k∏
i=1

�
1 − u

q

i

�

k∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

k∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

𝛾

k∏
i=1

�
1 − u

q

i

�
− 𝛾

k∏
i=1

�
1 − u

q

i
− v

q

i

�

k∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

k∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q�
.

(22)

k+1

⊕

i=1
Qi =

�
k

⊕

i=1
Qi

�
⊕ Qk+1

=

�⎛⎜⎜⎜⎜⎝

k∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
−

k∏
i=1

�
1 − u

q

i

�

k∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

k∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

𝛾

k∏
i=1

�
1 − u

q

i

�
− 𝛾

k∏
i=1

�
1 − u

q

i
− v

q

i

�

k∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

k∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q �
⊕

�
uk+1, vk+1

�

=

�⎛⎜⎜⎜⎜⎝

k+1∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
−

k+1∏
i=1

�
1 − u

q

i

�

k+1∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

k+1∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

𝛾

k+1∏
i=1

�
1 − u

q

i

�
− 𝛾

k+1∏
i=1

�
1 − u

q

i
− v

q

i

�

k+1∏
i=1

�
1 + (𝛾 − 1)u

q

i

�
+ (𝛾 − 1)

k+1∏
i=1

�
1 − u

q

i

�

⎞⎟⎟⎟⎟⎠

1

q �
,

(23)

q - ROFIHWAPA
�
Q1,Q2,… ,Q

n

�

=

�⎛⎜⎜⎜⎜⎝

n∏
i=1

�
1 + (� − 1)u

q

i

�Δ�
i −

n∏
i=1

�
1 − u

q

i

�Δ�
i

n∏
i=1

�
1 + (� − 1)u

q

i

�Δ�
i + (� − 1)

n∏
i=1

�
1 − u

q

i

�Δ�
i

⎞⎟⎟⎟⎟⎠

1
q

,

⎛⎜⎜⎜⎜⎝

�

n∏
i=1

�
1 − u

q

i

�Δ�
i − �

n∏
i=1

�
1 − u

q

i
− v

q

i

�Δ�
i

n∏
i=1

�
1 + (� − 1)u

q

i

�Δ�
i + (� − 1)

n∏
i=1

�
1 − u

q

i

�Δ�
i

⎞⎟⎟⎟⎟⎠

1
q �

.
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In addition, by Lemma 3.1, we obtain

Because of the closure of Q under the addition and scalar  multiplication, for 
Qi ∈ Q (i = 1, 2,… , n), we get

which means q - ROFIHWAPA
(
Q1,Q2,… ,Qn

)
 is still a q-ROFN.

Hence the proof of Theorem 3.2 is completed.

Theorem 3.3  The q-ROFIHWAPA satisfies the following properties:

(1)	 (Idempotency) If Q1 = Q2 = ⋯ = Qn = Q , then q - ROFIHWAPA
(
Q1,Q2,… ,Qn

)
= Q;

(2)	 ( B o u n d e d n e s s )  I f  Q− = ⟨0, 1⟩  a n d  Q+ = ⟨1, 0⟩  ,  t h e n 
Q− ≤ q - ROFIHWAPA

(
Q1,Q2,… ,Qn

)
≤ Q+;

(3)	 (Commutativity)q - ROFIHWAPA
(
Q1,Q2,… ,Qn

)
 is not changed if Q1,Q2,… ,Qn and 

the weights �1,�2,… ,�n are permuted simultaneously.

Proof 

(1)	 If Qi = Q (i = 1, 2,… , n) , then.

(2)	 This is straightforward because Q− and Q+ are the bottom and top of the q-ROFNs, 
respectively.

(3)	 If 
(
Q�

1
,Q�

2
,… ,Q�

n

)
 is the permutation of 

(
Q1,Q2,… ,Qn

)
 and 

(
�
�
1
,��

2
,… ,��

n

)
 is the 

permutation of 
(
�1,�2,… ,�n

)
 , then

(24)

Δ�

i
Q

i
=

⟨( (
1 + (� − 1)u

q

i

)Δ�

i −
(
1 − u

q

i

)Δ�

i

(
1 + (� − 1)u

q

i

)Δ�

i + (� − 1)
(
1 − u

q

i

)Δ�

i

) 1

q

,

(
�

(
1 − u

q

i

)Δ�

i − �

(
1 − u

q

i
− v

q

i

)Δ�

i

(
1 + (� − 1)u

q

i

)Δ�

i + (� − 1)
(
1 − u

q

i

)Δ�

i

) 1

q

⟩
.

(25)

n

⊕

i=1
Δ𝜔

i
Q

i
=

�⎛⎜⎜⎜⎜⎝

n∏
i=1

�
1 + (𝛾 − 1)u

q

i

�Δ𝜔
i −

n∏
i=1

�
1 − u

q

i

�Δ𝜔
i

n∏
i=1

�
1 + (𝛾 − 1)u

q

i

�Δ𝜔
i + (𝛾 − 1)

n∏
i=1

�
1 − u

q

i

�Δ𝜔
i

⎞⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

𝛾

n∏
i=1

�
1 − u

q

i

�Δ𝜔
i − 𝛾

n∏
i=1

�
1 − u

q

i
− v

q

i

�Δ𝜔
i

n∏
i=1

�
1 + (𝛾 − 1)u

q

i

�Δ𝜔
i + (𝛾 − 1)

n∏
i=1

�
1 − u

q

i

�Δ𝜔
i

⎞⎟⎟⎟⎟⎠

1

q �
.

q - ROFIHWAPA
(
Q1,Q2,… ,Qn

)
=

n

⊕

i=1
Δ𝜔

i
Qi ∈ Q

(26)

q - ROFIHWAPA
�
Q1,Q2,… ,Qn

�
= q - ROFIHWAPA(Q,Q,… ,Q)

=
n

⊕

i=1

𝜔
𝜆

i
+
�
T𝜔(Qi)

�
𝜆

n∑
r=1

�
𝜔𝜆

r
+
�
T𝜔(Qr)

�
𝜆

�Q =

n∑
i=1

�
𝜔
𝜆

i
+
�
T𝜔(Qi)

�
𝜆

�

n∑
r=1

�
𝜔𝜆

r
+
�
T𝜔(Qr)

�
𝜆

�Q = Q.
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Thus, we have proved Theorem 3.3.

Example 3.1  Let Q1 = ⟨0.8, 0.7⟩, Q2 = ⟨0.5, 0.9⟩, Q3 = ⟨0.7, 0.7⟩ and Q4 = ⟨0.6, 0.5⟩ be 
four q-ROFNs, whose weights are 0.4, 0.3,0.2 and 0.1, respectively. Now we fuse Q1,Q2,Q3 
and Q4 by the q-ROFIHWAPA, where we set q = 3, � = 2 and � = 3.

(1)	 Calculate the supports Sup
(
Qi,Qj

)
= 1−d

(
Qi,Qj

)
(i, j = 1, 2, 3, 4, i ≠ j) , where 

d
(
Qi,Qj

)
 is the normalized Hamming distance between Qi and Qj , which is given in 

Eq. (2).

(2)	 Calculate the total weighted supports T
(
Qi

)
(i = 1, 2, 3, 4) by combining the weights 

0.4, 0.3,0.2 and 0.1:

(3)	 Calculate the weighted nonlinear weights Δ�

i
(i = 1, 2, 3, 4):

(4)	 By Eq. (23), we get

3.3 � A MADM algorithm based on the q‑ROFIHWAPA

For a q-ROF MADM problem, let A1,A2,… ,Am be m alternatives, and let C1,C2,… ,Cn 
be n attributes, whose weights are �1,�2,… ,�n , respectively, such that �j ≥ 0 and 
n∑
j=1

�j = 1 . Assume that the evaluation value of the alternative Ai regarding the attribute Cj 

provided by the DM is a q-ROFN Q̂ij =
⟨
ûij, v̂ij

⟩
 , and then the q-ROF decision matrix 

�EX =
(
Q̂ij

)
m×n

 is established as i and j traverse.
Next, we present the detailed operation steps:

(27)

q - ROFIHWAPA
�
Q1,Q2,… ,Q

n

�
=

n

⊕

i=1

𝜔
𝜆

i
+
�
T
𝜔(Q

i
)
�
𝜆

n∑
r=1

�
𝜔𝜆

r
+
�
T
𝜔(Q

r
)
�
𝜆

�Q
i

=
n

⊕

i=1

𝜔
�𝜆
i
+
�
T
𝜔(Q�

i
)
�
𝜆

n∑
r=1

�
𝜔�𝜆
r
+
�
T
𝜔(Q�

r
)
�
𝜆

�Q
�
i
= q - ROFIHWAPA

�
Q

�
1
,Q

�
2
,… ,Q

�
n

�
.

Sup
(
Q1,Q2

)
= Sup

(
Q2,Q1

)
= 0.6130, Sup

(
Q1,Q3

)
= Sup

(
Q3,Q1

)
= 0.8310, Sup

(
Q1,Q4

)
= Sup

(
Q4,Q1

)
= 0.4860,

Sup
(
Q2,Q3

)
= Sup

(
Q3,Q2

)
= 0.6140, Sup

(
Q2,Q4

)
= Sup

(
Q4,Q2

)
= 0.3960, Sup

(
Q3,Q4

)
= Sup

(
Q4,Q3

)
= 0.6550.

T
(
Q1

)
= 0.3987, T

(
Q2

)
= 0.4076, T

(
Q3

)
= 0.5821, T

(
Q4

)
= 0.4442.

Δ�

1
= 0.2747, Δ�

2
= 0.2206, Δ�

3
= 0.3262, Δ�

4
= 0.1785.

q - ROFIHWAPA
�
Q1,Q2,Q3,Q4

�
= ⟨0.6851, 0.7542⟩.
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Step 1 Transform the q-ROF decision matrix �EX =
(
Q̂ij

)
m×n

 into the normalized deci-
sion matrix EX =

(
Qij

)
m×n

 , where

Step 2 Calculate the supports between the jth attribute and the tth attribute 
Supjt =

(
Sup(Qij,Qit)

)
m×1

,

where

Herein, we assume that d(Qij,Qit) is the normalized Hamming distance between Qij and 
Qit , which is given in Eq. (2).

Step 3 Calculate the total weighted support matrix T =
(
T�

(
Qij

))
m×n

 by combining the 
attributive weights �1,�2,… ,�n , where

Step 4 Fix the parameter � and calculate the weighted nonlinear weight matrix 
Δ�

�
=
(
Δ�

�

(
Qij

))
m×n

 , where

Step 5 Use the q-ROFIHWAPA (Eq. 23) to aggregate all the individual attribute values 
of the alternative Ai into the overall attribute value Qi.
Step 6 By Eq. (5) and Definition 2.6, calculate the score values S

(
Qi

)
(i = 1, 2,… ,m) of 

the overall attribute values Qi(i = 1, 2,… ,m) and rank the alternatives to select the best 
alternative.
Step 7 End.

3.4 � Application example

Example 3.2  Assume that a chain supermarket enterprise intends to choose one of the 
four locations A1,A2,A3 and A4 to open a branch store based on the following attributes: 
the population density ( C1 ), the consumption capacity ( C2 ) and the commercial potential 
( C3 ), whose weights are 0.40, 0.35 and 0.25, respectively. The q-ROF decision matrix 
�EX =

(
Q̂ij

)
4×3

 relied on the DM’s preferences is established in Table 2, where q > 1.

Now we present the detailed operation steps to solve this practical example. Without loss 
of generality, we can set q = 2.

(28)

Qij =
⟨
uij, vij

⟩
=

{⟨
ûij, v̂ij

⟩
, for benefit - type attribute Cj⟨

v̂ij, ûij
⟩
, for cost - type attribute Cj

, i = 1, 2,… ,m, j = 1, 2,… , n.

(29)Sup(Qij,Qit) = 1 − d(Qij,Qit), i = 1, 2,… ,m, j, t = 1, 2,… , n, j ≠ t.

(30)T�
(
Qij

)
=

n∑
t=1,t≠j

�tSup(Qij,Qit), i = 1, 2,… ,m, j, t = 1, 2,… , n, j ≠ t.

(31)Δ�

�

�
Qij

�
=

�
�

j
+
�
T�

�
Qij

��
�

n∑
r=1

�
��

r
+
�
T�

�
Qir

��
�

� , i = 1, 2,… ,m, j, r = 1, 2,… , n.
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Step 1 Transform the q-ROF decision matrix �EX =
(
Q̂ij

)
4×3

 into the normalized deci-
sion matrix EX =

(
Qij

)
4×3

 . Because all the attributes are benefit-type attributes, we get 
EX = ÊX.

