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Abstract
Lower approximations of quantitative dominance-based neighborhood rough sets aim to 
enhance the consistency of dominance principles by filtering out pairs of objects that do 
not meet a predefined threshold. In this paper, we propose a novel approach to reflect dom-
inance principles intuitively by defining generalized decisions based on certain decision 
rules in quantitative dominance-based neighborhood rough sets. Building upon this frame-
work, we construct upward and downward graded information granules that enable the par-
titioning of the universe. We analyze the properties of the graded information granules and 
investigate their relationship with approximating qualities. Furthermore, we introduce the 
concept of importance degree to quantify the uncertainties of graded information granules 
under different attributes, which exhibits a monotonic behavior with respect to attributes. 
Subsequently, we design an attribute reduction method and explore an accelerated process 
by updating the generalized decisions. Finally, we conduct experiments on several public 
datasets to evaluate the efficiency of our methodology in terms of attribute reductions. The 
superiority of our proposed method on running time is illustrated by statistical hypothesis 
with paired t-test. Also the precision accuracy of reduct set is evaluated by rough sets and 
machine learning. Additionally, we demonstrate how the structures of graded information 
granules can be revealed by varying the parameters.
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1 Introduction

Granular computing (GrC), originally proposed by Zadeh (1997), has made significant 
contributions to the advancement of artificial intelligence. It provides methodologies 
for knowledge representation and acquisition, and is closely associated with knowl-
edge applications in complex real-world problems (Pedrycz 2015; Pedrycz et al. 2015; 
Pedrycz 2021; Bello et  al. 2021). Rough set theory (Pawlak 1982, 1992), as a funda-
mental application of GrC, focuses on describing and acquiring knowledge about uncer-
tainties from various perspectives such as approximations, indistinguishable relations, 
and information theories. The theory relies on information granules derived from indis-
tinguishable relations. Since then, increasing attention has being attracted particularly 
from the perspective of attribute reductions in extended models such as classical and 
neighborhood rough sets (Qian et al. 2010; Chen et al. 2012; Dai et al. 2017; Hu et al. 
2021), fuzzy rough sets (Hu et  al. 2010; Chen and Yang 2013; Hu et  al. 2017; Yuan 
et al. 2021; Ji et al. 2023; Zhang et al. 2022), multigranulation rough sets (Kang and Dai 
2023) and so on.

However, the existing model is inadequate when dealing with preference relations. 
The proposed dominance-based rough set approach (DRSA), as an extension of rough 
sets, aims at reflecting uncertainties behind the inconsistency of preference relations 
between criterion and decisions. In DRSA, approximation operators are constructed by 
a particular graded granular named as dominance relations. These granules play a cru-
cial role in attribute reduction and decision-making processes based on the DRSA (Xu 
et  al. 2009; Zhang et  al. 2017; Pan et  al. 2017; Xu 2013; Pan et  al. 2023; Gao et  al. 
2019; Chen et  al. 2022; Wang et  al. 2023). However, the presence of noise in graded 
information granules can undermine the consistency of decision rules. To address this 
issue, variable-precision DRSA has been proposed (Greco et al. 2000; Inuiguchi et al. 
2009; Liou 2011; Pan et  al. 2023). Hu et  al. introduced fuzzy DRSA, which utilizes 
fuzzy preference relations to formulate fuzzy information granules, and analyzed attrib-
ute reduction methods from an information theory perspective (Hu et  al. 2010). Chen 
et  al. developed dominance-based neighborhood rough sets by employing dominance-
based neighborhood information granules, which involve distance measures to filter 
redundant object pairs and identify prominent object pairs with dominance relations 
(Chen et al. 2015, 2016). Building upon this, Sang et al. investigated incremental feature 
selection approaches by incorporating a new conditional entropy measure with fuzzy 
knowledge granules (Sang et al. 2021, 2021). Pan et al. proposed weighted dominance-
based neighborhood rough sets by assigning weight vectors to conditional attributes 
(Pan et  al. 2023). Yang et  al. simplified dominance-based neighborhood information 
granules using fuzzy preference relations and introduced a novel model of quantitative 
dominance-based neighborhood rough set (Yang et  al. 2021). Additionally, attribute 
reductions based on lower and upper discernibility matrices have been extensively stud-
ied both theoretically and experimentally.

For attribute reductions of DRSA, the key task is to decrease inconsistencies between 
criteria and decisions by removing redundant or unnecessary attributes which disrupt 
the order relations between objects (Yang et al. 2019; Yu et al. 2023). Attribute reduc-
tions based on lower approximations of DRSA aim to identify sub-attribute sets, known 
as reducts, that preserve the same lower approximations as the complete set of attributes 
(Zhu 2007; Yang 2007; Yang et al. 2008). The goal is to obtain representative reducts 
with the minimum cardinality by considering the significance of attributes in terms of 
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dependence or approximating quality. Various heuristic algorithms have been proposed 
for attribute reductions based on these principles (Zhu and Wang 2003; Leung et  al. 
2008; Tsang et al. 2008).

Kotłowski et al. introduced the concept of generalized decisions with lower approxima-
tions to study ordinal classifications from a statistical perspective (Kotłowski et al. 2008). 
Generalized decisions are defined to reveal the dominance principle. Building upon this, 
several accelerated and dynamic attribute reduction methods for DRSA have been explored 
(Li et al. 2013; Wang et al. 2016, 2019, 2020). In Li et al. (2013), lower approximations 
were updated by incorporating changes in generalized decisions when faced with variations 
in objects. Wang et al. further extended this approach by combining generalized decisions 
to construct a dominance feature matrix that considers order relations and indiscernible 
relations. They proposed an accelerated attribute reduction method to handle variations in 
objects and attributes in ordered information tables (Wang et al. 2016, 2019; Ahmad et al. 
2020; Wang et al. 2020).

Objects with generalized decisions accurately represent the optimal decision rules, and 
collections of objects with the same generalized decisions form graded information gran-
ules when combined with order relations. Therefore, the main contribution of this paper is 
to formulate a new graded information granule in quantitative dominance-based neighbor-
hood rough sets, which is no longer a covering of the universe but a partition based on the 
consistence between criteria and decisions. On the basis, some theoretical theories includ-
ing importance of granules will be studied in detail. Besides, the relationship between 
approximating quality or dependence and importance of the formulated graded information 
granules will be explored. Finally, we will design an accelerated algorithm for attribute 
reductions in quantitative dominance-based neighborhood rough sets by updating general-
ized decisions.

