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Abstract: The traditional probabilistic reliability analysis methods have problems such as 

poor convergence, low calculation accuracy, and long time-consuming in the reliability 

calculation of concrete arch bridges. Due to the uncertainty of the parameters of the structure 

itself, the performance function is highly nonlinear, and other factors. A reliability calculation 

method for concrete arch bridges based on the Kriging model and particle swarm optimization 

algorithm (PSOSA) based on a simulated annealing algorithm is proposed. Take advantage of 

the Kriging model in small samples, nonlinear, high-dimensional data processing capabilities. 

With the help of the PSO algorithm, it has the advantages of strong global optimization ability 

and strong robustness. Combined with the SA algorithm self-adaptive, variable probability 

mutation operation. The ability of the PSO algorithm to get rid of the local minima is 

enhanced and supplemented, effectively avoiding falling into the local minima and making 

the result tend to the global optimum, which improves the slow convergence speed and 

precociousness of the traditional PSO algorithm. A numerical example verifies the method's 

effectiveness, and a reliability evaluation of an actual concrete arch bridge is carried out. The 

research results show that the method improves the calculation accuracy, dramatically 

improves the calculation efficiency, and realizes the rapid and accurate assessment of the 

reliability of complex bridge structures. 

Key words: bridge engineering; reliability analysis; Kriging surrogate model; PSO algorithm; 

SA algorithm 
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1 Introduction 

The performance function of complex bridge structures is often highly nonlinear, and 

there is no clear analytical expression, and the value of the performance function generally 

needs to be obtained through time-consuming numerical calculation (Frangopol and Imai 

2000). How to quickly and accurately analyze the reliability of complex bridge structures has 

become a hot issue in current structural reliability analysis. Although the traditional Monte 

Carlo simulation method (Ben Seghier et al. 2018) (MCS) is suitable for solving the implicit 

performance function's reliability problem, the calculation accuracy is high. However, due to 

the large number of sampling times required, especially when the performance function value 

needs to be obtained through finite elements, the vast calculation work leads to highly lengthy 

and time-consuming, and the calculation efficiency is very low. The conventional first-order 

second-moment method (Arab et al. 2019) (FORM) and second-order second-moment 

method (Lim et al. 2014) (SORM) have the problem that the derivative of the implicit 

performance function is challenging to solve. However, the response surface method is 

currently a powerful tool for solving complex structural reliability problems. 

The basic idea of the response surface method is to use an easy-to-handle regression 

model as the response surface function based on several sample points to solve the implicit or 

computationally time-consuming performance function problem. Make the implicit 

performance function explicit and combine it with the conventional reliability analysis 

method to solve the failure probability (Fang 2020). The key to the response surface method 

is the fitting effect of the response surface function. When the performance function is 

strongly nonlinear, the widely used classical response surface method (Luo and Zhu 2012, 

Gavin and Yau 2008) (RSM) based on quadratic polynomial is difficult to accurately 

approximate the real performance function, resulting in a significant calculation error. In 

recent years, some scholars have proposed using a regression model with better regression 



performance to construct a response surface and achieved good results, such as artificial 

neural network (Han et al. 2019, Marugan et al. 2019) (ANN), radial basis function (Zhang et 

al. 2021, Wang and Fang 2018) (RBF), support vector regression (Pan et al. 2020) (SVR). 

However, in practical applications, the above-mentioned response surface method still has 

many shortcomings. For example, ANN has problems such as difficulty determining the 

optimal network topology, poor generalization ability under minor sample conditions, and 

overfitting (Xu et al. 2020). SVR has the problem that the model's optimal parameters and 

loss function are difficult to determine (Pepper et al. 2022). In addition, there is a common 

problem with the above methods: the computational accuracy is overly dependent on the 

construction of preset training samples. When the preset training sample size is small or the 

distribution is not ideal, the regression model will generate a large fitting error, leading to a 

significant error in the reliability calculation result. Conversely, when the preset training 

sample size is large, the computational accuracy is high, but the computational efficiency is 

low. 