Step 2 Calculate the supports between the jth attribute and the tth attribute 
Supjt =

(
Sup(Qij,Qit)

)
4×1

 (j, t = 1, 2, 3, j ≠ t) as shown below:

Step 3 Calculate the total weighted support matrix T =
(
T�

(
Qij

))
4×3

 by combining the 
attributive weights 0.40, 0.35 and 0.25 as shown below:

Step 4 Let � = 1.5 , we can get the weighted nonlinear weight matrix 
Δ�

1.5
=
(
Δ�

1.5

(
Qij

))
4×3

 as shown below:

Step 5 Use the q-ROFIHWAPA (Eq. 23) to aggregate all the individual attribute values 
of the alternative Ai into the overall attribute value Qi as shown below, where we let 
� = 3.

Step 6 Based on Eq. (5), we can derive the score values S
(
Qi

)
(i = 1, 2, 3, 4) of the over-

all attribute values Qi(i = 1, 2, 3, 4) as shown below:

Further, the ranking result of the alternatives A1,A2,A3 and A4 obtained by Definition 2.6 
is A4 ≻ A1 ≻ A2 ≻ A3 . Thus, the best alternative is A4.

Sup12 = Sup21 =

⎛
⎜⎜⎜⎜⎝

0.8500

0.8900

0.8800

0.5500

⎞
⎟⎟⎟⎟⎠
, Sup13 = Sup31 =

⎛
⎜⎜⎜⎜⎝

0.6000

0.9200

0.8000

0.8000

⎞
⎟⎟⎟⎟⎠
, Sup23 = Sup32 =

⎛
⎜⎜⎜⎜⎝

0.4500

0.8600

0.8000

0.3500

⎞
⎟⎟⎟⎟⎠
.

T =

⎛⎜⎜⎜⎝

0.4475 0.4525 0.3975

0.5415 0.5710 0.6690

0.5080 0.5520 0.6000

0.3925 0.3075 0.4425

⎞⎟⎟⎟⎠
.

Δ�

1.5
=

⎛⎜⎜⎜⎝

0.3837 0.3553 0.2610

0.3320 0.3254 0.3426

0.3376 0.3387 0.3237

0.3850 0.2914 0.3236

⎞⎟⎟⎟⎠
.

Q1 = ⟨0.6720, 0.4407⟩,Q2 = ⟨0.5348, 0.2167⟩,Q3 = ⟨0.4740, 0.2826⟩,Q4 = ⟨0.6840, 0.4500⟩

S
(
Q1

)
= 0.4966, S

(
Q2

)
= 0.4030, S

(
Q3

)
= 0.3505, S

(
Q4

)
= 0.5090.

Table 2   The q-ROF decision 
matrix ÊX from the DM

C1 C2 C3

A1 ⟨0.7, 0.4⟩ ⟨0.8, 0.4⟩ ⟨0.3, 0.5⟩
A2 ⟨0.5, 0.3⟩ ⟨0.6, 0.2⟩ ⟨0.5, 0.1⟩
A3 ⟨0.4, 0.4⟩ ⟨0.4, 0.2⟩ ⟨0.6, 0.2⟩
A4 ⟨0.6, 0.4⟩ ⟨0.9, 0.3⟩ ⟨0.4, 0.6⟩
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Step 7 End.

In the above operation, we assume � = 1.5 in advance, which is, of course, very sub-
jective. In order to reflect the influence of the parameter � on the ranking results, we use 
MATLAB software to draw the variation trend of the score value of each alternative with 
respect to � for this MADM problem, which is shown in Fig. 1.

It can be seen from Fig. 1 that the variation of � leads to different ranking results of the 
alternatives, i.e.,

(1)	 When � ∈ [1, 1.8983) , the ranking result of these four alternatives is A4 ≻ A1 ≻ A2 ≻ A3

;
(2)	 When � = 1.8983 , the ranking result of these four alternatives is A4 ≈ A1 ≻ A2 ≻ A3;
(3)	 When � = (1.8983, 6.9737) , the ranking result of these four alternatives is 

A1 ≻ A4 ≻ A2 ≻ A3;
(4)	 When � = 6.9737 , the ranking result of these four alternatives is A1 ≻ A4 ≈ A2 ≻ A3;
(5)	 When � = (6.9737, 7.7253) , the ranking result of these four alternatives is 

A1 ≻ A2 ≻ A4 ≻ A3;
(6)	 When � = 7.7253 , the ranking result of these four alternatives is A1 ≻ A2 ≻ A4 ≈ A3;
(7)	 When � = (7.7253, 8] , the ranking result of these four alternatives is A1 ≻ A2 ≻ A3 ≻ A4

.

Thus, we can conclude that if the parameter � carried by the q-ROFIHWAPA is 
determined subjectively in advance, it may affect the accuracy of the decision making 
result and even result in a wrong decision making result. Given this, in what follows, we 
propose an entropy weight fitting method to determine the parameter �.

Fig. 1   Score values of the alternatives when � ∈ [1, 8]
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3.5 � Entropy weight fitting method to determine the parameter � carried 
by the q‑ROFIHWAPA

Let Qi = ⟨ui, vi⟩ (i = 1, 2,… , n) be n q-ROFNs with the weights �1,�2,… ,�n such that 

�i ≥ 0 and 
n∑
i=1

�i = 1.

Step 1 Calculate the entropy weights �E
1
,�E

2
,… ,�E

n
 for the q-ROFNs Q1,Q2,… ,Qn , 

where �E
i
= 1−Ei

n∑
r=1
(1−Er)

, and Ei =

(
cos

�|uqi −vqi |
2

+�
q

i

2

) 1

q

 denotes the entropy of Qi.

Step 2 Taking the importance of different q-ROFNs into account, we use the sub-
jective weights �1,�2,… ,�n to revise the entropy weights �E

1
,�E

2
,… ,�E

n
 , so as to 

obtain the revised entropy weights �RE
1
,�RE

2
,… ,�RE

n
 , where

Step 3 Calculate the weighted nonlinear weights Δ�

1
,Δ�

2
,…Δ�

n
 for the q-ROFNs 

Q1,Q2,… ,Qn , where

Step 4 According to the consistency of the two sets of weights, the parameter � can 
be fitted by the following model:

Step 5 End.

We label the above process to determine the parameter � carried by the q-ROFIH-
WAPA as entropy weight fitting method.

Now let’s reconsider the “Location Selection” issue in Example 3.2 based on our pro-
posed entropy weight fitting method, which is as follows:

Step 1’ Calculate the entropy matrix E =
(
E
(
Qij

))
4×3

 of the normalized decision 
matrix EX =

(
Qij

)
4×3

 as shown below:

(32)
�
RE
i

=
�i

�
1 − Ei

�
n∑

r=1

�r

�
1 − Er

� .

(33)Δ�

i
=

�
�

i
+
�
T�(Qi)

�
�

n∑
r=1

�
��

r
+
�
T�(Qr)

�
�

� , � ≥ 1.

(34)
min

n∑
i=1

|||�
RE
i

− Δ�

i

|||
s.t. � ≥ 1.

E =

⎛⎜⎜⎜⎝

0.7806 0.6815 0.9024

0.9024 0.8592 0.9137

0.9165 0.9440 0.8592

0.8459 0.5127 0.8459

⎞⎟⎟⎟⎠
.
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Step 2’ Calculate the revised entropy weight matrix WRE =
(
�
RE
(
Qij

))
4×3

 by combining 
the attributive weights 0.40, 0.35 and 0.25 as shown below:

Step 3’ Fit the parameter vector 𝜆̃ =
(
𝜆1, 𝜆2, 𝜆3, 𝜆4

)T corresponding to the alternatives 
A1,A2,A3 and A4 on the basis of the attributive weights 0.40, 0.35 and 0.25, total weighted 
support matrix T =

(
T�

(
Qij

))
4×3

.
(It has been calculated in Step3 of Example 3.2) and revised entropy weight matrix 
WRE =

(
�
RE
(
Qij

))
4×3

 , i.e.,

Step 4’ Calculate the weighted nonlinear weight matrix Δ𝜔

𝜆̃
=
(
Δ𝜔

𝜆i

(
Qij

))
4×3

 by the param-

eter vector 𝜆̃ =
(
𝜆1, 𝜆2, 𝜆3, 𝜆4

)T as shown below:

Step 5’ Use the q-ROFIHWAPA (Eq. 23) to aggregate all the individual attribute values 
of the alternative Ai into the overall attribute value Qi as shown below, where we let � = 3.

Step 6’ Based on Eq. (5), we can derive the score values S
(
Qi

)
(i = 1, 2, 3, 4) of the overall 

attribute values Qi(i = 1, 2, 3, 4) as shown below:

Further, the ranking result of the alternatives A1,A2,A3 and A4 obtained by Definition 2.6 is 
A1 ≻ A4 ≻ A2 ≻ A3 . Thus, the best alternative is A1.

Step 7’ End.

4 � Generalized q‑ROF interactive Hamacher HMs

In this section, we introduce the WCHM and WGCHM on the basis of the HM and GHM, 
respectively, which can eliminate the redundancy of the DGWBM and DGWBGM. Then 
we extend the WCHM and WGCHM to q-ROF environment and propose the q-ROFIHW-
CHM and q-ROFIHWGCHM based on the interactive Hamacher operation rules.

WRE =

⎛
⎜⎜⎜⎝

0.3925 0.4984 0.1091

0.3553 0.4485 0.1962

0.3786 0.2222 0.3992

0.2277 0.6300 0.1423

⎞
⎟⎟⎟⎠
.

𝜆̃ = (18.2727, 1.0000, 3.9697, 1.0000)T.

Δ𝜔

𝜆̃
=

⎛⎜⎜⎜⎝

0.4552 0.4986 0.0463

0.3385 0.3311 0.3304

0.2773 0.3236 0.3991

0.3699 0.3069 0.3232

⎞⎟⎟⎟⎠
.

Q1 = ⟨0.7436, 0.4126⟩,Q2 = ⟨0.5354, 0.2182⟩,Q3 = ⟨0.4898, 0.2691⟩,Q4 = ⟨0.6904, 0.4482⟩.

S
(
Q1

)
= 0.5860, S

(
Q2

)
= 0.4032, S

(
Q3

)
= 0.3632, S

(
Q4

)
= 0.5166.
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4.1 � WCHM and WGCHM

Definition 4.1  Zhang et al. (2017). Let a1, a2,… , an be n non-negative real numbers with 

the weights �1,�2,… ,�n such that �i ≥ 0 and 
n∑
i=1

�i = 1 , the DGWBM:(ℝ�ℝ−)n → ℝ�ℝ− 

is defined as follows:

where R =
(
r1, r2,… , rn

)
 is the parameter vector, such that rj ≥ 0 (j = 1, 2,… , n) and 

n∑
j=1

rj ≠ 0.

Definition 4.2  Zhang et al. (2017). Let a1, a2,… , an be n non-negative real numbers with 

the weights �1,�2,… ,�n such that �i ≥ 0 and 
n∑
i=1

�i = 1 , the 

DGWBGM:(ℝ�ℝ−)n → ℝ�ℝ− is defined as follows:

where R =
(
r1, r2,… , rn

)
 is the parameter vector, such that rj ≥ 0 (j = 1, 2,… , n) and 

n∑
j=1

rj ≠ 0.

Liu and Liu (2021) exhibited the development course of BMs as shown in Fig. 2 (cited 
from Liu and Liu (2021).

In fact, Eqs. (35 and 36) are equivalent to Eqs. (37 and 38), respectively, i.e.,

and

Definition 4.3  Yu and Wu (2012).
Let a1, a2,… , an be n non-negative real numbers, the HM:(ℝ�ℝ−)n → ℝ�ℝ− is defined 

as follows:

(35)DGWBM
�
a1, a2,… , an

�
=

�
n�

�1,�2,…,�n=1

�
n�
j=1

�
�j
a
rj
�j

�� 1
n∑
j=1

rj

,

(36)DGWBGM
�
a1, a2,… , an

�
=

1
n∑
j=1

rj

⎛
⎜⎜⎜⎝

n�
�1,�2,…,�n=1

�
n�
j=1

rja�j

� n∏
j=1

�
�j
⎞
⎟⎟⎟⎠
,

(37)DGWBM(a1, a2,… , an) =

⎛⎜⎜⎜⎜⎜⎝

n∑
�1,�2,…,�n=1

�
n∏
j=1

�
�j
a
rj
�j

�

n∑
�1,�2,…,�n=1

�
n∏
j=1

�
�j

�

⎞⎟⎟⎟⎟⎟⎠

1
n∑
j=1

rj

(38)DGWBGM(a1, a2,… , an) =
1
n∑
j=1

rj

⎛⎜⎜⎜⎝

n�
�1,�2,…,�n=1

�
n�
j=1

rja�j

� n∏
j=1

�
�j
⎞⎟⎟⎟⎠

1

n∑
�1,�2,…,�n=1

�
n∏
j=1

��j

�

.
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where R̂ = (p, q) is the parameter vector, such that p, q ≥ 0 and p + q ≠ 0.