The remaining paper is organized as follows. Section 2 provides a review of the basic 
concepts of DRSA and quantitative dominance-based neighborhood rough sets. In Sect. 3, 
we focus on the construction of graded information granules and their properties, which 
form the main focus of this paper. Section 4 analyzes the theory and algorithms for attrib-
ute reductions in quantitative dominance-based neighborhood rough sets, including the 
accelerated process. In Sect. 5, we evaluate the effectiveness of our method both on execut-
ing time of attribute reductions and precision accuracy of reduct sets, particularly in terms 
of the time required for attribute reductions, using public datasets under various parameters 
by statistical hypothesis with paired t-test. Finally, Sect. 6 concludes the paper.

2  Preliminaries

In this section, we will provide a review of the fundamental concepts of dominance-based 
rough set approach (DRSA) and quantitative dominance-based neighborhood rough sets 
(QDNRSs) (Greco et al. 1999, 2002a, b; Yang et al. 2021). The specific concepts are pre-
sented as follows:

2.1  Information tables and decision tables

DRSA and its extensions are tools to reveal knowledge with preference orders in infor-
mation tables and decision tables (DTs). An information table is a quadruple (U, A, V, f), 
where U = {x1,⋯ , xn} is the universe consisting of finite objects, A = {a1, a2 ⋯ , am} is a 
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non-empty finite set of attributes, V is the domain of attribute set A and f ∶ U × A → V  
is an information function, i.e., ∀x ∈ U, a ∈ A, f (x, a) ∈ Va.

Specially, an information table is a DT, if A = C ∪ D , where C and D denote condi-
tional and decision attributes respectively. For simplicity and without loss of generality, 
in this paper we focus on DTs with the single decision attribute, i.e., D = {d}.

Here we use some sub-part of data set Teaching from UCI machine learning to pre-
sent an example of DT (Asuncion and Newman 2007). Data information in Table 1 is 
selected from the first 15th rows of objects and all the attributes of Teaching.

Example 1 A decision table generated by Teaching.

In Table  1, U = {x1,⋯ , x15} , A = {a1,⋯ , a5} is the conditional attributes and 
Vd = {2, 3} means the domain of decision attribute.

2.2  Quantitative dominance‑based neighborhood rough sets 
and dominance‑based rough set approach

Yang et  al. propose QDNRSs with fuzzy preference relations (Yang et  al. 2021), in 
which quantitative dominance-based neighborhood relations are formulated by consid-
ering both dominance relations and the extent of dominance relations by using a thresh-
old � . The specific model of QDNRSs is presented as follows.

Definition 1 Let (U,A ∪ {d},V , f ) be an DT and B ⊆ A, X ⊆ U , lower and upper approxi-
mations of X with respect to quantitative dominance-based neighborhood classes are 
denoted by �+

B
(X) and �+

B
(X) respectively. The specific description is represented by Eq. 1.

Table 1  Decision table from 
Teaching (Asuncion and 
Newman 2007)

Objects a
1

a
2

a
3

a
4

a
5

d

x
1

1 23 3 1 19 3
x
2

2 15 3 1 17 3
x
3

1 23 3 2 49 3
x
4

1 5 2 2 33 3
x
5

2 7 11 2 55 3
x
6

2 23 3 1 20 3
x
7

2 9 5 2 19 3
x
8

2 10 3 2 27 3
x
9

1 22 3 1 58 3
x
10

2 15 3 1 20 3
x
11

2 10 22 2 9 3
x
12

2 13 1 2 30 3
x
13

2 18 21 2 29 3
x
14

2 6 17 2 39 3
x
15

2 6 17 2 42 2
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Where �+
B
(x) = {x} ∪ {y ∈ U|pa(y, x) ⩾ �,∀a ∈ B}, (� ⩾ 0.5) is the quantitative dom-

inance-based neighborhood class of x with B. pa(y, x) =
1

1+e−k∗(f (y,a)−f (x,a))
 denotes the fuzzy 

preference relation which quantifies the extent of y ≽ x in terms of order relation ≽ under 
attribute a, in which k > 0 is to control the extent of dominance relations.

Similarly, the quantitative dominated neighborhood class of x with B is 
�−
B
(x) = {x} ∪ {y ∈ U|pa(y, x) ⩽ 1 − �,∀a ∈ B}.
For any �+

B
(x) and �−

B
(x) , the quantitative dominance-based and dominated neigh-

borhood relations are denoted by �+
B
 and �−

B
 , where �+

B
= {(x, y)|x ∈ �+

B
(y)} and 

�−
B
= {(x, y)|x ∈ �−

B
(y)} . More details of QDNRSs and fuzzy preference relations are pre-

sented in Yang et al. (2021).

Theorem 1 Yang et al. (2021) Let (U,C ∪ {d},V , f ) be a DT, for ∀X, Y ⊆ U , B ⊆ C , the 
approximate operators of X satisfy the following properties:

Particularly, DRSA is obtained by restricting � = 0.5 in QDNRSs and �+
B
(x) is trans-

formed to dominance class [x]⩾
B
 , i.e., [x]⩾

B
 describes the dominance class of object x under 

attribute subset B when � = 0.5 . Similarly, approximations of DRSA can be acquired simi-
lar to QDNRSs.

In this section, some preliminaries related to DRSA and extensions are reviewed. In 
what follows, we will focus on our study from the perspective of information granules.

3  Graded information granules based on the generalized decisions

The lower approximations of DRSA capture the dominance principle, which states that 
if object x is preferred over object y under certain criteria, the decision class of x should 
be superior to that of y. Specifically, if x ∈ R

A
(Cl⩾

i
) , it implies that x belongs to R

A
(Cl⩾

j
) 

for any j ⩽ i , where A represents the conditional attribute set and Cl⩾
i
 denotes the i-

th upward union of decision classes. From the perspective of decision rules, if for any 

(1)
𝛿+
B
(X) = {x ∈ U|𝛿+

B
(x) ⊆ X},

𝛿+
B
(X) = {x ∈ U|𝛿+

B
(x) ∩ X ≠ �}.

