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Abstract 

The text of software knowledge community contains abundant knowledge of software engineering 

field. The software knowledge triplet can be extracted automatically and efficiently to form the 

software knowledge graph, which is helpful for software knowledge-centric intelligent applications, 

such as intelligent question answering, automatic document generation and software expert 

recommendation. Most existing methods are confronted with problems of task dependence and entity 

overlap. In this paper, we propose a software knowledge triplet extraction method based on span-level 

contrastive learning. From the level of sentence sequence modelling, we model the sentence sequence 

with span as a unit, and generate abundant positive and negative samples of entity span through the 

span representation layer to avoid the problem that the token-level method cannot select overlapping 

entities. From the level of feature learning, we propose supervised entity contrastive learning and 

relation contrastive learning, which obtain enhanced feature representation of entity span and entity 

pair through positive and negative sample enhancement and contrastive loss function construction. 

Experiments are conducted on the dataset which is constructed based on texts of the StackOverflow, 

and show that our approach achieves a better performance than baseline models. 

Keywords: Knowledge Graph; Software knowledge triplet; Entity extraction; Relation extraction; 

Contrastive learning; StackOverflow 

   
 

1. Introduction 

In the context of big data software engineering, software knowledge communities (e.g., 

StackOverflow) generate massive community texts, which contain rich software domain knowledge 

such as software development activities, software development technology, software development tools 

and software project management [1]. Therefore, automatic and efficient extraction of software 

knowledge entities and their semantic relations from software knowledge community texts, and 

construction of software knowledge graph, are helpful for software knowledge-centric intelligent 

applications, such as intelligent question answering, automatic document generation and software 



  

2 

 

expert recommendation, and play an important role in improving software development efficiency and 

software production quality. 

Existing researches [2-8] are mostly based on pipeline method, and entity extraction and relation 

extraction are modeled as two independent tasks. The model implementation of these methods is 

relatively simple and flexible, but the interaction and association of entity extraction and relation 

extraction are ignored, causing many problems [9]. On the one hand, due to the error propagation of 

serial tasks, the quality of tasks in the previous stage directly affects the performance of tasks in the 

next stage. On the other hand, due to the independent modeling of entity extraction and relation 

extraction, the parameters and the information of the two tasks do not share or interact, semantic 

information and dependency information are lost, resulting in redundant entities and high error rate.  

Different from the pipeline method, the joint learning method models entity extraction and relation 

extraction as a task, and uses the joint loss function to enhance the association and information sharing 

between tasks. The the overall performance of the model is improved and developed into the 

mainstream method of information extraction task [10][11]. 

According to the different modeling objects, the extraction of triples based on joint learning 

method can be divided into the method based on parameter sharing and the method based on sequence 

tagging. In order to solve the problem of manual feature extraction, the method based on parameter 

sharing [12][13][14] uses neural network to construct feature encoder and feature sharing layer to 

realize automatic feature extraction and model parameter sharing, which can alleviate the problems of 

error propagation and inter-task relation dependence. However, this kind of methods inherits the 

sequence relation of subtasks in essence, which will produce redundant entities with no matching 

relation and affect the quality of joint extraction. In order to solve the problem of redundant entities 

mentioned above, the method based on sequence tagging [15][16][17]uses joint tagging to label the 

entity location, entity relation type, entity role and so on, and transforms the joint learning model into a 

sequence tagging model to realize simultaneous extraction of entity and relation. However, such 

methods are usually token-level tasks, and the inherent sequential characteristic of sentence sequences 

will result in the inability to select overlapping entities, which will lead to the entity overlap problem in 

relation extraction tasks. 

The text of software knowledge community is unstructured user-generated content, and the 

semantic relation of domain entities is complex. The traditional sequence modeling method is used to 

extract software knowledge triplet, which will cause problems of entity overlap and error propagation, 

and will affect the quality of software knowledge graph construction.  
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Motivated by above problems, this paper proposes a method based on span-level contrastive 

learning for software knowledge triplet extraction. From the perspective of modeling object, this 

method models the sentence sequence with span as a unit, which can avoid the disadvantages of 

token-level sentence sequence modeling and effectively alleviate the entity overlap problem. From the 

perspective of feature learning, this method introduces contrastive learning to obtain more distinct 

feature representation of entity span and entity pair, so as to improve the accuracy of classification 

prediction. The main contributions of this paper are as follows:  

1) We propose a span-level contrastive learning model named SCL-SKG for software knowledge 

triplet extraction from software knowledge community texts. The proposed SCL-SKG takes 

the sentence sequence with span as a unit, and generates abundant positive and negative 

samples of entity span as data augmentation strategies for contrastive learning. 

2) We introduce supervised entity contrastive learning algorithm and supervised relation 

contrastive learning algorithm to learn effective feature representation of entities and entity 

pairs that are more suitable for downstream classification tasks.  

3) The experimental results showed that the proposed model achieves better performance than the 

benchmark models, which demonstrates its effectiveness. 

The remainder of this paper is organized as follows. Related works are reviewed in Section 2, and 

Section 3 presents each module of the proposed approach in detail. Section 4 presents the details of 

benchmark dataset, performance evaluation metric, and experimental results analysis. Finally, the main 

conclusions are given in Section 5.  