Definition 4.4  Yu (2013).
Let a1, a2,… , an be n non-negative real numbers, the GHM:(ℝ�ℝ−)n → ℝ�ℝ− is 

defined as follows:

(39)HM(a1, a2,… , an) =

(
2

n(n + 1)

n∑
i=1,j=i

a
p

i
a
q

j

) 1

p+q

,

Fig. 2   The development course of BMs
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where R̂ = (p, q) is the parameter vector, such that p, q ≥ 0 and p + q ≠ 0.
Stimulated by the development of BMs, we propose the WCHM and WGCHM on the 

basis of the HM and GHM, respectively, which eliminate the redundancy of the DGWBM 
and DGWBGM (Eqs. 37 and 38), i.e., the case of 𝜏1 > 𝜏2 > ⋯ > 𝜏n.

Definition 4.5  Let a1, a2,… , an be n non-negative real numbers with the weights 

�1,�2,… ,�n such that �i ≥ 0 and 
n∑
i=1

�i = 1 , the WCHM:(ℝ�ℝ−)n → ℝ�ℝ− is defined as 

follows:

where R =
(
r1, r2,… , rn

)
 is the parameter vector, such that rj ≥ 0 (j = 1, 2,… , n) and 

n∑
j=1

rj ≠ 0.

Definition 4.6  Let a1, a2,… , an be n non-negative real numbers with the weights 

�1,�2,… ,�n such that �i ≥ 0 and 
n∑
i=1

�i = 1 , the WGCHM:(ℝ�ℝ−)n → ℝ�ℝ− is defined 

as follows:

where R =
(
r1, r2,… , rn

)
 is the parameter vector, such that rj ≥ 0 (j = 1, 2,… , n) and 

n∑
j=1

rj ≠ 0.

Theorem 4.1  The WCHM and WGCHM satisfy the following properties:

(1)	 (Idempotency) If a1 = a2 = ⋯ = an = a , then

(2)	 (Monotonicity) If a�
i
(i = 1, 2,… , n) are another set of non-negative real numbers, which 

have exactly the same weights as ai(i = 1, 2,… , n) , and ai ≤ a′
i
 for each i , then.

(40)GHM(a1, a2,… , an) =
1

p + q

(
n∏

i=1,j=i

(
pai + qaj

))
2

n(n+1)

,

(41)WCHM
�
a1, a2,… , an

�
=

⎛⎜⎜⎜⎜⎜⎝

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j
a
rj
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

�

⎞⎟⎟⎟⎟⎟⎠

1
n∑
j=1

rj

,

(42)

WGCHM(a1, a2,… , an) =
1
n∑
j=1

rj

⎛⎜⎜⎜⎝

n�
�1=1,�2=�1,…,�n=�n−1

�
n�
j=1

rja�j

� n∏
j=1

�
�j
⎞⎟⎟⎟⎠

1

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

��j

�

,

WCHM(a1, a2,… , an) = a (resp.WGCHM(a1, a2,… , an) = a);
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(3)	 (Boundedness) min
i

{
ai
}
≤ WCHM(a1, a2,… , an) ≤ max

i

{
ai
}

(4)	 (Commutativity)WCHM
(
a1, a2,… , an

)
(resp.WGCHM(a1, a2,… , an) ) is not changed 

if a1, a2, ⋯ , an and the weights �1,�2,… ,�n are permuted simultaneously.

The proof of Theorem 4.1 is easy to derive, which is omitted here.

4.2 � q‑ROFIHWCHM and q‑ROFIHWGCHM

The dual generalized PF weighted BM (DGPFWBM) introduced by Zhang et  al. (2017) 
and 2-dimensional uncertain linguistic DGWBM (2DULDGWBM) introduced by Liu and 
Liu (2021), which are directly derived from the DGWBM, are not idempotent. In view of 
these facts, we propose such a WCHM for q-ROFNs.

Definition 4.7  Let Q1,Q2,… ,Qn be n q-ROFNs with the weights �1,�2,… ,�n such that 

�i ≥ 0 and 
n∑
i=1

�i = 1, the q-ROFIHWCHM:Qn
→ Q is defined as follows:

where R =
(
r1, r2,… , rn

)
 is the parameter vector, such that rj ≥ 0 (j = 1, 2,… , n) and 

n∑
j=1

rj ≠ 0.

Lemma 4.1  Let Qi = ⟨ui, vi⟩(i = 1, 2,… , n) be n q-ROFNs, and 𝛾 > 0 , we get.

The proof of Lemma 4.1 is similar to that of Lemma 3.1, which is omitted here.

Theorem  4.2  Let Qi = ⟨ui, vi⟩(i = 1, 2,… , n) in Eq.  (43), the aggregated value of the 
q-ROFIHWCHM is shown in Eq. (45), which is still a q-ROFN.

WCHM
(
a1, a2,… , a

n

)
≤ WCHM

(
a
�
1
, a�

2
,… , a�

n

)
(resp. WGCHM

(
a1, a2,… , a

n

)
≤ WGCHM

(
a
�
1
, a�

2
,… , a�

n

)
)

(resp.min
i

{
ai
}
≤ WGCHM(a1, a2,… , an) ≤ max

i

{
ai
}
);

(43)

q - ROFIHWCHM
�
Q1,Q2,… ,Qn

�
=

⎛⎜⎜⎜⎜⎜⎝

n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

�
n∏
j=1

𝜔
𝜏j

��
n

⊗

j=1
Q

rj
𝜏j

�

n∑
𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

�
n∏
j=1

𝜔
𝜏j

�

⎞⎟⎟⎟⎟⎟⎠

1
n∑
j=1

rj

,

(44)

n

⊗

i=1
Q

i
=

�⎛
⎜⎜⎜⎜⎝

𝛾

n∏
i=1

�
1 − v

q

i

�
− 𝛾

n∏
i=1

�
1 − u

q

i
− v

q

i

�

n∏
i=1

�
1 + (𝛾 − 1)v

q

i

�
+ (𝛾 − 1)

n∏
i=1

�
1 − v

q

i

�

⎞
⎟⎟⎟⎟⎠

1

q

,

⎛
⎜⎜⎜⎜⎝

n∏
i=1

�
1 + (𝛾 − 1)v

q

i

�
−

n∏
i=1

�
1 − v

q

i

�

n∏
i=1

�
1 + (𝛾 − 1)v

q

i

�
+ (𝛾 − 1)

n∏
i=1

�
1 − v

q

i

�

⎞
⎟⎟⎟⎟⎠

1

q �
.
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where

Proof  Let � =
1
n∑
j=1

rj

,� =
n∏
j=1

�
�j
 and � =

1

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� , Eq. (43) is simplified to.

Lemma 4.1 implies that

Then we have Eq. (48) by Lemma 3.1, i.e.,

where

(45)

q - ROFIHWCHM
(
Q

1
,Q

2
,… ,Q

n

)
=

⟨
(

�(Φ� − Ψ� + �Ω�)� − �(�Ω�)�

(Φ� + (� − 1)(� + 1)Ψ� − (� − 1)�Ω�)� + (� − 1)(Φ� − Ψ� + �Ω�)�

) 1

q

,

(
(Φ� + (� − 1)(� + 1)Ψ� − (� − 1)�Ω�)� − (Φ� − Ψ� + �Ω�)�

(Φ� + (� − 1)(� + 1)Ψ� − (� − 1)�Ω�)� + (� − 1)(Φ� − Ψ� + �Ω�)�

) 1

q

⟩
,

� =
1

n∑
j=1

r
j

,

� =
1

n∑
�1=1,�2=�1,…,�

n
=�

n−1

�
n∏
j=1

�
�
j

� ,

� =

n�
j=1

�
�
j

,

Φ =

n�
�1=1,�2=�1,…,�

n
=�

n−1

�
n�
j=1

�
1 + (� − 1)vq

�
j

�
r
j

+ (� − 1)(� + 1)

n�
j=1

�
1 − v

q

�
j

�
r
j

− (� − 1)�

n�
j=1

�
1 − u

q

�
j

− v
q

�
j

�
r
j

�
�

,

Ψ =

n�
�1=1,�2=�1,…,�

n
=�

n−1

�
n�
j=1

�
1 + (� − 1)vq

�
j

�
r
j

−

n�
j=1

�
1 − v

q

�
j

�
r
j

+ �

n�
j=1

�
1 − u

q

�
j

− v
q

�
j

�
r
j

�
�

,

Ω =

n�
�1=1,�2=�1,…,�

n
=�

n−1

�
�

n�
j=1

�
1 − u

q

�
j

− v
q

�
j

�
r
j

�
�

.

(46)q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
=

(
𝜌

(
n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

𝜛

(
n

⊗

j=1
Q

rj
𝜏j

)))
𝜉

.

(47)

n

⊗

j=1
Q

r
j

𝜏
j

=

�⎛
⎜⎜⎜⎜⎝

𝛾

n∏
j=1

�
1 − v

q

𝜏
j

�
r
j

− 𝛾

n∏
j=1

�
1 − u

q

𝜏
j

− v
q

𝜏
j

�
r
j

n∏
j=1

�
1 + (𝛾 − 1)v

q

𝜏
j

�
r
j

+ (𝛾 − 1)
n∏
j=1

�
1 − v

q

𝜏
j

�
r
j

⎞
⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

n∏
j=1

�
1 + (𝛾 − 1)v

q

𝜏
j

�
r
j

−
n∏
j=1

�
1 − v

q

𝜏
j

�
r
j

n∏
j=1

�
1 + (𝛾 − 1)v

q

𝜏
j

�
r
j

+ (𝛾 − 1)
n∏
j=1

�
1 − v

q

𝜏
j

�
r
j

⎞
⎟⎟⎟⎟⎠

1

q �
.

(48)
n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

𝜛

(
n

⊗

j=1
Q

rj
𝜏j

)
=

⟨(
Φ − Ψ

Φ + (𝛾 − 1)Ψ

) 1

q

,

(
𝛾Ψ − 𝛾Ω

Φ + (𝛾 − 1)Ψ

) 1

q

⟩
,
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Therefore, we can obtain

Due to the closure of Q under the addition, multiplication, scalar  multiplication and 
power, for Qi ∈ Q (i = 1, 2,… , n), we get

which implies q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
 is still a q-ROFN.

This completes the proof of Theorem 4.2.

Theorem 4.3  The q-ROFIHWCHM satisfies the following properties:

(1)	 (Idempotency) If Q1 = Q2 = ⋯ = Qn = Q , then q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
= Q

;
(2)	 ( B o u n d e d n e s s )  I f  Q− = ⟨0, 1⟩  a n d  Q+ = ⟨1, 0⟩  ,  t h e n 

Q− ≤ q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
≤ Q+;

(3)	 (Commutativity)q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
 is not changed if Q1,Q2,… ,Qn and 

the weights �1,�2,… ,�n are permuted simultaneously.

Proof 

(1)	 If Qi = Q (i = 1, 2,… , n), then by the interactive Hamacher operation properties for 
q-ROFNs presented in Theorem 2.2, we have.

Φ =

n∏
�1=1,�2=�1,…,�

n
=�

n−1

(
n∏
j=1

(
1 + (� − 1)vq

�
j

)
r
j

+ (� − 1)(� + 1)

n∏
j=1

(
1 − v

q

�
j

)
r
j

− (� − 1)�

n∏
j=1

(
1 − u

q

�
j

− v
q

�
j

)
r
j

)
�

,

Ψ =

n∏
�1=1,�2=�1,…,�

n
=�

n−1

(
n∏
j=1

(
1 + (� − 1)vq

�
j

)
r
j

−

n∏
j=1

(
1 − v

q

�
j

)
r
j

+ �

n∏
j=1

(
1 − u

q

�
j

− v
q

�
j

)
r
j

)
�

,

Ω =

n∏
�1=1,�2=�1,…,�

n
=�

n−1

(
�

n∏
j=1

(
1 − u

q

�
j

− v
q

�
j

)
r
j

)
�

.

(49)

(
𝜌

(
n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏
n
=𝜏

n−1

𝜛

(
n

⊗

j=1
Q

r
j

𝜏
j

)))
𝜉

=

⟨
(

𝛾(Φ𝜌 − Ψ𝜌 + 𝛾Ω𝜌)𝜉 − 𝛾(𝛾Ω𝜌)𝜉

(Φ𝜌 + (𝛾 − 1)(𝛾 + 1)Ψ𝜌 − (𝛾 − 1)𝛾Ω𝜌)𝜉 + (𝛾 − 1)(Φ𝜌 − Ψ𝜌 + 𝛾Ω𝜌)𝜉

) 1

q

,

(
(Φ𝜌 + (𝛾 − 1)(𝛾 + 1)Ψ𝜌 − (𝛾 − 1)𝛾Ω𝜌)𝜉 − (Φ𝜌 − Ψ𝜌 + 𝛾Ω𝜌)𝜉

(Φ𝜌 + (𝛾 − 1)(𝛾 + 1)Ψ𝜌 − (𝛾 − 1)𝛾Ω𝜌)𝜉 + (𝛾 − 1)(Φ𝜌 − Ψ𝜌 + 𝛾Ω𝜌)𝜉

) 1

q

⟩
.

q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
=

(
𝜌

(
n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

𝜛

(
n

⊗

j=1
Q

rj
𝜏j

)))
𝜉

∈ Q
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(2)	 This is clear because Q− and Q+ are the bottom and top of the q-ROFNs, respectively.
(3)	 If 

(
Q�

1
,Q�

2
,… ,Q�

n

)
 is the permutation of 

(
Q1,Q2,… ,Qn

)
 and 

(
�
�
1
,��

2
,… ,��

n

)
 is the 

permutation of 
(
�1,�2,… ,�n

)
 , then

Therefore, we have proved Theorem 4.3.