(1L) 𝛿+
B
(∼ X) =∼ 𝛿

B

+
(X), (1U) 𝛿+

B
(∼ X) =∼ 𝛿

B

+(X);

(2L) 𝛿+
B
(�) = �, (2U) 𝛿+

B
(�) = �;

(3L) 𝛿+
B
(U) = U, (3U) 𝛿+

B
(U) = U;

(4L) 𝛿+
B
(X ∩ Y) = 𝛿+

B
(X) ∩ 𝛿+

B
(Y), (4U) 𝛿+

B
(X ∪ Y) = 𝛿+

B
(X) ∪ 𝛿+

B
(Y);

(5L) 𝛿+
B
(X ∪ Y) ⊇ 𝛿+

B
(X) ∪ 𝛿+

B
(Y), (5U) 𝛿+

B
(X ∩ Y) ⊆ 𝛿+

B
(X) ∩ 𝛿+

B
(Y);

(6L) X ⊆ Y ⇒ 𝛿+
B
(X) ⊆ 𝛿+

B
(Y), (6U) X ⊆ Y ⇒ 𝛿+

B
(X) ⊆ 𝛿+

B
(Y);

(7L) 𝛿+
B
(X) ⊆ X, (7U) X ⊆ 𝛿+

B
(X);

(8L) 𝛿+
B
(𝛿+

B
(X)) = 𝛿+

B
(X), (8U) 𝛿+

B
(𝛿+

B
(X)) = 𝛿+

B
(X).
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k > i , x ∉ R
A
(Cl⩾

k
) , then Cl⩾

i
 can be interpreted as the optimal decision class of x with 

respect to A.
For example, let’s consider a student (x) in middle school and subjects such as math, 

English, and Chinese (A). If Cli represents the performance levels of medium, good, and 
excellence for i = 1, 2, 3 respectively, the comprehensive performance of the student (x) 
should correspond to a unique grade of medium, good, or excellence. However, based 
on the lower approximations of DRSA, if the student (x) performs well, it is also consid-
ered to have a medium performance. Hence, the optimal decision class becomes crucial 
in reflecting the consistency between criteria and decisions.

The main point of this section is to formulate a graded information granule from 
the perspective of decision rules in DRSA. Decision rules in ordered information tables 
describe the consistence between criteria and decision attributes. In DRSA, certain deci-
sion rules are acquired based on lower approximations (Greco et al. 1999, 2002a, b).

Definition 2 For DT={U,A ∪ {d},V , f } and B ⊆ A , certain decision rules based on lower 
approximations of DRSA are defined as follows: 

(1) certain Cl⩾-decision rules with RB(Cl
⩾

i
):

  if ( ∧
j
f (x, aj) ⩾ raj ), then x ∈ Cl

⩾

i
,

(2) certain Cl⩽-decision rules with RB(Cl
⩽

i
):

  if ( ∧
j
f (x, aj) ⩽ raj ), then x ∈ Cl

⩽

i
,

  w h e r e  aj ∈ B  a n d  raj ∈ Vaj
 .  U∕d = {Cl1,⋯ ,Clr}  a n d 

Clj = {x ∈ U, d(x) = j, 1 ⩽ j ⩽ r} are induced by decision attribute d and 
Cl

⩾

i
=
⋃

j⩾i Clj, Cl
⩽

i
=
⋃

j⩽i Clj(1 ⩽ i ⩽ r) represent the upward and downward union 
of decision class respectively.

By considering consistence between criteria and decision attributes, Kotlowski et al. 
formulated a generalized decision of object x with attribute subset B (Kotłowski et al. 
2008). The concrete definition is showed as follows.

Definition 3 Let DT={U,A ∪ {d},V , f } and B ⊆ A , for ∀x ∈ U , the generalized decision 
is constructed as an interval [lB(x), uB(x)] , where lB(x) and uB(x) are represented as follows.

Combining with the inconsistencies caused by redundant objects in dominance 
classes of objects, we will formulate a more generalized decision of each object in 
QDNRSs. Specific definition is proposed as follows.

Definition 4 Let S = (U,A ∪ {d},V , f ) be a DT and x ∈ U , B ⊆ A , we define the general-
ized decision of x with respect to �+

B
 and �−

B
 by [lB,�(x), uB,�(x)] , where lB,�(x) and uB,�(x) are 

proposed by:

(2)
lB(x) = max{k|x ∈ RB(Cl

⩾

k
)},

uB(x) = min{k|x ∈ RB(Cl
⩽

k
)}.
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Hereafter lB,�(x) and uB,�(x) are used to represent the upward and downward general-
ized decisions. Above Definition 4 reveals the dominance principle with a certain confi-
dence degree restricted by quantitative dominance-based neighborhood relations. Obvi-
ously, lB,�(x) ⩽ uB,�(x) and object x is consistent with respect to the dominance principle 
when lB,�(x) = uB,�(x) . From the perspective of decision rules in Definition  2, for any 
x ∈ U and B ⊆ A in {U,A ∪ {d},V , f } , lB,�(x) and uB,�(x) represent the optimal index for 
the upward and downward union of decision classes in terms of �+

B
 and �−

B
 . The higher 

the index for lB,�(x) , the more superior of x in terms of �+
B
 . Also, classes of objects with 

the same upward or downward generalized decisions show the identical consistence 
between criteria and decisions. Classes with different upward or downward generalized 
decisions are graded information granules and all the unions with different upward or 
downward generalized decisions partition the universe.

Definition 5 For DT= (U,A ∪ {d},V , f ) and B ⊆ A , x ∈ U , upward and downward graded 
information granules with generalized decisions are defined by: 

(1) the upward graded information granule of x in terms of the lB,�(x) is denoted as G+
B,�

(x) , 
which is formulated by: 

(2) the downward graded information granule of x in terms of uB,�(x) is denoted as G−
B,�

(x) , 
which is formulated by: 

Clearly, 
{
G+

B,�
(x)|x ∈ U

}
 and 

{
G−

B,�
(x)|x ∈ U

}
 are graded information granules in the 

universe U in terms of the upward and downward union of decision classes respectively. 
⋃�

G+
B,�

(x)�x ∈ U
�
= {X1,⋯ ,Xr} = U and 

⋃�
G−

B,�
(x)�x ∈ U

�
= {Y1,⋯ , Yr} = U , 

where r means the cardinality of decision classes. For simplicity, upward and downward 
graded information granules are denoted as G+

B,�
 and G−

B,�
.