The Kriging surrogate model is a machine-learning method developed in recent years. It 

has a strict statistical theoretical foundation and good adaptability to deal with complex 

regression problems such as high dimensions, small samples, and nonlinearity. It has been 

widely used in many fields (Sundar and Shields 2019, Yan et al. 2020). The Kriging model 

includes two models: regression model and correlation model. The regression model is a 

global approximation in space, and the attribute value of the unknown point is estimated by 

assigning weights to the known points around the unknown point. Correlation models reflect 

spatial distribution structures or spatial correlation types. At the same time, the range of the 

spatial correlation is given, and the observed value of the sampling point can be used to 

estimate the variable value of the unsampled point in the study area. In addition, selecting and 

determining relevant model parameters in the Kriging model is a multivariate optimization 



process. The performance of the numerical optimization algorithm directly affects the 

accuracy and stability of the relevant model parameters, which in turn affects the performance 

of the Kriging model (Chu et al. 2020, Qin et al. 2019). Most of the current Kriging models 

use the pattern search method (Liu et al. 2008, Li 2015) to solve the parameters of the related 

models. Like other traditional numerical optimization methods (such as the fastest descent 

method and quadratic programming method), these optimization algorithms have the 

advantage of high efficiency. However, it is very sensitive to the starting point selection, and 

it is easy to fall into the trap of local optimum, which cannot effectively guarantee 

convergence to the global optimum. Therefore, in order to improve the shortcomings of the 

Kriging model,  strive to ensure high computational efficiency while obtaining the global 

optimum. Therefore, it is necessary to combine better optimization algorithms to improve the 

optimization efficiency of model parameters. 

The PSOSA algorithm integrates two algorithms with different optimization mechanisms, 

the simulated annealing algorithm (Lee and Kim 2020) (SA) and the particle swarm 

optimization algorithm (Gu and Hao 2020) (PSO). It is beneficial to enrich the search 

behavior of the optimization process and enhance searchability and efficiency in the global 

and local sense. The SA algorithm adopts a serial optimization structure (Zhai and Feng 2022), 

while the PSO adopts a swarm parallel search (Jiang et al. 2021). The combination of the two 

can make the SA algorithm a parallel SA algorithm and improve its optimization performance. 

At the same time, the SA algorithm, as an adaptive and variable probability mutation 

operation, enhances and supplements the PSO algorithm's ability to get rid of local minima, 

effectively avoids falling into local minima, and makes the algorithm eventually tend to the 

global optimum. Therefore, the Kriging-PSOSA hybrid algorithm is proposed by combining 

the Kriging model with the particle swarm optimization algorithm (PSOSA) based on the 

simulated annealing algorithm. This method takes advantage of the Kriging model's 



advantages in dealing with reliability problems such as complex structural uncertainty, high 

dimensions, and small samples. It also takes advantage of the PSOSA hybrid algorithm that 

can better update the coordinates of the particle swarm to search for the optimal global 

solution faster. The accuracy and efficiency of reliability calculation of complex structures are 

effectively improved. 

In order to solve the above problems and propose applying the Kriging-PSOSA method 

to solving reliability problems. In this paper, the Kriging model, based on the theoretical basis 

of statistics and has analytical uncertainties, high dimensions, and nonlinear problems, is used 

to construct the response surface of the implicit performance function. The Kriging model is 

combined with the particle swarm optimization algorithm (PSOSA) based on a simulated 

annealing algorithm to improve the optimization efficiency of model parameters. The 

constructed implicit function can truly simulate the limit state function of the structure, and 

then a Kriging-PSOSA hybrid algorithm suitable for the reliability assessment of such 

complex structures is proposed. The correctness and feasibility of the method proposed in this 

paper in reliability calculation are verified by numerical example analysis and practical 

engineering application of a concrete arch bridge. The research results show that the method 

overcomes the limitation of the classical response surface method on the reliability of highly 

nonlinear structures. It solves the problems of the low computational efficiency of the MCS 

method, and the computational accuracy of the existing response surface method is overly 

dependent on the scale and distribution of preset samples and achieves the purpose of rapid 

and accurate assessment of the reliability of complex bridge structures. 

2 Basic theory of Kriging-PSOSA hybrid algorithm 

2.1 Theory of Kriging Model 

The Kriging model is an interpolation model formed by superimposing a non-parametric 

stochastic process with a parametric linear regression model (Yang et al. 2022). The 



expression for the model is: 

( ) ( , ) ( ) ( ) ( )T
G x x z x f x z x =  + = +  (1) 

In the formula: ( , )x  is the polynomial regression model.   is the regression 

coefficient vector, 1[ ,... ]T

p  = . T
f  is the polynomial of variable x , 

1 2[ ( ), ( ),...., ( )]T T

pf f x f x f x= . ( )z x  is a random Gaussian process with zero mean and 

variance 2 . At different locations in the design space, the correlation between these random 

variables is expressed by covariance as:  

2[ ( ), ( )] ( , ; )i j i jCov z x z x x x =  (2) 

In the formula: ( , ; )i jx x   is the correlation function between 
ix  and 

jx . In the 

classic Kriging model, common correlation function models include exponential model, 

Gaussian model, linear model, spline function model, etc. At present, the commonly used 

function model is the Gaussian model (Wang 2021): 

2

1

( , ; ) exp[ ( ) ]
M

m m

i j m i j

m

x x x x 
=

= − −  (3) 

In the formula:   is the parameter vector, 1 2[ , ,..., ]T

m   = . m  is the m -th 

dimension element of the input vector; M  is the total dimension of the input vector. 