2. Related work  

In this section, we provide a comprehensive introduction for previous works in the fields of 

information extraction based on span and contrastive learning in natural language processing. 

2.1. Information extraction based on span 

Span-based approaches take one or more words of a sentence sequence as span units, generate all 

possible spans, and model the sentence sequence at the span level. Getting rid of inherent sequential 

characteristic of sentence sequences, the span-based method can select overlapping entities and 

represent features, which can alleviate the error propagation and entity overlap problems caused by 

token-level sentence sequence modeling. Dixit et al. [18] proposed a span-based model for joint 

extraction of entities and relations using Bidirectional Long Short-term Memory (Bi-LSTM) network 

and achieved a better performance. Luan et al. [19] proposed a multi-task classification framework 

based on shared span representation, and constructed a scientific literature knowledge graph on the 
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scientific literature abstract dataset SCIERC through tasks such as entity recognition, relationship 

classification and reference resolution. In order to enhance the interaction between different tasks, Luan 

et al. [20] proposed DYGIE, an information extraction framework based on dynamic span graph, which 

captured the interaction information between spans through graph propagation and improved the 

performance of the model without requiring additional syntactic analysis and processing. Based on the 

Bidirectional Encoder Representations from Transformers (BERT) model, Eberts et al. [21] realized the 

joint extraction of entities and relations through strong negative sample sampling, span filtering and 

local context representation. Ding et al. [22] applied the joint extraction method to a specific military 

field, proposed a hybrid model integrating span method and graph structure, and improved the 

extraction performance of the model by combining the vocabulary and syntactic knowledge of the 

specific field. 

2.2. Contrastive learning in natural language processing 

As a discriminative self-supervised learning, the contrastive learning is to leverage the similarity 

or dissimilarity of data samples to learn an encoder with supervised information. The encoder adopts 

the similar feature representation for the same type of data and different feature representations as far 

as possible for different types of data to obtain more effective feature representations for downstream 

tasks [23]. 

In terms of text presentation tasks, Giorgi et al. [24] applied contrastive learning to feature 

representation of sentence with unsupervised learning, and proved its feasibility in sentence 

representation task through experiments. In order to obtain a better sentence representation, Gao et al. 

[25] proposed a training method based on contrastive learning. This approach enhances sentence 

representation through specific data augmentation and contrastive loss function construction, and 

achieves a better performance in the downstream 7 Semantic Textual Similarity tasks (STS). To 

alleviate the collapse issue of BERT, Yan et al. [26] proposed a sentence representation transfer 

framework based on contrastive learning. By constructing comparative learning tasks, the framework 

fine-tunes BERT models on unlabeled datasets of the target domain, and generates sentence 

representations that are more suitable for downstream tasks. 

In terms of entity and relation extraction tasks, Peng et al. [27] proposed an entity-masked 

comparative pre-training framework for relation extraction to capture sentence context information and 

entity type information. Firstly, the framework uses distant supervision method to generate positive and 

negative samples through external knowledge graphs. Then, sentences with the same relation are 

regarded as positive samples, and sentences with different relation are regarded as negative samples. 
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Finally, a randomly entity-masked method is used for pre-training to obtain a better relation 

representation. As the pre-trained model cannot capture factual knowledge in the text, Qin et al. [28] 

proposed a comparative learning framework in the pre-training phase to enhance understanding of 

entities and their semantic relations through Entity Discrimination and Relation Discrimination. Su et 

al. [29] improved the text representation of BERT model by means of comparative learning through 

data augmentation methods such as synonym replacement, random exchange and random deletion to 

enhance the effect of biomedical relation extraction. 

3. Proposed method 

3.1. Task modeling and model overview 

The task of the span-level software knowledge triplet extraction proposed in this paper is to 

automatically identify all possible software knowledge entity spans from software knowledge 

community texts, predict their corresponding entity types, and classify the semantic relations of entity 

span pairs according to the predefined relation types, so as to obtain software knowledge triplets. In this 

way, the task can be formally defined as a 7-tuple ( ), , , , , ,e rSKG X S Y Y NA = , where: 

(1) ( )1 2, , , nX x x x=   is an input sentence of the software knowledge community text; 

(2) ( )1 2, , , nS s s s=  is a candidate span set which generated by enumerating X; 

(3) ( ) {NA}e iY s   is a function to predict the entity type of candidate span instance si and 

generate a set 1 2( , , , )
E

E e e e= , ( )1, ,...,i i i i ks x x x+ += ; 

(4) ( , ) {NA}r i jY e e   is a function to predict the semantic relation type of entity pairs (ei,ej) and 

generate a set 1 2( , , , )
R

R r r r= , ,i je e E ; 

(5)  is a set of predefined entity types; 

(6)  is a set of predefined relation types; 

(7)NA is a set of non-entity or no-semantic relation. 

For example, given the sentence of the software knowledge community text “GetHashCode is 

Method of Base Object Class of .NET Framework.”, the goal of software knowledge triplet extraction is 

to accurately identify entity pairs ( , )i je e  : “GetHashCode” and “.net Framework”, and predict the 

relation rij of entity pairs as “inclusion”, thereby obtaining software knowledge relation triplets 

<ei,rij,ej>. 