For any upward and downward graded information granules G+
B,�

 and G−
B,�

 under 
attribute subset B, lB,�(x) and uB,�(x) reflect the level of dominance principle for x. 
|G+

B,�
(x)| and |G−

B,�
(x)| describe the extent of representation for x on G+

B,�
(x) and G−

B,�
(x) . 

By considering above two factors, we define the importance degree of G+
B,�

 and G−
B,�

 , 
which are denoted as I+

B,�
 and I−

B,�
 respectively. Specific constructions are proposed by 

the following Definition 6.

Definition 6 Let S = {U,A ∪ {d},V , f } be a DT, B ⊆ A and Vd = {1,⋯ , r} , 
G+

B,�
= {X1,⋯ ,Xr} and G−

B,�
= {Y1,⋯ , Yr} are upward and downward graded information 

granules derived from �+
B
 and �−

B
 , then the importance degrees I+

B,�
 and I−

B,�
 are constructed 

as follows.

(3)
lB,�(x) = max{i|x ∈ �+

B
(Cl⩾

i
)},

uB,�(x) = min{i|x ∈ �−
B
(Cl⩽

i
)}.

(4)G+
B,�

(x) =
{
y ∈ U|lB,�(x) = lB,�(y)

}
,

(5)G−
B,�

(x) =
{
y ∈ U|uB,�(x) = uB,�(y)

}
.
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I+
B,�

 and I−
B,�

 quantify the degree of upward and downward graded information granules 
derived from lower approximations of QDNRSs. Besides, the importance of attributes is 
revealed by approximating qualities, which is presented as follows (Xu 2013).

Definition 7 (Xu 2013) Let S = (U,A ∪ {d},V , f ) be a DT, ∀B ∈ A , {Cl⩾
i
|i = 1,⋯ , r} and 

{Cl⩽
i
|i = 1,⋯ , r} be upward and downward union of decision classes derived from the 

decision attribute d, then approximating qualities of B with respect to {Cl⩾
i
|i = 1,⋯ , r} and 

{Cl⩽
i
|i = 1,⋯ , r} are defined by �B(Cl⩾) and �B(Cl⩽) , respectively, i.e.,

Generally, upward approximating qualities of QDNRSs can be formulated by replacing 
�B(Cl

⩾),RB(Cl
⩾

i
) with �B,�(Cl⩾) and �B+(Cl

⩾

i
) when considering the dominance principle 

between dominance classes and upward union of decisions. Downward approximating quali-
ties in QDNRSs can be defined by �B,�(Cl⩽) similarly.

Without loss of generality, in what follows, basic theories related to QDNRSs are just dis-
cussed with the upward union of decision classes. When facing the uncertainty caused by the 
extent to dominance principle in QDNRSs from perspectives of graded information granules 
and lower approximations, we analyze the interrelationship of I+

B,�
 and �B,�(Cl⩾) by the follow-

ing theorem.

Theorem 2 For S = (U,A ∪ {d},V , f ) and B ⊆ A , then,

Proof Assume the graded information granule is G+
B,�

= {X1,⋯ ,Xr} with the upward 
union of decision classes. Based on properties of lower approximations, if x ∈ �B

+(Cl⩾
i
) , 

then for any j ⩽ i , x ∈ �B
+(Cl⩾

j
) . Thus

(6)

I+
B,�

=

r∑

i=1

i ×
|Xi|
|U|

,

I−
B,�

=

r∑

i=1

i ×
|Yi|
|U|

.

(7)

�B(Cl
⩾) =

r∑
i

�RB(Cl
⩾

i
)�

r∑
i

�Cl⩾
i
�

,

�B(Cl
⩽) =

r∑
i

�RB(Cl
⩽

i
)�

r∑
i

�Cl⩽
i
�

.

(8)
�B,�(Cl

⩾) = �U� ×
IB,�

r∑
i=1

�Cl⩾
i
�
.
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Then �B,�(Cl⩾) =

r∑
i=1

��B+(Cl
⩾

i
)�

r∑
i=1

�Cl⩾
i
�

=
�U�×I+

B,�

r∑
i=1

�Cl⩾
i
�
 .   ◻

Approximating qualities of QDNRSs hold the property of monotonicity with respect to 
conditional attributes, i.e., if B ⊆ C ⊆ A , then �A,�(Cl⩾) ⩾ �B,�(Cl

⩾) ⩾ �C,�(Cl
⩾) . Thus the 

following property can be obtained directly.

Theorem  3 For S = (U,A ∪ {d},V , f ) and C ⊆ B ⊆ A , G+
C,�

 , G+
B,�

 are graded information 
granules, lB,�(x) is the upward generalized decision of x ∈ U then

Proof It can be proved trivially by combining Theorem 1 and 2.   ◻

Theorem  3 tells us the fact that for any object x and attribute subset B in 
S = {U,A ∪ {d},V , f } , the upward generalized decision lB,�(x) monotonically increasing 
when new attribute a is added to B.

Here we employ Table 1 in Example 1 to present graded information granules based on the 
generalized decisions. Parameters are assumed as follows: A = {a1, a2,⋯ , a5} , � = 0.5 and 
0.7, k = 10.

Example 2 Continued Example 1.

• Based on Definition 4, lA,�(x) for each object x is presented as follows:
  l

A,0.5
(x

1
) = l

A,0.5
(x

2
) = l

A,0.5
(x

3
) = l

A,0.5
(x

5
) = l

A,0.5
(x

6
) = l

A,0.5
(x

7
) = l

A,0.5
(x

8
) =

l
A,0.5

(x
9
) = l

A,0.5
(x

10
) = l

A,0.5
(x

11
) = l

A,0.5
(x

12
) = l

A,0.5
(x

13
) = 2,

  lA,0.5(x4) = lA,0.5(x14) = lA,0.5(x15) = 1.
  lA,0.7(xi) = 2, ∀i = 1, 2,⋯ , 14 and lA,0.7(x15) = 29.
• Based on Definition 5, graded information granules are computed by:
  G+

A,0.5
= {X1,X2} , where X1 = {xi|i = 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13} and 

X2 = {x4, x14, x15}.
  G+

A,0.7
= {Y1, Y2} , where Y1 = {xi|i = 1, 2,⋯ , 14} and Y2 = {x15}.

r∑

i=1

|�B+(Cl
⩾

i
)| = |�B+(Cl

⩾

1
)| + |�B+(Cl

⩾

2
)| +⋯ + |�B+(Cl⩾r )|

= |{x|x ∈ �B
+(Cl⩾

r
)} + |{x|x ∈ �B

+(Cl⩾
r−1

) and

x ∉ �B
+(Cl⩾

r
)}| + |{x|x ∈ �B

+(Cl⩾
r
)}| +⋯

= |{x|lB,�(x) = 1}| + |{x|lB,�(x) = 2}| × 2 +⋯ + |{x|lB,�(x) = r}| × r

= |X1| + 2 × |X2| +⋯ + |Xr| × r

= |U| × I+
B,�

.

