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Abstract
Real-world problems are commonly characterized by a high feature dimensionality, which 
hinders the modelling and descriptive analysis of the data. However, some of these data 
may be irrelevant or redundant for the learning process. Different approaches can be used 
to reduce this information, improving not only the speed of building models but also their 
performance and interpretability. In this review, we focus on feature subset selection (FSS) 
techniques, which select a subset of the original feature set without making any transforma-
tion on the attributes. Traditional batch FSS algorithms may not be adequate to efficiently 
handle large volumes of data, either because memory problems arise or data are received 
in a sequential manner. Thus, this article aims to survey the state of the art of incremental 
FSS algorithms, which can perform more efficiently under these circumstances. Different 
strategies are described, such as incrementally updating feature weights, applying informa-
tion theory or using rough set-based FSS, as well as multiple supervised and unsupervised 
learning tasks where the application of FSS is interesting.

Keywords  Data streams · Feature streams · Dynamic environments · Feature subset 
selection · Supervised classification · Clustering

1  Introduction

Feature subset selection (FSS) is the task of choosing a subset of features, also known as 
independent/predictive variables/attributes, from a complete dataset, with the objective 
of improving the efficiency, precision and interpretability of built models. This can be 
achieved by using fewer variables since FSS seeks to discard irrelevant and redundant fea-
tures that may be confusing and harmful for learning algorithms. The FSS task described 
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in this article should not be confused with feature extraction, which constructs new vari-
ables from the available ones to obtain a lower-dimensional (albeit less intuitive) feature 
space.

This review focuses on incremental FSS algorithms, i.e., approaches used in environ-
ments where new training instances, features or both are received progressively over time 
and, therefore, the subset of candidate features should be updated dynamically. Traditional 
batch approaches cannot be directly applied in a streaming context, implying that models 
have to be retrained when new data are received, a solution that may be inefficient and 
poorly scalable when processing big data (Wu et al. 2017). In addition, incremental algo-
rithms are not only useful when the entire set of features or instances (examples) are not 
available beforehand, but they can also be considered in the preprocessing step when all 
the data are available, but computational resources are limited (Jing et al. 2018).

Proposals that incrementally work with information flows are known by several terms, 
such as online or incremental. There is no well-established definition for these concepts 
and they are used interchangeably by some authors. However, we believe it is appropriate 
to consider online learning as a subtype of incremental learning, which imposes stricter 
time and space requirements and should be able to work endlessly in a streaming environ-
ment (Gama et al. 2014; Losing et al. 2018). It can be seen that the definition of an algo-
rithm as online is truly dependent on its complexity when addressing real-time problems. 
An FSS algorithm could be adequately efficient to handle a certain online problem, given 
solutions at the expected time, but it may not be appropriate in a more demanding environ-
ment. If we focus on the complexity of the algorithm to define it as online or incremental, 
the definition would depend on the characteristics of the problem being addressed. There-
fore, we concluded that online learning literature focuses more on defining algorithms that 
can be applied to real-time problems, while incremental algorithms simply seek to improve 
the efficiency obtained by batch proposals. In return, online algorithms, at least in the case 
of receiving new instances, may find their effectiveness reduced as the model complexity 
is additionally bounded (Losing et  al. 2018). However, this definition does not perfectly 
fit when new features are received. If we face a theoretically infinite stream of features, 
where an infinite number of them could be considered relevant and non-redundant, it is 
inevitable that a memory problem will appear at some point. Nevertheless, algorithms that 
could face this problem are considered to be online algorithms in the literature. This article 
reviews algorithms defined as online or incremental by their authors that can be applied in 
a context where new data or features can be received, i.e., on data streams, feature streams 
or a combination of both. The objective is not to present an unequivocal way of defining 
an algorithm as online or incremental but to study diverse proposals that are capable of 
incrementally updating a current selection of variables with the arrival of new information.

Dynamic data can be categorized into three main classes: data streams, feature streams 
and a hybrid known as data and feature stream. When working with data streams, new 
instances arrive over time, while the feature set remains fixed. Thus, the set of selected 
features and the models should be adapted according to the new data. Figure 1 shows a 
framework commonly followed by online FSS algorithms when working with data streams, 

Fig. 1   Example of a framework of online FSS algorithms for data streams
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where a set of feature weights is dynamically updated according to certain rules. Given the 
arrival of a new instance (or instance group), the applied rules take into account, for exam-
ple, whether a misclassification occurs or if the value of a loss function is above a certain 
threshold. If we consider other algorithms commonly defined as incremental, it is common 
to use temporal windows in conjunction with information theory measures, such as mutual 
information, to evaluate the feature importance. The appearance of new instances repre-
sents several challenges, such as model accuracy reduction due to changes in the under-
lying data relationships. This problem is known as concept drift, one of the main obsta-
cles when considering data streams. There are real-world problems that involve handling 
data streams in very diverse areas, such as spam detectors (Wang et al. 2014), personalized 
medicine (Swan 2012) or analysis of currency exchange rates and demographic data (Yi 
et al. 2000).

Unlike data streams, feature streams are characterized by a fixed set of instances, but 
the feature set evolves over time; thus, the objective is to maintain a feature subset with 
the most relevant features that have arrived so far, avoiding redundancies. The general 
approach for incremental/online FSS on feature streams includes a relevance and redun-
dancy analysis, as shown in Fig. 2, to assess whether a new variable (or variables) is rel-
evant and, in a positive case, to check for redundancies caused by its inclusion in the subset 
of selected variables. This framework varies since some approaches, for example, do not 
include a redundancy analysis or require additional steps (see, for example, Sect. 4.2). Fea-
ture streams may be useful when (1) the generation of all the features is expensive and 
it is not feasible to wait for all of them to be generated, as could occur in some scientific 
experiments, or (2) when we do not have the means to obtain all possible features at the 
moment since, for example, they could be obtained from a social network and be based on 
current news. We can find several examples of FSS applications over feature streams, such 
as in medical learning problems (Wang et  al. 2017), statistical relational learning (Zhou 
et al. 2005), texture-based image segmentation (Perkins and Theiler 2003), bioinformatics 
experiments (Wang et al. 2014), edge detection in grayscale images (Glocer et al. 2005) 
and analysis of social network data (Yu et al. 2016a).

Finally, a hybrid type of stream called a data and feature stream, which implies the 
appearance of both new instances and features over time, will be discussed.

FSS techniques are commonly categorized into three types depending on their relation-
ship with the model construction: the filter, embedded and wrapper methods (Saeys et al. 
2007; Guyon et  al. 2008). A filter algorithm uses only the training data and a metric to 
score each feature or subset of features, so the result is independent of learning models. 
Embedded techniques include the feature selection process as a part of the model defi-
nition, i.e., embedded in the modelling algorithm. Wrapper algorithms evaluate differ-
ent feature subsets by training a specific model for each of them and report the feature 

Fig. 2   General framework of FSS algorithms for feature streams
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combination whose model achieves the best testing performance (e.g., accuracy). The crea-
tion of several models every time new data are available may be computationally expensive 
and incompatible with the interest of online algorithms to evaluate new data, ideally, in 
real time. This scenario is even worse if new features are received since, without consid-
ering the use of any heuristic search, there would be 2d − 1 (for d features) possible fea-
ture combinations to evaluate and, therefore, models to build. We believe this is the reason 
why wrapper algorithms do not receive much attention for incremental learning, especially 
when considering online scenarios with more demanding time and memory constraints.

This article is motivated by the fact that reviews on incremental/online FSS are scarce, 
so that the vast majority of studies focus primarily on batch techniques (Pereira et al. 2018; 
Urbanowicz et al. 2018; Bolón-Canedo and Alonso-Betanzos 2019; Venkatesh and Anu-
radha 2019; Zhang et al. 2019; Solorio-Fernández et al. 2020; Pintas et al. 2021). However, 
the increased interest in algorithms with incremental mechanisms requires an in-depth 
study of the state of the art on this topic. Recent publications considering the streaming 
scenario only explain a really small and not very diverse set of methods compared to the 
number of existing contributions in this field (Hu et al. 2016; Tommasel and Godoy 2016; 
Li et al. 2017; Cai et al. 2018; Ma et al. 2018; Somasundaram and Mylsamy 2018; AlNu-
aimi et al. 2020). Most of the algorithms studied in these publications were proposed sev-
eral years ago, so it is also necessary to contemplate new proposals that can handle the 
performance demands and learning problems that we may face in increasingly massive 
datasets and faster processes. This review article aims to provide a big picture of incremen-
tal FSS methods, presenting the reader with a detailed study of proposals with different 
characteristics and for a wide variety of learning problems. In addition, this comprehensive 
analysis has allowed us to detect an interesting variety of open issues in several areas of 
study. Nevertheless, this article not only reviews the most recent and prominent algorithms, 
but also clarifies and structures an area of study in which there is confusion both in the 
acronyms and definitions used and in the categorization of some proposals. In summary, 
the main objectives of this work are the following:

–	 Formal definition and introduction of taxonomies for the FSS problem, with a special 
interest in its application to data streams, feature streams or a combination of both.

–	 Comprehensive and structured study of a wide variety of incremental/online FSS algo-
rithms for data and/or feature streams.

–	 Comparison of the studied algorithms, describing in detail their functioning and offer-
ing alternatives for some of their shortcomings.

–	 Study of an extensive variety of learning problems where incremental/online FSS is 
interesting to be applied. These include, among others, supervised (binary, multi-class 
and multi-label), unsupervised, multi-task, multi-view or ensemble learning, discrete 
and continuous features, receiving instances/features individually or in groups, or rough 
set-based approaches.

The remainder of this paper is organized as follows. In Sect.  2, the FSS problem over 
streams of data or features is described and categorized, defining the nomenclature that will 
be used throughout this document. In Sect. 3, several FSS algorithms that can be used with 
data streams are introduced and categorized as supervised or unsupervised approaches. In 
Sect. 4, FSS algorithms for feature streams are described and categorized into those that 
process new features individually or by groups. In turn, these two categories are divided 
into supervised and unsupervised algorithms. In Sect. 5, the incremental incorporation of 
both new instances and features is analyzed, and the few proposals that exist are studied. In 



S1015Feature subset selection for data and feature streams: a review﻿	

1 3

Sect. 6, future work on incremental/online FSS is outlined. Finally, in Sect. 7, some con-
clusions achieved during the realization of this review are presented.

2 � Problem statement

This section defines the mathematical notation that will be used throughout the paper, 
including an explanation of FSS, data streams, feature streams and the rough set theory, all 
illustrated with examples.

2.1 � Feature subset selection

Let D = {zi = (xi, yi), 1 ≤ i ≤ n} be a static dataset, where zi denotes the training instance 
i with a vector of values xi = (xi1,… , xid) of a fixed dimension d and a class vector 
yi = (yi1,… , yil) , where l is the number of class variables. Thus, l = 1 is a one-dimensional 
supervised classification problem and l > 1 is a multi-dimensional one. Each class variable 
Yj has kj distinct values, so if kj = 2 , ∀j = 1,… , l , we have a binary ( l = 1 ) or multi-label 
( l > 1 ) problem, while if kj > 2 for some j, it can be a multi-class ( l = 1 ) or multi-dimen-
sional ( l > 1 ) problem. Given that our set of features is represented by X = {X1,… ,Xd} , 
so value xij belongs to feature Xj , and our set of class variables by Y = {Y1,… , Yl} , so yij 
belongs to class variable Yj , the feature selection task selects a subset of features S ⊆ X  
that can be used to obtain a mapping function f from S to Y that is as good as possible for a 
certain criterion. This subset of features S should contain the most relevant features while 
avoiding redundancies.

If the dataset is unsupervised, it may not be clear how to evaluate the importance of a 
feature since there are no class variables, Y = � , that could be used as a reference to define 
their relevance. The ideal aim of unsupervised FSS is therefore to preserve the most impor-
tant characteristics of the data in a reduced feature space that contains the most discrimina-
tive features for the task to be performed. The following section offers an in-depth view of 
the definition of relevant and redundant features in supervised and unsupervised learning 
problems.

2.2 � Relevant and redundant features

There is no unique way to define relevant and redundant features: the definition is depend-
ent on the task for which the feature selection is made. For example, the authors in (Wang 
et  al. 2014; Yang et  al. 2013) learn sparse models, i.e., models where parameters of the 
least important features shrink to zero, by imposing certain constraints, such as L1-norm 
regularization, whereas the authors in (Yu et al. 2014; Domingos and Hulten 2000; Liang 
et  al. 2014) explicitly define the goodness of the features based on measures such as 
entropy, mutual information or Gini index. By contrast, wrapper algorithms could simply 
report a feature subset based on the model that achieves the highest accuracy or area under 
the ROC curve.

Formally, in a probabilistic context, feature relevance is commonly defined as in John 
et al. (1994), which states that, in supervised learning, relevant features can be divided into 
two groups: strongly relevant and weakly relevant features. Strongly relevant features are 
indispensable for the final subset of selected features since their removal would imply a 
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loss of prediction power. Given a feature Xi and a set of features T = X⧵{Xi} , Xi is strongly 
relevant to a class variable Yj , iff:

A weakly relevant feature may contribute to increasing the prediction power of a model, 
which depends on the other features that are available. Then, a weakly relevant feature can 
become strongly relevant by the removal of other features. Xi is considered to be weakly 
relevant iff it is not strongly relevant and there exists T ′ ⊂ T  such that:

If a feature is not strongly or weakly relevant, then it does not contribute to the prediction 
power, i.e., it is an irrelevant feature.

Defining only the most relevant features may not be sufficient to perform an effective 
FSS. A redundancy method that removes features that are highly correlated with other rel-
evant ones and, therefore, do not provide extra information about classes is necessary. This 
task is usually performed by removing high correlations between features.

Following Yu and Liu (2004), for a class variable Yj , a feature Xi ∈ X  can be formally 
defined as redundant iff it is weakly relevant and has a Markov blanket Mi in X  ( Xi ∉ Mi ), 
i.e., there is a feature subset that contains the information that Xi has about Yj . Mi is a 
Markov blanket of Xi iff:

Notably, algorithms for data streams that are defined as online do not explicitly focus on 
identifying redundancies but expect that zero-valued feature weights belong to redundant 
and irrelevant features. Following the previous definition would be inefficient for the objec-
tives of online learning since it would require analyzing several feature combinations every 
time new data are obtained. On the other hand, incremental algorithms for data streams and 
proposals for feature streams could consider explicitly defining whether a feature is redun-
dant. In the case of proposals for feature streams that consider redundancy analysis, they 
may, for example, establish a limit to the size of the Markov blankets (Wu et al. 2013) or 
approximate them (Yu et al. 2014).

That said, Yu and Liu (2004) divide a set of features into four disjoint components: 
(1) irrelevant features, (2) weakly relevant and redundant features, (3) weakly relevant but 
non-redundant features and (4) strongly relevant features, defining the optimal subset of 
features as formed by (3) and (4).