Define the correlation matrix 
0 0

[( , ; )]i j N Nx x   , then the estimated values of   and 

2  are: 

1 1( )T T
F R F F R G − −=  (4) 

2
1

0

1
( ) ( )T
G F R G F

N
  −= − −  (5) 

In the formula: F  is the identity matrix of 
0 1N  . 

0N  represents the number of 

training sample points. From equations (1) to (3), it can be known that a Kriging model can be 

completely defined by the regression coefficient vector  , the variance 2  of the random 



process, and the parameter vector  . From equations (4) and (5), it can be known that the 

regression coefficient vector   and the variance 2  of the random process depend on the 

parameter vector  . Therefore, when constructing the Kriging model, the parameter vector 

  should be obtained first according to the sample points, and this process can be realized by 

maximum likelihood estimation. which is: 

2

0
0

arg max( ln( ) ln( ))N R


 


= − −  (6) 

The mean and variance of the predicted value ( )G x  for the predicted point x  is 

expressed as: 

1( ) ( ) ( )
G

x r x R G F  −= + −  (7) 

2 2 1 1 1( ) ( )(1 ( )( ) ( ) ( ) ( ))T T T

G
x x x F R F x r x R r x   − − −= + −

 
(8) 

In the formula: 
01 2( ) [ ( , ; ), ( , ; ),..., ( , ; )]

N
r x x x x x x x  = , 1( ) ( ) ( )T

x F R r x f x −= − . 

And ( )
G

x  is taken as the predicted value of point x . 

2.2 The basic theory of particle swarm optimization algorithm (PSOSA) 

based on simulated annealing algorithm 

Particle swarm optimization (PSO) is a global random search algorithm based on swarm 

intelligence, which is proposed by simulating birds' migration and flocking behavior during 

foraging. Based on the concepts of "population" and "evolution", it realizes the search for the 

optimal solution in complex space through cooperation and competition among individuals 

(Pawan et al. 2022). Suppose that at time t , in an n -dimensional search space n
S R  and 

a population consisting of m  particles, the position of the i -th particle is represented by an 

n -dimensional vector, namely 
1 2[ , ,..., ]i i i inX X X X= . Each particle represents a candidate 

solution of the problem to be sought, and the fitness value is calculated by substituting 
iX  

into the fitness function. The quality of each solution is determined by its corresponding 



fitness value. The better the fitness value, the better the corresponding solution. The closer to 

the true solution, the moving speed of the particle is also an n -dimensional vector, namely 

1 2[ , ,..., ]i i i inV V V V= . The optimal position searched by the i -th particle so far in the S  space 

is called the extreme individual value, denoted as 
1 2[ , ,..., ]i i i inP P P P= . The optimal position 

searched by the particle swarm so far is the global extremum, marked as 

1 2[ , ,..., ]best q q qng P P P= , to represent the position of the best particle in the swarm. Each particle 

updates its velocity and position during the optimization process according to the following 

formula. 

1

1 1 2 2( ) ( )t t t t t t

i i i i b t iV V c r P X c r g X+ =  + − + −  (9) 

1 1t t t

i i i
X X V

+ += +
 

(10) 

In the formula: particle number 1,2,...,i m= . t  is the current iteration number.   is 

the inertia weight, representing the influence coefficient of the last speed on the particle. 
1c  

and 
2c  are learning factors, and 

1c  represents the cognitive ability of the particle's 

experience, which is used to adjust the progress of the particle flying toward its best position. 

2c  represents the cognitive ability of the particle to learn social experience and adjusts the 

step size of the particle to the optimal global position. 
1r  and 

2r  are random numbers 

uniformly distributed in the interval [0, 1]. The purpose is to allow the particle to fly to the 

best position of the particle itself and the global best position of the particle with an equal 

probability of acceleration. 

The simulated annealing algorithm is an extension of the local search method. However, 

it differs from local search by selecting the state with the largest cost value in the 

neighborhood with a certain probability of jumping out of the local extreme point. The 

acceptance criterion allows the objective function to deteriorate within a limited range, 

accepting new solutions with a certain probability (Gao et al. 2022). In reference (Aslett et al. 