(9)lC,�(x) ⩽ lB,�(x).
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4  An efficient approach to attribute reductions based on graded 
information granules

Attribute reductions based on lower approximations aim at obtaining the representative 
conditional attributes which keep the dominance principle invariant. Theorem 2 supplies 
a novel perspective of attribute reductions based on information granules. In this sec-
tion, theories of attribute reductions based on graded information granules will be ana-
lyzed. Furthermore, an accelerated approach will be proposed to promote the process of 
reductions.

4.1  Theory on attribute reductions based on graded information granules

From the perspective of graded information granules, redundant attribute a can be obtained 
when the construction of upward graded information granules is unaltered by deleting a. 
Thus we have the following conclusion.

Definition 8 Let S = {U,A ∪ {d},V , f } be a DT, a ∈ A is a redundant element with respect 
to the upward graded information granule when G+

A�{a},�
= G+

A,�
.

On the basis of Definition 8, a reduct can be obtained. The specific definition is pro-
posed as follows.

Definition 9 Let S = {U,A ∪ {d},V , f } be a DT, if B ⊆ A is a reduct of S in terms of 
upward graded information granules, then for any x ∈ U , the following conclusions are 
equivalent. 

(1) lB,�(x) = lA,�(x) and for any B′ ⊂ B , lB�,�(x) ≠ lB,�(x),
(2) GB,�(x) = GA,�(x) and for any B′ ⊂ B , G+

B� ,�
(x) ≠ G+

B,�
(x).

If lB,�(x) = lA,�(x) , then lB,�(x) is called as the optimal upward generalized decision for 
simplicity. By combining Theorem 3, importance degrees satisfy the monotonicity in terms 
of conditional attributes. The concrete conclusion is presented by the following Theorem.

Theorem  4 Let S = (U,A ∪ {d},V , f ) be a DT, B ⊆ A , G+
B,�

 and G+
A,�

 be upward graded 
information granules for attributes B and A respectively, then for the importance degrees 
I+
B,�

 and I+
A,�

 , we have, 

(1) I+
B,�

⩽ I+
A,�

,
(2) if B is a reduct in terms of the upward graded information granules, then I+

B,�
= I+

A,�
 and 

for any B′ ⊂ B , I+
B,𝛿

> I+
B�,𝛿

.

Proof Conclusions can be proved by combining Definition 9 and Theorem 3.   ◻

Definition  9 and Theorem  4 supply a way to acquire all the reducts by keeping the 
upward graded information granules invariable. However, it is time-consuming when 
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facing with high-dimensional data sets. Thus a representative reduct is meaningful, which 
not only possesses less cardinality but also keeps the upward graded information granules 
unaltered. To do so, we define the significance of an attribute as follows.

Definition 10 Let S = (U,A ∪ {d},V , f ) be a DT and B ⊆ A , for any a ∈ A�B , the signifi-
cance of a with respect to B and Cl⩾ can be defined as follows:

Based on Theorem 4 and Definition 9, B ⊆ A is a reduct of S = (U,A ∪ {d},V , f ) when 
Sig+

�
(a,B) = 0 . Definition 9 provides the significance of attributes when adding a into the 

given subset B. The search strategy is called as forward attribute reduction. Similarly, the 
backward strategy can be defined when reducing attributes. The corresponding significance 
of a can be defined as: Sig+

�
(a,B) = I+

B,�
− I+

B�{a},�
 . Without loss of generality, we focus on 

the first search strategy.

4.2  An efficient algorithm of attribute reductions based on the graded information 
granules of quantitative dominance‑based neighborhood rough sets

In Subsection 4.1, methods of attribute reductions for QDNRS are studied based on graded 
information granule. However in the forward searches, objects need to be traversed again 
when adding new attribute into the current chosen ones. It is time-consuming especially 
when facing with large-scale data sets. Thus, in this subsection, we will continue to analyze 
the accelerated process of attribute reductions in QDNRSs.

Combining with Definition  9, if B is a reduct based on graded information granules, 
∀x ∈ U , lB,�(x) = lA,�(x) . That is to say, in forward search strategies of attribute reduction 
methods restricted by Definition 10, objects with the optimal upward generalized decision 
will make no contribution to the significance of the selected attributes. Thus only objects 
with the varying upward generalized decisions need to be updated. In what follows, we will 
focus on designing an efficient algorithm of attribute reduction method with the upward 
generalized decisions. The concrete algorithm is designed by the following Algorithm 1.

Algorithm 1  An efficient approach to attribute reductions based on the upward graded 
information granules in QDNRSs.

(10)Sig+
�
(a,B) = I+

B∪{a},�
− I+

B,�
.
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The prior information lA,� is added in the fourth line of Algorithm 1, thus in the forward 
search strategy, the upward generalized decision of each object x will close to the optimal 
one when adding attributes into the selected attribute subset. So the number of iterations 
will be less and less when adding new attributes. Also more and more objects will reach 
their optimal upward generalized decisions in the process. This makes the Algorithm 1 effi-
cient to acquire the reduct set. In what follows, we use an example based on Table 1 to 
evaluate the efficiency of our algorithm.

Example 3 Continued Example  1 and Example  2. Here processes of attribute reductions 
based on Algorithm 1 are evaluated when � = 0.5 and 0.7 respectively. 

(1) Attribute reductions of QDNRSs with � = 0.5.
  Step 1: lA,0.5 = (2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1) and I+

A,0.5
=

27

15
.
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  Step 2: I+
{a1},0.5

=
15

15
, I+

{a2},0.5
=

27

15
, I+

{a3},0.5
=

17

15
, I+

{a4},0.5
=

15

15
, I+

{a5},0.5
=

18

15
,

  Red ← {a2},
  I+

{a2},0.5
= I+

A,0.5
.