The following example, inspired by Yu and Liu (2004), attempts to clarify the concepts 
of irrelevant, strongly/weakly relevant and redundant features.

Example 1  Given a set of binary features {X1,X2,X3,X4} , where X2 = X3 , and a class var-
iable Y = f (X1,X2) obtained with function f (⋅, ⋅) , it is easy to see that the two possible 
optimal feature subsets are formed by {X1,X2} or {X1,X3} . Then, X1 is a strongly relevant 
feature, while X2 and X3 are weakly relevant. Only one of these latter two features should 
be removed since they are redundant. Feature X4 is irrelevant for the computation of Y. ▪

Despite the fact that most studies are focused on supervised problems, there is a wide 
range of areas that involve high-dimensional unlabelled data. In this situation, it is not triv-
ial to select the most important features since we do not have the information provided by 

p(Yj|Xi, T) ≠ p(Yj|T).

p(Yj|Xi, T
�) ≠ p(Yj|T �).

p(X ⧵ {Mi,Xi},Yj|Xi,Mi) = p(X ⧵ {Mi,Xi}, Yj|Mi).
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the class variables. A common solution is to extract information from the data that could 
be employed to generate a target variable. Then, the obtained pseudo-class labels can be 
used with a supervised FSS approach, such as obtaining sparse feature weights with a regu-
larized regression (Huang et al. 2015). Another simpler approach, commented on in this 
article, is to use a similarity measure to obtain a predefined number of feature clusters and 
select a representative feature from each of them (Almusallam et al. 2018).

2.3 � FSS on data streams

As explained in Sect.  1, there are certain problems where not all the training instances 
are available at the beginning but are obtained dynamically from a data stream 
D = limT→∞

⋃T

t=1
{zt

i
= (xt

i
, yt

i
), 1 ≤ i ≤ nt} = limT→∞

⋃T

t=1
Dt . Therefore, new train-

ing instances zt
i
 can be received at each time t, and the number of time steps T could be 

unknown and theoretically infinite. It is even possible to encounter problems where the 
set of instances is reduced over time. The task of feature selection on data streams is to 
dynamically select a subset of features St at each time step t that contains most of the infor-
mation provided by the complete feature set. Note that in the case of an unsupervised prob-
lem, a training instance would not have class variables, i.e., zt

i
= xt

i
.

Example 2  For the following examples, we use the dataset for fraudulent website analysis 
from Table 1. As shown at the top of Fig. 3, the instances of the dataset could have been 
sequentially received from a data stream until time t = 3 . Then, at t = 4 , a new website 
could be analyzed, and its information for the four available features would be included. 
These new data could be obtained from multiple kinds of sources, such as sensors, social 
networks and lab experiments. ▪

2.3.1 � Concept drift

The evolving environment under study implies that the underlying distribution of the data 
can change over time, which produces the appearance of concept drift. A concept at a time 
t is typically defined as the joint distribution between the feature space and, in the case of 
supervised learning, the target space, i.e., pt(X,Y) (Gama et al. 2014). Thus, concept drift 

Table 1   Example dataset of 
phishing websites

 LongURL LinksToPage  AgeDomain IsReliable

z1 0 1 1 0
z2 1 1 2 1
z3 1 0 3 1
z4 1 1 2 0
z5 0 1 1 0
z6 1 0 3 1
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occurs between t and t + 1 if the instances obtained from the data stream at those time 
instants are generated by different probability distributions:

There are two types of concept drift that are of special interest: real concept drift (class 
drift), which implies changes in the underlying relationships between features and class 
variables (supervised learning), i.e., pt(Y|X) ≠ pt+1(Y|X) , and virtual concept drift (covar-
iate drift), which is related to changes in the distribution of features (supervised and unsu-
pervised learning), i.e., pt(X) ≠ pt+1(X).

The interest in detecting these distribution changes is that they may alter the subset of 
features that should be considered relevant. This is known as feature drift and occurs when 
the relevant subset St ⊆ X  for a certain task at time t differs from the subset obtained at 
another consecutive time instant t + 1 , i.e., St ≠ St+1 (Nguyen et al. 2012).

Finally, the existence of other kinds of concept drift should be noted, for example, novel 
class appearance, which occurs due to the appearance of new classes. The reader is referred 
to (Webb et al. 2016; Barddal et al. 2017) for a more in-depth discussion of concept and 
feature drift.

pt(X,Y) ≠ pt+1(X,Y).

Fig. 3   Example of data (top) and feature (bottom) streams of phishing websites
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2.4 � FSS on feature streams

In the case of a feature stream, the number of instances will not increase, so n is a fixed 
known value. However, the set of features X  is not fixed, but d is incremented (or even 
reduced) over time. When a new feature becomes available, all its values for each instance 
are received, and the subset of selected features St must be dynamically adapted to repre-
sent the most relevant features seen so far and avoid redundancies. Most of the existing 
approaches process new features individually, but it is also possible to receive features in 
groups. A group of features arriving at time t is represented as Gt = {Xt

j
, 1 ≤ j ≤ dt} , where 

Xt
j
 is its j-th feature and dt is the number of features that contains. Thus, in the limit, we 

would obtain a set of feature groups G =
⋃∞

t=1
Gt.

Example 3  Continuing with the dataset of Table 1, but in this case assuming all instances 
to be available in advance, new information about the websites could be obtained at times 
t = 2 and t = 3 , as described at the bottom of Fig. 3. In this case, the new data at t = 2 is 
related to whether the DNS record is found, and the data at t = 3 is the result of a new sta-
tistical report. The data are included as new features that contain values for all the available 
instances. ▪

In the feature stream context, the problem of concept drift does not arise. In two dif-
ferent time instants, the subset of relevant features may change, which is the definition of 
feature drift. However, this is caused by the appearance of new variables that make previ-
ous ones redundant. As the set of instances never varies, the distribution of the data does 
not change.

2.5 � Rough set theory

When applying FSS algorithms, we are not restricted to a unique domain; we can handle 
very diverse data. That is why some studies seek approaches that do not need prior knowl-
edge about the domain, except the given data. This is the case for incremental FSS algo-
rithms under approaches such as rough set theory, a mathematical tool to express vague-
ness (due to lack of information) by a boundary region (Pawlak 1997) without needing any 
domain knowledge apart from the given data. Rough set theory enables working on prob-
lems where knowledge is incomplete, so it is ideal for the streaming environment under 
study since the complete dataset is unknown at the beginning of the process. Incremental 
FSS based on rough set theory, commonly known as incremental attribute reduction, is an 
important task for knowledge acquisition, and algorithms based on this theory are currently 
receiving considerable attention (Zhang et al. 2016; Xu et al. 2011). Thus, we believe they 
should be included in this article.

Rough set theory was originally proposed by Pawlak (1982), and it describes a subset 
of a universe using two subsets, the lower and upper approximations. This division allows 
hidden knowledge to be discovered in datasets1 and expressed with decision rules. A data-
set is defined as a tuple D = < U,A > , where U is a set of objects or instances, known as 
the universe, and A = {X ∪ Y} is a set of attributes, where X  is the set of features and Y is 
the set of class variables, such that X ∩ Y = �.

1  Commonly known as an information system or decision information system if there are class variables.
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Rough set theory used the indiscernibility relation between instances to divide them 
into disjoint sets of similar instances. This relationship is present when all instances of 
a set have the same values for all the studied attributes. Thus, each non-empty subset 
B ⊆ A determines a B-indiscernibility relation IND(B) = {(zi, zj) ∈ U × U | z↓B

i
= z

↓B

j
} , 

where z↓B
i

 represents the projection of instance zi on attributes in B . This indiscern-
ibility relation partitions U  into disjoint subsets of indistinguishable instances, which 
are known as equivalence classes or elementary sets. This partition is denoted as 
U∕IND(B) = {E1,… , Ev} , where v is the number of equivalence classes. To represent the 
equivalence class with respect to B that contains a certain instance zi , we use the expres-
sion [zi]B , i.e., [zi]B = {zj ∈ U | z↓B

i
= z

↓B

j
} . Notably, equivalence classes formed only by 

features, i.e., U∕IND(X) , or by class variables, i.e., U∕IND(Y) , are known as condition 
and decision classes, respectively.

Given any subset H ⊆ U  , rough set theory seeks to approximate H using a lower 
and upper bound, which are defined with the equivalence classes induced by a fea-
ture set B over U  . These sets are the B-lower approximation of H , denoted as BH , and 
the B-upper approximation of H , denoted as BH . The B-lower approximation con-
tains all the instances that certainly belong to H with the information given by B , i.e., 
BH = {z | [z]B ⊆ H} , while the B-upper approximation includes those instances that 
can possibly belong to H , i.e., BH = {z | [z]B ∩H ≠ �} . Finally, a rough set of H with 
respect to B is defined as the tuple formed by the B-lower and B-upper approximations, 
i.e., < BH,BH > . These approximations divide the universe into three disjoint regions: 
(1) the positive region POSU

B
(H) = BH , which contains all the instances from U  that can 

be classified as certainly belonging to H , (2) the negative region NEGU
B
(H) = U⧵BH , 

which represents the instances that for sure do not belong to H , and (3) the boundary 
region BNDU

B
(H) = BH⧵BH , which consists of those instances that cannot be classi-

fied as belonging or not to H due to a lack of knowledge. If BNDU
B
(H) = � , then H is 

considered crisp (exact) since it is possible to define all instances as members or not of 
H . Otherwise, the set is rough (inexact) with respect to B , i.e., we cannot define the set 
precisely with the available knowledge.

For a certain dataset with class variables Y and given H ∈ U∕IND(Y) , the positive, 
negative and boundary regions for a feature set B given Y are: POSU

B
(Y) =

⋃
POSU

B
(H) , 

NEGU
B
(Y) =

⋃
NEGU

B
(H) and BNDU

B
(Y) =

⋃
BNDU

B
(H) , respectively. These regions 

are obtained by joining the resulting partitions of the universe for each of the decision 
classes induced by Y.

As explained before, not all the available features may be necessary. Thus, attribute 
reduction seeks a minimal feature subset (or all possible subsets) that is sufficient to 
characterize the knowledge of a dataset, i.e., it discards all unnecessary features while 
preserving certain properties of the original dataset. This subset is called the minimal 
reduct, which could be required, for example, to maintain the same positive region as 
the one obtained with the original feature set. To respect the notation used so far, the 
reducts are denoted by S . As we are working in a dynamic environment, the reducts 
should be updated according to currently available data.

Example 4  Given the dataset of Table  1 with features  = {LongURL,
LinksToPage,AgeDomain} and U = {z1, z2, z3, z4, z5, z6} , it is possible to find 
that instances such as z1 and z5 are indiscernible with respect to B , so equivalence 
classes {z1, z5} , {z2, z4} and {z3, z6} are obtained. If the target set to approximate is 
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H = {z|Y(z) = 1} , i.e., H = {z2, z3, z6} , where Y = {IsReliable} , we can determine that 
BH = {z3, z6} and BH = {z2, z3, z4, z6} . Thus, POSU

B
(H) = {z3, z6} , NEGU

B
(H) = {z1, z5} 

and BNDU
B
(H) = {z2, z4} . As BNDU

B
(H) ≠ � , set H is rough. If the values of z4 are changed 

to, for example, LongURL(z4) = 0 , LinksToPage(z4) = 1 and AgeDomain(z4) = 1 , the 
boundary region would be empty and H would be crisp. This is easy to see in our example 
since those changes would make BH = BH = {z2, z3, z6} , allowing us to undoubtedly clas-
sify all the instances as belonging or not to H . Another way to achieve this could be includ-
ing new features to B.

Finally, whether we consider the original dataset or its version with z4 modified, set B 
can be further reduced to S = {LongURL, LinksToPage} without losing significant infor-
mation since the same approximation sets are obtained. This set cannot be further reduced 
while maintaining the same approximations. Thus, it can be assured that it is a minimal 
reduct. ▪

For the sake of clarity, Table 2 provides a summary of the main notation that is used in 
this work.

2.6 � Classification of incremental FSS approaches

Figure  4 summarizes the classification criteria for the incremental FSS algorithms used 
throughout this review. Different algorithms for data streams and feature streams, which 
are classified depending on how the learning is performed (supervised or unsupervised), 
the number of available class variables and the arrival of new features (individual or 

Table 2   Summary of the main notation used throughout the article

Symbol Description

X = {X1,… ,Xd} Set of features
Y = {Y1,… ,Yl} Set of class variables
St ⊆ X Subset of selected features or reduct at time t
zi = (xi, yi) i-th instance
xi = (xi1,… , xid) Feature values for the i-th instance
xij Value of feature Xj for the i-th instance
yi = (yi1,… , yil) Class variable values for the i-th instance
yij Value of class variable Yj for the i-th instance
kj Number of distinct values of class variable Yj
Gt = {Xt

j
, 1 ≤ j ≤ dt} Group of dt features arriving at time t

w ( W) Bold lower (upper) case letters denote vectors (matrices)
wi∙ ( w∙i) i-th row (column) of matrix W
U Universe (set of instances in rough set theory)
U∕IND(X) = {E1,… , Ev} Indiscernibility relation given a feature set X
E Equivalence class
POSU

X
(Y) Positive region for a feature set X  given class variables Y

NEGU
X
(Y) Negative region for a feature set X  given class variables Y

BNDU
X
(Y) Boundary region for a feature set X  given class variables Y
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group), will be studied. Additionally, some algorithms for contexts where both instances 
and features appear simultaneously are commented on.

As discussed in Sect. 1, the terminology used for FSS algorithms that work on dynamic 
data differs depending on the author. After a study of the literature, the following terms 
have been found to reference FSS algorithms for data streams:

–	 Dynamic feature selection (Barddal et al. 2017).
–	 Incremental attribute reduction (Hu et al. 2005).
–	 Incremental feature selection (Liang et al. 2014).
–	 Instance-based online streaming feature selection (Rahmaninia and Moradi 2018).
–	 Online feature selection (Wang et al. 2014).
–	 Standard online feature selection (Eskandari and Javidi 2016).

Proposals that can be applied to feature streams can be found as follows:

–	 Feature-based online streaming feature selection (Rahmaninia and Moradi 2018).
–	 Incremental attribute reduction (Jing et al. 2016).
–	 Incremental feature selection (Zeng et al. 2015).
–	 Online feature selection (Yu et al. 2014).
–	 Online streaming feature selection (Wu et al. 2013).
–	 Streaming feature selection (Zhou et al. 2005).
–	 Streamwise feature selection (Dhillon et al. 2010).

To encompass under a single term all the algorithms that perform FSS in an incremen-
tal manner, we think that it is appropriate to use incremental feature subset selection. 
In turn, the proposals could be additionally classified as online feature subset selec-
tion algorithms to be consistent with the analysis of online and incremental learning in 
Sect. 1.

Fig. 4   Classification of the analyzed incremental FSS methods
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3 � Feature subset selection on data streams

FSS over data streams aims to determine which features to add to and delete from the 
current set of selected features with the arrival of new instances. In this section, sev-
eral algorithms will be discussed for supervised learning tasks and for unsupervised 
environments where it is not possible to evaluate the feature relevance against a class 
variable.