2017), the acceptance criterion allows the objective function to deteriorate without choosing 

according to probability, but directly according to E e  , where E  is the change in 

fitness value caused by two positions, and e  is the allowable target function deterioration 

range. Therefore, this paper combines the core steps of the two and proposes a particle swarm 

optimization algorithm (PSOSA) based on simulated annealing algorithm. Initialize each 

particle, set the number of particles n , randomly generate n  initial solutions or give n  

initial solutions, and randomly generate n  initial velocities. According to the current 

position and speed, the new position of each particle is generated, and the fitness value of 

each particle's new position is calculated. For each particle, if the fitness value of the particle 

is better than the original individual extreme value 
ip , set the current fitness value to the 

individual extreme value 
ip . According to each particle's individual extreme value 

ip , find 

the global extreme value 
gp . Update itself speed according to formula (9), update the current 

position according to formula (10), and calculate the amount of adaptation value change E  

caused by the two positions. If E e  , accept the new value; otherwise, reject. If the 

conditions are not met, or the maximum number of iterations is not reached, go to step 

3-otherwise, end. 

3 Design and verification of calculation reliability based on Kriging-PSOSA 

hybrid algorithm 

3.1 Design of Kriging-PSOSA calculation method 

Based on the finite element model and the MATLAB calculation program, the 

Kriging-PSOSA hybrid response surface method is proposed to calculate and analyze the 

structural reliability. The process is as follows: (1) Determine the statistical characteristics and 

probability distribution of random variables in the operating state of the bridge structure, and 

use the uniform design method to generate input sample points. (2) Establish a structural 



finite element model based on the bridge design data and operating conditions, calculate the 

target variables corresponding to each input sample, and obtain an output sample. And then 

form a training sample with the input sample. (3) Normalize the sample points, and use the 

DACE toolbox (Soltani-Mohammadi 2016) to establish the basic Kriging model. Through the 

unsupervised training and parameter optimization process of the basic model by inputting 

sample points, the structural Kriging model is obtained. (4) Standard normalization of random 

variables, using penalty function to transform the constrained optimization problem into an 

unconstrained optimization problem, and construct a fitness equation suitable for the PSOSA 

algorithm to solve. Furthermore, the PSOSA algorithm updates the optimal position of search 

particles and particle swarms. Iteratively obtains the optimal weights of random variables to 

support the unsupervised learning process of the Kriging model. (5) A mathematical model 

for solving the structural reliability index is established through the prediction results of the 

Kriging model. In this process, it is necessary to update and optimize the samples of each 

Kriging prediction model so that the Kriging prediction model can well approximate the 

sample points; until the model builds a sufficiently accurate response surface, it can 

realistically simulate the structural limit state function. The specific flow of the 

Kriging-PSOSA hybrid algorithm for bridge structural reliability analysis is shown in Figure 

1. 



 

Figure 1 Kriging-PSOSA hybrid algorithm reliability calculation design and 

process 

In order to reflect the accuracy and efficiency of the method, this paper uses the response 

surface method based on the Kriging surrogate model, the support vector machine response 

surface method, and other types of machine learning methods to analyze the reliability of the 

same structure. Moreover, through the accuracy analysis, the number of iteration steps, and 

other aspects, different methods are compared and analyzed to verify the feasibility and 

efficiency of the structural reliability calculation based on the Kriging-PSOSA hybrid 

response surface method. 

3.2 Example 1 Verification 

As shown in Figure 2, for the ten-bar truss structure, let the length of the member be L , 

the cross-sectional area of the member be 
sA , the elastic modulus is E , and the external 

loads are 
1P , 

2P , and 
3P . All random variables are normally distributed, and their 

distribution characteristics are shown in Table 1. Taking the vertical displacement limit ( )V x  



of the No. 2 node as the control variable, the allowable displacement is 0.004m, and the 

performance function 0.004 ( )g V x= −  is established. 

 
Figure 2 Calculation diagram of ten-bar truss 

Table 1 Statistical parameters of random variables of cross truss structure 

Random Variables Mean   Standard deviation   Distribution type 

/L m  1.0 0.05 normal distribution 

2/A m  0.001 0.00015 normal distribution 

/ aE GP
 

100.0 5.0 normal distribution 

1 /P kN  80.0 4.0 normal distribution 

2 /P kN  10.0 0.5 normal distribution 

3 /P kN  10.0 0.5 normal distribution 

It can be seen from the above performance functions that it is a structural reliability 

problem with high-dimensional nonlinear implicit performance functions. The vertical 

displacement in the performance function is obtained using the ANSYS commercial finite 

element analysis program. The uniform design sampling method was used to generate 30 

groups of samples within the range of [ 3 , 3 ]   − + , and the training samples were 

normalized and entered into the Kriging model for training, and the PSOSA algorithm was 

used to optimize the parameters. The optimization process to obtain the optimal weight 

parameter B of the model is shown in Figure 3(a). The optimal weight parameter of the model 

can be obtained by searching the PSOSA algorithm as 

1 2 3 4 5 6[ , , , , , ] [0.8865,0.0640,0.0003,0.0668,0.5028,0.0513]      = . 