  Step 3: Because I+
A,0.5

= I+
{a2},0.5

 , we obtain Red={a2}.
(2) Attribute reductions of QDNRSs with � = 0.7.
  Step 1: lA,0.7 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1) and I+

A,0.7
=

29

15
.

  Step 2: I+
{a1},0.7

=
25

15
, I+

{a1},0.7
=

28

15
, I+

{a1},0.7
=

18

15
, I+

{a1},0.7
=

24

15
, I+

{a1},0.7
=

18

15
,

  Red ← {a2},
  l{a2},0.7 = (2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1).
  Step 3: Obtain objects without the upward generalized decisions compared with that 

under A and denoted as LOCobj = {x4}.
  Step 4: I+

{a2,a1},0.7
=

28

15
, I+

{a2,a3},0.7
=

28

15
, I+

{a2,a4},0.7
=

29

15
, I+

{a2,a5},0.7
=

28

15
.

  Thus Red ← Red ∪ {a4}.
  Step 5: Red={a2, a4}.

In Example 3, QDNRSs degenerate to DRSA when � = 0.5 and based on above conclu-
sions we obtain that QDNRSs improve the approximating quality. Moreover, when � = 0.7 , 
after the first attribute a2 being selected in the reduct, only x4 needs to be traversed in the 
next iteration, which will accelerate the process of attribute reductions effectively.

In this Section, we focus on the upward graded information granules based on upward 
generalized decisions. On the basis, methods of attribute reductions for QDNRSs both on 
theoretical analysis and algorithm design are studied in detail. In the next Section we will 
use some public data sets to evaluate the performance of our algorithms.

5  Experimental analysis

In this section, with the aim of evaluating the efficiency of Algorithm  1, experiments 
are conducted. We record both time consuming of attribute reductions and structures of 
upward graded information granules with the alteration of parameters on each data set. 
Also the precision of reduct sets is evaluated both from perspectives of rough set theory 
and machine learning. The experiments is conducted by Matlab (R2019B) on computers 
with the memory of 8.0G, CPU of Inter Core i5-8500, 3.0GHz and 8 cores.

5.1  Description on data sets

In this subsection, some data sets from UCI machine learning repository and knowledge 
extraction evolutionary learning (KEEL) are downloaded to evaluate the efficiency of 
Algorithm 1. The information of data sets is presented by the following Table 2.

In Table 2, No. of instances, No. of attributes and No. of classes denote the cardinal-
ity of instances, attributes and classes respectively. Marketing, Thyroid, Lym come from 
KEEL and UCI. Other data sets in Table 2 are oriented from UCI. For data sets Market-
ing, the total and effective instances numbers are 8993, 6876 respectively. Similarly, the 
missing values exist in data set Cleveland. The number of instance without missing values 
is 297. Attributes category of Marketing is integer, and for other data sets, Thyroid and 
Absenteeism are mixed with real and integer, Cleveland, Winequality-W and Leaf are real. 
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The type of attribute values for Lym is categorical, and mixed with categorical, integer and 
real for Australian. For data set Dermatology, attribute values are categorical and integer. 
From the application of data sets in Table 2, Marketing, Thyroid, Cleveland, Australian, 
Dermatology, Leaf are used for classification. Other data sets are for classification, cluster-
ing analysis, regression works.

For these data sets, Absenteeism (Yang et al. 2023), Winequality-W (Yang et al. 2021, 
2023; Sang et al. 2021), Australian (Yang et al. 2021, 2023; Sang et al. 2021a, b; Du and 
Hu 2016), Dermatology (Yang et al. 2023; Sang et al. 2021) are widely applied in DRSA. 
Thyroid is used in classification (Ganivada et  al. 2011). Other data sets selected in this 
paper performs well on experimental analysis.

5.2  Interpretation of accelerations for attribute reductions based on the upward 
generalized decisions

To reflect the efficiency of attribute reductions based on upward generalized decisions, we 
record time consuming and compare it with the original lower approximations of QDN-
RSs, fuzzy preference-based rough set (Hu et  al. 2010) and efficient computations of 
approximations by dominance feature matrix (Wang et al. 2019, 2020). For simplicity, the 
compared methods based on upward generalized decisions and other ones are abbreviated 
to UGD, LA-QDNRS, FPRS, DFM respectively. In the experiment, k controls the strength 
of fuzzy preference relations which changes in steps of 2 from 2 to 20 and � varies from 0.5 
to 0.9 with the step of 0.1. Particularly, QDNRS degenerates to DRSA when � = 0.5 . In the 
following Table 3, we present the comparison on running time of above methods and LA 
means LA-QDNRS for clarity.

Each value in the second to fifth columns of Table 3 is obtained by the mean value of 
running time on FPRS, UGD, LA-QDNRS and DFM if �=0.5 when k changes from 2 to 
20 with the step of 2. Values in the sixth to eighth columns of Table 3 are acquired by the 
mean value of executing time on UGD, LA-QDNRS and DFM when � and k vary from 0.5 
to 0.9 and 2 to 20 respectively.

Obviously, UGD and DFM accelerate the process of attribute reductions compared with 
FPRS and LA-QDNRS, which is shown by the second to fifth columns of Table 3. Con-
cluded by the last three columns of Table 3, UGD performs dramatically well when � and 

Table 2  Description of data information

Data set Abbreviation of data set No. of instances No. of 
attributes

No. of classes

Absenteeism at work Absenteeism 740 20 19
Wine quality-White Winequality-W 4898 11 7
Australian Credit Approval Australian 690 14 2
Dermatology Dermatology 366 32 6
Marketing Marketing 6876 13 9
Cleveland Cleveland 297 13 5
Leaf Leaf 340 15 30
Lymphography Lym 148 18 8
Thyroid Disease Thyroid 7200 21 3
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k change. To further illustrate the superiority of UGD, in what follows, we display the time 
consuming with the variation of data size by comparing UGD with other methods when 
setting � = 0.7 and k=10. The specific information is shown by the following Fig. 1.