Now we explore the case where R =
(
�1, �2,… , �l, 0, 0,… , 0

)
 for the q-ROFIHWCHM.

If R =
(
�1, �2,… , �l, 0, 0,… , 0

)
 , where �j ≥ 0 (j = 1, 2,… , l) and 

l∑
j=1

�j ≠ 0, then 

Eq. (43) degenerates into the following:

where

q - ROFIHWCHM
�
Q1,Q2,… ,Qn

�
= q - ROFIHWCHM(Q,Q,… ,Q)

=

⎛
⎜⎜⎜⎜⎜⎝

n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

�
n∏
j=1

𝜔
𝜏j

��
Q

n∑
j=1

rj

�

n∑
𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

�
n∏
j=1

𝜔
𝜏j

�

⎞
⎟⎟⎟⎟⎟⎠

1
n∑
j=1

rj

(50)=

⎛⎜⎜⎜⎜⎜⎝

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

�
�
Q

n∑
j=1

rj

�⎞⎟⎟⎟⎟⎟⎠

1
n∑
j=1

rj

= Q.

(51)

q - ROFIHWCHM
�
Q1,Q2,… ,Q

n

�
=

⎛⎜⎜⎜⎜⎜⎝

n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏
n
=𝜏

n−1

�
n∏
j=1

𝜔
𝜏
j

��
n

⊗

j=1
Q

r
j

𝜏
j

�

n∑
𝜏1=1,𝜏2=𝜏1,…,𝜏

n
=𝜏

n−1

�
n∏
j=1

𝜔
𝜏
j

�

⎞⎟⎟⎟⎟⎟⎠

1
n∑
j=1

r
j

=

⎛⎜⎜⎜⎜⎜⎝

n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏
n
=𝜏

n−1

�
n∏
j=1

𝜔
�
𝜏
j

��
n

⊗

j=1
Q

�r
j

𝜏
j

�

n∑
𝜏1=1,𝜏2=𝜏1,…,𝜏

n
=𝜏

n−1

�
n∏
j=1

𝜔�
𝜏
j

�

⎞⎟⎟⎟⎟⎟⎠

1
n∑
j=1

r
j

= q - ROFIHWCHM
�
Q

�
1
,Q

�
2
,… ,Q

�
n

�
.

(52)

q - ROFIHWCHM
�
Q1,Q2,… ,Qn

�
=

�
n

⊕

𝜏1=1,𝜏2=𝜏1,…,𝜏l=𝜏l−1

K
𝜏1𝜏2⋯𝜏l

�
l

⊗

j=1
Q

𝜆j

𝜏j

�� 1

l∑
j=1

𝜆j

,
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Since

then Eq.  (52) is called the q-ROF interactive Hamacher weighted ( l− parameter) HM 
(q-ROFIHW(l− P) HM).

More specifically, if l = 2 , then Eq. (52) degenerates into the following:

where

which is the q-ROF interactive Hamacher weighted HM (q-ROFIHWHM);
if l = 1 , then Eq. (52) degenerates into the following:

where

which is the q-ROF interactive Hamacher generalized weighted average 
(q-ROFIHGWA).

K
�1�2⋯�l

=

n∑
�l+1=�l ,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� .

n�
�1=1,�2=�1,…,�l=�l−1

K
�1�2⋯�l

=

n�
�1=1,�2=�1,…,�l=�l−1

n∑
�l+1=�l ,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� = 1,

(53)q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
=

(
n

⊕

𝜏1=1,𝜏2=𝜏1

K
𝜏1𝜏2

(
Q𝜆1

𝜏1
⊗ Q𝜆2

𝜏2

)) 1

𝜆1+𝜆2

,

K
�1�2

=

n∑
�3=�2,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� ,

(54)q - ROFIHWCHM
(
Q1,Q2,… ,Qn

)
=

(
n

⊕

𝜏1=1
K

𝜏1
Q𝜆1

𝜏1

) 1

𝜆1

,

K
�1
=

n∑
�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� ,
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Definition 4.8  Let Q1,Q2,… ,Qn be n q-ROFNs with the weights �1,�2,… ,�n such that 

�i ≥ 0 and 
n∑
i=1

�i = 1, the q-ROFIHWGCHM:Qn
→ Q is defined as follows:

where R =
(
r1, r2,… , rn

)
 is the parameter vector, such that rj ≥ 0 (j = 1, 2,… , n) and 

n∑
j=1

rj ≠ 0.

Theorem  4.4  Let Qi = ⟨ui, vi⟩(i = 1, 2,… , n) in Eq.  (55), the aggregated value of the 
q-ROFIHWGCHM is shown in Eq. (56), which is still a q-ROFN.

where

Proof  Let � =
1
n∑
j=1

rj

,� =
n∏
j=1

�
�j
 and � =

1

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� , Eq. (55) is simplified to.

Using Lemma 3.1, we get

(55)

q - ROFIHWGCHM
�
Q

1
,Q

2
,… ,Q

n

�
=

1

n∑
j=1

r
j

⎛
⎜⎜⎜⎝

n

⊗

𝜏1=1,𝜏2=𝜏1,…,𝜏
n
=𝜏

n−1

�
n

⊕

j=1
r
j
Q

𝜏
j

� n∏
j=1

𝜔𝜏
j

⎞
⎟⎟⎟⎠

1

n∑
𝜏1=1,𝜏2=𝜏1,…,𝜏

n
=𝜏

n−1

�
n∏
j=1

𝜔𝜏
j

�

,

(56)

q - ROFIHWGCHM
(
Q

1
,Q

2
,… ,Q

n

)
=

⟨
(

(Γ� + (� − 1)(� + 1)Λ� − (� − 1)�Ω�)� − (Γ� − Λ� + �Ω�)�

(Γ� + (� − 1)(� + 1)Λ� − (� − 1)�Ω�)� + (� − 1)(Γ� − Λ� + �Ω�)�

) 1

q

,

(
�(Γ� − Λ� + �Ω�)� − �(�Ω�)�

(Γ� + (� − 1)(� + 1)Λ� − (� − 1)�Ω�)� + (� − 1)(Γ� − Λ� + �Ω�)�

) 1

q

⟩
,

� =
1

n∑
j=1

r
j

,

� =
1

n∑
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

�
n∏
j=1

�
�
j

� ,

� =

n�
j=1

�
�
j

,

Γ =

n�
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

�
n�
j=1

�
1 + (� − 1)uq

�
j

�
r
j

+ (� − 1)(� + 1)

n�
j=1

�
1 − u

q

�
j

�
r
j

− (� − 1)�

n�
j=1

�
1 − u

q

�
j

− v
q

�
j

�
r
j

�
�

,

Λ =

n�
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

�
n�
j=1

�
1 + (� − 1)uq

�
j

�
r
j

−

n�
j=1

�
1 − u

q

�
j

�
r
j

+ �

n�
j=1

�
1 − u

q

�
j

− v
q

�
j

�
r
j

�
�

,

Ω =

n�
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

�
�

n�
j=1

�
1 − u

q

�
j

− v
q

�
j

�
r
j

�
�

.

(57)q - ROFIHWGCHM
(
Q1,Q2,… ,Qn

)
= 𝜉

(
n

⊗

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

(
n

⊕

j=1
rjQ𝜏j

)
𝜛
)𝜌

.

(58)

n

⊕

j=1
r
j
Q

𝜏
j

=

�⎛⎜⎜⎜⎜⎝

n∏
j=1

�
1 + (𝛾 − 1)u

q

𝜏
j

�
r
j

−
n∏
j=1

�
1 − u

q

𝜏
j

�
r
j

n∏
j=1

�
1 + (𝛾 − 1)u

q

𝜏
j

�
r
j

+ (𝛾 − 1)
n∏
j=1

�
1 − u

q

𝜏
j

�
r
j

⎞⎟⎟⎟⎟⎠

1

q

,

⎛⎜⎜⎜⎜⎝

𝛾

n∏
j=1

�
1 − u

q

𝜏
j

�
r
j

− 𝛾

n∏
j=1

�
1 − u

q

𝜏
j

− v
q

𝜏
j

�
r
j

n∏
j=1

�
1 + (𝛾 − 1)u

q

𝜏
j

�
r
j

+ (𝛾 − 1)
n∏
j=1

�
1 − u

q

𝜏
j

�
r
j

⎞⎟⎟⎟⎟⎠

1

q �
.
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Then we obtain Eq. (59) by Lemma 4.1, i.e.,

where

Thus, we have

By the closure of Q under the addition, multiplication, scalar multiplication and power, 
it’s clear that the aggregated value of the q-ROFIHWGCHM is still a q-ROFN.

This completes the proof of Theorem 4.4.

It is easy to verify that the q-ROFIHWGCHM remains idempotent, bounded and 
commutative whose proofs are omitted here.

Next, we consider the case where R =
(
�1, �2,… , �l, 0, 0,… , 0

)
 for the 

q-ROFIHWGCHM.

If R =
(
�1, �2,… , �l, 0, 0,… , 0

)
 , where �j ≥ 0 (j = 1, 2,… , l) and 

l∑
j=1

�j ≠ 0, , then 

Eq. (55) degenerates into the following:

 where.

K
�1�2⋯�l

=

n∑
�l+1=�l ,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� , which is called the q-ROF interactive Hamacher 

weighted geometric ( l− parameter) HM (q-ROFIHWG ( l− P) HM).
In particular, if l = 2 , then Eq. (61) degenerates into the following:

(59)
n

⊗

𝜏1=1,𝜏2=𝜏1,…,𝜏n=𝜏n−1

(
n

⊕

j=1
rjQ𝜏j

)
𝜛

=

⟨(
𝛾Λ − 𝛾Ω

Γ + (𝛾 − 1)Λ

) 1

q

,

(
Γ − Λ

Γ + (𝛾 − 1)Λ

) 1

q

⟩
,

Γ =

n∏
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

(
n∏
j=1

(
1 + (� − 1)uq

�
j

)
r
j

+ (� − 1)(� + 1)

n∏
j=1

(
1 − u

q

�
j

)
r
j

− (� − 1)�

n∏
j=1

(
1 − u

q

�
j

− v
q

�
j

)
r
j

)
�

,

Λ =

n∏
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

(
n∏
j=1

(
1 + (� − 1)uq

�
j

)
r
j

−

n∏
j=1

(
1 − u

q

�
j

)
r
j

+ �

n∏
j=1

(
1 − u

q

�
j

− v
q

�
j

)
r
j

)
�

,

Ω =

n∏
�
1
=1,�

2
=�

1
,…,�

n
=�

n−1

(
�

n∏
j=1

(
1 − u

q

�
j

− v
q

�
j

)
r
j

)
�

.

(60)

𝜉

(
n

⊗

𝜏
1
=1,𝜏

2
=𝜏

1
,…,𝜏

n
=𝜏

n−1

(
n

⊕

j=1
r
j
Q

𝜏
j

)
𝜛
)𝜌

=

⟨
(

(Γ𝜌 + (𝛾 − 1)(𝛾 + 1)Λ𝜌 − (𝛾 − 1)𝛾Ω𝜌)𝜉 − (Γ𝜌 − Λ𝜌 + 𝛾Ω𝜌)𝜉

(Γ𝜌 + (𝛾 − 1)(𝛾 + 1)Λ𝜌 − (𝛾 − 1)𝛾Ω𝜌)𝜉 + (𝛾 − 1)(Γ𝜌 − Λ𝜌 + 𝛾Ω𝜌)𝜉

) 1

q

,

(
𝛾(Γ𝜌 − Λ𝜌 + 𝛾Ω𝜌)𝜉 − 𝛾(𝛾Ω𝜌)𝜉

(Γ𝜌 + (𝛾 − 1)(𝛾 + 1)Λ𝜌 − (𝛾 − 1)𝛾Ω𝜌)𝜉 + (𝛾 − 1)(Γ𝜌 − Λ𝜌 + 𝛾Ω𝜌)𝜉

) 1

q

⟩
.