According to the task definition mentioned above, we propose a novel hybrid model for software 

knowledge triplet extraction, named SCL-SKG, which based on span-level contrastive learning. The 

architecture of the SCL-SKG is shown in Figure 1. 
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Figure 1: Overview of the proposed model. 

 

3.2. BERT contextualized word embedding 

Software knowledge community text is the user-generated content, which not only has social 

features such as repetitive content, loose structure and irregular spelling, but also has software domain 

features such as non-uniform naming, complicated terminology and weak semantic features. We use 

SWBERT [8], a pre-trained model in the field of software engineering, to encode the input sentence 

and capture the dynamic word embedding. The detailed description is as follows: 

(1) For sentence sequence ( )1 2, , , nX x x x=  , the corresponding Token sequence is obtained by adding 

the identifiers [CLS] and [SEP] at the beginning and ending of the sentence sequence. 

(2) For each token in the Token sequence, token embedding, segment embedding and position 

embedding are generated. After summing up these three embeddings, the input embedding of BERT is 

obtained: ( )1 2, , , nEEE E= . 

(3) After feature encoding, the dynamic word embedding of sentence sequence X is obtained: 

( )1 2 1 2  [ , , , ] , , ,n nH h h h SWBERT x x x= = . (1) 
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After the pre-trained model SWBERT encoding, a word embedding sequence with length n+1 is 

obtained: W = (wcls, w1, w2,..., wn), where wcls represents the classification information of the sentence 

sequence. 

3.3. Token and span representation 

In view of the entity overlap problem in the software knowledge community text, inspired by 

relevant work [18][21], we constructed a span-level sentence sequence representation layer in the 

SCL-SKG and modeled sentence sequences as span units. Generally, span-based methods generate 

span representations by iterating all the words in the sentence sequence, which incurs model 

computational overhead. Therefore, we first filter sentence sequences, removing words with less 

meaning and reserving words such as verbs and nouns. Then, all words of sentence sequences are 

iterated to produce span representations with different lengths, resulting in a set of entity span: 

( )1 2, , , nS s s s= . The entity span instance is represented as ( )1, ,...,i i i i ks x x x+ += , where k is the length of 

the span, indicating the number of words contained in the entity span.  

For example, for the sentence sequence of software knowledge community text: “GetHashCode is 

Method of Base Object Class of .NET Framework.”, the sentence sequence: “GetHashCode Method 

Base Object Class . NET Framework.” is obtained after filtering, and the generated entity span sets are: 

“GetHashCode”, “Method”, “GetHashCode Method”, “Method Base”, “Object”, “Base Object”, 

“Class”, “.NET”, “.NET Framework”, etc. 

Therefore, the SCL-SKG model generates the entity span of sentence sequences through the entity 

span representation layer, and generates abundant positive and negative samples of entity span, which 

provides a data augmentation method for the next step of entity contrastive learning. 

3.4. Entity classification based on contrastive learning 

In order to obtain distinctive feature representation of entity span and improve the accuracy of 

entity span classification prediction, we propose an entity contrastive learning at entity classification 

layer. Therefore, the entity classification layer of the SCL-SKG model includes two steps: entity 

contrastive learning and entity classification. 

3.4.1. Supervised span-level entity contrastive learning  

In order to make use of the label information of software knowledge entities, we extend the 

contrastive self-supervised learning method and propose a supervised span-level entity contrastive 

learning to obtain the entity span feature representation that is more suitable for downstream tasks. 

Different from the self-supervised contrastive learning, the supervised span-level entity contrastive 

learning combines entity label information and data augmentation methods to generate multiple 
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positive and negative views of the original data samples, and uses the contrastive loss function 

constraint model to learn the feature representation of entity span that is more suitable for classification 

tasks. 

The following is a detailed description of the components involved in the supervised span-level 

entity contrastive learning. 

(1) Data augmentation: Compared with the image processing field, the data augmentation in the 

natural language processing field is more difficult, as it includes random deletion of words, random 

insertion of words, random exchange of words and synonym-antonym replacement, etc. [30]. However, 

these methods are likely to interfere with the structure and semantic information of sentences, and if 

they are directly applied to the downstream tasks such as entity extraction and relation extraction, it 

will affect the performance of the model. 

Based on the entity span set in the span representation layer, we use the labels of software 

knowledge entities for data augmentation to generate multiple positive and negative samples of entity 

span instances. Specifically, supervised span-level entity contrastive learning regards entity spans with 

the same type as positive samples and constructs positive sample set P(i), and regards other types of 

entity span or non-entity span in the same batch as negative samples and constructs negative sample set 

N(i). 

(2) Encoder: In the encoder component, the SCL-SKG model uses the pre-trained model 

SWBERT to transform the input sentence sequence ( )1 2, , , nX x x x=  into dynamic word embedding, and 

extract text features, which can be expressed as: 

( )=SWBERT( )i i ih f x x= . (2) 

(3) Projection network: Referring to Chen's work in the image field [31], the SCL-SKG model 

utilizes Multi-Layer Perceptron (MLP) to project the embedding to another representation space in the 

projection network component, so as to obtain better feature representation in the training phase, which 

can be expressed as: 

2 1( ) ( )i i iz g h W W h= = . (3) 

Where, W1and W2 represent the weights of hidden layers,   is ReLU activation function. 