3.1 � Supervised learning

As mentioned in Fig. 1, a common approach to perform online FSS is to define weights 
for each feature that are updated with the arrival of new instances without having to 
repeatedly process or store instances already seen. These weights are then used to 
select the most important features. In this category, two algorithms that use regulariza-
tion and truncation techniques are presented (Wang et  al. 2014): online feature selec-
tion by learning with full inputs (OFS) and the online feature selection by learning 
partial inputs (OFSp ). Both fit a linear classifier and update it when a new instance is 
misclassified.

OFS assumes the full input of every new training instance to be received, including 
a binary class variable Y ∈ {−1,+1} . Then, it can update the model using two different 
approaches: (1) the modified perceptron by truncation for OFS, which, given a misclas-
sified instance ( xt, yt ), updates the current weights wt ∈ ℝ

d by simply increasing them 
with the vector xtyt (Perceptron rule), and (2) the OFS via sparse projection, which 
updates the weights by online gradient descent and projects them to an L2 ball. After 
updating the weights, both methods truncate them to zero except for the b largest, where 
b is a predefined value. The first approach is a simple method that does not guarantee 
that discarded features have sufficiently small weights, which can result in many clas-
sification mistakes. The second proposal avoids this problem by projecting the weight 
vector to an L2 ball before the truncation, so its norm is ensured to be bounded.

Meanwhile, OFSp further limits the problem to cases where learners can access only 
a small and fixed feature set of the training instances, an interesting setting when the 
entire feature set for all instances is expensive to obtain. OFSp does not simply choose b 
features with nonzero weights, but it defines the feature subset by alternating phases of 
exploration, where b features are chosen randomly, and exploitation, which chooses the 
b features whose weights are nonzero. In that way, the method avoids getting stuck in a 
configuration with poor classification performance.

Recent studies have focused on reducing the computational and memory costs of FSS 
algorithms for applications with large-scale and high-dimensional data. For example, 
Wu et  al. (2017) presented a second-order online feature selection (SOFS) algorithm 
that seeks to improve previous first-order algorithms in terms of effectiveness, efficiency 
and scalability over high-dimensional sparse data. While first-order algorithms update 
the feature weights using only the first-order derivative information of the gradient, sec-
ond-order proposals can also use second-order information, such as geometrical proper-
ties of data, to improve the feature selection. SOFS is based on the confidence-weighted 
method introduced by Dredze et  al. (2008), which maintains not only feature weights 
but also an estimate of their confidence. The inclusion of this additional information 
may be positive for the performance of online FSS algorithms since it retains informa-
tion about past instances. As a result, confidence can be used to guide the updating rule 
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of the feature weights, decreasing those of the less confident features. Different meas-
ures can be used to represent the confidence of the weights. In the case of SOFS, the 
weight vector is assumed to be modelled by a Gaussian distribution w ∼ N(�,�) with 
mean vector � and a diagonal covariance matrix � , parameters that are updated with 
the misclassification of new instances. The j-th entry in the diagonal of � represents 
the confidence in wj . Therefore, the lower the value of � jj is, the higher the confidence 
in the weight of feature j. Note that instead of drawing a weight vector w every time an 
instance is received, SOFS simply uses the mean vector � to perform predictions.

Exploiting the second-order information of feature weights implies an additional high 
computational cost. Thus, the authors reduced the complexity of SOFS by two means. 
First, only features with nonzero values in the new instance are updated and evaluated 
if a misclassification occurs. In this way, SOFS is linearly dependent on the number of 
nonzero features instead of on d, as OFS is. However, this advantage is limited to those 
problems where the data are sparse. Second, SOFS uses a max heap-based approach, 
i.e., it maintains a binary tree of features where the parent nodes have a covariance that 
is greater than or equal to that of their children. Selecting the most relevant features by 
searching in the covariance diagonal can be a time-consuming task. Therefore, this tree 
data structure allows more efficient retrieval of the b currently most confident weights 
without having to sort all of them in every step. The max heap combined with the mono-
tonic decreasing property of the covariance, i.e., its value can only decrease or stay the 
same when it is updated, helps to further reduce the computational cost of the algo-
rithm. Thus, when the weight and confidence of a certain feature in the tree are updated, 
the tree is modified only from the position of this feature towards its children since its 
parent is guaranteed to have a larger covariance. Additionally, those features that were 
not updated will not be part of the max heap since the covariance of the root node can-
not increase. Then, the last step is to check whether the covariance of those features that 
were updated and are not in the tree is less than that of the root node. In such a case, the 
feature of the root node is removed and its weight is set to zero, while the tree is updated 
with the inclusion of this new feature with a lower covariance.

SOFS (like OFS) focuses on binary classification problems. Thus, Wu et al. (2017) 
extended it to handle a multi-class variable, meaning that Y ∈ {0,… , k − 1} is a classi-
fication problem with k classes. This extension, which is referred to as SMOFS for sim-
plicity, is based on using the one-vs-rest strategy. SMOFS essentially turns the multi-
class problem into several binary problems, so w ∈ℝ

kd and � ∈ ℝ
kd×kd , and at a time t, 

the total confidence of the j-th feature is defined by a combination of each of its confi-
dences in the different binary tasks.

FSS can be performed across multiple related tasks, which is known as multi-task 
feature selection (MTFS). The objective of multi-task learning is to simultaneously 
build models for tasks that are sufficiently different but still have commonalities, with 
the intention of obtaining more precise models than if they were obtained separately. For 
example, in spam filtering, users could need different features to label an email as spam; 
however, they would still share common features (Weinberger et  al. 2009). A single 
classifier would perform correctly generalizing among different users but would fail to 
learn the specific preferences of a single user (Dredze and Crammer 2008). Then, learn-
ing all tasks simultaneously could improve the performance of each of their models, 
thanks to sharing their related information. Note that this learning problem differs from 
transfer learning, which aims to solve a single target task by transferring knowledge 
from a very similar source task. Transfer learning does not optimize the performance of 
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all the tasks involved and, therefore, does not allow the transfer of information among 
them in all possible directions (Torrey and Shavlik 2010).

The multi-task problem consists of Q tasks whose data come from the same space, 
with each task having nq instances, q = 1,… ,Q . The entire dataset can be represented as 
D =

⋃Q

q=1
Dq , where Dq = {(x

q

i
, y

q

i
)}

nq

i=1
 is a sample from distribution Pq . The final task is 

to learn q functions, fq , one for each task, such that fq(xq) approximates yq as accurately 
as possible. These functions are parametrized by a weight vector, i.e., fq(xq) = (wq)

⊤xq , 
so most MTFS methods seek to learn a weight matrix W , whose dimension is d × Q 
(see Fig. 5), by minimizing an empirical risk and a regularizer (Yang et al. 2013). This 
matrix defines the importance of each feature for the different tasks.

MTFS has been studied mainly from a batch perspective. However, online FSS can be 
applied in multi-task problems by using proposals such as the dual-averaging for multi-
task feature selection (DA-MTFS) framework (Yang et al. 2013), which selects relevant 
features across tasks. At iteration t, DA-MTFS needs to receive Q instances, one for 
each task, with the objective of updating the weight matrix Wt . This is performed by 
computing the subgradient Gt of a chosen loss function on the current weights, which is 
used to store an average of all the computed subgradients G

t
 calculated until time t. The 

choice of the loss function depends on the problem to solve. For example, Yang et al. 
(2013) proposed the logit and hinge losses for binary classification and the square loss 
for regression tasks. Finally, the average subgradient is used along with a regularization 
term to compute the new weight matrix Wt+1 . DA-MTFS uses a mixed Lp,1-norm in the 
regularization term, i.e., a hybridization of the L1-norm and an Lp-norm, to perform a 
joint regularization across multiple tasks. In other words, the mixed norm groups the 
weights of a specific feature for every task using an Lp-norm and applies an L1-norm 
over the resultant vector. The general form of the mixed Lp,r-norm is computed over a 
matrix W as:

Fig. 5   Multi-task feature selection learning scheme
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where wi∙ is the i-th row of W . Three mixed norms were studied: (1) p = 1 , which propor-
tions sparse solutions but only observes the instances of each task individually, (2) p = 2 , 
which uses the information across tasks simultaneously, with the inconvenience of result-
ing in non-sparse solutions and (3) a novel L1∕2,1-norm regularization, i.e., a linear combi-
nation of the L1-norm and L2-norm, which allows sparse solutions while still considering 
the information provided by all tasks.

DA-MTFS assumes the arrival of one instance per task in each iteration, which may not 
be realistic. The authors proposed not updating those tasks that do not receive an instance 
in a certain iteration; however, this would make them have less influence on the weights. 
Currently, there is no proposal that avoids this inconvenience. Additionally, it would be 
interesting to extend the online FSS algorithms to other multi-task settings, for example, to 
cases where there is no common set of features across all tasks due to outlier tasks (Gong 
et al. 2012). Finally, we would like to clarify that this online learning scenario differs from 
the lifelong learning problem, as the latter receives new tasks over time (no instances), 
which it tries to solve using knowledge acquired from previous tasks (Chen and Liu 2018).

Feature weights can also be included in naive Bayes classifiers to perform embedded 
FSS on data streams. Naive Bayes is an interesting probabilistic classifier algorithm based 
on applying Bayes’ theorem with a strong conditional independence assumption between 
the features given the class variable. Despite its simplicity, the low complexity of naive 
Bayes makes it attractive for predicting data streams (Klawonn and Angelov 2006; Salper-
wyck et al. 2015). Naive Bayes can be improved by avoiding its attribute conditional inde-
pendence assumption, which is not commonly held in real-world problems. This is pos-
sible by, for example, weighting the predictive variables. These algorithms are known as 
weighted naive Bayes classifiers, and they introduce a weight for each variable (see Fig. 6) 
to relax the attribute conditional independence assumption.

An online weighted naive Bayes proposal was introduced by Salperwyck et al. (2015), 
which we will refer to as OWNB. Although it does not focus on the online FSS problem 
by assigning feature weights, as previous algorithms do, the relevance of each variable is 
established. This algorithm defines a weight per class and per variable, computing them 
using stochastic gradient descent for a certain cost function. Thus, given a new training 
instance (xt

i
, yt

i
) , the weights are updated as follows:

||W||p,r =
(

d∑

i=1

||wi∙||rp

) 1

r

,

Fig. 6   Weighted naive Bayes 
structure
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where Cost(⋅, ⋅) is a cost function and � is the learning rate.
Instead of relying on a single FSS algorithm, we could combine the knowledge extracted 

from different methods to define a more robust feature subset. This is the approach followed 
by the multi-objective automated negotiation based online feature selection (MOANOFS) 
system introduced by BenSaid and Alimi (2021), which identifies relevant and redundant 
features based on the feature weights assigned by different online FSS algorithms. This 
system is divided into two decision levels. The first level selects the most confident learners 
by means of a trust model (Das and Islam 2011). Subsequently, in the second level, rel-
evant features are defined with a novel multilateral automated negotiation method accord-
ing to the feature weights and prediction error reported by each of the learning algorithms 
selected in the first level. The final weight assigned to a feature will be determined by cer-
tain rules depending on the number of algorithms that find the feature relevant and the 
weight they report. This system can therefore be considered an ensemble technique, as 
it combines the outcomes of multiple learning algorithms to try to obtain a better result. 
Unfortunately, it should be noted that it is limited to FSS methods that are embedded in 
binary classifiers.

In a multi-class context, we can resort to the simpler online bagging feature selectors 
(OFS-Bag) and online boosting feature selectors (OFS-Boo) ensemble algorithms pre-
sented by Ditzler et al. (2017). As the names of the algorithms suggest, the ensembles are 
built using variants of online bagging and boosting (Oza and Russell 2001). These propos-
als do not rely on a negotiation method to define the final feature weights, but rather these 
are defined as a linear combination of the weights given by the base online FSS algorithms. 
Therefore, it is straightforward to apply techniques such as the one-vs-rest strategy (as 
the previous SMOFS does) in order to use binary classifiers in a multi-class classification 
problem. Although the authors report the best classification results when using the boost-
ing approach in their experiments, it is worth noting that the possibility of parallelizing the 
learning of the base models when using the bagging-based algorithm may be of great inter-
est in certain online learning environments.

Previous proposals do not explicitly define the relevance of features but rather adapt 
the currently selected features by monitoring the performance of the models and updating 
some feature weights. However, incremental FSS does not only involve the use of feature 
weighting approaches since other algorithms explicitly quantify the importance of the fea-
tures for the class variable. This is the case of tree-based learning algorithms (Domingos 
and Hulten 2000; Bifet and Gavaldà 2009; Hulten et al. 2001; Gama et al. 2006), which 
decide the splitting feature based on, for example, mutual information or the Gini index. 
A well-known algorithm of this kind is the very fast decision tree (VFDT) (Domingos and 
Hulten 2000), which defines the best feature to perform a split by using the most recent 
instances that were received from the stream. VFDT may omit the use of some features in 
the decision tree, so it implements embedded FSS. The set of instances studied to select the 
splitting feature is given by the Hoeffding bound, from which the statistics for the splitting 
are extracted for each leaf node. In this way, instances are not stored and, therefore, they 
are not revisited.

The drawback of the VFDT algorithm is that it cannot efficiently deal with concept 
drift since the built tree is immutable and it is only possible to continue growing the tree 
in its leaves. Thus, the features selected for splits are never revoked. For those cases, the 
concept-adapting very fast decision tree (CVFDT) can be considered (Hulten et al. 2001). 

wt+1 = wt − �
�Cost(xt

i
, yt

i
)

�w
,



S1028	 C. Villa‑Blanco et al.

1 3

CVFDT keeps the tree updated by replacing sub-trees that were outdated after a concept 
drift occurs. To do so, a sliding window of instances is considered. The oldest instances 
can be forgotten from the tree, while the newest instances are used to build alternate sub-
trees and decide if they should replace the old ones.

The above algorithms have in common that they embed FSS into a model. However, 
we may be interested in a filter approach, which can be applied regardless of the model. 
A well-known algorithm of this kind is the fast correlation-based filter (FCBF), which 
defines the relevance and redundancy of features by analyzing their correlation (Yu and Liu 
2003). If the correlation between a feature and a class variable is higher than a predefined 
threshold, then that feature is considered to be relevant. However, if its correlation with 
another feature is higher than that with the class variable, then it is removed since it is 
redundant. This is measured using the symmetrical uncertainty, which is a normalized ver-
sion of the mutual information that does not favour features with more values. Given two 
variables X1 and X2 , the symmetrical uncertainty between them is defined as:

where the mutual information is:

which measures the reduction in the entropy ( H(⋅) ) of X1 when X2 is known.
FCBF is not an incremental algorithm since it considers that all training instances are 

available at the beginning when computing the relevance of each feature. However, the use 
of time windows allows us to apply the method to data streams. Articles such as Nguyen 
et al. (2012) prove the interest in applying this window version of FCBF on data streams, 
where it was embedded into a heterogeneous ensemble algorithm that is incrementally 
updated. Thanks to the inclusion of FCBF, the processing time to build the base mod-
els is reduced, while the accuracy of the ensemble is improved. This simple approach to 
adapt the traditional FSS algorithm to incremental scenarios is commonly used, and other 
famous algorithms, such as Relief (Kira and Rendell 1992) or its extensions (Kononenko 
1994), could benefit from it.