(61)

q - ROFIHWGCHM
�
Q1,Q2,… ,Qn

�
=

1
l∑

j=1

𝜆j

�
n

⊗

𝜏1=1,𝜏2=𝜏1,…,𝜏l=𝜏l−1

�
l

⊕

j=1
𝜆jQ𝜏j

�K
𝜏1𝜏2⋯𝜏l

�
,
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where

which is the q-ROF interactive Hamacher weighted GHM (q-ROFIHWGHM);
if l = 1 , then Eq. (61) degenerates into the following:

where

which is the q-ROF interactive Hamacher generalized weighted geometric average 
(q-ROFIHGWGA).

Example 4.1  Let Q1 = ⟨0.9, 0.6⟩, Q2 = ⟨0.7, 0.8⟩ and Q3 = ⟨0.5, 0.7⟩ be three q-ROFNs, 
whose weights are 0.5, 0.3 and 0.2. Now we fuse Q1, Q2 and Q3 by the q-ROFIHWCHM 
and q-ROFIHWGCHM, respectively, where we set q = 3, � = 3 and R = (1, 1, 1).

We first get

(1)	 Since

(62)

q - ROFIHWGCHM
(
Q1,Q2,… ,Qn

)
=

1

𝜆1 + 𝜆2

(
n

⊗

𝜏1=1,𝜏2=𝜏1

(
𝜆1Q𝜏1

⊕ 𝜆2Q𝜏2

)K
𝜏1𝜏2

)
,

K
�1�2

=

n∑
�3=�2,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� ,

(63)q - ROFIHWGCHM
(
Q1,Q2,… ,Qn

)
=

1

𝜆1

(
n

⊗

𝜏1=1

(
𝜆1Q𝜏1

)K
𝜏1

)
,

K
�1
=

n∑
�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

�

n∑
�1=1,�2=�1,…,�n=�n−1

�
n∏
j=1

�
�j

� ,

� =
1

1 + 1 + 1
=

1

3
,

� =
1

3∑
�1=1,�2=�1,�3=�2

�
�1
�
�2
�
�3

= 2.4390,

Ω =

3�
�1=1,�2=�1,�3=�2

�
3 ∗

�
1 − u3

�1
− v3

�1

�
∗
�
1 − u3

�2
− v3

�2

�
∗
�
1 − u3

�3
− v3

�3

��
�
�1
�
�2
�
�3

= 0.0925.
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we derive q - ROFIHWCHM
�
Q1,Q2,Q3

�
= ⟨0.8455, 0.6666⟩ with the help of Eq. (45).

(2)	 Since

we derive q - ROFIHWGCHM
�
Q1,Q2,Q3

�
= ⟨0.7709, 0.7643⟩ by Eq. (56).

5 � A novel MADM algorithm based on the introduced means

In this section, we use the q-ROFIHWAPA and q-ROFIHWCHM (resp. q-ROFIHW-
GCHM) to devise a novel q-ROF MADM algorithm.

Let A1,A2,… ,Am be m alternatives; let C1,C2,… ,Cn be n attributes, whose weights are 

�1,�2,… ,�n , respectively, such that �j ≥ 0 and 
n∑
j=1

�j = 1 ; �EX =
(
Q̂ij

)
m×n

=
(⟨

ûij, v̂ij
⟩)

m×n
 

is the q-ROF decision matrix. In view of DM’s lack of cognition for alternatives, which 
leads to the extreme evaluation values, we can draw support from the weighted nonlinear 
weights carried by the q-ROFIHWAPA to weaken the influence of these unreasonable data. 
In addition, to capture the correlations among attributes, we use the q-ROFIHWCHM 
(resp. q-ROFIHWGCHM) to aggregate attribute values of each alternative. Next, we pre-
sent the detailed operation steps of this algorithm.

Step 1 Transform the q-ROF decision matrix �EX =
(
Q̂ij

)
m×n

 into the normalized deci-
sion matrix EX =

(
Qij

)
m×n

 , where

Φ =

3�
�
1
=1,�

2
=�

1
,�
3
=�

2

⎛
⎜⎜⎜⎜⎜⎝

�
1 + (3 − 1)v3

�
1

�
∗
�
1 + (3 − 1)v3

�
2

�
∗
�
1 + (3 − 1)v3

�
3

�
+

(3 − 1) ∗ (3 + 1) ∗
�
1 − v

3

�
1

�
∗
�
1 − v

3

�
2

�
∗
�
1 − v

3

�
3

�
−

(3 − 1) ∗ 3 ∗
�
1 − u

3

�
1

− v
3

�
1

�
∗
�
1 − u

3

�
2

− v
3

�
2

�
∗
�
1 − u

3

�
3

− v
3

�
3

�

⎞
⎟⎟⎟⎟⎟⎠

�
�1
�
�2
�
�3

= 2.2182,

Ψ =

3�
�
1
=1,�

2
=�

1
,�
3
=�

2

⎛
⎜⎜⎜⎜⎜⎝

�
1 + (3 − 1)v3

�
1

�
∗
�
1 + (3 − 1)v3

�
2

�
∗
�
1 + (3 − 1)v3

�
3

�
−

�
1 − v

3

�
1

�
∗
�
1 − v

3

�
2

�
∗
�
1 − v

3

�
3

�
+

3 ∗
�
1 − u

3

�
1

− v
3

�
1

�
∗
�
1 − u

3

�
2

− v
3

�
2

�
∗
�
1 − u

3

�
3

− v
3

�
3

�

⎞
⎟⎟⎟⎟⎟⎠

�
�1
�
�2
�
�3

= 1.7246,

Γ =

3�
�
1
=1,�

2
=�

1
,�
3
=�

2

⎛
⎜⎜⎜⎜⎜⎝

�
1 + (3 − 1)u3

�
1

�
∗
�
1 + (3 − 1)u3

�
2

�
∗
�
1 + (3 − 1)u3

�
3

�
+

(3 − 1) ∗ (3 + 1) ∗
�
1 − u

3

�
1

�
∗
�
1 − u

3

�
2

�
∗
�
1 − u

3

�
3

�
−

(3 − 1) ∗ 3 ∗
�
1 − u

3

�
1

− v
3

�
1

�
∗
�
1 − u

3

�
2

− v
3

�
2

�
∗
�
1 − u

3

�
3

− v
3

�
3

�

⎞
⎟⎟⎟⎟⎟⎠

�
�1
�
�2
�
�3

= 2.5241,

Λ =

3�
�
1
=1,�

2
=�

1
,�
3
=�

2

⎛⎜⎜⎜⎜⎜⎝

�
1 + (3 − 1)u3

�
1

�
∗
�
1 + (3 − 1)u3

�
2

�
∗
�
1 + (3 − 1)u3

�
3

�
−

�
1 − u

3

�
1

�
∗
�
1 − u

3

�
2

�
∗
�
1 − u

3

�
3

�
+

3 ∗
�
1 − u

3

�
1

− v
3

�
1

�
∗
�
1 − u

3

�
2

− v
3

�
2

�
∗
�
1 − u

3

�
3

− v
3

�
3

�

⎞⎟⎟⎟⎟⎟⎠

�
�1
�
�2
�
�3

= 2.3366,
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Qij =
⟨
uij, vij

⟩
=

{⟨
ûij, v̂ij

⟩
, for benefit - type attribute Cj⟨

v̂ij, ûij
⟩
, for cost - type attribute Cj

, i = 1, 2,… ,m, j = 1, 2,… , n.

Step 2 Calculate the entropy matrix E =
(
E
(
Qij

))
m×n

 of the normalized decision matrix 
EX =

(
Qij

)
m×n

,

where

Step 3 Combine the attributive weights �1,�2,… ,�n to calculate the revised entropy 
weight matrix WRE =

(
�
RE
(
Qij

))
m×n

 , where

Step 4 Calculate the supports between the jth attribute and the tth attribute 
Supjt =

(
Sup(Qij,Qit)

)
m×1

 , where

Herein, we assume that d(Qij,Qit) is the normalized Hamming distance between Qij and 
Qit as shown in Eq. (2).

Step 5 Draw on the attributive weights �1,�2,… ,�n to calculate the total weighted sup-
port matrix T =

(
T�

(
Qij

))
m×n

 , where

Step 6 Fit the parameter vector 𝜆̃ =
(
𝜆1, 𝜆2,… , 𝜆m

)T corresponding to the alternatives 
A1,A2,… ,Am on the basis of the attributive weights �1,�2,… ,�n , total weighted sup-
port matrix T =

(
T�

(
Qij

))
m×n

 and revised entropy weight matrix WRE =
(
�
RE
(
Qij

))
m×n

 , 
where

and

(64)

(65)E
�
Qij

�
=

⎛⎜⎜⎝
cos

��(uij)q−(vij)q�
2

+
�
�ij

�q
2

⎞⎟⎟⎠

1

q

, i = 1, 2,… ,m, j = 1, 2,… , n.

(66)
�
RE
�
Qij

�
=

�j

�
1 − E

�
Qij

��
n∑

r=1

�r

�
1 − E

�
Qir

�� , i = 1, 2,… ,m, r, j = 1, 2,… , n.

(67)Sup(Qij,Qit) = 1 − d(Qij,Qit), i = 1, 2,… ,m, j, t = 1, 2,… , n, j ≠ t.

(68)T�
(
Qij

)
=

n∑
t=1,t≠j

�tSup(Qij,Qit), i = 1, 2,… ,m, j, t = 1, 2,… , n, j ≠ t.

(69)�i = arg min
�i∈[1,+∞)

n∑
j=1

|||�
RE
(
Qij

)
− Δ�

�i

(
Qij

)|||
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Step 7 Calculate the weighted nonlinear weight matrix Δ𝜔

𝜆̃
=
(
Δ𝜔

𝜆i

(
Qij

))
m×n

 by the 

parameter vector 𝜆̃ =
(
𝜆1, 𝜆2,… , 𝜆m

)T.
Step 8 Use the q-ROFIHWCHM (Eq.  (45)) (resp. q-ROFIHWGCHM (Eq.  (56))) to 
aggregate all the individual attribute values of the alternative Ai into the overall attribute 
value Qi(Note: In this step, each alternative corresponds to a set of weighted nonlinear 
weights).
Step 9 By Eq. (5) and Definition 2.6, calculate the score values S

(
Qi

)
(i = 1, 2,… ,m) of 

the overall attribute values Qi(i = 1, 2,… ,m) and rank the alternatives to select the best 
alternative.
Step 10 End.

6 � A case study

In this section, we present an application example to illustrate the effectiveness and superi-
ority of the introduced algorithm.

6.1 � The application of the proposed algorithm

Example 6.1  Suppose that four enterprises A1, A2, A3 and A4 are evaluated based on the 
following attributes: the growth potential ( C1 ), the profitability ( C2 ), the operation capa-
bility ( C3 ) and the solvency ( C4 ), whose weights are 0.3, 0.4, 0.2 and 0.1, respectively. 
Assume that the evaluation value of the alternative Ai regarding the attribute Cj provided by 
the DM is a q-ROFN Q̂ij =

⟨
ûij, v̂ij

⟩
 , and then the q-ROF decision matrix �EX =

(
Q̂ij

)
4×4

 is 
established as i and j traverse, which is shown in Table 3, where q > 2.

Now we apply the developed algorithm to solve this practical example. Without loss of 
generality, we can set q = 3.

Step 1 Transform the q-ROF decision matrix �EX =
(
Q̂ij

)
4×4

 into the normalized decision 
matrix EX =

(
Qij

)
4×4

 . In fact, all the attributes are benefit-type attributes, i.e.,EX = ÊX.

Step 2 Calculate the entropy matrix E =
(
E
(
Qij

))
4×4

 of the normalized decision matrix 
EX =

(
Qij

)
4×4

 as shown below:

(70)Δ�

�i

�
Qij

�
=

�
�i

j
+
�
T�

�
Qij

��
�i

n∑
r=1

�
�
�i

r +
�
T�

�
Qir

��
�i

� , i = 1, 2,… ,m, r, j = 1, 2,… , n.

E =

⎛⎜⎜⎜⎝

0.9522 0.9882 0.9083 0.8402

0.8398 0.8393 0.9104 0.7203

0.9843 0.9952 0.9515 0.9377

0.8354 0.9457 0.9843 0.7078

⎞⎟⎟⎟⎠
.
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Step 3 Combine the attributive weights 0.3, 0.4, 0.2 and 0.1 to calculate the revised 
entropy weight matrix WRE =

(
�
RE
(
Qij

))
4×4

 as shown below:

Step 4 Calculate the supports between the jth attribute and the tth attribute 
Supjt =

(
Sup(Qij,Qit)

)
4×1

 (j, t = 1, 2, 3, 4, j ≠ t) as shown below:

Step 5 Draw on the attributive weights 0.3, 0.4, 0.2 and 0.1 to calculate the total 
weighted support matrix T =

(
T�

(
Qij

))
4×4

 as shown below:

Step 6 Fit the parameter vector 𝜆̃ =
(
𝜆1, 𝜆2, 𝜆3, 𝜆4

)T corresponding to the alterna-
tives A1, A2, A3 and A4 on the basis of the attributive weights 0.3, 0.4, 0.2 and 0.1, 
total weighted support matrix T =

(
T�

(
Qij

))
4×4

 and revised entropy weight matrix 
WRE =

(
�
RE
(
Qij

))
4×4

 , i.e.,

Step 7 Calculate the weighted nonlinear weight matrix Δ𝜔

𝜆̃
=
(
Δ𝜔

𝜆i

(
Qij

))
4×4

 by the 

parameter vector 𝜆̃ =
(
𝜆1, 𝜆2, 𝜆3, 𝜆4

)T as shown below:

WRE =

⎛⎜⎜⎜⎝

0.2688 0.0883 0.3437 0.2992

0.3038 0.4062 0.1132 0.1768

0.2086 0.0856 0.4295 0.2763

0.4774 0.2099 0.0303 0.2824

⎞⎟⎟⎟⎠
.