(4) Contrastive loss function: Since self-supervised contrastive learning cannot deal with type 

information of entities and will lead to multiple positive samples problem, we refer to the work of 

Khosla[32] and extend the self-supervised contrastive loss function to obtain the loss function of 

supervised span-level entity contrastive learning, which is expressed as: 
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( ) ( )

( )

exp( / )1
log

( ) exp( / )

i pec

i B i p P i i n
n N i

z z
L

P i z z


 



−
=

   . (4) 

Where, zi is the span instance of the current entity, zp is the positive sample instance of zi, zn is the 

negative sample instance of zi, B(i) is the sample set in batch, |P(i)| is cardinality of positive sample set, 

N(i) is the set of negative samples,   temperature parameter, the symbol • denotes the inner product 

operation of similarity calculation. 

Thus, the span-level entity contrastive learning can be described as Algorithm 1. 

 

Algorithm 1 Span-level entity contrastive learning algorithm 

Input: Entity span instance si, pre- trained model SWBERT, Projection network g 
Output: The embedding hi of entity span instance si 
1. Begin 

2.      Get the embedding hi of the entity span instance si      // Formula (2) 
3.      Project hi into another representation space, and get zi             // Formula (3) 
4.      Use the data augmentation to generate positive and negative sample of zi : zp, zn 
5.      Calculate the entity contrast loss Lec           

 // Formula (4) 
6.      Update the parameters of SWBERT and network g to minimize Lec 
7.      Return the embedding hi of entity span instance si 
8. End 
 

3.4.2. Entity classification 

The goal of entity classification is to predict the type of candidate entity span and filter non-entity 

span at the same time. Therefore, the entity classification consists of the following two steps: 

(1) Embedding concatenation. After span-level entity contrastive learning, the final embedding 

of candidate entity span si is obtained, which can be expressed as: 

[ ; ; ]i i width clss h s w= . (5) 

Where, hi is the embedding of entity span instance, swidth is the embedding of length of entity span 

instance, and wcls is the special classification information. 

(2) Entity type prediction. After embedding concatenation, the candidate entity span si is fed into 

a Softmax layer for entity type prediction: 

softmax( )i i i ie W s b=  + . (6) 

Where, Wi represents the weight matrix, and bi represents the bias units. 

3.5. Relation classification based on contrastive learning 

In order to obtain a distinctive feature representation of candidate entity pairs that is more suitable 

for relation classification, we propose a supervised span-level relation contrastive learning at relation 

classification layer. Similar to the above entity classification, the relation classification layer of the 

SCL-SKG model includes two steps: relation contrastive learning and relation classification. 
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3.5.1. Supervised span-level relation contrastive learning 

Compared with the supervised entity contrastive learning, the Encoder and Projection network of 

the supervised relation contrastive learning remain unchanged, and the data augmentation and 

contrastive loss function are different.  

In the data enhancement component, supervised relation contrastive learning regards entity pairs 

with the same relation type as positive samples and constructs positive sample set P(i), and regards 

other relation types of entity pairs or non-relation in the same batch as negative samples and constructs 

negative sample set N(i). 

Therefore, the contrastive loss function of supervised relation contrastive learning is defined as 

follows: 

( ) ( )

( )

exp( / )1
log

( ) exp( / )

i prc

i B i p P i i n
n N i

z z
L

P i z z


 



−
=

   . (7) 

Where, zi is the instance of the current entity pairs, zp is the positive sample instance of zi, zn is the 

negative sample instance of zi, B(i) is the set of candidate entity pair in batch, |P(i)| is cardinality of 

positive sample set, N(i) is the set of negative samples,   temperature parameter, and the symbol • 

denotes the inner product operation of similarity calculation.  

Similarly, span-level relation contrastive learning can be described as Algorithm 2. 

 

Algorithm 2 Span-level relation contrastive learning algorithm 

Input: Candidate entity pair (si, sj), pre- trained model SWBERT, Projection network g 
Output: The embedding hi of candidate entity pair (si, sj) 
1. Begin 

2.      Get the embedding hi of candidate entity pair (si, sj)      
3.      Project hi into another representation space, and get zi             
4.      Use the data augmentation to generate positive and negative sample of zi : zp, zn 
5.      Calculate the entity contrast loss Lrc           Formula (7) 
6.      Update the parameters of SWBERT and network g to minimize Lrc 
7.      Return the embedding hi of candidate entity pair 
8. End 
 

3.5.2. Relation classification 

The goal of relation classification is to predict the type of candidate entity pair and filter 

non-relation at the same time. Therefore, the relation classification consists of the following two steps: 

(1) Embedding concatenation. After span-level relation contrastive learning, the final embedding 

of entity pair sij is obtained, which can be expressed as: 

,[ ; ]ij i i js h c= . (8) 

Where, hi is the embedding of entity pair, and cij is the context of span pair. 
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(2) Relation type prediction. After embedding concatenation, the candidate entity pair sij is fed 

into a fully connected layer for relation classification: 

( )ij ij ij ijr W s b=  + . (9) 

Where,   is activation function, Wij represents the weight matrix, and bij represents the bias 

units. 

In summary, the software knowledge triplet extraction with span-level contrastive learning is 

described as Algorithm 3.  