3.1.1 � Rough set‑based FSS

One inconvenience of working with data streams is that the knowledge is incomplete since 
new instances appear over time. As explained in Sect. 2, rough set theory is ideal for this 
setting, as it needs only the dataset as input, and the objective of the attribute reduction 
is to generate minimal reducts that are sufficient to characterize the knowledge of a data-
set. However, this process is an NP-hard task (Skowron and Rauszer 1992), so heuristic 
methods have been proposed. Most of the proposed algorithms follow the same approach, 
which consists of analyzing whether the current feature subset meets a certain criterion 
and, if not, the most significant features are included until the criterion is met. Afterwards, 
variables that do not compromise the criterion when removed are defined as redundant. We 
would like to emphasize that it is common to use the term significance when working with 
rough sets to refer to the importance/relevance of a feature. This section studies incremen-
tal FSS algorithms based on rough set theory, classifying them according to the heuristic 
used to compute the reducts.

SU(X1,X2) = 2

(
I(X1,X2)

H(X1) + H(X2)

)
,

(1)I(X1,X2) = H(X1) − H(X1|X2),
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Classical rough set theory can be directly applied to multi-label problems; however, 
this approach has several limitations (Li et al. 2016). No specific proposals for incremental 
attribute reduction for multi-label data streams were found, although articles such as Liu 
et al. (2018a) show that such an adaptation should not be complex. That said, any of the 
following algorithms are considered to be appropriate for multi-label tasks. In addition, 
due to the nature of this theory, practically all the proposed algorithms need to store the 
previously seen instances. This inconvenience can be avoided with the use of an appropri-
ate time window, although it may not be trivial to define (Yang et al. 2018).

FSS based on the positive region One way to define a new reduct due to variation in the 
number of instances is to study the changes in the positive region. In this category, we find 
algorithms such as the incremental attribute reduction algorithm based on the element set, 
which we refer to as IARES (Hu et al. 2005). To understand IARES, first, the concepts of 
positive P and negative N  elementary sets must be introduced. P contains all the condi-
tion classes of U∕IND(X) that are consistent, i.e., all instances in these equivalence classes 
share the same value for the class variable. The opposite is true for the N  set, in which 
all the condition classes of U∕IND(X) are inconsistent, i.e., each of them has at least two 
instances with different values for the class variable. Knowing this, a subset B ⊆ X  is a 
reduct iff there are no collision equivalence classes on B in P . This is an equivalence class 
that (1) shares the same values for the features in B with all condition classes in P but 
not the same class variable value or (2) shares the same values for features in B with one 
equivalence class in N  . The reason for avoiding collision equivalence classes on B in P 
is that, in other cases, POSU

B
(Y) = POSU

X
(Y) would not hold, which would imply a loss of 

information since the positive region given by X  is not preserved by B.
When processing a new instance zi , IARES considers three scenarios: (1) there exists an 

equivalence class Ej ∈ N  to which zi belongs, (2) there exists an equivalence class Ej ∈ P 
to which zi belongs, and (3) there is no equivalence class Ej to which zi belongs. It is only in 
the third situation where the current reduct St may need to be updated since a new equiva-
lence class Enew is created for zi (and added to P since it is a unit set), which could be a col-
lision equivalence class on St in P . If this is the situation, IARES solves the collision by 
adding a feature (or features) from X⧵St that eliminates the collision, i.e., which makes Enew 
have different feature values with respect to any equivalence class on S̃t = St ∪ Xi in P . In 
this way, a transitional subset S̃t is obtained that satisfies POSU∪{zi}

S̃t
(Y) = POS

U∪{zi}

X
(Y) 

after adding zi to the dataset. To avoid confusion, the notation S̃t will be used to refer to the 
current state of the reduct, i.e., St modified by the inclusion or removal of features, which is 
prior to the final result St+1 . Finally, redundant features are removed from S̃t . A feature 
Xi ∈ S̃t is considered to be redundant if POSU∪{zt}

S̃t⧵{Xi}
(Y) = POS

U∪{zt}

X
(Y) . Once all redundant 

features are removed, the remaining features in S̃t form the reduct St+1.
Shu and Qian (2015) go a step further and propose the incremental attribute reduction 

algorithm for the immigration of multiple objects (IARM-I) for environments where multiple 
instances are added simultaneously to incomplete datasets, i.e., datasets where some feature val-
ues are missing for certain instances. IARM-I is able to process new instances that arrive by 
groups, something not possible with IARES, which receives groups but processes instances one 
by one. The interest in processing groups instead of single instances is based on the speed at 
which large volumes of data can be generated in some problems. Therefore, processing instances 
individually may be inefficient. When a group of instances Ua arrives, IARM-I compares the 
positive regions obtained from U ∪ Ua given the reduct St and the complete feature set X . If they 
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do not have the same positive region, features from X ⧵ St are included in St until they do. The 
addition of features is performed in descending order of significance value in the current S̃t.

There is no common way to define the significance of a variable; however, it is usu-
ally divided into outer and inner significance, so the effect of adding (outer) or removing 
(inner) a feature from a set is assessed. Given a feature Xi ∉ S̃t and a measure M(⋅, ⋅) , the 
outer significance of Xi in S̃t relative to Y can be defined as:

If Xi ∈ S̃t , the inner significance can be obtained as:

It is common to use outer significance to define the most important features to include 
in the reduct, while inner significance indicates the redundant features that should be 
removed. However, note that these approaches just compute the difference in a meas-
ure when a feature is considered or not. Therefore, this is not a practice common to all 
proposals.

In the case of Shu and Qian (2015), the variation in the cardinality of the positive region 
is used as the measure to compute the significance of the variables, i.e., 
M(S̃t

, Y) = card(POSU
S̃t
(Y)) . Then, features with higher outer significance are included in 

the reduct until POSU∪Ua

S̃t
(Y) = POS

U∪Ua

X
(Y) . Once this condition is met, redundant features 

are removed from S̃t if their inner significance in S̃t is zero. The resultant S̃t is the new 
reduct St+1.

Previous algorithms expect new instances to be added to the dataset. However, FSS 
can also be performed when a set of instances Ur is removed from U . The existence of 
these algorithms is justified by possible erroneous instances that need to be removed, for 
example, erroneous diagnoses of patients (Shu et  al. 2019). The work done by Shu and 
Qian (2015) contemplates this possibility by proposing the incremental attribute reduction 
algorithm for the emigration of multiple objects (IARM-E), which is a reduced version of 
IARM-I in which only the existence of irrelevant features in the reduct is checked. The 
elimination of instances is also taken into account by Shu et al. (2019), where two novel 
algorithms are presented, one for the inclusion of new instances and another for the dele-
tion of instances. These algorithms, which are known as the incremental approach for fea-
ture selection in the decision system under multiple objects being added (IFSA) and under 
multiple objects being deleted (IFSD), perform an incremental updating of the reduct using 
the dependency function. Each time a new set of objects is received or deleted, IFSA and 
IFSD incrementally update the dependency functions �U�

(St
, Y) and �U�

(X, Y) , which rep-
resent to what degree Y depends on St and X  , respectively, where U′ is the set of instances 
after the addition or elimination. The degree of dependency compares the number of 
instances in the positive region with the number in the studied universe:

The closer its value is to one, the more instances in the universe can be correctly clas-
sified with the available information. If �U�

(St
, Y) ≠ �U

�

(X, Y) , the reduct is incre-
mented with the sequential addition of features with the highest outer significance. Once 

(2)sigouter(Xi, S̃
t
, Y) = |M(S̃t

, Y) −M(S̃t ∪ {Xi}, Y)|.

(3)siginner(Xi, S̃
t
,Y) = |M(S̃t

,Y) −M(S̃t ⧵ {Xi},Y)|.

(4)�U
�

(St
, Y) =

card(POSU
�

St (Y))

card(U�)
.
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�U
�

(St
, Y) = �U

�

(X, Y) , redundancies are removed. A feature Xi ∈ S̃t is redundant if its inner 
significance in S̃t is equal to zero. The outer and inner significances are computed as in 
Eqs. (2) and (3), where M(S̃t

, Y) = 𝛾U
�

(S̃t
, Y).

FSS based on the discernibility matrix The incremental updating algorithm of attribute 
reduction set (IUAARS) (Guan 2009) uses the discernibility matrix element set to report 
all the possible reducts at a certain moment and is able to process new instances that arrive 
by groups. The discernibility matrix indicates the subset of features that distinguish each 
pair of instances, and the discernibility matrix element set is formed by the nonempty ele-
ments of this matrix. Thus, when a new instance arrives, IUAARS updates the current 
reduct by analyzing the changes in this set due to inconsistencies or repetitions or because 
the instance was not seen before. If a change is necessary, IUAARS uses the set to find 
indispensable and dispensable features.

The dynamic attribute reduction algorithm based on 0-1 integer programming (Xu 
et  al. 2011), which will be called DARIP for convenience, uses a similar approach. 
DARIP is based on creating a set of inequality constraints over a new instance set, where 
each constraint indicates the necessary features to discern each instance pair, therefore 
reporting the most relevant features. Although the authors considered DARIP to be an 
algorithm to address multiple instances simultaneously, it generates constraints by pairs 
of new instances, which in the end, implies analyzing each new instance one by one 
against the rest. The constraints grow quadratically with the number of instances; thus, 
preprocessing is introduced to remove redundant constraints. Once this is done, features 
in the remaining constraints form a reduct for the incoming instance set, which is used 
to increase St and obtain the final reduct St+1 . The disadvantage of DARIP is that it does 
not eliminate features from St , so it cannot efficiently handle concept drift since features 
that become irrelevant or redundant are not removed. However, unlike previous rough 
set-based approaches, DARIP does not need to store previously seen instances.

FSS based on knowledge granularity Few algorithms use knowledge granularity to 
quantify the discernibility of features. Given that U∕IND(X) = {E1,… , Ev} , the knowl-
edge granularity of X  is computed as:

As can be deduced from Eq. (5), the smaller the knowledge granularity is, the stronger 
the discernibility since the partitioning is finer and, therefore, the size of the equivalence 
classes is smaller. This measure can be used to dynamically find a reduct when adding or 
deleting instances since the goal is to use a feature subset that maintains the knowledge 
granularity achieved with the complete feature set.

Notable members of this category include the updating attribute reduction algorithm 
when adding (UARAO) and deleting (UARDO) some objects with a multi-granulation 
view (Jing et  al. 2017), two algorithms that focus on improving the efficiency when 
addressing large-scale datasets that are increased or reduced dynamically, respectively. 
To do so, they adapt the knowledge granularity formula to be incrementally updated 
for datasets with a multi-granulation view, which is based on dividing a dataset into m 
small sub-tables (small granularities), i.e., U = ∪m

i=1
Ui . Approaches to determine the size 

of the sub-tables were studied by Liang et al. (2012). The equivalence classes from each 
sub-table are obtained and merged to obtain the equivalence classes from the complete 
dataset. This strategy enables the equivalence classes to be obtained in a more efficient 

(5)GKU(X) =

v∑

i=1

card(Ei)
2

card(U)2
.
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way since computing them directly from a large dataset is more costly in terms of com-
putational time and space.

UARAO follows the same approach as the previously studied algorithms. Upon the 
arrival of a new instance set Ua , the algorithm checks whether the conditional knowl-
edge granularity of Y under X  and St in Ua is the same, i.e., GKUa (Y|St) = GKUa (Y|X) . 
The conditional knowledge granularity is computed as:

If the knowledge granularity is the same, the reduct is not altered since the equivalence 
classes obtained in Ua by St and X  are identical and, therefore, the discernibility is the same 
in ∪m

i=1
Ui ∪ Ua . If the equality is compromised, relevant features from X ⧵ S̃t are included in 

the reduct based on their outer significance measure in S̃t , which is computed with Eq. (2), 
where M(S̃t

,Y) = GK∪m
i=1

Ui (Y|S̃t) . When GKUa (Y|St) = GKUa (Y|X) , the final reduct St+1 is 
obtained after the removal of redundant features, i.e., any feature in St+1 that would not 
alter the knowledge granularity.

In the case of removing a set of instances from U , UARDO simply evaluates whether 
the features in St are still relevant and non-redundant and removes those that do not alter 
the knowledge granularity when discarded.

FSS based on entropy information Entropy is a common uncertainty measure that can 
be used in rough set theory to define the significance of features. Some common entro-
pies that can be applied within rough set theory are Shannon’s (Wierman 1999), com-
plementary (Liang et al. 2002) and combination (Qian and Liang 2008). Let B ∈ X  and 
U∕IND(B) = {E1,… , Ev} ; then, the Shannon HU(B) , complementary EU(B) and combina-
tion CEU(B) entropies of B for the instance set U can be defined, respectively, as:

and

where C2
Ei
= card(Ei)(card(Ei) − 1)∕2 is the number of indistinguishable instance pairs in 

Ei.
The conditional version of these three entropies ME(⋅|⋅) was provided by Liang et al. 

(2014) for data streams, so they are updated incrementally with changes in the equiva-
lence classes due to the inclusion of new instances. Furthermore, they introduced the group 
incremental algorithm for reduct computation (GIARC), an algorithm that uses these 
measures to find a reduct when a new instance group is received.

Upon the arrival of a group of instances Ua , GIARC updates the current reduct only 
if instances in Ua are indistinguishable using the features in St but distinguishable when 
using X  . This occurs when the conditional entropies ME(⋅|⋅) (Shannon, combination or 
complementary) of St and X  relative to Y are not the same, i.e., MEUa (Y|St) ≠ MEUa (Y|X) . 
In that case, the features from X ⧵ St with the highest outer significance in St are included 

(6)GKUa (Y|St) = GKUa (St) − GKUa (St ∩ Y).

HU(B) = −

v∑

i=1

card(Ei)

card(U)
log

card(Ei)

card(U)
,

EU(B) =

v∑

i=1

card(Ei)

card(U)

(
1 −

card(Ei)

card(U)

)
,

CEU(B) =

v∑

i=1

card(Ei)

card(U)

(
1 −

C2
Ei

C2
U

)
,
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in the reduct until MEU∪Ua (Y|S̃t) = MEU∪Ua (Y|X) , where MEU∪Ua (⋅|⋅) represents one of the 
three novel formulas used to recompute the entropy after adding Ua . The outer significance 
is computed as in Eq. (2), defining M(S̃t

,Y) as the previously selected incremental condi-
tional entropy. Once relevant features are added, redundant ones are removed by checking 
whether their inner significance in S̃t is zero. This is computed with Eq. (3), employing the 
same conditional entropy as in the outer significance. The resulting set is the new reduct 
St+1.