Sup12 = Sup21 =

⎛⎜⎜⎜⎝

0.8480

0.9810

0.9370

0.5520

⎞⎟⎟⎟⎠
, Sup13 = Sup31 =

⎛⎜⎜⎜⎝

0.8100

0.8310

0.8110

0.3630

⎞⎟⎟⎟⎠
, Sup14 = Sup41 =

⎛⎜⎜⎜⎝

0.4890

0.5940

0.7500

0.7830

⎞⎟⎟⎟⎠
,

Sup23 = Sup32 =

⎛⎜⎜⎜⎝

0.6580

0.8310

0.7850

0.8110

⎞⎟⎟⎟⎠
, Sup24 = Sup42 =

⎛⎜⎜⎜⎝

0.4890

0.5750

0.6870

0.4870

⎞⎟⎟⎟⎠
, Sup34 = Sup43 =

⎛⎜⎜⎜⎝

0.5520

0.4250

0.8830

0.2980

⎞⎟⎟⎟⎠
.

T =

⎛⎜⎜⎜⎝

0.5501 0.4349 0.5614 0.4527

0.6180 0.5180 0.6242 0.4932

0.6120 0.5068 0.6456 0.6764

0.3717 0.3765 0.4631 0.4893

⎞
⎟⎟⎟⎠
.

𝜆̃ = (4.3523, 1.1782, 6.0498, 3.0450)T.

Table 3   The q-ROF decision 
matrix ÊX from the DM

C1 C2 C3 C4

A1 ⟨0.6, 0.1⟩ ⟨0.4, 0.1⟩ ⟨0.7, 0.4⟩ ⟨0.4, 0.8⟩
A2 ⟨0.8, 0.3⟩ ⟨0.8, 0.2⟩ ⟨0.7, 0.3⟩ ⟨0.9, 0.6⟩
A3 ⟨0.4, 0.3⟩ ⟨0.3, 0.1⟩ ⟨0.2, 0.6⟩ ⟨0.5, 0.6⟩
A4 ⟨0.8, 0.6⟩ ⟨0.6, 0.4⟩ ⟨0.4, 0.3⟩ ⟨0.9, 0.4⟩
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Step 8 Use the q-ROFIHWCHM (Eq.  (45)) (resp. q-ROFIHWGCHM (Eq.  (56))) to 
aggregate all the individual attribute values of the alternative Ai into the overall attribute 
value Qi(Assume that the DM clings to a global perspective, i.e., he/she believes that the 
correlations among all attributes should be considered; we let � = 3 and R = (1, 1, 1, 1)):

(1)	 B y  t h e  q - R O F I H W C H M ,  w e  d e r i v e 
Q

1
= ⟨0.6260, 0.4112⟩, Q

2
= ⟨0.8340, 0.3623⟩, Q

3
= ⟨0.4263, 0.5581⟩, Q

4
= ⟨0.7672, 0.4497⟩;

(2)	 B y  t h e  q - R O F I H W G C H M ,  w e  d e r i v e 
Q1 = ⟨0.6113, 0.4410⟩, Q2 = ⟨0.8127, 0.4258⟩, Q3 = ⟨0.4271, 0.5582⟩, Q4 = ⟨0.7163, 0.5544⟩.

Step 9 By Eq. (5), calculate the score values S
(
Qi

)
(i = 1, 2, 3, 4) of the overall attribute 

values Qi (i = 1, 2, 3, 4):

(1)	 B a s e d  o n  t h e  q - R O F I H W C H M ,  w e  g e t 
S
(
Q1

)
= 0.3679, S

(
Q2

)
= 0.6282, S

(
Q3

)
= 0.2211, S

(
Q4

)
= 0.5157;

(2)	 B a s e d  o n  t h e  q - R O F I H W G C H M ,  w e  g e t 
S
(
Q1

)
= 0.3511, S

(
Q2

)
= 0.5873, S

(
Q3

)
= 0.2213, S

(
Q4

)
= 0.4326.

Further, the ranking result of the alternatives A1, A2, A3 and A4 obtained by Definition 
2.6 is A2 ≻ A4 ≻ A1 ≻ A3 . Thus, the best alternative is A2.

Step 10 End.

6.2 � The impact of q,
 and R on the ranking results

6.2.1 � The impact of q on the ranking results

In the previous subsection, q = 3 is set in advance according to the DM’s evaluation infor-
mation. We now study the ranking results derived from the different parameter q , which are 
shown in Tables 4, 5 (Let � = 3 and R = (1, 1, 1, 1)).

From Table  4, based on the q-ROFIHWCHM, the ranking results are identical when 
q = 3, 5 and 7 , i.e., A2 ≻ A4 ≻ A1 ≻ A3 , and the ranking result is A2 ≻ A4 ≻ A3 ≻ A1 when 
q = 10 . Although the ranking results are slightly different,A2 is always the best alterna-
tive. The same goes for the Table 5, which is not described again. Liu et al. (2020), Liu 
and Wang (2019) pointed out that the fuzzy environment parameter q should be the small-
est positive integer, such that ûq

ij
+ v̂

q

ij
≤ 1 , where Q̂ij =

⟨
ûij, v̂ij

⟩
 is the evaluation value of 

the alternative Ai regarding the attribute Cj provided by the DM. As a matter of fact, the 
larger the parameter q , the more serious the information distortion. Just taking the pair 
Q̂34 = ⟨0.5, 0.6⟩ as an example, when q = 3, 5, 7 and 10, its HDs are 0.8702, 0.9772, 0.9948 
and 0.9993, respectively. Obviously, the larger q , the higher its uncertainty, and it is almost 

Δ𝜔

𝜆̃
=

⎛
⎜⎜⎜⎝

0.3333 0.1896 0.3437 0.1334

0.2855 0.2823 0.2554 0.1768

0.2192 0.0856 0.2991 0.3962

0.1845 0.2778 0.2553 0.2824

⎞
⎟⎟⎟⎠
.
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completely indeterminate when q = 7 and 10. Of course, this bad situation also occurs in 
other evaluation values. Thus,q selected according to Liu et al.’s viewpoint (Liu and Wang 
2019; Liu et al. 2020) greatly reduces the overall information loss, which in turn leads to 
more accurate decision results.

6.2.2 � The impact of 
 on the ranking results.

In what follows, we analyze the ranking results derived from the different parameter � , 
which are shown in Tables 6, 7 (Let q = 3 and R = (1, 1, 1, 1)).

From Tables 6, 7, the change of the parameter � does not affect the ranking results educed 
by the q-ROFIHWCHM and q-ROFIHWGCHM, which are always A2 ≻ A4 ≻ A1 ≻ A3 , 
i.e., A2 is the best alternative. In addition, the score values based on the q-ROFIHWCHM 
are relatively large when � is large, and the opposite is true for the q-ROFIHWGCHM. The 
reason for this phenomenon is that these two means have their own emphasis, i.e., the arith-
metic mean centers upon the whole, while the geometric mean centers upon the individual.

6.2.3 � The impact of R on the ranking results

In fact, for the Example 6.1 we can embed different numbers of parameters to R so as to 
mirror different types of correlations. Let R =

(
�1, 0, 0, 0

)
 if these four attributes are con-

sidered to be independent of each other; let R =
(
�1, �2, 0, 0

)
 if these four attributes are 

deemed pairwise interrelated; let R =
(
�1, �2, �3, 0

)
 if the correlations among any three of 

these four attributes are to be reflected; let R =
(
�1, �2, �3, �4

)
 if the correlations among all 

Table 4   Score values and ranking results derived from the different parameter q based on the q-ROFIHW-
CHM

q - values Score values Ranking results

q = 3 S1 = 0.3679, S2 = 0.6282, S3 = 0.2211, S4 = 0.5157 A2 ≻ A4 ≻ A1 ≻ A3

q = 5 S1 = 0.2768, S2 = 0.4557, S3 = 0.2292, S4 = 0.3685 A2 ≻ A4 ≻ A1 ≻ A3

q = 7 S1 = 0.2457, S2 = 0.3802, S3 = 0.2409, S4 = 0.3281 A2 ≻ A4 ≻ A1 ≻ A3

q = 10 S1 = 0.2154, S2 = 0.3222, S3 = 0.2478, S4 = 0.2985 A2 ≻ A4 ≻ A3 ≻ A1

Table 5   Score values and ranking results derived from the different parameter q based on the q-ROFIHW-
GCHM

S
i
(i = 1, 2, 3, 4) are the abbreviations of the score values S

(
Q

i

)
(i = 1, 2, 3, 4) , and we still use this notation 

in the following tables.

q - values Score values Ranking results

q = 3 S1 = 0.3511, S2 = 0.5873, S3 = 0.2213, S4 = 0.4326 A2 ≻ A4 ≻ A1 ≻ A3

q = 5 S1 = 0.2683, S2 = 0.4555, S3 = 0.2301, S4 = 0.3690 A2 ≻ A4 ≻ A1 ≻ A3

q = 7 S1 = 0.2414, S2 = 0.3822, S3 = 0.2410, S4 = 0.3338 A2 ≻ A4 ≻ A1 ≻ A3

q = 10 S1 = 0.2152, S2 = 0.3252, S3 = 0.2478, S4 = 0.3043 A2 ≻ A4 ≻ A3 ≻ A1
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attributes are to be mirrored, where �1,�2,�3 and �4 are all positive numbers. Next, we ana-
lyze the influence of R on the ranking results educed by the q-ROFIHWCHM and q-ROFI-
HWGCHM for all types of correlations mentioned above, which are shown in Tables 8, 9 
(Let q = 3 and � = 3).

As shown in Table  8, the ranking results educed by the q-ROFIHWCHM are all 
A2 ≻ A4 ≻ A1 ≻ A3 regardless of parameter changes for every pre-assumed correlation 
structure, i.e.,A2 is the best solution. As for Table 9, except for the case where these four 
attributes are considered to be independent of each other, the ranking results educed by the 
q-ROFIHWGCHM are affected by the parameter changes. Specifically, in the other three 
cases, when only the correlations are characterized without the intensity, the ranking results 
educed by the q-ROFIHWGCHM are completely consistent with those obtained by the 
q-ROFIHWCHM, i.e.,A2 ≻ A4 ≻ A1 ≻ A3 ; but once the correlation strength is enhanced, 
the ranking results change to A2 ≻ A1 ≻ A4 ≻ A3 or A2 ≻ A1 ≻ A3 ≻ A4.On the other hand, 
with regard to each correlation structure, the score values based on the q-ROFIHWCHM 
relatively large when R is embedded with large parameters, and the opposite is true for 
the q-ROFIHWGCHM. The reason for the different ranking results and the opposite trend 
of the score values educed by the q-ROFIHWCHM and q-ROFIHWGCHM is that their 
expressions are dissimilar, in other words, one is on the basis of the arithmetic mean and 
the other is on the basis of the geometric mean, which reflect different emphasis. From 
Tables  8, 9, it is clear that A2 is always the best alternative no matter how the ranking 
results change.