 

Algorithm 3 Software knowledge triplet extraction with span-level contrastive learning 

Input: Sentence sequence of software knowledge community text X=(x1,x2,...,xn) 
Output: Software knowledge entity relation triplet  
1. Begin 
2.     for each epoch do 
3.        for each batch do 
4.           The word embedding of sentence sequence X is generated by SWBERT 
5.           Generates a span representation of the sentence sequence S=(s1,s2,...,sn) 
6.               for si from S do 
7.                  Call Algorithm 1 to get the embedding hi of entity span instance si 
8.                  The embedding of si is obtained by embedding concatenation      //Formula (5) 
9.                  Predict the type of entity span instance si      //Formula (6) 
10.               endfor 
11.           The software knowledge entity set E is obtained, and the entity pair instance is selected (si, sj) 
12.               for si, sj from S do 
13.                  Call Algorithm 2 to get the embedding hi of entity pair instance (si, sj) 
14.                  The embedding of (si, sj) is obtained by embedding      //Formula (8) 
15.                  Predict the type of relation for entity pair instance (si, sj)      //Formula (9) 
16.               endfor 
17.           Return the software knowledge entity relation triplet 
18.        endfor 
19.     endfor 
20. End 
 

As shown in Algorithm 3, firstly, a pre-trained language model SWBERT in software engineering 

was used as the input feature encoder to obtain the dynamic word embedding of the sentence sequence. 

Then, the sentence sequence is modeled with spans as the unit to generate rich entity span 

representation to avoid the problem that overlapping entities cannot be selected. Finally, the supervised 

contrastive learning is introduced into the entity classification and relation classification tasks, and the 

entity span and entity pair feature representation are obtained by using data augmentation and 

contrastive loss function, so as to improve the performance of entity classification and relation 

classification. 
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4. Experiments 

In order to evaluate the performance of SCL-SKG model proposed in this paper, the ablation 

experiments and comparative experiments with the benchmark models in the field of joint entity and 

relation extraction were carried out. SCL-SKG model was implemented in Python using the deep 

learning framework PyTorch. It was specifically configured as Intel Xeon Gold 5117 processor, 2.0 

GHz clock speed, NVIDIA Tesla T4 GPU, 16GiB display memory, and all the experiments in this 

paper were conducted in this experimental environment.  

4.1. Dataset 

Due to the lack of available annotated dataset for the software knowledge triplet extraction task, 

we build an annotated dataset based on the text of StackOverflow with reference to related research 

works[3][8]. For the types of software knowledge entity and relation, we constructed 8 predefined 

entity types and 8 predefined relation types. The detailed information is shown in Table 1. 

Table 1: The types of software knowledge entity and relation. 
 Name Meaning Instance Abbreviation 
Entity types Programming Language  Java, Python,C prla 
 Software Platform  Weblogic,Dolphin plat 
 Software API  QueryManager, isNumeric api 
 Software Tool  Pycharm,Firebug tool 
 Software Library  jQuery,NumPy lib 
 Software Framework  Hibernate,Django fram 
 Software Standard  HTTP, utf-8 stan 
 Development Process  Umlet,LoadRunner depr 
Relation types Use relation of using Windows 10,Cortana use 
 Inclusion relation of including Python,PyBrain inc 
 Brother relation of brother C,Java bro 
 Consensus relation of synonym JavaScript,JS con 
 Semantic other semantic relation Virtual Network,VPN sem 

 
In terms of data set annotation, we use the JavaScript Object Notation (JSON) file format to 

annotate information such as sentence sequence, entity type, start and end positions of entity span, 

relation type, header entity and tail entity to form software knowledge triplet annotated data sets. In 

order to ensure the scientific and reasonable results of model experiment, the dataset is divided into 

training set, verification set and test set according to the ratio of 7:1:2 for the experiment of software 

knowledge triplet extraction. The detailed information of the dataset is shown in Table 2. 

Table 2: The detail of the dataset. 
 Training set Verification set Test set Total 
Sentence 15016 196 3801 19013 
Entity 34592 429 8748 43769 
Relation 19875 234 5074 25183 
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4.2. Parameter settings 

For the span-based module in SCL-SKG model, the word embedding dimension of pre-trained 

language model SWBERT is set as 768 dimensions, Batch size is set to 3, the maximum of span is set 

to 10, and the maximum value of entity span negative sample and relation negative sample is set to 100, 

Adam is used as the optimizer, the initial learning rate is set at 5e-5. For the contrastive learning 

module in SCL-SKG model, contrastive loss is used as the loss function of the model, and the 

temperature parameter is set to 0.1. The setting of relevant hyper-parameters is shown in Table 3. 

Table 3: Hyper-parameters of the proposed model. 
Modules Names Value 

Span-based module Word embedding dimension 768 
 Batch size 3 
 Learningrate 5e-5 
 Max_span_size 10 
 Num_epoch 100 
 Num_negative_entiy 100 
 Num_negative_relation 100 
 Optimizer Adam 
 Dropout 0.5 

Contrastive Learning module   0.1 

 
4.3. Evaluation metrics 

The software knowledge triplet extraction model SCL-SKG involves two subtasks: entity 

recognition and relation extraction. The evaluation metrics of the extraction results are as follows: If 

both the boundary and the type of software knowledge entity span are predicted correctly, the result of 

entity recognition is correct; if the boundary, type and semantic relation of software knowledge entities 

are predicted correctly, the result of relation extraction is correct. 