  

(a) Parameter optimization process of PSOSA 

algorithm 

(b) Kriging model sample regression 

prediction results 

Figure 3 The calculation process of Kriging-PSOSA mixed response surface method 

Figure 3(b) shows the prediction result of the sample regression based on the Kriging 

model. It can be seen that the Kriging model constructed by the sample learning can 

accurately reflect the actual response surface of the performance function. Table 2 shows the 

calculation results of this example by the method in this paper and different methods in 

reference (Su et al. 2013). Taking the calculation result of Monte Carlo sampling 200,000 

times as the exact solution, its failure probability is 5.2253×10-3, and the corresponding 

reliability index   is 2.6013. The failure probability calculated by the method in this paper 

is 5.1087×10-3, the corresponding reliability index   is 2.6133, and the relative error is only 

0.461%. Its iteration times and calculation accuracy are better than the Kriging model 

response surface method and support vector machine method (SVM). The calculation results 

of the example can fully demonstrate that the Kriging-PSOSA hybrid response surface 

method can well solve the structural reliability problem of high-dimensional nonlinear 

implicit performance functions. 

Table 2 Comparison of results of different reliability calculation methods for ten-bar 

truss 

Calculation method 
Number of 

samples 

Number of 
iterations 

Failure 
probability 

Reliability 
index   

Relative 
error 

Monte Carlo method 200000 / 5.2253e-3 2.6013 0 



Krging Model Response 
Surface Method 30 44 5.3993e-3 2.5834 0.688% 

Support Vector Machines 
(SVM) 30 29 4.9736e-3 2.6272 0.996% 

Kriging-PSOSA 30 20 5.1087e-3 2.6133 0.461% 

3.3 Example 2 Verification 

As shown in Figure 4, a plane truss has a calculated span and height are 9.0m and 1.5m, 

respectively. The cross-sectional area of the member is a random variable A  with a mean of 

-3 21.6 10 m . Moreover, it is assumed that the elastic modulus E  and the concentrated loads 

0P , 
1P , and 

2P  are random variables, and the mean values are 7 22.0 10 /kN m , 30kN , 

50kN , and 20kN , respectively. And the coefficient of variation of each random variable is 

0.1. The node's vertical displacement limit at the lower chord's midspan (node number 4) is 

0.12m. The Kriging-PSOSA hybrid response surface method is used to calculate the 

reliability index of the plane truss. The statistical parameters of each variable of the structure 

are shown in Table 3. 

 

Figure 4 Reliability calculation diagram of plane truss 

Table 3 Statistical parameters of random variables of plane truss structure 

Random Variables Mean   Standard deviation   Distribution type 

2/A m  0.0016 0.00016 lognormal 

7 2/ (10 )E kN m
−

 2 0.2 lognormal 

0 /P kN  30 3 Extreme value type I 

1 /P kN  50 5 Extreme value type I 



2 /P kN  20 2 Extreme value type I 

According to the limit state space function containing five random variables, a uniform 

design experiment was used to generate 30 groups of samples within the range of 

[ 3 , 3 ]   − + . At this time, the interval contains 99.73% of the points, which meets the 

requirements of reliability calculation. Substitute the input sample into the ANSYS finite 

element model to calculate the corresponding response value (the vertical displacement value 

of the midspan node of the lower chord). The sample input and output points are combined to 

form a training sample, and the sample points are normalized and fed into the Kriging model 

for training. The PSOSA algorithm is used to optimize the parameters, and the optimization 

process of the optimal weight parameter 
1 5~   of the model is obtained, as shown in Figure 

5(a). It can be seen from Figure 5(b) that the response surface function established based on 

the Kriging model can truly simulate the structural limit state function with good accuracy. 

  

(a) PSOSA parameter optimization process 
(b) Kriging model sample regression 

prediction results 

Figure 5 Process diagram of Kriging-PSOSA mixed response surface method 

The failure probability calculated by the method in this paper is 9.1046×10-4, and the 

corresponding reliability index   is 3.1182. In addition, according to reference (Yang et al. 

2014), the failure probability of the plane truss structure obtained by 200,000 Monte Carlo 

important sampling simulations is 9.3322×10-3, and the corresponding reliability index is 

3.1107. Considering the Monte Carlo calculation result as the exact value, the relative error of 



the Kriging-PSOSA algorithm is only 0.241%, which is similar to the reference results. In 

addition, the calculation methods and processes of different reliability of the plane truss are 

shown in Table 4. 