Table 3  Time consuming of acquiring reducts (seconds)

Data Set FPRS DRSA QDNRS

UGD LA DFM UGD LA DFM

Absenteeism 12.1960 0.8919 5.8452 0.8198 0.3709 2.5160 0.5403
Winequality-W 27.6033 18.157 50.368 12.599 8.3286 29.7349 9.5102
Australian 0.5972 0.116 0.843 0.268 0.0488 0.3935 0.1240
Dermatology 5.5988 0.209 2.412 0.35 0.0860 0.7153 0.1540
Marketing 352.0263 27.53 193.914 44.908 38.6904 323.0957 56.1440
Cleveland 0.3110 0.048 0.245 0.079 0.0195 0.1257 0.0371
Leaf 4.9050 0.239 1.145 0.191 0.0901 0.4318 0.1212
Lym 0.3366 0.15 0.274 0.084 0.0130 0.1219 0.0309
Thyroid 86.2978 38.847 309.719 76.573 20.8324 101.4740 28.2714

Fig. 1  Time consuming on attribute reductions based on UGD, LA-QDNRS, FPRS and DFC
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By Fig. 1 we obtain that attribute reductions of QDNRS improve the time efficiency 
by comparing LA-QDNRS with � = 0.5 and k = 10, � = 0.7 , or UGD with � = 0.5 and 
k = 10, � = 0.7 . When � = 0.5 , UGD accelerates the process of attribute reductions dra-
matically compared with LA-QDNRS. The similar tendency is shown when � = 0.7 
and k = 10 . The acceleration in Fig. 1 further illustrates the superiority of Algorithm 1. 
Also when � = 0.7, k = 10 , it costs less time than methods with � = 0.5 no matter by the 
comparison of LA-QDNRS or UGD.

To further explain the accelerated process of UGD, in what follows we record the 
results by the following Fig. 2. In Fig. 2, “Ratios of optimal decision classes" denotes 
the ratios of objects obtaining their optimal upward generalized decisions under the 
selected attributes of a reduct.

From Fig. 2, we obtain that for data set Absenteeism, after the first attribute being 
selected into reduct, ratios of objects with the optimal upward generalized decisions are 
about 10% and 60% with � = 0.5 and 0.7 respectively, which means these objects with 
the optimal upward generalized decisions will have no impact on the selection of the 
next attribute being selected. Meanwhile, ratios of objects with the optimal upward gen-
eralized decisions take higher than 50% percentage for data sets Australian, Marketing, 
Cleveland, Lym and Thyroid with the variation of � when k = 10.

Fig. 2  Accelerated process of attribute reductions with � = 0.5 and 0.7
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5.3  Statistical testing on the superiority of the attribute reduction method 
by upward generalized decisions

The paired t-test is a statistical approach to test whether the mean difference between pairs 
of measurements is significant or not. The main point of this paper is to study the accel-
erated process of obtaining the reduct set by UGD, which is emphasized by comparing 
running time of attribute reductions with other methodologies in DRSA. The compared 
results are acquired from the same data sets. Thus the mean executing time can be tested by 
paired-t-test to stress the superiority of our method. The tested process can be concluded 
by the following four steps, which is similar to that in Ahmad et al. (2020).

Step 1. Choosing null and alternative hypothesis.
Based on Table 3, it takes more time to obtain the reduct set by LA-QDNRS and FPPRS 

compared with DMF. Thus the difference between UGD and DMF needs to be checked 
first. Specifically, the null and alternative hypothesis are assumed as follows:

Null hypothesis H0 : �0 = �1.
Alternative hypothesis H1 : 𝜇0 < 𝜇1.
Where �0 and �1 denote mean execution time on UGD and DMF respectively. H0 means 

that there is no difference between the mean running time on attribute reductions of UGD 
and DMF. H1 gives a hypothesis on that it takes less time by UGD compared with DMF.

Step 2. Constructing test statistics
In paired t-test, t-statistic t is constructed by the Eq. (11).

In Eq. (11), d and SE(d) are mean difference and standard error of mean difference respec-
tively. Concretely, SE(d) is computed by the following formula:

Where S(d) and n are standard deviation and sample size respectively. Conclusively, the 
statistic from Eq. (11) is a t-statistic which takes n − 1 as the degree of freedom. In this 
paper, n denotes the number of data sets.

Step 3. Setting level of significance
Level of significance � measures the probability of rejecting the null hypothesis and is 

set as 0.05 in practical issues.
Step 4. Analyzing experimental results
t �
2

(n − 1) = t0.025(8) = 2.306 from t-distribution table. Combining with Table 3, t-values 
under DRSA and QDNRS are computed by 1.2168 and 1.6295, which provides strong evi-
dence to reject NULL hypothesis and states our claim that the mean running time of pro-
posed method is less than the mean executing time of the DMF. Continued step 1, the pro-
posed method by UDG is more efficient than other ones including LA-QDNRS.

5.4  Efficiency of reduct sets from perspectives of rough sets and machine learning

In this subsection, the evaluation of reduct set by QDNRS from perspectives of rough sets 
and machine learning is proposed. Specifically, importance degrees and approximating 

(11)t =
d

SE(d)
.

(12)SE(d) =
S(d)
√
n
.
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qualities of reduct sets are compared by Table  4. In table  4, importance degrees and 
approximating qualities for QDNRS are computed by the mean value under each k and � , 
and all the values for FPRS are conducted by the mean value of k.

Clearly, the higher the values of importance degree and approximating qualities, the 
more consistent the decision rules will be, which can be elaborated by Definitions  2, 6 
and 7. From Table 4 we conclude that QDNRS improves the consistence of ordered infor-
mation systems dramatically for all the data sets. Particularly, the notable effectiveness is 
shown by data set Marketing, for which the degrees by QDNRS are twice as high as other 
methods. The conclusion further evaluate the motivation of our proposed QDNRS, which 
aims at improving the consistence between criteria and decisions by filtering out pairs of 
objects without apparent dominance relations.

In the following Table 5, the mean value on cardinalities of QDNRS is compared with 
DRSA and FPRS.

From Table  5 we obtain that less attributes are selected by QDNRS compared with 
other methods. Meanwhile, majority attributes will be obtained by FPRS. Specially, there 
is no difference between reduct sets and original ones for Winequality-W and Marketing. 
Also for data sets Australian, Cleveland, Lym and Thyroid, the difference on cardinalities 
of reduct sets is inapparent by DRSA and FPRS.