General evaluation metrics in information extraction task are selected to evaluate the performance 

of the model, including precision rate (P), recall rate (R) and F1 score (F1). Precision rate (P) 

represents the percentage of correctly recognized samples in all recognized samples in the model 

recognition results; the recall rate (R) represents the percentage of correctly recognized samples in the 

number of all correct samples; F1 score is the weighted harmonic average of precision rate (P) and 

recall rate (R), which is used as the comprehensive performance evaluation index of the model. The 

formal expression of each evaluation index is as equations (10)-(12): 

P

P P

T
P

T F
=

+
, (10) 

   P

P n

T
R

T F
=

+
, (11) 
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2
1

 
=

+
P R

F
P R

. (12) 

Where TP (True Positive) represents the number of correct relation types that are recognized as 

positive examples by model, FP (False Positive) represents the number of the wrong relation types that 

are recognized as positive examples by model and FN (False Negative) represents the correct number of 

relation types that are recognized as the negative examples by model. 

4.4. Results and discussions 

To evaluate the performance of SCL-SKG model proposed in this paper, three state-of-the-art 

joint extraction models were selected for comparative experiments from two aspects: parameter 

sharing-based approach and joint decoding-based approach. 

Multi-head model [33] is a joint entity and relation extraction model based on shared parameter 

approach. This model uses BILOU annotation method and CRF decoding to realize entity extraction, 

use multi-head selection algorithm and sigmoid layer to realize relation extraction. 

SPERT model [21] is a joint entity and relation extraction model based on shared parameter 

approach. This model abandons the traditional method based on BIO/BILOU annotation, and uses the 

pre-trained language model BERT to obtain the word embedding of sentence sequence, and 

implements the joint entity and relation extraction by enumerating all possible entity spans in sentence 

sequence. 

NovelTagging model [34] is a joint entity and relation extraction model based on joint decoding 

approach. This model implements an end-to-end joint entity and relation extraction based on a new 

sequence annotation framework and LSTM network. 

The experimental results are shown in Table 4. 

Table 4: Experimental results on software knowledge dataset 

Model Entity Relation 
P(%) R(%) F1(%) P(%) R(%) F1(%) 

Multi-head[33] 68.20 65.23 66.68 61.03 56.82 58.85 
NovelTagging[34] 75.67 65.39 70.16 67.15 63.31 65.17 

SPERT[21] 83.71 67.17 74.53 72.27 69.64 70.93 
SCL-SKG 82.19 78.91 80.52 80.37 76.03 78.14 

 
From the experiment results, it can be seen that the F1 score of the SCL-SKG model is higher than 

the other three baseline models, and has achieved a better performance. From the perspective of 

software knowledge entity extraction task, compared with Multi-head model, precision rate and F1 

score are improved by 13.99% and 13.84%, respectively. Compared with NovelTagging model, 

precision rate and F1 score are improved by 6.52% and 10.36%, respectively. Compared with SPERT 

model, precision rate decreased by 1.52%, and F1 score increased by 5.99%.  
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From the perspective of software knowledge entity relation extraction task, compared with 

Multi-head model, precision rate and F1 score are improved by 19.34% and 19.29%, respectively. 

Compared with NovelTagging model, precision rate and F1 score are improved by 13.22% and 

12.97%, respectively. Compared with SPERT model, precision rate and F1 score are improved by 8.1% 

and 7.21%, respectively. 

Compared with the token-level approach, the span-based approach takes spans as the unit to model 

the sentence sequence, which can alleviate the entity overlap problem and improve the performance of 

the model. Therefore, SPERT model and SCL-SKG model which are span-based approach obtained the 

highest precision rate of entity extraction and relation extraction, respectively. Meanwhile, compared 

with the SPERT model, the SCL-SKG model introduced the contrastive learning based on the span 

approach, and the F1 score of entity extraction and relation extraction were increased by 5.99% and 

7.21%, respectively. 

In addition, the results of the SCL-SKG model for each predefined software knowledge entity type 

and relation type are shown in Figure 2 and Figure 3. 

It can be seen from the results that the entity extraction task of SCL-SKG model has higher 

performance than the relation extraction task. In the task of entity extraction, the SCL-SKG model has 

better performance on entity types such as Software Tool, Software Library and Programming 

Language. The highest F1 score is obtained in the entity type of Software Platform, but the lowest F1 

score appears in the entity type of Software Development Process. In the task of relation extraction, the 

highest F1 score was obtained in the relation type of Inclusion, while the lowest F1 score was obtained 

in the relation type of Semantic. 
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Figure 2: Extraction results for each entity type 
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Figure 3: Extraction results for each relation type 

 

4.5. Ablation experiment and analysis 

The main goal of ablation experiments on SCL-SKG model is to verify the contribution of the 

proposed entity contrastive learning, relation contrastive learning, and pre-trained model SWBERT to 

software knowledge triplet extraction. 

4.5.1. Contribution of contrastive learning to performance 

We selected the SCL-SKG model as the benchmark model to evaluate the contribution of entity 

contrastive learning and relation contrastive learning to the software knowledge triplet extraction. The 

experimental results are shown in Table 5. 