Table 6   Score values and ranking results derived from the different parameter � based on the q-ROFIHW-
CHM

� - values Score values Ranking results

� = 1 S1 = 0.3689, S2 = 0.6284, S3 = 0.2193, S4 = 0.5161 A2 ≻ A4 ≻ A1 ≻ A3

� = 2 S1 = 0.3677, S2 = 0.6280, S3 = 0.2199, S4 = 0.5153 A2 ≻ A4 ≻ A1 ≻ A3

� = 3 S1 = 0.3679, S2 = 0.6282, S3 = 0.2211, S4 = 0.5157 A2 ≻ A4 ≻ A1 ≻ A3

� = 5 S1 = 0.3693, S2 = 0.6292, S3 = 0.2242, S4 = 0.5174 A2 ≻ A4 ≻ A1 ≻ A3

� = 10 S1 = 0.3737, S2 = 0.6318, S3 = 0.2343, S4 = 0.5213 A2 ≻ A4 ≻ A1 ≻ A3

Table 7   Score values and ranking results derived from the different parameter � based on the q-ROFIHW-
GCHM

� - values Score values Ranking results

� = 1 S1 = 0.3566, S2 = 0.6065, S3 = 0.2204, S4 = 0.4891 A2 ≻ A4 ≻ A1 ≻ A3

� = 2 S1 = 0.3544, S2 = 0.5936, S3 = 0.2211, S4 = 0.4560 A2 ≻ A4 ≻ A1 ≻ A3

� = 3 S1 = 0.3511, S2 = 0.5873, S3 = 0.2213, S4 = 0.4326 A2 ≻ A4 ≻ A1 ≻ A3

� = 5 S1 = 0.3442, S2 = 0.5809, S3 = 0.2210, S4 = 0.4005 A2 ≻ A4 ≻ A1 ≻ A3

� = 10 S1 = 0.3294, S2 = 0.5751, S3 = 0.2191, S4 = 0.3554 A2 ≻ A4 ≻ A1 ≻ A3
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Table 8   Score values and ranking results derived from the different parameter vector R based on the 
q-ROFIHWCHM

R - values Score values Ranking results

R = (1, 0, 0, 0) S1 = 0.3639, S2 = 0.5689, S3 = 0.2272, S4 = 0.4186 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 0, 0, 0) S1 = 0.3605, S2 = 0.5723, S3 = 0.2262, S4 = 0.4180 A2 ≻ A4 ≻ A1 ≻ A3

R = (5, 0, 0, 0) S1 = 0.3614, S2 = 0.5749, S3 = 0.2361, S4 = 0.4587 A2 ≻ A4 ≻ A1 ≻ A3

R = (1, 1, 0, 0) S1 = 0.3654, S2 = 0.5678, S3 = 0.2181, S4 = 0.4214 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 3, 0, 0) S1 = 0.3692, S2 = 0.5786, S3 = 0.2329, S4 = 0.4635 A2 ≻ A4 ≻ A1 ≻ A3

R = (5, 5, 0, 0) S1 = 0.3782, S2 = 0.5806, S3 = 0.2764, S4 = 0.4963 A2 ≻ A4 ≻ A1 ≻ A3

R = (1, 1, 1, 0) S1 = 0.3683, S2 = 0.5826, S3 = 0.2169, S4 = 0.4570 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 3, 3, 0) S1 = 0.3883, S2 = 0.5988, S3 = 0.2557, S4 = 0.5005 A2 ≻ A4 ≻ A1 ≻ A3

R = (5, 5, 5, 0) S1 = 0.4029, S2 = 0.6021, S3 = 0.3236, S4 = 0.5207 A2 ≻ A4 ≻ A1 ≻ A3

R = (1, 1, 1, 1) S1 = 0.3679, S2 = 0.6282, S3 = 0.2211, S4 = 0.5157 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 3, 3, 3) S1 = 0.4167, S2 = 0.6468, S3 = 0.2792, S4 = 0.5468 A2 ≻ A4 ≻ A1 ≻ A3

R = (5, 5, 5, 5) S1 = 0.4381, S2 = 0.6544, S3 = 0.3490, S4 = 0.5599 A2 ≻ A4 ≻ A1 ≻ A3

Table 9   Score values and ranking results derived from the different parameter vector R based on the 
q-ROFIHWGCHM

R - values Score values Ranking results

R = (1, 0, 0, 0) S1 = 0.3688, S2 = 0.5734, S3 = 0.2316, S4 = 0.4746 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 0, 0, 0) S1 = 0.3731, S2 = 0.5712, S3 = 0.2362, S4 = 0.4588 A2 ≻ A4 ≻ A1 ≻ A3

R = (5, 0, 0, 0) S1 = 0.3728, S2 = 0.5656, S3 = 0.2356, S4 = 0.3824 A2 ≻ A4 ≻ A1 ≻ A3

R = (1, 1, 0, 0) S1 = 0.3731, S2 = 0.5720, S3 = 0.2246, S4 = 0.4509 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 3, 0, 0) S1 = 0.3722, S2 = 0.5591, S3 = 0.2231, S4 = 0.3483 A2 ≻ A1 ≻ A4 ≻ A3

R = (5, 5, 0, 0) S1 = 0.3593, S2 = 0.5263, S3 = 0.2122, S4 = 0.2561 A2 ≻ A1 ≻ A4 ≻ A3

R = (1, 1, 1, 0) S1 = 0.3725, S2 = 0.5767, S3 = 0.2220, S4 = 0.4374 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 3, 3, 0) S1 = 0.3466, S2 = 0.5341, S3 = 0.2104, S4 = 0.2792 A2 ≻ A1 ≻ A4 ≻ A3

R = (5, 5, 5, 0) S1 = 0.2922, S2 = 0.4835, S3 = 0.1939, S4 = 0.2065 A2 ≻ A1 ≻ A4 ≻ A3

R = (1, 1, 1, 1) S1 = 0.3511, S2 = 0.5873, S3 = 0.2213, S4 = 0.4326 A2 ≻ A4 ≻ A1 ≻ A3

R = (3, 3, 3, 3) S1 = 0.2833, S2 = 0.5022, S3 = 0.2029, S4 = 0.2430 A2 ≻ A1 ≻ A4 ≻ A3

R = (5, 5, 5, 5) S1 = 0.2350, S2 = 0.4560, S3 = 0.1848, S4 = 0.1827 A2 ≻ A1 ≻ A3 ≻ A4
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6.3 � Comparison with the existing MADM methods

In this subsection, we illustrate the rationality and superiority of the developed algo-
rithm by comparing it with some extant q-ROF MADM methods.

(1)	 Compare with the MADM methods using the q-ROF Hamacher means
	   Let Qi = ⟨ui, vi⟩ (i = 1, 2,… , n) be n q-ROFNs with the weights �1,�2,… ,�n such 

that �i ≥ 0 and 
n∑
i=1

�i = 1, the aggregated values of several Hamacher means are 

reviewed as follows:

(1)	 Weighted q-ROF Hamacher average (Wq-ROFHA) (Darko and Liang 2020):

where 𝛾 > 0;
(2)	 q-ROF weighted Hamacher BM (q-ROFWHBM) (Liu and Wang 2019):t

where

(71)
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	   such that 𝛾 > 0,s ≥ 0, t ≥ 0 and s + t ≠ 0;
(3)	 Weighted q-ROF Hamacher MSM (Wq-ROFHMSM) (Darko and Liang 2020):

u� =

(
1 + (� − 1)

a�
ij
− a��

ij

a�
ij
+ (� − 1)a��

ij

) 1

n(n−1)

,

u�� =

(
1 −

a�
ij
− a��

ij

a�
ij
+ (� − 1)a��

ij

) 1

n(n−1)

,

v� =

(
�b�

ij

(� − 1)b�
ij
+ b��

ij

) 1

n(n−1)

,

v�� =

(
� − (� − 1)

�b�
ij

(� − 1)b�
ij
+ b��

ij

) 1

n(n−1)

,

a�
ij
=

n∏
i,j=1
i≠j

(
1 + (� − 1)

(
xixj

� + (1 − �)
(
xi + xj − xixj

)
))

,

a��
ij
=

n∏
i,j=1
i≠j

(
1 −

(
xixj

� + (1 − �)
(
xi + xj − xixj

)
))

,

b�
ij
=

n∏
i,j=1
i≠j

(
yi + yj + (� − 2)yiyj

1 − (1 − �)yiyj

)
,

b��
ij
=

n∏
i,j=1
i≠j

(
� − (� − 1)

(
yi + yj + (� − 2)yiyj

1 − (1 − �)yiyj

))
,

xi =

�

( (
1+(�−1)u

q

i

)n�i
−
(
1−u

q

i

)n�i
(
1+(�−1)u

q

i

)n�i
+(�−1)

(
1−u

q

i

)n�i

)s

(� − 1)

( (
1+(�−1)u

q

i

)n�i
−
(
1−u

q

i

)n�i
(
1+(�−1)u

q

i

)n�i
+(�−1)

(
1−u

q

i

)n�i

)s

+

(
� − (� − 1)

(
1+(�−1)u

q

i

)n�i
−
(
1−u

q

i

)n�i
(
1+(�−1)u

q

i

)n�i
+(�−1)

(
1−u

q

i

)n�i

)s ,

xj =

�

( (
1+(�−1)u

q

j

)n�j
−
(
1−u

q

j

)n�j
(
1+(�−1)u

q

j

)n�j
+(�−1)

(
1−u

q

j

)n�j

)t

(� − 1)

( (
1+(�−1)u

q

j

)n�j
−
(
1−u

q

j

)n�j
(
1+(�−1)u

q

j

)n�j
+(�−1)

(
1−u

q

j

)n�j

)t

+

(
� − (� − 1)

(
1+(�−1)u

q

j

)n�j
−
(
1−u

q

j

)n�j
(
1+(�−1)u

q

j

)n�j
+(�−1)

(
1−u

q

j

)n�j

)t
,

yi =

(
1 + (� − 1)

�v
n�i
i

(�−1)v
qn�i
i

+(1+(�−1)(1−vqi ))
n�i

)s

−
(
1 −

�v
n�i
i

(�−1)v
qn�i
i

+(1+(�−1)(1−vqi ))
n�i

)s

(
1 + (� − 1)

�v
n�i
i

(�−1)v
qn�i
i

+(1+(�−1)(1−vqi ))
n�i

)s

+ (� − 1)
(
1 −

�v
n�i
i

(�−1)v
qn�i
i

+(1+(�−1)(1−vqi ))
n�i

)s ,

yj =

(
1 + (� − 1)

�v
n�j

j

(�−1)v
qn�j

j
+
(
1+(�−1)

(
1−v

q

j

))n�j

)t

−

(
1 −

�v
n�j

j

(�−1)v
qn�j

j
+
(
1+(�−1)

(
1−v

q

j

))n�j

)t

(
1 + (� − 1)

�v
n�j

j

(�−1)v
qn�j

j
+
(
1+(�−1)

(
1−v

q

j

))n�j

)t

+ (� − 1)

(
1 −

�v
n�j

j

(�−1)v
qn�j

j
+
(
1+(�−1)

(
1−v

q

j

))n�j

)t
,



8999Generalized q‑rung orthopair fuzzy interactive Hamacher…

1 3

where

such that 𝛾 > 0.
We now use the Wq-ROFHA (Darko and Liang 2020), q-ROFWHBM (Liu and Wang 

2019) and Wq-ROFHMSM (Darko and Liang 2020) to solve Example 6.1. Then the over-
all attribute value of each alternative aggregated by these means are presented in Table 10, 
and the score values and ranking results are shown in Table 11 (Let q = 3 and � = 3 , where 
� is the (interactive) Hamacher operation parameter).
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From Table 11, when the four attributes are considered to be independent of each other 
or pairwise interrelated, the ranking result educed by the Wq-ROFHA (Darko and Liang 
2020) or q-ROFWHBM (Liu and Wang 2019) is exactly the same as those educed by the 
q-ROFIHWCHM and q-ROFIHWGCHM, i.e.,A2 ≻ A4 ≻ A1 ≻ A3 . For the case where the 
correlations among any three of the four attributes are to be reflected, the ranking result 
educed by the Wq-ROFHMSM (Darko and Liang 2020) is A2 ≻ A1 ≻ A3 ≻ A4 , which is 
slightly different from the ranking A2 ≻ A4 ≻ A1 ≻ A3 educed by the q-ROFIHWCHM and 
q-ROFIHWGCHM. Even so,A2 is still the best choice. Therefore, our introduced algorithm 
is indeed effective.

In the following, we point out the irrationality of the Wq-ROFHA (Darko and Liang 
2020), q-ROFWHBM (Liu and Wang 2019) and Wq-ROFHMSM (Darko and Liang 2020) 
in terms of information fusion.

Case 1  We adjust Q̂21 from ⟨0.8, 0.3⟩ to ⟨0.8, 0⟩ , and the other evaluation values Q̂22,Q̂23 
and Q̂24 are exactly the same as those in Table 3. With regard to the alternative A2 , the 
overall attribute values Q′

2
 , Q′′

2
 and Q′′′

2
 , which are aggregated by the Wq-ROFHA (Darko 

and Liang 2020) when q = 3 and � = 3,5 and 7 , are ⟨0.7969, 0⟩ , ⟨0.7960, 0⟩ and ⟨0.7955, 0⟩ , 
respectively. So the N-MDs of Q̂22,Q̂23 and Q̂24 and the Hamacher operation parameter � are 
invalid in this case.

Case 2  We adjust Q̂21 from ⟨0.8, 0.3⟩ to ⟨0.8, 0⟩ and Q̂22 from ⟨0.8, 0.2⟩ to ⟨0.8, 0⟩, and 
besides, the other evaluation values Q̂23 and Q̂24 are exactly the same as those in Table 3. 