Table 4 Comparison of results of different reliability calculation methods for plane 

trusses 

Calculation method 
Number of 

samples 

Number of 
iterations 

Failure 
probability 

Reliability 
index   

Relative 
error 

Monte Carlo method 200000 / 9.3322e-4 3.1107 0 

Krging Model Response 
Surface Method 

30 43 8.9204e-4 3.1243 0.437% 

Support Vector Machines 
(SVM) 30 29 8.8824e-4 3.1255 0.476% 

Kriging-PSOSA 30 22 9.1046e-4 3.1182 0.241% 

It can be seen from Table 4 that compared with the Monte Carlo method, Kriging model 

response surface method, and support vector machine method (SVM). The relative error of 

the Kriging-PSOSA method proposed in this paper is only 0.241%, and the convergence 

condition is reached when the number of sample iterations is 22. It can be seen that the 

method in this paper has certain advantages in the calculation accuracy and calculation 

efficiency, and it has the characteristics of high precision and high efficiency. 

In addition, the structural model of the above two examples is relatively simple. 

Compared with the traditional reliability calculation method, it is difficult to reflect the 

advantages of the Kriging-PSOSA hybrid response surface method in the reliability 

calculation of complex bridge structures. In order to further illustrate the application effect 

and advantages of this method in practical complex bridge structures and high-dimensional 

nonlinear implicit performance functions. In this paper, the reliability analysis and calculation 

of the deflection system of an actual concrete tied arch bridge is carried out, and the 

application of the Kriging-PSOSA hybrid response surface method in the actual complex 

bridge structure is further verified. 



4 Engineering application examples of reliability analysis of concrete arch 

bridges 

4.1 Project overview and establishment of bridge finite element model 

A concrete arch bridge is a bottom-bearing reinforced concrete tied arch bridge with a 

span of 70m. The sag-span ratio is 1/5, the sag height is 14m, the arch axis is a quadratic 

parabola, and the bridge deck width is 10.0m. The main arch and longitudinal beams are made 

of C50 concrete, the wind bracing is made of C40 concrete, and the suspenders are flexible. 

The site photo of the concrete tied arch bridge is shown in Figure 6. According to the design 

data, ANSYS commercial finite element software is used to establish the bridge's initial finite 

element analysis model. Arch ribs and longitudinal beams are simulated by the BEAM44 

element. The suspender is simulated by a three-dimensional unidirectional force LINK10 

element, and the tensile force of the suspender is applied in the form of initial strain. The 

bridge deck is simulated with SHELL181 elements. The entire bridge has a total of 2049 

nodes and 2360 units. The finite element model of the entire bridge is shown in Figure 7. 

  

Figure 6 Actual bridge scene diagram 
Figure 7 Finite element model of the entire 

bridge 

4.2 Analysis and calculation of bridge deflection reliability 

According to "General Design Specification for Highway Bridges and Culverts" (JTG 

D60-2015) and reference (Chen et al. 2007). The maximum allowable vertical deflection of 

the main arch under the action of vehicle load (excluding impact) is /1000 0.07L m = = . 

The maximum allowable vertical deflection of the main girder and bridge deck under the 



action of vehicle load (excluding impact) is / 800 0.0875L m = = . A performance function 

for establishing the limit state of regular use, namely: 

1 1=0.07- ( )v x   (11) 

2 2=0.0875- ( )v x 
 

(12) 

Where: 
1( )v x  is the maximum vertical deflection of the main arch. 

2( )v x  is the 

maximum vertical deflection of the main girder and deck. 

During the service process of bridges, there are uncertainties due to the changes in 

parameters such as material properties, structural geometric dimensions, and external loads 

with environmental changes. As a result, there is a big difference between the actual structural 

and theoretical design states. Many factors affect the safety of concrete arch bridges during 

operation. In this paper, the geometric deformation of the structure is used as the control 

index, and the random factors shown in Table 5 are selected for analysis mainly from the 

factors that significantly influence the bridge-forming state of the structure. The parameters of 

random variables are obtained through design data and actual measurement, as shown in 

Table 5. 