In Table 5, the SCL-SKG-NN model indicates that entity contrastive learning and relation 

contrastive learning are not introduced. The SCL-SKG-EC model indicates that only entity contrastive 

learning is introduced, the SCL-SKG-RC model indicates that only relation contrastive learning is 

introduced, the SCL-SKG-ALL model indicates that both entity contrastive learning and relation 

contrastive learning are introduced. 

Table 5: Contribution of contrastive learning to model performance 

Model Entity contrastive  
learning 

Relation contrastive 
learning 

Entity Relation 
P% R% F1% P% R% F1% 

SCL-SKG-NN   68.43 59.61 63.72 65.32 58.34 61.63 
SCL-SKG-EC   81.97 76.69 79.24 69.74 62.57 65.96 
SCL-SKG-RC   69.11 60.93 64.76 71.51 65.72 68.49 

SCL-SKG-ALL   82.19 78.91 80.52 80.37 76.03 78.14 
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According to the experiment results, after only introducing entity contrastive learning, the F1 

score of entity extraction and relation extraction is increased by 15.52% and 4.33%, respectively. After 

only introducing relation contrastive learning, the F1 score of entity extraction and relation extraction 

are increased by 0.04% and 6.86%, respectively. After introducing both entity contrastive learning and 

relation contrastive learning, the F1 score of entity extraction and relation extraction reaches the 

highest. 

Experimental results show that entity contrastive learning and relation contrastive learning can 

obtain feature representations of entity span and entity pair that are more suitable for downstream 

classification tasks, which is helpful to improve the performance of software knowledge triplet 

extraction. 

4.5.2 Contribution of pre-trained model to performance  

In order to evaluate the contribution of pre-trained language model SWBERT to software 

knowledge triplet extraction, SCL-SKG model is selected as the benchmark model, and the 

experimental results are shown in Table 6. 

In Table 6, the model is labelled by symbol “”, if the corresponding features representation is 

used; Otherwise, it is labelled “”. Among them, the model SCL-SKG-NN indicates that no 

pre-trained model is introduced, the model SCL-SKG-BERT indicates that the general domain BERT 

model is introduced, and the model SCL-SKG-SWBERT indicates that the pre-trained model for 

software domain SWBERT is introduced. 

Table 6: Contribution of pre-trained model to model performance 

Model Pre-trained model Entity Relation 
P(%) R(%) F1(%) P(%) R(%) F1(%) 

SCL-SKG-NN  77.26 69.71 73.29 71.84 68.27 70.01 
SCL-SKG-BERT  80.95 73.19 76.87 76.36 70.17 73.13 

SCL-SKG-SWBERT  82.19 78.91 80.52 80.37 76.03 78.14 

 

According to the experimental results, the F1 score of entity extraction and relation extraction are 

increased by 3.58% and 3.12% respectively after the general domain BERT is introduced. The F1 score 

of entity extraction and relation extraction are increased by 7.23% and 8.13%, after the pre-trained 

model SWBERT is introduced. In addition, compared with the introduction of BERT, the F1 score of 

entity extraction and relation extraction increased by 3.65% and 5.01% respectively after the 

introduction of SWBERT. 

4.6. Comparison with state-of-the-art models on public dataset 

To further evaluate the performance of SCL-SKG model proposed in this paper, we compare 

SCL-SKG with state-of-the-art joint extraction models on three public datasets. The CoNLL04 dataset 
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[35] is an annotated data set for news articles, including 4 entity types and 5 relation types. The 

SciERC dataset [36] is derived from 500 abstracts of AI conference/workshop proceedings in four AI 

communities. The ADE dataset [37] is derived from medical reports from drug use, including 2 entity 

types and 1 relation type.  

Following the evaluation method of previous work, we measure the macro-averaged values for the 

CoNLL04 dataset and the ADE dataset; and measure the micro-averaged values for SciERC dataset. 

The experimental results are shown in Table 7. 

Table 7: Experimental results on public dataset 

Dataset Model Entity Relation 
P(%) R(%) F1(%) P(%) R(%) F1(%) 

 Multi-head[33] 83.75 84.06 83.90 63.75 60.43 62.04 

 Multi-head+AT[38] - - 83.61 - - 61.95 
CoNLL04 Table-filling[39] 81.20 80.20 80.70 76.00 50.90 61.00 

 SPERT[21] 85.78 86.84 86.25 74.75 71.52 72.87 
 SCL-SKG 86.45 87.35 86.93 76.13 71.31 73.12 

 SciIE[40] 67.20 61.50 64.20 47.60 33.50 39.30 
 DyGIE[20] - - 65.20 - - 41.60 

SciERC DyGIE++[41] - - 67.50 - - 48.40 
 SPERT[21] 68.53 66.73 67.62 49.79 43.53 46.44 
 SCL-SKG 68.24 66.28 67.21 50.37 44.69 47.56 

 BiLSTM+SDP[42] 82.70 86.70 84.60 67.50 75.80 71.40 
 Multi-head[33] 84.72 88.16 86.40 72.10 77.24 74.58 

ADE Multi-head+AT[38] - - 86.73 - - 75.52 
 SPERT[21] 88.99 89.59 89.28 77.77 79.96 78.84 
 SCL-SKG 87.53 90.25 88.89 75.35 80.33 77.91 

 

According to the experimental results, SCL-SKG model achieve performance improvement of 

entity extraction and relation extraction on the CoNLL04 dataset, the F1 score of entity extraction and 

relation extraction are increased by 0.7% and 0.3 %, respectively. For SciERC dataset, the relation 

extraction performance also achieves improvement, the F1 score of relation extraction is increased by 

1.1%. Compared with SPERT model, SCL-SKG model does not achieve performance improvement of 

entity extraction and relation extraction on the ADE dataset.  