Experiments in Liang et al. (2014) proved that GIARC produces results similar to those 
of algorithms based on the positive region, such as IARES, but the computational time is 
always shorter.

3.1.2 � FSS for rough set extensions

Rough set theory was extended with proposals that attempted to overcome its shortcom-
ings. One of the main problems is that it is not convenient to handle hybrid (discrete and 
continuous) attributes, performing efficiently only if the attributes are discrete. This prob-
lem can be avoided by discretizing continuous features, although this approach can cause 
information loss (Zeng et al. 2015). Thus, it may be more interesting to use fuzzy rough 
sets, a fuzzy generalization of rough sets that allows handling uncertainty when data are 
real-valued (Dubois and Prade 1990). Fuzzy rough set theory introduces the fuzzy similar-
ity relation, which measures how similar two instances are. Thus, instances are grouped 
into equivalence classes using soft boundaries depending on their similarities (Cornelis 
et al. 2008).

Two recent algorithms for fuzzy rough set-based FSS were presented by Yang et  al. 
(2018). These proposals adapt the reduct in an incremental manner using the relative dis-
cernibility relations of each feature and the feature set, which are updated every time a new 
set of instances arrives. The first novel algorithm is the first incremental version for fuzzy 
rough set-based feature selection (IV-FS-FRS-1), which checks whether the discernibility 
relation of the original feature set and that obtained with the reduct is the same. When it is 
not, new features are added to the reduct until they are equal. Finally, features that do not 
alter the previous equality when removed are discarded. The second novel algorithm is 
the second incremental version for fuzzy rough set-based feature selection (IV-FS-FRS-2), 
which follows the same strategy, except that it begins finding a reduct when there are no 
more new instance sets. Clearly, IV-FS-FRS-2 has the advantage of being faster than IV-
FS-FRS-1; however, it cannot provide a feature subset at any time.

Another extension of rough set theory is variable precision rough set theory, which is 
used to overcome the sensitivity to noise and errors in data. Defining the B-lower approxi-
mations of H using instances that share the same feature and class variable values may be a 
strict requirement, which does not reflect possible errors, such as in the observation of the 
data. Therefore, variable precision rough set theory includes a degree of uncertainty that 
relaxes the requirements to admit instances in the B-lower approximation, thereby allow-
ing a level of misclassification. The smaller this degree is, the smaller the boundary region 
(Ziarko 1993).

The first incremental attribute reduction algorithms for variable precision rough sets are 
the incremental algorithm for �-upper distribution reduct (Incremental-U) and for �-lower 
distribution reduct (Incremental-L) (Chen et al. 2016). These algorithms use discernibility 
matrices to dynamically find a reduct when a new instance is received.
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In conclusion, Table  3 summarizes the analyzed supervised FSS algorithms for data 
streams. For each algorithm, the following are indicated: (1) the type of class variables 
the algorithm was designed for, (2) whether the algorithm can process a new group of 
instances, (3) whether the algorithm allows the elimination of previously received exam-
ples and (4) whether the algorithm re-analyses past instances.

3.1.3 � Distributed FSS

Previous proposals follow a centralized approach, i.e., the FSS is performed by just one 
process in a single machine. It could be interesting to address big data processing from a 
distributed perspective since these algorithms can meet the necessary performance require-
ments by using multiple computing units. For instance, Fong et  al. (2016) attempted to 
overcome computational and memory problems with the use of nature-inspired metaheuris-
tics, specifically swarm algorithms. However, this approach is based on using a batch 
accelerated particle swarm optimization and defining the feature subset by maximizing the 
fitness obtained with an incremental classifier. Thus, it may not be able to efficiently handle 
a real-time data stream. Particle swarm optimization is one nature-inspired metaheuristic 
that could be applied to incremental FSS (Diao et  al. 2013), but there is a lack of other 
nature-inspired approaches to this problem, such as genetic (Leardi et al. 1992; Oh et al. 
2004), harmony search (Diao and Shen 2010, 2012) and particle swarm optimization vari-
ants such as the competitive swarm optimizer (Gu et al. 2018).

It is worth noting the distributed FSS technique for multi-label classification problems 
presented by Gonzalez-Lopez et  al. (2020), which is based on the estimation of mutual 
information measures. Although it does not propose an online algorithm, we believe it may 
be of interest when processing high-dimensional data streams with time windows. Its main 
idea is to compute the mutual information between variables in a distributed environment 
with Apache Spark, as this is a computationally expensive task in a multi-label classifica-
tion problem, especially with high-dimensional data.

3.2 � Unsupervised learning

Performing FSS over unsupervised data faces the challenge of not being able to quantify 
the relevance of features by using the information provided a class variable. Three main 
approaches can be used to define the feature relevance: (1) consider the capability of the 
features to preserve the structure of the original data, (2) define cluster indicators with a 
clustering algorithm and perform supervised FSS, and (3) select those features with the 
highest or lowest correlation between them (Solorio-Fernández et al. 2020). In this section, 
we discuss some algorithms that perform unsupervised FSS in a data streaming context.

One of the first unsupervised FSS proposals for data streams is StreamFeatWeight 
(Huang et al. 2015), also known as FSDS. The key idea of this algorithm, to enable the 
application to data streams, is to use matrix sketching to generate a low-rank approxima-
tion, defined as a matrix sketch, of all the observed data (or the data contained in a time 
window) up to time t. In other words, instances received by time t are reduced into a matrix 
of a predefined rank k that most faithfully represents the original data. This rank-k approxi-
mation is updated with the inclusion of new data, which enables the algorithm to adapt to 
concept drift and make only one pass over the data. FSDS performs this step with a modi-
fied version of the frequent-directions algorithm (Liberty 2013). Therefore, singular value 
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decomposition is performed on the cosine similarity matrix of the matrix sketch augmented 
with new data to define its spectrum, i.e., eigensystem, and the new approximation. Then, 
the leading k eigenvectors, i.e., those corresponding to the k largest eigenvalues, are used 
as the target in a regression analysis with regularization to report new feature coefficients. 
These coefficients are finally used to obtain the importance score of each feature. The intui-
tion behind this approach is that the leading eigenvectors contain information about the 
structure of the instance distribution, so the features that better predict the eigenvectors are 
those that have a stronger capability to maintain this structure (Zhao et al. 2010).

FSDS can be classified as a spectral feature selection algorithm, which comprises meth-
ods that define the relevance of features by their ability to preserve the structure of the 
original data. The main idea is to analyze the consistency of the features with the graph 
obtained from the similarities between instances. Specifically, the consistency between 
the features and the spectrum of a matrix obtained from the similarity is measured (Zhao 
and Liu 2011). For example, the SPEC framework uses the eigensystem of its normal-
ized Laplacian matrix (Zhao and Liu 2007). The similarity can be computed with different 
measures, which can include or not include information about a class variable.

FSDS assumes that all the data come from a single data stream. However, data could be 
generated from multiple sources with distinct feature sets. One example is dividing image 
information into two views, visual and metadata, a problem known as multi-view learning. 
The main difference of multi-view learning with respect to the multi-task problem is that, in 
the former, different views provide complementary information about the same instances, 
while in the latter, each task has its own instances that share a common feature space. Dif-
ferent datasets have co-occurring n instances in nv views, Dv = {xi}

n
i=1

, v = 1, 2,… , nv , 
where Dv ∈ ℝ

n×dv represents the dataset of the v-th view and dv represents its feature 
dimension. Views can have high dimensionality; thus, FSS is used to obtain a feature sub-
set from each view based on the information provided by the different views to improve the 
selection. In addition, multi-view data often include a large number of instances, so this 
information could be processed in a streamwise manner to avoid memory problems. The 
online unsupervised multi-view feature selection (OMVFS) algorithm is the first approach 
that covers the unsupervised multi-view problem from an online perspective (Shao et al. 
2016). OMVFS includes FSS into an online nonnegative matrix-based clustering algo-
rithm, processing data chunks in an online manner and aggregating their information into 
different small matrices without storing all the previous data. To do so, a parameter is used 
to define the maximum size of the matrices and remove excess old information; i.e., a time 
window is used to reduce the memory requirements without losing the capability to cap-
ture concept drifts. The main objective of OMVFS is to generate a cluster indicator matrix 
that integrates information from all the views and a feature selection matrix for each of the 
nv views, which is updated in each iteration with new and some old data. It is from this fea-
ture selection matrix that the importance of each feature in every view is obtained.

A summary of the unsupervised FSS algorithms for data streams is provided in Table 4.

4 � Feature subset selection on feature streams

This section focuses on different approaches to perform FSS on feature streams, from algo-
rithms that evaluate new features one by one in one-dimensional tasks to algorithms that 
evaluate feature groups in multi-label environments. Individual and group FSS for unsu-
pervised environments is also studied. Although, at first glance, it may be thought that the 



S1038	 C. Villa‑Blanco et al.

1 3

Ta
bl

e 
4  

U
ns

up
er

vi
se

d 
le

ar
ni

ng
 a

lg
or

ith
m

s f
or

 F
SS

 o
n 

da
ta

 st
re

am
s

N
am

e
D

es
cr

ip
tio

n
Pr

oc
es

s g
ro

up
s

In
st

an
ce

 re
m

ov
al

N
o 

in
st

an
ce

 re
vi

si
t

Re
fe

re
nc

es

FS
D

S
U

se
s m

at
rix

 sk
et

ch
in

g 
an

d 
re

gr
es

si
on

 a
na

ly
si

s w
ith

 
re

gu
la

riz
at

io
n 

to
 w

ei
gh

t f
ea

tu
re

s a
t e

ve
ry

 ti
m

e 
ste

p
✓

✗
✓

H
ua

ng
 e

t a
l. 

(2
01

5)

O
M

V
FS

Pe
rfo

rm
s u

ns
up

er
vi

se
d 

FS
S 

ov
er

 st
re

am
in

g 
m

ul
ti-

vi
ew

 d
at

a
✓

✗
✗

Sh
ao

 e
t a

l. 
(2

01
6)



S1039Feature subset selection for data and feature streams: a review﻿	

1 3

inclusion of new instances is more common, most recent studies have focused on working 
with feature streams.

The arrival of new features could imply that those features already selected are no 
longer the most relevant, i.e., weakly relevant, and even redundant. Therefore, it is neces-
sary to adapt the subset of selected features over time to always contain the most relevant 
and non-redundant features. FSS algorithms for feature streams are useful not only in those 
scenarios where our set of features is, theoretically, infinite but also in those cases where 
the generation of features is expensive, so it could be more interesting to include them in 
our model progressively (Perkins and Theiler 2003). A well-known example is the detec-
tion of a large number of small craters on the surface of Mars from high-resolution images 
(Ding et al. 2011). This analysis involves tracking a large number of texture features that 
cannot be pre-generated in a reasonable time; thus, they may be considered as soon as they 
are obtained.

4.1 � Individual FSS

In this section, we analyze supervised and unsupervised FSS algorithms that process new 
features at the individual feature level.

4.1.1 � Supervised one‑dimensional learning

We start by discussing scenarios where data are labelled, so it is possible to compute the 
relevance of the features with respect to one or several class variables. First, the algorithms 
that work with one-dimensional learning problems and feature streams are introduced.

The feature stream problem, introduced by Perkins and Theiler (2003), considers how to 
efficiently solve FSS problems in a dynamic environment with new features appearing one 
by one while training instances remain static. The authors proposed an adaptation of the 
grafting algorithm (Perkins et al. 2003) for feature streams in Perkins and Theiler (2003), 
which uses a fast gradient-based heuristic to quickly find which features are most likely 
to improve an existing model. This technique can be used with models parametrized by a 
weight vector that is subject to Lasso regularization, so the inclusion of new features will 
result in the augmentation of the model with new weights. Grafting is presented along with 
two different models, a linear and non-linear model, ensuring that it combines the speed of 
filters and the accuracy of wrappers.

Another interesting algorithm to consider is alpha-investing (Zhou et al. 2005), which 
is an (adaptive) complexity penalty method based on dynamically adapting a threshold �t 
to control which new features are added in the future. Alpha-investing is implemented with 
a model that is able to take features sequentially and report a p value that represents the 
probability that a new feature is included in the model when it should be discarded, i.e., 
a false positive. The p value of a feature is associated with a t-statistic, whose value is 
equivalent to the difference in the log-likelihood of the data given a model with the feature 
and another without it. Then, a new variable is included in the model if its p value is less 
than �t . This threshold represents the probability of including spurious features at time step 
t and is dynamically computed using the wealth of the current iteration wt:

�t =
wt

2t
.
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The wealth indicates the currently acceptable number of false positives. Therefore, if a fea-
ture is accepted, the wealth is increased, while it is reduced if the feature is rejected. The 
alpha-investing algorithm is based on the information-investing algorithm (Ungar et  al. 
2005), a similar approach that adds a new feature if it reduces the entropy of the model suf-
ficiently with respect to an adaptive threshold.

As with multi-view learning on data streams, our problem could involve not only one 
feature stream but multiple of them. In this case, we can use an extension of alpha-invest-
ing, the multiple streamwise feature selection (MSFS) algorithm (Dhillon et  al. 2010). 
MSFS stores the wealth for each of the streams and selects the next feature from the stream 
with the most permissive threshold since it should be the most beneficial for the model.

Alpha-investing has the advantage over grafting in that it does not need prior infor-
mation about the global feature set. Grafting requires this information to choose a good 
regularization parameter, a major limitation for some scenarios since we can be consid-
ering, theoretically, infinite streams of features (Wu et  al. 2013). However, both algo-
rithms suffer from the so-called nesting effect, which means that they cannot discard 
redundant features that were previously selected (Pudil et  al. 1994) since they do not 
re-evaluate them. To avoid the nesting effect, we can use the online streaming feature 
selection (OSFS) algorithm (Wu et  al. 2013), which is capable of selecting relevant 
features in real time and removing redundant ones in two major steps. First, an online 
relevance analysis is performed to determine whether a new feature is relevant for the 
class variable. Second, and the novelty of this approach, online redundancy analysis is 
performed to identify and remove previously selected features that became redundant 
due to the inclusion of a new relevant feature. The OSFS algorithm uses conditional 
independence and dependence tests implemented with the G 2 test to determine relevant 
and redundant features. Thus, the conditional dependency test is computed between the 
new feature and the class variable to determine if it is relevant. A feature is identified as 
redundant if there exists a subset from the set of selected features that makes this feature 
and the class variable conditionally independent. Thus, this process is performed for 
every selected feature, removing those that become redundant. OSFS uses the Markov 
blanket criterion to define redundant features, which guarantees that a removed feature 
will still be considered redundant even after the posterior removal of others. However, it 
is computationally expensive to check all possible subsets of features every time a new 
feature is received. Therefore, the authors assume a predefined size for the checked sub-
sets. This would reduce the time complexity but will also affect the results. Depending 
on the characteristics of the problem being addressed, it may be necessary to compro-
mise between obtaining more reliable results and the efficiency of the algorithm.