Table 5 Statistical characteristics of random variables of concrete arch bridges 

Random Variables Type Mean 
Coefficient of 

variation 
Distribution form 

1 /E MPa  
Elastic modulus of 

main beam 
3.45e4 0.1 

Normal 

distribution 

2 /E MPa  
Arch rib elastic 

modulus 
3.45e4 0.1 

Normal 

distribution 

3 /E MPa  
Tie beam modulus of 

elasticity 
3.45e4 0.1 

Normal 

distribution 

4 /E MPa  
Wind brace elastic 

modulus 
3.25e4 0.1 

Normal 

distribution 

5 /E MPa  
Suspender modulus 

of elasticity 
6.10e4 0.1 

Normal 

distribution 

3

1 / ( )r kN m
−  

Main beam bulk 

density 
24.0 0.1 

Normal 

distribution 



3

2 / ( )r kN m
−  Arch rib bulk density 24.0 0.1 

Normal 

distribution 

3

3 / ( )r kN m
−  

Tie beam bulk 

density 
24.0 0.1 

Normal 

distribution 

3

4 / ( )r kN m
−  

Wind brace bulk 

density 
24.0 0.1 

Normal 

distribution 

3

5 / ( )r kN m
−  

Suspender bulk 

density 
78.0 0.1 

Normal 

distribution 

2

1 /A m
 

Main beam 

cross-sectional area 
1.98 0.05 Lognormal 

2

2 /A m
 

Arch rib 

cross-sectional area 
1.43 0.05 Lognormal 

4

1 /I m
 

Bending moment of 

inertia of main beam 
0.535 0.05 Lognormal 

4

2 /I m
 

Arch rib bending 

moment of inertia 
0.201 0.05 Lognormal 

1

1 / ( )q N m
−  Vehicle load 25.5 0.13 

Extreme value type 

I 

According to the "Unified Standard for Reliability Design of Engineering Structures" 

(GB 50153-2008) and reference (Yang and Qin 2008), it can be known that the engineering 

reliability requirements can be met when the engineering structure reliability index   is 

greater than 4.0. A 15-dimensional space is formed with random parameter variable 

1 2 3 4 5 1 2 3 4 5 1 2 1 2 1, , , , , , , , , , , , , ,E E E E E r r r r r A A I I q . The uniform design sampling method was used 

to generate 50 groups of random samples within the range of [ 3 , 3 ]   − +  to form 

random input samples, as shown in Table 6 (due to space limitations, only the first three 

groups are listed). Based on the finite element model of the concrete arch bridge, the above 

samples are substituted into the calculated response values in turn, and 50 sets of 

corresponding vertical deflection response values of the main arch and vertical deflection of 

the main beam are obtained. Finally, two sets of training samples of random 

parameter-deflection of main arch and random parameter-deflection of main beam are 

generated. The two groups of sample points were normalized and substituted into the Kriging 

model for training, and the PSOSA algorithm was used for parameter optimization. 



Table 6 Training samples for uniform design generation variables 

No 1E  
2E  

3E  
4E  

5E  
1r  

2r  

1 2.7107e4 4.0625e4 2.7529e4 3.0486e4 5.0169e4 23.559 27.673 

2 2.7529e4 4.3582e4 3.7245e4 2.8374e4 7.5565e4 30.906 24.147 

3 4.2315e4 3.0909e4 4.4850e4 3.0064e4 4.2700e4 22.971 24.441 

Table 6 (Continued) Training samples for uniform design generation variables 

No 3r  
4r  

5r  
1A  

2A  
1I  

2I  
1q  

1 24.441 30.612 98.535 1.919 1.754 0.5055 0.1604 20.660 

2 19.739 20.914 68.927 2.235 1.614 0.4727 0.1702 28.466 

3 18.857 24.440 80.388 2.574 1.544 0.6365 0.2219 30.964 

After the two sets of training samples of the main arch and the main beam are optimized 

by the PSOSA algorithm, the optimal weight parameter 
1 15~   of the model is obtained, 

respectively. The optimization process and results are shown in Figure 8-9. It can be seen 

from Figure 8 and Figure 9 that the minimum mean square error of the weight parameters 

optimized by the PSOSA algorithm is as low as 0.0174% and 0.0224%, respectively. It is 

sufficient to ensure the construction of high-precision response surfaces. 

  

Figure 8 Parameter optimization of 

PSOSA algorithm for deflection response 

of main arch 

Figure 9 Parameter optimization of 

PSOSA algorithm for deflection response 

of main beam 

Based on the Kriging model, the deflection response surface functions of the main arch 

and the main beam were constructed, respectively. This paper gives the response surface 



diagrams of parameters 
1E , 

1I , and main arch and main beam, respectively, as shown in 

Figure 10(a)-(b). The response surface plot can reflect the fluctuation of the deflection 

response value within the sample threshold. In addition, based on the Kriging model, the 

training samples are used for regression prediction, and the prediction results are shown in 

Figure 10(c)-(d). It can be seen that the response surface function constructed by the Kriging 

model can truly simulate the structural limit state functions of the main arch and the bridge 

deck and has good accuracy. 