4.7. Analysis of joint training methods 

The loss function of the proposed SCL-SKG is composed of four parts: entity contrastive learning 

loss Lec, entity classification loss Le, relation contrastive loss Lrc and relation classification loss Lr. 

Among them, entity classification loss Le adopts Categorical Cross Entropy as loss function, and the 

relation classification loss Lr adopts the Binary Cross Entropy as the loss function. 

In order to obtain the best joint training result of the proposed SCL-SKG, we tried three different 

joint training methods, namely adding loss function, multiplying loss function and linear combination 
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of loss function. The specific formula is as follows: 

e ec r rcL L L L L= + + + , (13) 

e ec r rcL L L L L=  +  , (14) 

( ) ( )ec e rc rL L L L L = +  + +  . (15) 

Where, the adding loss function represents the sum of four losses, such as entity contrastive loss 

Lec, entity classification loss Le, relation contrastive loss Lrc and relation classification loss Lr, as shown 

in Formula 13. The multiplying loss function means entity contrastive loss multiplied by entity 

classification loss, and relation contrastive loss multiplied by relation classification loss, as shown in 

Formula 14. Linear combination of loss function means that a linear function is added to the entity 

classification loss and relation classification loss, as shown in Formula 15. 

As can be seen from Figure 4 and Figure 5, the method of multiplication of loss functions will 

make the model fail to converge and achieve poor results. The method of adding loss function and 

linear combination of loss function can complete the model training and testing, and the linear 

combination method achieves better results. 
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Figure 4: Joint training methods for entity extraction 
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Figure 5: Joint training methods for relation extraction 

4.8. Case analysis 

The above experimental results show that the software knowledge triplet extraction model 

SCL-SKG based on span-level contrastive learning achieve better performance, and construct a 

software knowledge graph which contain 43769 entity instances and 25183 relation instances. The 

overview diagrams of the software knowledge graph with 50 nodes and 1000 nodes are shown in 

Figure 6 and Figure 7. 

 

Figure 6: The software knowledge graph with 50 nodes 
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Figure 7: The software knowledge graph with 1000 nodes 

Although the proposed SCL-SKG has achieved good results, there are still some specific 

problems. The specific case of the SCL-SKG is analyzed below, and the analysis results are shown in 

Table 8, where the symbol “[]” represents the extracted software knowledge entity. 

Table 8: Case analysis of software knowledge triplet extraction  

 Results 
Case 1 SpriteKit is [[Apples] framework] for creating 2D games for [[IOS] 7], [[macOS] 

10.9], [[tvOS] 9] and [[watchOS] 3]. 
Case 2 StarlingFramework is an [ActionScript 3] library for hardware accelerated 2D 

graphics. 
Case 3 [BlackBerry] offers a variety of development tools, including the [BlackBerry 

Dynamics SDK], [Cylance REST APIs],[BlackBerry Workspaces APIs] and 
SDKs, BlackBerry QNX development and BlackBerry UEM REST APIs. 

Case 4 [CUDA] ([Compute Unified Device Architecture]) is a parallel computing 
platform and programming model for NVIDIA GPUs (Graphics Processing Units). 

 
In the Case 1, SCL-SKG model can not only extract software knowledge entities “Apples” and 

“IOS”, but also accurately extract software knowledge entities “Apples Framework” and “IOS 7”, 

indicating that the SCL-SKG model can effectively solve the problem of entity overlap.  

In the Case 2, because the boundary of entity span is wrong, SCL-SKG model does not accurately 

identify the software knowledge entity “ActionScript 3 Library”, which causes the relation extraction 

error. 

In the Case 3, SCL-SKG model extracted software knowledge entities “BlackBerry”, “BlackBerry 
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Dynamics SDK” and “Cylance REST APIs”, and accurately extracted the relation of “BlackBerry” and 

“BlackBerry Dynamics SDK” as “Inclusion”. Meanwhile, although the relation of “BlackBerry 

Dynamics SDK” and “Cylance REST APIs” is not labeled in the training dataset, the model predicts 

that the relation of the two entities is “Brother”. 

In the case 4, SCL-SKG model identifies the Software knowledge entities “CUDA” and “Compute 

Unified Device Architecture” as the types of “Software Platform” and “Software Tool” respectively, 

resulting in entity extraction errors and the “Consensus” relation is not correctly identified. 

5. Conclusion 

In view of the problems of task dependence in traditional Pipeline method and entity overlap in 

software knowledge community text, we proposes a software knowledge triplet extraction method 

based on span-level contrastive learning, and takes software knowledge community StackOverflow as 

an example to carry out experiments and analysis. The experimental results show that the span-level 

contrastive learning method can alleviate the overlap problem of software knowledge entities by 

modeling sentence sequences with spans as the unit. At the same time, supervised entity contrastive 

learning and relation contrastive learning can obtain the enhanced feature representation of entity span 

and entity pair, which is helpful to improve the performance of software knowledge entity and relation 

classification.  
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