The maintenance of a good feature subset in a real-time environment demands effi-
cient approaches, and in the case of OSFS, the analysis of redundancies can be time 
consuming. The redundancy analysis was divided into two parts in a novel algorithm 
called fast-OSFS (Wu et  al. 2013) to accelerate the computation. The first part of the 
redundancy analysis only checks whether a new relevant feature Xt is redundant with 
respect to any other subset of selected features. In that case, the new feature is dis-
carded, and the algorithm moves directly to the next feature of the stream. Otherwise, 
fast-OSFS checks whether the inclusion causes other features to become redundant, just 
as OSFS does. However, in this case, the computational cost of conditional independ-
ence tests is reduced since only those subsets from the selected features that include the 
new feature Xt are considered.

OSFS and fast-OSFS not only avoid the nesting effect but also do not need prior 
information about the feature set. However, they do have a disadvantage since the use of 
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conditional independence tests entails a need for a large number of instances to obtain reli-
able results. This is even more important in this environment since the set of features grows 
over time (Javidi and Eskandari 2019).

Despite significant improvements in the online FSS research area, Yu et al. (2014) noted 
that previous algorithms, such as alpha-investing and fast-OSFS, do not perform efficiently 
enough when applied to data of extremely high dimensionality. This is also the case of 
rough set-based and fuzzy rough set-based algorithms for feature streams commented on 
later in this section, such as CIE-OSFS or FRSA-IFS-HIS(AA). Therefore, proposals such 
as the scalable and accurate online approach for feature selection (SAOLA) focus on the 
scalability of FSS methods (Yu et  al. 2014). SAOLA reduces the computational cost of 
identifying non-relevant and redundant features by employing only pairwise comparisons 
to compute the correlations between attributes, where the mutual information is used as a 
metric (see Eq. (1)).

SAOLA considers a new feature Xt as relevant for the class variable Y if their mutual 
information I(Xt, Y) is greater than a predefined relevance threshold. In that case, SAOLA 
checks whether the feature introduces redundancy. Thus, if the mutual information between 
Xt and any other already selected feature Xj ∈ St is greater than or equal to I(Xt, Y) or 
I(Xj, Y) , one of the features contains at least as much information about the class variable 
as the other. Therefore, the feature with lower relevance (mutual information) to the class 
variable is removed, i.e., the redundant feature. This approach was proposed by Yu and Liu 
(2004) as a way to approximate the Markov blankets that still guarantees that the revisiting 
of discarded features is not necessary.

SAOLA is more efficient than OSFS or fast-OSFS, even if the latter defines a maxi-
mum size for the subsets to evaluate. Experiments in Yu et al. (2014) indicate that SAOLA 
does not appear to significantly improve the prediction accuracy, while fast-OSFS reports 
smaller feature subsets. However, fast-OSFS could require days to run in datasets of 
extremely high dimensions, while SAOLA would need only a few seconds or minutes to 
find a solution. In addition, the use of mutual information has the advantage, with respect 
to the rough set approaches, of being able to handle discrete and continuous features.

A disadvantage of SAOLA is that it requires a predefined relevance threshold to deter-
mine relevant features, and it is not trivial to define an appropriate value. This problem 
is avoided with online stream feature selection based on mutual information (OSFSMI) 
and the online stream feature selection based on mutual information with fixed number of 
features (OSFSMI-k), two algorithms that also employ mutual information to assess the 
relevance and redundancy of features (Rahmaninia and Moradi 2018). Both algorithms 
start by discarding irrelevant new features, which are those whose mutual information with 
the class variable is zero. If a new feature is considered relevant, redundant features are 
detected in St by evaluating their effectiveness. The effectiveness of a feature Xi is com-
puted by taking into account its relevance and redundancy with respect to the remaining 
features St ⧵ Xi:

where the parameter � ∈ (0, 1] controls the redundancy penalty. Features with lower effec-
tiveness values than the newly included feature are removed, while the effectiveness values 
of features that still remain are updated. In the case of OSFSMI, the redundancy analy-
sis stops when no more features of lower effectiveness are found or if only one feature 

�(Xi,S
t) = I(Xi, Y) − �

∑

Xj∈S
t⧵Xi

I(Xj, Y)

H(Xj)
I(Xi,Xj),
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remains. OSFSMI-k returns the best feature subset of a predetermined size k. Then, the 
feature subset St+1 is obtained, and both algorithms wait for the next feature.

OSFSMI and OSFSMI-k appear to give more importance to new features since they 
cannot be discarded upon arrival if their relevance is greater than zero. A major problem 
with this behaviour is that weak relevant features would be accepted and possibly discarded 
in the next iteration, resulting in a waste of resources. Thus, it could be more interesting to 
include a threshold, as SAOLA does, since expecting the mutual information to be zero is 
a very strict requirement. Experiments in Rahmaninia and Moradi (2018) show that these 
algorithms can find feature subsets that provide higher classification accuracy than previ-
ous proposals while obtaining similar or better run times. In addition, OSFSMI is more sta-
ble than those algorithms that also perform redundancy analysis, i.e., more similar subsets 
of features are obtained on independent executions and with different feature orders, and 
smaller feature subsets than those of algorithms such as SAOLA are produced.

Note that hybridizations of previously proposed algorithms can take advantage of their 
benefits. For example, a new hybrid approach between the wind driven dynamic optimi-
zation algorithm (WD2O) (Boulesnane and Meshoul 2017), a nature-inspired dynamic 
optimization algorithm, and the previously explained OSFS algorithm was introduced by 
Boulesnane and Meshoul (2018). This novel algorithm is the dynamic online streaming 
feature selection (DOSFS), and the authors demonstrate, through several experiments, that 
the use of dynamic optimization for the selection of a feature subset significantly improves 
the accuracy obtained by OSFS for specific problems while taking advantage of the latter’s 
speed. This improvement is the result of the recovery of the features discarded by OSFS 
that is performed by WD2O. The final feature subset is a combination of the subsets found 
by OSFS and WD2O.

Rough set-based FSS As feature streams maintain a fixed number of instances, the 
application of rough set-based proposals can be of great interest. However, until recently, 
FSS was not considered from a rough set perspective, and the dimension incremental algo-
rithm for reduction computation (DIA-RED) was among the first proposals (Wang et al. 
2013). DIA-RED uses the Shannon, combination or complementary entropy to incremen-
tally adapt the reduct without recomputing the entropies for the whole dataset each time a 
new set of features is received. DIA-RED includes incremental mechanisms that enable us 
to update the existing entropies based on the changes in the condition and decision classes. 
It follows a similar strategy to that of GIARC (see Sect. 3.1.1), which considers the use of 
the same entropies and outer and inner significance measures to determine relevant and 
redundant features.

DIA-RED considers only the information contained in the positive region. However, 
this approach could result in defining sets of variables as independent due to noise. Given 
a set of instances U , the online streaming noise-resistant-aided rough set attribute reduc-
tion using significance analysis (OS-NRRSAR-SA) algorithm (Eskandari and Javidi 2016) 
defines the reduct using the degree of dependency between attributes �U(⋅, ⋅) (see Eq. (4)) 
and a novel noise-resistant dependency measure that additionally evaluates the boundary 
region:

The measure �U(⋅, ⋅) includes information about the proximity of the boundary and positive 
region and the possibility of transferring instances from one to another by removing noisy 
instances.

(7)�U(St
, Y) =

�U(St
, Y) + �U(St

, Y)

2

.
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If the degree of dependency between Y and the selected features St is less than one, i.e., 
the dataset is inconsistent using St , OS-NRRSAR-SA includes a new feature Xt in St as 
long as (1) its outer significance is greater than zero or (2) the noise-resistant dependency 
of Y on Xt is nonzero. The outer and inner significances of features are defined in Eqs. (2) 
and (3), employing the degree of dependency as a measure and normalizing the difference 
in the case of the inner significance. If the degree of dependency is one, i.e., the dataset is 
consistent using St , the new feature Xt is not simply ignored since it can replace a subset 
of St that becomes redundant due to its inclusion. This subset is defined based on the inner 
significance, and if its size is greater than one, it is replaced by Xt , making the reduct more 
compact while keeping the dataset consistent. In the case that the subset is a unit set, the 
feature with the highest noise-resistant dependency is retained. The number of subsets to 
evaluate grows exponentially with the size of St when looking for the largest redundant 
one. Therefore, sequential backward elimination is also proposed to obtain a more efficient 
solution. However, the removal order that is employed affects the result.

Experiments in Eskandari and Javidi (2016) compare the performance of OS-NRRSAR-
SA, grafting, information-investing, fast-OSFS and DIA-RED, with OS-NRRSAR-SA 
showing superiority in terms of the compactness of the selected subsets, computational 
time and classification accuracy achieved with the selected feature subsets.

OS-NRRSAR-SA was later extended (Javidi and Eskandari 2019) because the original 
approach is not efficient enough when the number of selected features is not small. This 
is because it extracts equivalence classes considering all the currently selected features, 
which is a computationally expensive task. To make this approach slightly more scalable, 
the proposed extension seeks to obtain more compact results by including a new filter 
method that removes redundancies before the significance analysis. As this new step may 
be computationally expensive, a user-defined parameter is proposed to define the maxi-
mum size of the redundant subsets. The extension was compared against the original OS-
NRRSAR-SA, and some improvements were detected in terms of compactness, run time 
and classification accuracy. Although the extension adds a new step to OS-NRRSAR-SA, 
the run time was reduced for certain datasets because of the more compact results.

As a last note about OS-NRRSAR-SA, the same strategy was used in another approach 
called SFS-RS (Javidi and Eskandari 2018), whose only difference is that it was conceived 
with six different measures of dependency, including the noise-resistant measure of Eq. 
(7). This work was useful to determine the effects of using different measures.

Other approaches use the knowledge granularity to incrementally update the reduct. 
This is the case of Jing et al. (2016), where matrix-based and non-matrix-based algorithms 
called the matrix-based incremental reduction algorithm (MIRA) and incremental algo-
rithm for reduct computation (IARC), respectively, are proposed. This research seeks not 
only to analyze the benefits of incremental algorithms with respect to batch versions but 
also to prove the inefficiency of matrix-based algorithms for large datasets. MIRA and 
IARC use the same strategy: first, given a new group of features Gt , they check that the 
new granularity GKU(Y|X ∪ Gt) (see Eqs. (5) and (6)) is still the same as the granularity of 
the current reduct GKU(Y|St) . If this is not the case, the features with the highest outer sig-
nificance from {X ∪ Gt ⧵ St} are included in the reduct until the granularities are equalized. 
The final step is to remove features from the reduct as long as their removal does not alter 
the previous equality, i.e., redundant features, to obtain the new reduct St+1.

The only difference between MIRA and IARC is the method used to calculate the 
knowledge granularity. MIRA makes use of relation matrices, which may not be efficient 
enough for large datasets due to the memory and computational time needed. A more 
efficient method is presented in IARC, which computes the knowledge granularity with 
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a non-matrix-based approach using the new partitions that occur in the dataset with the 
inclusion of new features.

As features are unknown until they are received, the order of their arrival may affect the 
obtained feature subsets. The online streaming feature selection algorithm based on condi-
tional information entropy (CIE-OSFS) considers this problem and is robust to changes in 
the order because of the implementation of a sorting mechanism (Wang et al. 2017). CIE-
OSFS divides its strategy into two phases. First, an independence test checks whether a 
new feature is relevant to the class variable. In the second phase, redundancies are removed 
by searching for a reduct in the set of relevant features. During the redundancy analysis, 
features are sorted by their correlation coefficient against the class variable, so CIE-OSFS 
is more stable to changes in the feature arrival order. The new reduct St+1 is generated by 
computing the outer significance of each relevant feature, which is calculated using Eq. (2), 
where M(⋅, ⋅) is the Shannon conditional entropy. The features are considered not redun-
dant only if their outer significance in the current reduct is greater than zero.

FSS for rough set extensions As noted in Sect.  3.1.2, some extensions of classical 
rough set theory were proposed to overcome its problems. This includes its inefficiency 
in handling continuous features, which can be solved using fuzzy rough sets. In the 
case of feature streams, Zeng et al. (2015) proposed two fuzzy rough set approaches for 
incremental FSS on hybrid information systems (HIS), i.e., datasets that include differ-
ent types of attributes, such as binary, continuous, categorical and set-valued, a common 
scenario in real-world problems. These novel algorithms are known as the fuzzy rough 
sets approach for incremental feature selection in HIS under one attribute being added 
(FRSA-IFS-HIS(AA)) and under one attribute being deleted (FRSA-IFS-HIS(AD)). 
Both algorithms use a novel hybrid distance function HD(⋅, ⋅) to compute the distance 
between instances with hybrid and incomplete variables. This distance is based on the 
Euclidean distance, but it uses five different equations to compute the value difference 
of each type of variable. Given two instances xi and xj , their distance is computed as 
follows:

where vd(⋅, ⋅) computes the value difference depending on the value type of xir and xjr.
FRSA-IFS-HIS(AA) is based on the positive region, and it uses the fuzzy dependency 

to define relevant and redundant features. This algorithm takes into account the feature 
order in the reduct, so those with a higher degree of dependency (with the class variable) 
are located in the first positions. This is done to modify only those elements of St that are 
in a lower position than the new feature Xt since the lower the dependency value is, the 
lower the importance. When Xt is received, FRSA-IFS-HIS(AA) first incrementally com-
putes its fuzzy relations, which are obtained by using the Gaussian kernel function with the 
hybrid distance of Eq. (8). These relations are then used to obtain fuzzy positive regions 
necessary to compute the dependencies between Y and the feature subsets (see Eq. (4)). If 
Xt increases the dependency for a certain subset of St , it will be included in St+1 , and the 
remaining features can be added from its position in the reduct. These features are added 
in descending order of dependency value, as long as they increase the dependency of the 
current reduct by more than a certain threshold; otherwise, they are considered redundant.

FRSA-IFS-HIS(AD) updates the reduct after the elimination of a feature Xdel ∈ St . 
Then, following the same approach as FRSA-IFS-HIS(AA), it merely removes Xdel and 

(8)HD(xi, xj) =

√√√√
d∑

r=1

vd(xir, xjr)
2,



S1045Feature subset selection for data and feature streams: a review﻿	

1 3

adds the remaining features from its position in the reduct to obtain St+1 . Previously, 
only unnecessary features were removed by the algorithms. However, this work intro-
duces the possibility of removing features due to an external decision, even if they were 
considered to be relevant. We think this possibility may be useful, for example, in the 
case that a feature was detected as inappropriately collected. Thus, the feature can be 
eliminated and the reduct incrementally updated. Notably, FRSA-IFS-HIS(AD) (as well 
as FRSA-IFS-HIS(AA)) stores all the variables that were available at some point, which 
for memory reasons is not good practice when working with the incremental addition of 
new features. Therefore, how to remove more efficiently relevant features while recover-
ing those that were redundant due to the features being removed remains an open issue.