  

(a) Deflection response surface of main arch 

1 1-E I  

(b) Deflection response surface diagram of 

main beam 
1 1-E I  

  

(c) Sample regression prediction of main arch 

deflection response surface 

(d) Sample regression prediction of main 

beam deflection response surface 

Figure 10 Comparison of sample regression predictions of response surface 

functions 

Using the response surface model obtained by the Kriging-PSOSA hybrid algorithm for 

iterative calculation, the failure probability of the main arch of the concrete arch bridge based 



on the vertical deflection index is 2.4253×10-5, and the corresponding main arch reliability 

index   is 4.1316. The failure probability of the main beam based on the vertical deflection 

index is 5.2891×10-6, and the corresponding main beam reliability index   is 4.4667. All 

meet the requirements of engineering structure reliability index 4.0＞ . 

In addition, the Kriging model response surface method and the support vector machine 

method (SVM) were used to calculate the reliability of the main arch and main beam of the 

concrete arch bridge. The calculation results of different methods are shown in Table 7-8. It 

can be seen from the calculation results that the Kriging-PSOSA hybrid algorithm proposed in 

this paper achieves convergence with 24 and 28 iterations of the calculation of the main arch 

and the main girder in the reliability calculation process of the concrete arch bridge. 

Compared with the other two methods, the number of iterations is relatively small, and the 

calculation accuracy can meet the requirements. It can be seen that the Kriging-PSOSA 

hybrid algorithm proposed in this paper can be well applied to the reliability calculation and 

analysis of actual complex bridge structures, with high calculation efficiency and reliable 

calculation accuracy. 

Table 7 Comparison of reliability results of different calculation methods for main 

arch 

Calculation method 
Number of 

samples 

Number of 
iterations 

Failure 
probability 

Reliability 
index   

Krging Model Response Surface 
Method 50 90 2.8168e-5 4.0624 

Support Vector Machines (SVM) 50 39 1.7325e-5 4.2539 

Kriging-PSOSA 50 24 2.4253e-5 4.1316 

Table 8 Comparison of reliability results of different calculation methods for main 

beams 

Calculation method 
Number of 

samples 

Number of 
iterations 

Failure 
probability 

Reliability 
index   

Krging Model Response Surface 
Method 50 87 1.2562e-5 4.3881 

Support Vector Machines (SVM) 50 29 3.6379e-6 4.4958 



Kriging-PSOSA 50 28 5.2891e-6 4.4667 

5 Conclusion 

For the traditional response surface method in the reliability calculation of concrete arch 

bridges, due to the complex structure, highly nonlinear performance functions, and no explicit 

analytical expressions, the calculation accuracy is low, and it is not easy to converge. The 

Kriging model is proposed to establish a small sample, nonlinear, high-dimensional implicit 

performance function response surface model. It is combined with the particle swarm 

optimization algorithm (PSOSA) based on the simulated annealing algorithm. A 

Kriging-PSOSA hybrid algorithm for fast calculation of bridge failure probability is proposed. 

Through the verification of numerical examples and the engineering application of actual 

concrete arch bridges, the research results show that the method has obvious advantages in the 

calculation accuracy and calculation efficiency. Moreover, it is easy to combine with the 

existing general finite element analysis software to realize a fast and accurate analysis of 

bridge reliability. The main conclusions are as follows: 

(1) A Kriging-PSOSA hybrid algorithm for the reliability calculation of concrete arch 

bridges is proposed, which combines the Kriging model with the particle swarm optimization 

algorithm (PSOSA) based on the simulated annealing algorithm. Using the Kriging model 

establishes a small sample, nonlinear, high-dimensional implicit performance function 

response surface model. Combined with the SA algorithm's self-adaptive and variable 

probability mutation operation, the problems of slow convergence and premature maturity of 

the traditional PSO algorithm are improved. It effectively avoids falling into the local 

minimum problem and makes the calculation result tend to the global optimum. 

(2) Numerical examples and actual concrete arch bridge engineering case analysis and 

research results show that the Kriging-PSOSA hybrid algorithm for bridge reliability 

calculation proposed in this paper is correct, and it effectively improves the accuracy and 



efficiency of reliability calculation for complex structures. It overcomes the limitations of the 

traditional response surface method on the reliability of highly nonlinear structures. It solves 

the problem of the low computational efficiency of the traditional Monte Carlo method and 

the excessive dependence of the calculation accuracy of other response surface methods on 

the preset sample size and distribution. 

(3) Compared with the traditional bridge reliability analysis method, the Kriging-PSOSA 

hybrid response surface method has the advantages of high calculation accuracy, fast iteration 

speed, and ease of combining with general finite element analysis software. It is convenient 

for practical engineering applications, especially for solving complex structural reliability 

problems with high structural analysis costs and highly nonlinear and implicit performance 

functions. It provides a new idea for the research on the reliability calculation method of large 

and complex bridges. 
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