As far as the alternative A2 is concerned, the overall attribute values 
⌣

Q

′

2
,
⌣

Q

′′

2
 and 

⌣

Q

′′′

2
 , which 

are aggregated by the q-ROFWHBM (Liu and Wang 2019) when q = 3,s = t = 1 and � = 3

,5 and 7 , are ⟨0.7900, 0⟩,⟨0.7945, 0⟩ and ⟨0.7984, 0⟩ , respectively. This implies that the 
N-MDs of Q̂23 and Q̂24 and the Hamacher operation parameter � do not work at all.

Case 3  We adjust Q̂21 from ⟨0.8, 0.3⟩ to ⟨0.8, 0⟩,Q̂22 from ⟨0.8, 0.2⟩ to ⟨0.8, 0⟩, and Q̂23 from 
⟨0.7, 0.3⟩ to ⟨0.7, 0⟩ , and the evaluation value Q̂24 is exactly the same as that in Table 3. 

Regarding the alternative A2, the overall attribute values 
⌢

Q

′

2
,
⌢

Q

′′

2
 and 

⌢

Q

′′′

2
 , which are aggre-

gated by the Wq-ROFHMSM (Darko and Liang 2020) when q = 3,k = 3 and � = 3,5 and 
7 , are ⟨0.4880, 0⟩,⟨0.4601, 0⟩ and ⟨0.4402, 0⟩ , respectively. Therefore, the N-MD of Q̂24 and 
the Hamacher operation parameter � are fruitless in this case.

We now recalculate Case 1 using the proposed method. For the alternative A2, the 
overall attribute values –Q′

2
,–Q′′

2
 and –Q′′′

2
 , which are aggregated by the q-ROFIHWCHM 

when q = 3, R = (1, 0, 0, 0) and � = 3,5 and 7 , are ⟨0.7947, 0.2096⟩,⟨0.7945, 0.2097⟩ and 
⟨0.7944, 0.2097⟩ , respectively; the overall attribute values  Q�

2
, Q��

2
 and  Q���

2
 , which are 

aggregated by the q-ROFIHWGCHM when q = 3, R = (1, 0, 0, 0) and � = 3,5 and 7 , are 
⟨0.7971, 0.1776⟩,⟨0.7972, 0.1751⟩ and ⟨0.7972, 0.1732⟩ , respectively. It is clear that the 
N-MD of Q̂21 no longer dominates the overall attribute value of the alternative A2.Thus, 
compared with the Wq-ROFHA (Darko and Liang 2020), it is more reasonable to use 
the q-ROFIHWCHM or q-ROFIHWGCHM to fuse information. The same is true when 
compared with the q-ROFWHBM (Liu and Wang 2019) and Wq-ROFHMSM (Darko and 
Liang 2020), which are not illustrated here.

In addition, we note that the q-ROFWHBM (Liu and Wang 2019) and Wq-ROFHMSM 
(Darko and Liang 2020) are not idempotent. This means that when the evaluation values 
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are all equal for a certain alternative, the q-ROFWHBM (Liu and Wang 2019) and Wq-
ROFHMSM (Darko and Liang 2020) can yield discordant overall attribute values, respec-
tively, which seems counter- intuitive.

(2)	 Compare with the MADM method using the q-ROF power weighed MSM (q-ROFP-
WMSM) (Liu et al. 2020).

	   Let Qi = ⟨ui, vi⟩ (i = 1, 2,… , n) be n q-ROFNs with the weights �1,�2,… ,�n such 

that �i ≥ 0 and 
n∑
i=1

�i = 1, the aggregated value of the q-ROFPWMSM is reviewed as

where �i =
�i(1+T(Qi))
n∑

r=1

�r(1+T(Qr))
,T(Qi) =

n∑
j=1,j≠i

Sup(Qi,Qj),Sup(Qi,Qj) = 1 − d(Qi,Qj) , and 

d(Qi,Qj) is the normalized Hamming distance between Qi and Qj as given in Eq. (2).

If we use the q-ROFPWMSM (Liu et  al. 2020) to tackle Example 6.1 (Let 
q = 3 and k = 3 ), then the overall attribute values of the alternatives are as fol-
lows:Q1 = ⟨0.5167, 0.5869⟩, Q2 = ⟨0.7692, 0.5231⟩, Q3 = ⟨0.3372, 0.6053⟩ and 
Q4 = ⟨0.6666, 0.5278⟩ ; the score values of the alternatives are as follows:S��

1
= −0.0642,

S��
2
= 0.3119, S��

3
= −0.1834 and S��

4
= 0.1492 , where S′′ is the score function in (Liu 

et  al. 2020) and (Liu and Wang 2019). Hence the ranking result educed by the q-ROF-
PWMSM (Liu et  al. 2020) when q = 3 and k = 3 is A2 ≻ A4 ≻ A1 ≻ A3 . This ranking 
result is completely consistent with those educed by the q-ROFIHWCHM and q-ROFI-
HWGCHM when q = 3,� = 3 and R = (1, 1, 1, 0) , which have been shown in Table 11. In 
fact, the MADM method using the q-ROFPWMSM (Liu et al. 2020) when q = 3 and k = 3 
and our proposed algorithm using the q-ROFIHWCHM or q-ROFIHWGCHM when q = 3

,� = 3 and R = (1, 1, 1, 0) have in common that they not only weaken the impacts of the 
extreme evaluation values, but also reflect the correlations among any three of the four 
attributes (Note: For the MADM method using the q-ROFPWMSM (Liu et al. 2020), each 
evaluation value is assigned with a degree of importance (weighted nonlinear weight) by 
the q-ROFPWA (Liu et al. 2020); however, with regard to our developed method, before 
aggregating all the individual attribute values of the alternatives into the overall attribute 
values with the q-ROFIHWCHM or q-ROFIHWGCHM, each data has been endowed with 
a degree of importance (weighted nonlinear weight) by the q-ROFIHWAPA). So the effec-
tiveness of our proposed algorithm is authenticated by the consistent ranking again.

(74)

q - ROFPWMSM
�
Q

1
,Q

2
,… ,Qn

�
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n
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1 −

� �
1≤𝜏

1
<⋯<𝜏k≤n

�
1 −
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1 −

�
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k ⎞⎟⎟⎟⎠
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Next, we illustrate the degrees of importance distributed by the q-ROFIHWAPA to 
evaluation values are more reasonable than those assigned by the q-ROFPWA (Liu et al. 
2020). We adjust Q̂21 from ⟨0.8, 0.3⟩ to ⟨0.8, 0.7⟩,Q̂22 from ⟨0.8, 0.2⟩ to ⟨0.8, 0.6⟩ and Q̂23 
from ⟨0.7, 0.3⟩ to ⟨0.01, 0.01⟩ , and the evaluation value Q̂24 is exactly the same as that in 
Table 3, which is ⟨0.9, 0.6⟩ . As a matter of fact, the new evaluation values on the alter-
native A2 are very balanced except for Q̂23 . When q = 3 , the degrees of importance dis-
tributed by the q-ROFPWA (Liu et al. 2020) to evaluation values Q̂21,Q̂22,Q̂23 and Q̂24 are 
0.3272, 0.4561, 0.1146 and 0.1021, respectively; the degrees of importance distributed by 
the q-ROFIHWAPA to these four evaluation values are 0.3002, 0.3182, 0.0896 and 0.2921, 
respectively. Apparently, compared with the q-ROFPWA (Liu et al. 2020), the q-ROFIH-
WAPA is more capable of exploring the importance of original information, i.e., it assigns 
a less degree of credibility to the extreme data Q̂23 and assigns the relatively equilibrious 
degrees of credibility to the balanced evaluation values Q̂21,Q̂22 and Q̂24 , which is consistent 
with our intuition.

On the other hand, we point out that the q-ROFPWMSM (Liu et  al. 2020) does not 
satisfy the idempotency, i.e., using it to aggregate the identical evaluation information will 
lead to counter-intuition.

Now we make a summary about the characteristics of the above-mentioned methods 
from the following perspectives:

(P1) Whether it can reflect the attributive correlations;
(P2) Whether it can reflect the correlations between pairwise attributes;
(P3) Whether it can reflect the correlations among multiple attributes;
(P4) Whether it weakens the impacts of the extreme evaluation values;
(P5) Whether it weakens the impacts of the extreme evaluation values more reasonably;
(P6) Whether it considers the interactions between MD and N-MD;
(P7) Whether it has the characteristic of generality (It can generate different methods by 
different operation parameters);
(P8) Whether it satisfies the idempotency.

For convenience, we present their characteristics in Table 12.
From Table 12, we easily find that the proposed method has too many advantages com-

pared with the MADM methods constructed on the existing means. Thus, it is more suit-
able to tackle the q-ROF MADM.

Table 12   The characteristics of different MADM methods

Methods (P1) (P2) (P3) (P4) (P5) (P6) (P7) (P8)

Wq-ROFHA (Darko and Liang 2020) ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓
q-ROFWHBM (Liu and Wang 2019) ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗
Wq-ROFHMSM (Darko and Liang 2020) ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗
q-ROFPWMSM (Liu et al. 2020) ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
The proposed method ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



9005Generalized q‑rung orthopair fuzzy interactive Hamacher…

1 3

7 � Conclusions

As an extension of IFS and PFS, q-ROFS has a strong ability to characterize the vague-
ness and uncertainty. Considering this, we take it as the background to implement MADM 
analysis. The specific work focuses on the following aspects:

(1)	 We introduce the q-ROF interactive Hamacher operations, improved score function 
and new q-ROFE formula, which serve as the theoretical basis of the full text.

(2)	 We propose the APA and its weight form (WAPA) to remedy the deficiencies of the 
PA and its weight form (WPA). Then the q-ROFIHWAPA is obtained with the help 
of the q-ROF interactive Hamacher operations, and the basic properties are ana-
lyzed. Further, we present a MADM algorithm and its application example based 
on the q-ROFIHWAPA. Finally, according to the results of the application example, 
we develop the entropy weight fitting method to determine the parameter carried by 
the q-ROFIHWAPA. By this means the weighted nonlinear weights derived from the 
q-ROFIHWAPA are more objective.

(3)	 Inspired by the development of BMs, we define the WCHM and WGCHM on the 
basis of the HM and GHM, respectively, which can eliminate the redundancy of the 
DGWBM and DGWBGM, i.e., the case of 𝜏1 > 𝜏2 > ⋯ > 𝜏n. Subsequently, we develop 
the q-ROFIHWCHM and q-ROFIHWGCHM by combining them with the q-ROF inter-
active Hamacher operations, and the common properties and special cases are also 
investigated.

(4)	 We establish a MADM model relied on the q-ROFIHWAPA and q-ROFIHWCHM 
(resp. q-ROFIHWGCHM). More precisely, before aggregating all the individual attrib-
ute values of the alternatives into the overall attribute values with the q-ROFIHWCHM 
or q-ROFIHWGCHM, the weight of each data has been replaced with the weighted 
nonlinear weight carried by the q-ROFIHWAPA. Then a practical example is presented 
to illustrate that the introduced algorithm (i) can reflect the correlations among multiple 
attributes; (ii) weakens the impacts of the extreme evaluation values more reasonably; 
(iii) considers the interactions between the MD and N-MD of different q-ROFNs; 
(iv) has the characteristic of generality (It can generate different methods by different 
operations).

In the following, we point out several points for future research:

(1)	 Propose more advanced operations for q-ROFNs.
	   As a matter of fact, the q-ROFIHWAPA, q-ROFIHWCHM and q-ROFIHWGCHM 

introduced in this paper have the following disadvantages: (i) when there is at least 
one ⟨1, 0⟩ in a set of q-ROFNs, the fusion results derived from the q-ROFIHWAPA and 
q-ROFIHWCHM are both ⟨1, 0⟩ regardless of the other values; (ii) when there is at least 
one ⟨0, 1⟩ in a set of q-ROFNs, the fusion result derived from the q-ROFIHWGCHM is 
always ⟨0, 1⟩ regardless of the other values. Therefore, it is necessary to explore more 
advanced q-ROF operation rules to eliminate these deficiencies.

(2)	 Develop the generalized WCHMs.
	   Dutta and Guha (Dutta and Guha 2015) proposed the partitioned BM (PBM) on 

the basis of such an assumption that all attributes are separated into some partitions, 
the attributes in the same partition are interrelated to each other, and the attributes in 
different partitions are independent. Similarly, we can introduce the weighted parti-
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tioned coordinated HM (WPCHM) and weighted partitioned geometric coordinated 
HM (WPGCHM). However, it has to be mentioned that their expressions will be quite 
complicated. Further, we can also study the prioritization between partitions.

(3)	 Use a certain kind of fuzzy information to express the weights instead of the real num-
ber.

	   For MADM or multi-attribute group decision making (MAGDM), it has become a 
convention that the weights of attributes or DMs are quantified in real numbers. To bet-
ter characterize ambiguities and uncertainties, in fact, the q-ROFNs, linguistic values 
and other forms can be used to express the views on the attributes or DMs. Also, the 
corresponding decision algorithm will be presented.
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