The neighborhood rough set is another extension of the classical rough set theory 
commonly used to handle continuous features without requiring a discretization (Hu 
et  al. 2008). This is achieved by using a neighborhood relation to define the lower 
and upper approximations, rather than equivalence classes that group instances with 
the same values for the studied attributes. Traditionally, this neighborhood relation is 
based on the use of a distance function to find for each instance the k nearest neigh-
bor instances (k-nearest neighborhood relation) or all those within a given � distance ( � 
neighborhood relation) (Zhou et al. 2019b). The K-OFSD (Zhou et al. 2017) is an exam-
ple of a neighborhood rough set-based algorithm, which uses the k-nearest neighbor-
hood relation to perform an online FSS that improves the separability between majority 
and minority classes of imbalanced datasets.

The main drawback of K-OFSD is that it requires the hyperparameter k to be tuned 
beforehand. An inconvenience that also occurs with the � hyperparameter of the � neigh-
borhood relation. Therefore, with the intention of avoiding this problem, Zhou et  al. 
(2019b) introduced a gap neighborhood relation, which automatically selects the number 
of neighbors considered based on the distribution of the surrounding instances. Basically, 
it places the neighbors of an instance in ascending order of distance and defines a cutoff 
when there is a certain “gap” (distance value) between two consecutive instances. This 
neighborhood relation was devised to be used in the novel OFS-A3M algorithm, which 
performs online FSS by analyzing the degree of dependency of a new feature on the class 
variable (see Eq. 4) and the effect on the dependency of the currently selected feature sub-
set when this new feature is included.

Subsequently, the above authors proposed the OFS-Density algorithm (Zhou et  al. 
2019a) with the main objective of including a more aggressive removal of redundant fea-
tures than OFS-A3M. Instead of only performing a redundancy analysis when a new rel-
evant feature does not improve the feature subset dependence degree (a rare occurrence in 
a real scenario), OFS-Density considers this task when the improvement is smaller than a 
given threshold. This can certainly increase the number of features detected as redundant, 
but it also implies setting a new hyperparameter. In addition, OFS-Density introduces a 
density neighborhood relation that automatically selects the number of neighbors. Similar 
to the gap neighborhood relation, this new relation sorts the neighbors in ascending order 
of distance and sets a cutoff not only taking into account the distances, but also the num-
ber of instances already selected as neighbors. According to the experiments conducted 
by Zhou et al. (2019a), OFS-Density selects feature subsets that are significantly smaller 
than those of OFS-A3M, and classifiers trained with those subsets report, in general, higher 
accuracy. However, this comes at the cost of significantly slower performance, a handicap 
in certain online scenarios.
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4.1.2 � Supervised multi‑label learning

Most state-of-the-art algorithms were designed for one-dimensional supervised learning 
problems. However, multi-dimensional learning has multiple applications in real-world 
problems, such as document analysis (Zhu et al. 2005), bioinformatics (Elisseeff and Wes-
ton 2001) and music (Trohidis et al. 2011). Any information can be classified into several 
class variables simultaneously. Thus, it is necessary to consider online FSS algorithms for 
this environment. A simple solution would be to use a transformation approach in which 
independent one-dimensional algorithms are used for each class variable. However, this 
approach would ignore the possible relations between class variables, information that 
could be important to find the best subset of features. Multi-label learning over feature 
streams brings several new challenges to overcome, such as label correlation, high dimen-
sionality, class imbalance and label-specific features (Lin et al. 2017). Note that the multi-
label problem is a subtype of the multi-dimensional problem, where all the class variables 
are binary.

To the best of our knowledge, Lin et al. (2017) proposed the first online FSS solution 
for multi-label problems, the multi-label streaming feature selection algorithm, which 
we refer to as ML-SFS. This algorithm focuses on the label correlation and high-dimen-
sionality problems in an online scenario and introduces the fuzzy mutual information 
FI(⋅, ⋅) as the evaluation criterion to define relevant and redundant features in a multi-
label context. Correlations between class variables and features are stored in two sepa-
rate similarity matrices, which include all influences of one variable on the others. The 
fuzzy mutual information is computed using these similarity matrices, so the mutual 
dependence between a feature Xt and the label space Y is defined as follows:

where [xi]Xt
 is the fuzzy equivalence class of xi under Xt , which is determined with the 

similarity degrees between xi and every instance under feature space Xt . Therefore, given a 
predefined relevance threshold � , a new feature Xt is classified as relevant if FI(Xt,Y) > 𝛿 . 
If this is the case, ML-SFS removes possible redundancies caused by the inclusion of Xt in 
St , considering a feature Xi ∈ St as redundant if its fuzzy mutual information is lower, i.e., 
FI(Xt,Y) > FI(Xi,Y).

A different approach to address multi-label problems is given in the multi-label 
online streaming feature selection algorithm based on spectral granulation and mutual 
information (ML-OSMI) (Wang et  al. 2018), which seeks to capture the correlations 
among labels by transforming the label set Y = {Y1,… , Yl} into a new set of multi-class 
variables Y� = {Y �

1
,… , Y �

h
} with lower dimensionality, i.e., h < l . This step is performed 

only once before the relevance and redundancy analysis since the label set is assumed 
to be fixed. Labels are first clustered using spectral clustering with cosine similarity. 
Thus, each cluster is formed by labels with a high correlation. Then, each cluster is 
transformed into a multi-class variable by applying the label power set (LP) framework. 
After the label transformation, when ML-OSMI receives a new feature Xt , its relevance 
against each of the created class variables Y �

i
∈ Y� is assessed using the normalized 

mutual information for continuous variables:

FI(Xt,Y) = −
1

n

n∑

i=1

log
card([xi]Xt

) ⋅ card([xi]Y)

n ⋅ card([xi]Xt
∩ [xi]Y)

,
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If the normalized mutual information of Xt and any class variable Y ′
i
 is greater than a prede-

fined threshold, then Xt is considered relevant and included in St . In such a case, its inclu-
sion can produce redundancy. A feature Xi ∈ St is redundant if its significance on any class 
variable Y ′

j
 given another feature Xj is zero. This significance is defined as the maximum 

conditional mutual information between Xi and each class variable in Y′ given Xj.
The LP framework is useful to reduce the problem dimensionality or even to apply 

one-dimensional algorithms to multi-dimensional datasets. However, LP-based methods 
can suffer from class-imbalance problems if the number of labels is large (Wang et al. 
2018) and they imply working with multi-class variables with high cardinality.

Rough set-based FSS Rough set-based FSS algorithms designed specifically to 
address multi-label feature streams are also available. This is the case for the online 
multi-label streaming feature selection based on neighborhood rough set (OM-NRS) 
algorithm (Liu et al. 2018a), which has the advantage of supporting continuous features 
since it is based on using the neighborhood rough set theory to define positive regions. 
OM-NRS starts by measuring the outer significance of a new feature Xt in St relative to 
the label set Y to determine its relevance. To do so, Eq. (2) is used with a multi-label 
adaptation of the degree of dependency (see Eq. (4)), which is defined as:

Xt is included in St+1 if its outer significance is greater than zero. Otherwise, online redun-
dancy analysis is performed since there exists at least one feature in St that is redundant 
with Xt . In this case, and to reduce the number of calculations, it is first checked whether 
�U(Xt,Y) is less than a predefined relevance threshold, rejecting Xt in such cases since it is 
considered weakly relevant. If this does not hold, OM-NRS has to evaluate Xt against every 
feature Xi ∈ St , discarding the feature with a lower degree of dependency with Y as long as 
sigouter(Xt,S

t
,Y) = 0 . This last step continues until all Xi are evaluated or Xt is discarded.

Table 5 summarizes the discussed algorithms.

4.1.3 � Unsupervised learning

FSS algorithms can also be applied over feature streams with no classes. A typical example 
is social media data, where features are usually generated dynamically and it is expensive 
to collect label information (Li et al. 2015).

The unsupervised streaming feature selection (USFS) framework is one of the first FSS 
algorithms for feature streams to handle unsupervised data (Li et  al. 2015). USFS per-
forms FSS through a regression model using link information in social media. Therefore, 
it works on datasets with n linked data instances, whose link information is encoded into a 
matrix M ∈ ℝ

n×n such that if Mij = 1 , instances xi and xj are linked. USFS extracts a pre-
defined number s of social latent factors from M to which each instance is associated with 
a certain probability. This information is included for each instance in a vector �i ∈ ℝ

s , 
so � = [�1,… ,�n] . For example, a social latent factor could be hobbies or job positions 
shared between people. These factors should have a relationship with certain features; for 

nI(Xt, Y
�
i
) =

2 ⋅ ∫ ∫ p(Xt, Y
�
i
) log

p(Xt ,Y
�
i
)

p(Xt)p(Y
�
i
)
dXtdY

�
i

− ∫ p(Xt) log p(Xt)dXt − ∫ p(Y �
i
) log p(Y �

i
)dY �

i

.

�U(St
,Y) =

∑l

k=1
card(POSU

St (Yk))

l ⋅ card(U)
.
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example, age could be related to hobbies, so they are used to decide if a new feature Xt 
should be included in the model. In some sense, the missing information about class vari-
ables is replaced with these social latent factors, so relevant features are defined by their 
ability to differentiate them. Then, FSS is performed through several regression models 
with regularization, where the social latent factors are the dependent variables, i.e., one 
regression model for each social latent factor, so the obtained regression coefficients at 
time step t, Wt ∈ ℝ

t×k , represent the importance of every feature on each social latent fac-
tor. Thus, USFS performs FSS by solving at time t the minimization problems for each 
social latent factor �∙i (i-th column of �):

where Xt ∈ ℝ
n×t is the available data, Lt is a Laplacian matrix extracted from a similarity 

graph of the instances, and � , � and � are parameters to control the penalty terms of Lasso 
regularization (second term) and elastic net regularization (third term) and to balance the 
link information and feature information (fourth term), respectively.

To define a new feature Xt as relevant or not, USFS first computes for each social latent 
factor �∙i the derivative of Eq. (9) with respect to wt+1

∙i
 , which is an augmentation of wt

∙i
 with 

a nonzero value for Xt . If the derivative of �∙i is greater than the parameter � , the inclusion of 
Xt helps to reduce the objective function in Eq. (9) when predicting �∙i . Thus, Xt is included 
in the model, and Eq. (9) is optimized with the current weights using the Broyden-Fletcher-
Goldfarb-Shanno algorithm. This approach may cause some regression coefficients to shrink 
to zero; therefore, a feature is not included in St+1 iff wt+1

∙i
 is an empty vector.

A disadvantage of USFS is that it does not consider the update of the link information M . 
The authors justify this strategy by noting that this information does not change as often as 
new features are received. However, this may not be the case for some applications.

The USFS framework has two other limitations: it is valid only for those problems where 
link information can be established and the dataset grows with the inclusion of new features, 
i.e., features are not totally discarded but their weights are set to zero, which could lead to 
memory problems. The unsupervised feature selection for streaming features (UFSSF) algo-
rithm avoids these issues by extending the k-means algorithm to include linearly dependent 
similarity measures and to work with streaming features (Almusallam et al. 2018). UFSSF 
clusters incoming features and selects a representative feature for each cluster. Therefore, the 
subset of features in one cluster is approximated by only one feature, and the original set of 
features is reduced to equal the number of clusters. A new feature Xt is assigned to the cluster 

(9)
minwt

∙i
J(wt

∙i
) =

1

2
||Xtwt

∙i
− �∙i||22 + �||wt

∙i
||1

+
�

2
||wt

∙i
||2
2
+

�

2
||(Xtwt

∙i
)T (Lt)

1

2 ||2
2
,

Table 6   Unsupervised learning algorithms for individual FSS on feature streams

Name Description References

USFS Selects the most informative features for social media 
feature streams by making use of the link informa-
tion of the data

Li et al. (2015)

UFSSF Representative features of each cluster, generated 
with an extension of the k-means algorithm, are 
selected as the most informative features

Almusallam et al. (2018)
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with which it has the highest similarity to the centroid, and it is selected as the representative 
feature of that cluster at time t + 1 if its similarity to the centroid (updated with the informa-
tion of Xt ) is higher than that of the representative feature at time t. UFSSF was designed to 
be used with three similarity measures, the Pearson correlation coefficient, the least squares 
regression error and the maximal information compression index, which have the advantage 
of not being sensitive to the feature order and the scatter of feature distributions.

UFSSF incrementally computes the centroids as a weighted mean of the features that were 
assigned to their clusters, giving more importance to those features that were received more 
recently. This algorithm is therefore indicated for problems where the most recent features are 
more relevant. Other inconveniences are that the number of clusters is expected to be provided 
and, therefore, the size of the subset of selected features must be predefined, and that the solu-
tion is highly dependent on the initial clusters. Note that UFSSF could be an efficient solution 
in a streaming scenario, but it simply reports a feature subset using linear dependent measures.

Table 6 summarizes all the unsupervised individual FSS algorithms for feature streams that 
were analyzed in this section.

4.2 � Group FSS

Features may exhibit group structures; however, previous algorithms evaluate them indi-
vidually. In this section, proposals that exploit this information for supervised and unsu-
pervised learning are reviewed. Group FSS chooses feature groups that are relevant, in the 
case of supervised learning, to class variables, removing irrelevant features and avoiding 
redundancies both at the individual and group feature levels. There are several real-world 
problems where it is preferable to evaluate features in a group manner. For example, in 
image analysis, there are certain properties of images, such as colour information, that are 
described by a set of different features (Wang et al. 2015). Therefore, group FSS should 
not be confused with the simultaneous addition of new features that is performed by algo-
rithms such as DIA-RED or MIRA (see Sect. 4.1.1). These latter proposals do not consider 
the information provided by the group structures in which the features are received.

4.2.1 � Supervised one‑dimensional learning

The online group feature selection (OGFS) algorithm may be the first approach that takes 
into account the group structure to perform online FSS (Wang et al. 2015). This method 
is based on performing two phases, the intra-group and the inter-group selection. In the 
intra-group selection, each feature of an incoming group Gt is processed individually to 
select a subset G̃t by using spectral feature selection. Traditional spectral feature selection 
was adapted for the online environment, introducing a criterion that has to be satisfied to 
select a feature from an incoming group. This criterion seeks to include new features that 
increment the between-class while reducing the within-class distances between instances. 
This first phase evaluates the features individually. Thus, the inter-group selection phase 
defines an optimal subset Ĝ

t
⊆ G̃

t that reduces the redundancies between features of dif-
ferent groups. This step is performed by using linear regression with Lasso regularization, 
which results in setting to zero the coefficients of features considered redundant.