Table 4  Importance degrees and approximating qualities on reduct set

Data Set Importance degrees Approximating qualities

QDNRS DRSA FPRS QDNRS DRSA FPRS

Absenteeism 5.0008 4.0473 4.0473 0.9545 0.7725 0.7725
Winequality-W 3.8174 3.5757 3.5757 0.9844 0.9221 0.9221
Australian 1.4316 1.3783 1.3783 0.9908 0.9539 0.9539
Dermatology 2.7659 2.7011 2.7011 0.9942 0.9709 0.9709
Marketing 4.4593 2.0881 2.0881 0.8827 0.4133 0.4133
Cleveland 1.9266 1.8485 1.8485 0.99 0.9498 0.9498
Leaf 15.5371 15.4382 15.4382 0.9984 0.9921 0.9921
Lym 2.4946 2.0676 2.0676 0.959 0.7948 0.7948
Thyroid 2.8294 2.536 2.536 0.9747 0.8736 0.8736

Table 5  Mean cardnalities on 
reduct set

Date set Original 
attributes

QDNRS DRSA FPRS

Absenteeism 20 5.16 14 18.7
Winequality-W 11 3.48 11 11
Australian 14 5.74 13 13
Dermatology 32 5.18 18 23.7
Marketing 13 8.08 13 13
Cleveland 13 5.54 12 12
Leaf 15 2.8 10 14
Lym 18 5.56 16 16
Thyroid 21 4.8 20 20
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To reveal the difference of graded information granules with � = 0.5 and 0.7, we display 
the distribution of objects with respect to the optimal upward generalized decisions. The 
specific information is shown by Fig. 3.

From Fig. 3 we conclude that more objects are partitioned into the upward graded infor-
mation granules with higher levers when � = 0.7 compared with that when � = 0.5 . By 
combining with Theorem 2, the results imply the fact that QDNRSs improve approximat-
ing qualities compared with DRSA.

To reflect the effectiveness of QDNRS from the perspective of machine learning, we 
compare the classification precision by the mean-squared error (MSE) through SVM and 
KNN. The parameter k0 is set 3 in KNN. All the results are conducted by 10-fold cross-
validation method. The comparison on MSE with SVM and KNN is presented by the fol-
lowing Tables 6 and 7.

In Tables 6 and 7, the second to fourth columns denote the mean value of MSE by SVM 
and KNN on reduct set. The last three columns record the mean value of MSE on the first 
selected attribute in reduct set. The less the value of MSE in Tables 6 and 7, the more effi-
cient of the model performs on classification. By combining with Table  5 we obtain that 
QDNRS performs poor by comparing the mean MSE with DRSA and FPRS. Especially there 
is a big difference on the mean MSE between QDNRS and other models when the variance 

Fig. 3  Distributions of upward graded information granules with � = 0.5 and 0.7. Blue bars represent numbers 
of cardinality of upward graded information granules with � = 0.5 and red ones denote results when � = 0.7
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on cardinality is high. Take data set Dermatology as an example, the mean MSE by SVM 
is 0.3507 from QDNRS, which is much higher than that of DRSA and FPRS. However, the 
cardinality on reduct set by QDNRS is less than one sixth of the original attributes. Similar 
conclusions are revealed by Cleveland and Lym from Table 6. But still, for Australian and 
Thyroid, the difference on the mean MSE is particularly subtle both by SVM and KNN, but 
the cardinality of reduct by QDNRS is small, which further saves much time of obtaining 
the reduct set. Meanwhile, for data sets Absenteeism, Winequality-W, Dermatology, Leaf and 
Lym, the first selected attribute in reduct set of QDNRS performs well by the evaluation of the 
mean MSE on SVM compared with FPRS. The similar variations can be shown on data sets 
Absenteeism, Dermatology, Marketing, Cleveland, Leaf, Lym and Thyroid by KNN.

Table 6  Mean MSE by SVM

Data Set Reduct set The first attribute in reduct set

QDNRS DRSA FPRS QDNRS DRSA FPRS

Absenteeism 0.6167 0.4558 0.4257 0.6796 0.5626 0.7092
Winequality-W 0.5263 0.4679 0.4671 0.5511 0.5512 0.5512
Australian 0.1475 0.128 0.1301 0.2092 0.4361 0.1449
Dermatology 0.3507 0.0089 0.0086 0.5514 0.5211 0.5549
Marketing 0.658 0.5808 0.5798 0.812 0.7898 0.8175
Cleveland 0.3853 0.2745 0.2948 0.4602 0.4569 0.4617
Leaf 0.7502 0.3885 0.3321 0.8921 0.8491 0.9379
Lym 0.4767 0.3229 0.3107 0.6044 0.5907 0.6193
Thyroid 0.0688 0.0616 0.0617 0.074 0.0734 0.0735

Table 7  Mean MSE by KNN ( k
0
 is set 3)

Data Set Reduct set The first attribute in reduct set

QDNRS DRSA FPRS QDNRS DRSA FPRS

Absenteeism 0.6776 0.4027 0.3966 0.7733 0.5835 0.8032
Winequality-W 0.3698 0.2299 0.2306 0.5268 0.6284 0.4782
Australian 0.1469 0.1025 0.1028 0.2375 0.3129 0.1741
Dermatology 0.3833 0.022 0.0246 0.6005 0.5566 0.63
Marketing 0.6183 0.4702 0.4691 0.8679 0.8502 0.8779
Cleveland 0.4111 0.3083 0.2897 0.5013 0.4579 0.531
Leaf 0.4702 0.2747 0.2403 0.5959 0.5474 0.6335
Lym 0.5743 0.4686 0.4229 0.6419 0.6514 0.6586
Thyroid 0.061 0.0435 0.043 0.0741 0.0713 0.0771
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6  Conclusion

In this paper, generalized decisions including upward and downward ones of quanti-
tative dominance-based neighborhood rough sets were constructed from the perspec-
tive of decision rules. On the basis, upward and downward graded information granules 
were constructed, which partitioned the universe respectively. Even some theoretical 
properties and importance degrees were studied. Furthermore, an accelerated attribute 
reduction algorithm was designed based on the upward generalized decisions. In the 
algorithm, only objects without the optimal upward generalized decisions would be tra-
versed in the following attributes selected process, which further saved much more run-
ning time when more objects reached their optimal generalized decisions in forward 
search. Finally, numerical experiment results shown that the updating of upward gen-
eralized decisions promoted the process of attribute reductions too much extent, which 
was evaluated by paired t-test. Also, our proposed method of precision accuracy on 
reduct sets performed quite well both from rough set theory and machine learning.
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