Another algorithm to consider is group feature selection with streaming features 
(GFSSF) (Li et al. 2013), which, in this case, uses mutual information to select and dis-
card features or groups. When a new group of features arrives, a feature-level selection 
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step uses the mutual information between the features in this group to select a subset of 
relevant ones, while redundancies are discarded. Once this subset is defined, a group-level 
selection phase is performed to evaluate the subset against already selected groups. This 
step determines whether the information provided by the subset is more than the penalty 
and if previously included groups should be removed. This penalty is defined based on 
the number of features, so large groups that provide less information for the class variable 
are more likely to be discarded. Unlike OGFS, GFSSF replaces or removes feature groups 
completely, i.e., once a group is included, its features are only discarded if the complete 
group is eliminated. As GFSSF uses conditional mutual information to define redundan-
cies, this approach is useful for reducing the number of comparisons to be made. However, 
this could lead to a loss of important features contained in a deleted group.

Finally, there are also adaptations of algorithms that evaluate features individually so 
that they can handle incoming feature groups. This is the case of group-SAOLA (Yu et al. 
2016b), which extends the SAOLA algorithm. Group-SAOLA checks the relevance of a 
new feature group by analyzing the mutual information between each of its features and 
the class variable. If the mutual information for all the new features is less than or equal 
to a predefined threshold, the group of features is discarded. Otherwise, the redundancies 
between features within the group and between this group and previous ones are removed. 
Group-SAOLA eliminates existing redundancies between features of different groups, so 
the groups are not eliminated unless all their features are redundant. Nevertheless, this 
algorithm uses a more scalable solution than GFSSF since it performs pairwise compari-
sons of the features instead of computing conditional mutual information. Regarding the 
OGFS algorithm, the experiments performed in Yu et  al. (2016b) achieve similar or, in 
most cases, higher prediction accuracies using the solutions proposed by group-SAOLA, 
which always produces smaller feature subsets. Additionally, group-SAOLA is more effi-
cient than OGFS on datasets of extremely high dimensionality.

4.2.2 � Supervised multi‑label learning

The aforementioned group FSS algorithms were created for one-dimensional problems. In 
the multi-label setting, we can use algorithms such as the online multi-label group feature 
selection (OMGFS) (Liu et al. 2018b). OMGFS starts by performing an online group selec-
tion when a new feature group Gt is received, where Gt is classified as relevant or not by 
comparing its correlation with the label set Y and a predefined threshold � . This correlation 

Table 7   Supervised learning algorithms for group FSS on feature streams

Name Description Class vari-
able

References

OGFS Uses spectral feature selection to perform intra-group 
selection, while Lasso regression selects a final 
subset among different groups

Multi-class Wang et al. (2015)

GFSSF Performs FSS at individual and group feature levels by 
using mutual and conditional mutual information

Multi-class Li et al. (2013)

group-
SAOLA

Adaptation of SAOLA that is able to evaluate incom-
ing groups of features

Multi-class Yu et al. (2016b)

OMGFS Allows online group FSS over multi-label feature 
streams

Multi-label Liu et al. (2018b)
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is computed using a normalized multi-label neighborhood mutual information, which takes 
into account the neighborhood of each instance induced by the variables under compari-
son. If the correlation of Gt with Y is larger than � , then Gt is added to a buffer pool. This 
buffer pool is increased with new strongly and weakly relevant groups until reaching its 
predefined maximum capacity. At that moment, an inter-group selection detects the most 
relevant features and redundancies by defining interaction weights between features from 
the different selected groups. Each interaction weight represents the relationship of two 
features with respect to the class variable in such a way that the smaller the weight is, the 
more information the features provide about the class variables separately than together. 
The feature with the highest relevance, i.e., multi-label neighborhood mutual information, 
with Y is used to compute the interaction weight with the rest of the features. This feature 
and those with interaction weights larger than zero are included in the final subset.

Table 7 summarizes the supervised group FSS algorithms on feature streams.

4.2.3 � Unsupervised learning

We did not find any interesting method that performs group feature selection in an unsu-
pervised feature stream context. Nevertheless, it could be possible to adapt the strate-
gies followed by algorithms such as FSDS (see Sect. 3.2), OGFS or Group-SAOLA (see 
Sect. 4.2.1) to the unsupervised scenario. For example, spectral feature selection with an 
unsupervised measure and regularized regression could be used in an intra-group phase 
to select the most relevant features from an incoming group. Then, the feature redundancy 
among groups could be reduced by means of information theory measures. This idea would 
require further research to determine for which real-world problems it could be useful.

5 � Feature selection on data and feature streams

Several approaches that allow incremental FSS, either for data streams or feature streams, 
have been discussed. However, the appearance of new instances and features can occur 
simultaneously in real-world problems. An example is text clustering, where the number 
of documents (instances) and vocabulary (features) could evolve over time (Zhang et  al. 
2015). This is, of course, a more complex situation where the algorithm should adapt the 
feature selection depending not only on the available features at a certain moment but also 
on the evolution of their values given newly received instances.

To the best of our knowledge, no attention was given to this topic until the proposal 
of the sparse trapezoidal streaming data learning (STSD) algorithm (Zhang et al. 2015). 
STSD dynamically maintains a linear model for binary classification, whose weights are 
updated based on whether a misclassification is produced, and includes an embedded FSS 
by projection and truncation. This algorithm is based on the strategy followed by the OFS 
algorithm (see Sect.  3.1), but in this case, the feature dimension of an incoming train-
ing instance is larger than or equal to that of the current classifier. Given a new instance 
zt = (xt, yt) ∈ ℝ

dt , where yt ∈ {−1,+1} and dt is the size of the feature space at time t, and 
a weight vector wt ∈ ℝ

dt−1 , STSD predicts the label of xt using only the values x̃t of the 
features that were considered in the current classifier, i.e., those features that have nonzero 
weight in wt . Therefore, xt = (x̃t, x̂t) , where x̂t is the values of features with zero weights. 
This approach will result in a loss lt , computed with the hinge loss function, which will be 
used to update the weights according to the following rule:
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where � t = lt∕‖‖xt‖‖
2 . If the instance is correctly classified, i.e., lt = 0 , then STSD considers 

that the new features are not currently necessary and that the weights should not be modi-
fied. We can see in Eq. (10) that wt+1 would be an augmentation of wt with a weight vec-
tor ŵt = 𝜏 tytx̂t ∈ ℝ

dt−dt−1 , i.e., wt+1 = (wt, ŵt) , which is empty. Notably, the authors also 
proposed two variants of STSD that modify the computation of �t to make the classifier 
less sensitive to noise. Once the weights are updated, redundant features are removed by 
selecting a predefined proportion b of features. This process is implemented by projecting 
the weights to an L1-ball and then truncating to zero those weights whose values are not in 
the highest b percent.

Another attempt to perform FSS in this environment is found in Jing et  al. (2018), 
where the incremental algorithm based on matrix reduction computation for dynamic 
data mining (IAMRCD) and the incremental reduction algorithm for reduct calculation 
of dynamic data set (IARCD) are proposed. These rough set-based proposals are able to 
generate reducts when features and instances vary simultaneously, with the main difference 
being that IAMRCD is a matrix-based approach, while IARCD is a non-matrix method. 
This research appears to be based on Jing et  al. (2016), who compared the performance 
of matrix- and non-matrix-based algorithms under feature streams. As already proven in 
that article, matrix-based approaches for incremental feature reduction can be useful when 
processing different types of data. However, they are only good at handling small datasets 
since the run time is really affected by their size. Thus, the IARCD algorithm, whose run 
times are shorter in the performed experiments, was also proposed. The authors follow 
the same strategy as that of the MIRA and IARC algorithms (see Sect.  4.2.1), with the 
difference that the equations used to calculate the incremental knowledge granularity are 
adapted to accept a variation of both features and instances.

Note that the aforementioned algorithms were designed for supervised classification 
problems that do not consider any group structure when several new features are received. 
A summary of them is given in Table 8.

(10)wt+1 = (wt + 𝜏 tytx̃t, 𝜏
tytx̂t),

Table 8   Supervised learning algorithms for FSS on data and feature streams

Name Description Class variable No instance 
revisit

References

STSD Maintains a linear classifier, which 
is updated with never seen features 
depending on the loss of a new 
training instance

Single-label ✓ Zhang et al. (2015)

Rough set-based
 IAMRCD 

and 
IARCD

Matrix and non-matrix rough 
set-based FSS proposals that incre-
mentally update the knowledge 
granularity when new data and fea-
tures are received simultaneously

Multi-class ✗ Jing et al. (2018)
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6 � Open issues

FSS for streams of data and features is a relatively new branch of study, and the continuous 
growth of information requires constant improvement. This section discusses some possi-
ble directions for future work. 

1.	 Simplicity of data stream FSS algorithms. The discussed online algorithms for data 
streams seek a simple solution to be efficient for real-time problems. However, this 
can make them of interest for only a small set of problems. Therefore, more research is 
expected in this area.

2.	 Semi-supervised learning and infinitely delayed labels. Several supervised and unsuper-
vised algorithms were discussed. However, no proposal that focuses on semi-supervised 
learning was identified. One solution could be to use spectral feature selection in an 
incremental manner, where the similarity measure between instances considers that class 
information may or may not exist in some pairwise comparisons. Furthermore, it could 
be useful to perform FSS on data streams with infinitely delayed labels, i.e., supervised 
problems where the availability of class variables is delayed. This context was already 
considered for the classification of data streams (Souza et al. 2015a, b). Unsupervised 
approaches could be used to perform FSS until the class variable is available, when a 
supervised method could improve the current feature subset.

3.	 Online FSS in other multi-task settings. Online FSS algorithms could be extended to 
other multi-task settings not covered by DA-MTFS. For example, there are problems 
where there is no common set of features due to outlier tasks (Gong et al. 2012).

4.	 Past instance removal in rough set-based algorithms. The majority of works based on 
rough set theory do not implement a mechanism for the removal of past instances. That 
is why the possibility of including time windows is advocated in works such as Yang 
et al. (2018).

5.	 Online FSS in multi-dimensional classification problems. Existing algorithms focus 
mainly on one-dimensional problems, while few multi-label approaches have been 
reported. To the best of our knowledge, FSS on multi-dimensional data streams remains 
an open issue, as current approaches simply address the problem by transforming the 
data into a one-dimensional learning task. FSS algorithms for feature streams were 
proposed for multi-label learning but not for the more general multi-dimensional case.

6.	 Removal of relevant features by an external agent. It may be interesting to research the 
possibility that a feature considered relevant is removed by an external agent (e.g. if it 
was detected as erroneous) during the processing of a feature stream. An efficient strat-
egy to recover previously removed features using constant memory could be of interest 
in this situation.

7.	 Online ensemble FSS. Ensemble FSS approaches have received some attention for batch 
environments (Bolón-Canedo and Alonso-Betanzos 2019), but very little progress has 
been made for incremental/online problems. For example, to the best of our knowledge, 
no ensemble proposal exists for online FSS on feature streams. This could be under-
standable due to the sophistication of some algorithms, which may be unhelpful for 
real-time data processing. Following an ensemble strategy to define a combined feature 
selection though different FSS algorithms could lead to inefficient approaches to process 
dynamic data. However, its robustness could help to obtain more stable solutions.

8.	 Algorithms to handle both data and feature streams. Only two proposals that can han-
dle streams of data and features simultaneously were found. However, this kind of 
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algorithm is of special interest since they combine the benefits of algorithms for data 
streams and feature streams into a unique model. When working in study areas that 
involve, for example, lab experiments, it is common that data not only grow in size but 
also in dimensionality. Thus, there is a clear absence of research on this topic, which 
lacks extensions of the classical rough set-based theory to handle, among others, hybrid 
attributes, apart from algorithms that are not linked to these mathematical theories and 
deal with, for example, unsupervised, regression, multi-class, multi-dimensional or non-
linear learning problems.

9.	 Distributed online FSS algorithms. As the search for more efficient algorithms will 
continue to be an open issue, we believe that this trend makes it interesting to pay more 
attention to distributed online FSS. Centralized algorithms may not meet the necessary 
performance requirements for multiple real-world problems. A starting point could be 
the development of online FSS methods based on nature-inspired metaheuristics, such 
as genetic algorithms.

7 � Conclusions

Incremental algorithms are characterized by their ability to adapt to the appearance of new 
data, which forces them to make a strict reduction of consumed resources to address real-
time applications. Here, tasks such as dimensionality reduction and, more specifically, fea-
ture subset selection (FSS) are implemented due to the inefficiency of maintaining irrel-
evant and redundant features. Incremental FSS is not only an important task when new 
features or instances are received over time but also when static datasets are massive since 
batch algorithms may not be efficient enough to process them. Thus, this review studies a 
variety of FSS proposals from two main perspectives, depending on whether they are capa-
ble of incrementally adapting their solution to data or feature streams. Additionally, a more 
complex environment where both instances and features are received is introduced.

Although an ideal online FSS algorithm should analyze the data once, some litera-
ture methods need to re-examine and store past information, some with the justifica-
tion of, for example, being able to correctly adapt to concept drift. It is common to 
find these algorithms defined simply as incremental. Therefore, proposals described as 
incremental and online are analyzed in this review. Note that there is some ambiguity in 
the literature about the differences between these concepts. Some works define online 
learning algorithms as those capable of working in a streaming context endlessly, which 
seems reasonable, but the classification of an algorithm may depend on the characteris-
tics of the problem being addressed under this definition. A proposal could be consid-
ered online if it is able to handle a specific real-time problem but may not be adequate 
for a more demanding context or when there are, theoretically, an infinite number of 
incoming relevant and non-redundant features. Consequently, we propose a thorough 
study of what should be considered as online and incremental FSS when working with 
data and feature streams, probably using different definitions depending on the type of 
stream being processed.

There is no unique way to perform FSS, but the definition of a variable as relevant or 
redundant is dependent on the problem we are facing. Therefore, the FSS task was studied 
for supervised (from one-dimensional to multi-label) and unsupervised stream learning, as 
well as for more specific problems, such as multi-task learning, data with hybrid attributes 
or even environments where instances or features could be removed as they were detected 
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as erroneous. In addition, the interest in providing as few hyperparameters as possible, 
since the whole dataset is unknown, has led us to dedicate several sections to the study of 
rough set-based algorithms and extensions of this theory.

We believe that some of the presented algorithms should be studied in greater depth. 
The experiments performed in the respective articles may not be sufficiently exhaustive to 
draw some of their conclusions. Trivial experiments, such as comparing the performance 
of models built with the entire feature set and the reported subset, are missing in certain 
works. Furthermore, the strategies followed by each of the algorithms can make them more 
suitable for certain types of problems, so it is normal that authors focus on highlighting 
the advantages of their proposals over others. Thus, it is not easy to opt for a single solu-
tion from all the proposals since it may depend on the characteristics of the problem being 
considered and the concessions in terms of efficiency or effectiveness that we are willing 
to make.

Through the review of the literature, it was found that the considerable attention the field 
of big data and real-time systems is receiving has led to an increase in research on incre-
mental/online algorithms for streams of new instances and features. This article focuses on 
26 different incremental FSS proposals that were published in the past five years, account-
ing for almost 60% of all analyzed proposals. This trend is expected to increase in the fol-
lowing years since more efficient strategies will be needed to address growing data in terms 
of the number of instances and dimensionality.
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