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Abstract
Due to the high cost of labelling data, a lot of partially hybrid data are existed in many 
practical applications. Uncertainty measure (UM) can supply new viewpoints for analyzing 
data. They can help us in disclosing the substantive characteristics of data. Although there 
are some UMs to evaluate the uncertainty of hybrid data, they cannot be trivially trans-
planted into partially hybrid data. The existing studies often replace missing labels with 
pseudo-labels, but pseudo-labels are not real labels. When encountering high label error 
rates, work will be difficult to sustain. In view of the above situation, this paper studies 
four UMs for partially hybrid data and proposed semi-supervised attribute reduction algo-
rithms. A decision information system with partially labeled hybrid data (p-HIS) is first 
divided into two decision information systems: one is the decision information system with 
labeled hybrid data (l-HIS) and the other is the decision information system with unlabeled 
hybrid data (u-HIS). Then, four degrees of importance on a attribute subset in a p-HIS are 
defined based on indistinguishable relation, distinguishable relation, dependence function, 
information entropy and information amount. We discuss the difference and contact among 
these UMs. They are the weighted sum of l-HIS and u-HIS determined by the missing rate 
and can be considered as UMs of a p-HIS. Next, numerical experiments and statistical tests 
on 12 datasets verify the effectiveness of these UMs. Moreover, an adaptive semi-super-
vised attribute reduction algorithm of a p-HIS is proposed based on the selected impor-
tant degrees, which can automatically adapt to various missing rates. Finally, the results of 
experiments and statistical tests on 12 datasets show the proposed algorithm is statistically 
better than some stat-of-the-art algorithms according to classification accuracy.

Keywords  Partially labeled hybrid data · p-HIS · Semi-supervised attribute reduction · 
Indiscernibility relation · Dependence function.

1  Introduction

1.1 � Research background

With the development of science and technology, the amount of information increases in 
geometric progression. The increase of information brings many uncertainties to infor-
mation processing. To deal with the uncertain information, many scholars have proposed 
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many effective methods. such as rough set theory (R-theory), fuzzy set theory and uncer-
tainty measurement (UM). These methods have been successfully used in the following 
fields: pattern recognition (Cament et al. 2014; Swiniarski and Skowron 2003), image pro-
cessing (Navarrete et al. 2016), medical diagnosis (Hempelmann et al. 2016; Wang et al. 
2019), data mining (Dai et al. 2012) and expert systems (Pawlak 1991).

An information system (IS) based on R-theory was defined by Pawlak (1982). It is the 
main application field of R-theory. From the above, many scholars have researched UM 
for an IS. For instance, Wierman (1999) put forward information granulation in an IS; Dai 
and Tian (2013) researched granularity measurement in a set-valued IS; Liang and Qian 
(2008) studied information granules in an IS; Qian et al. (2011) proposed fuzzy informa-
tion granularity by constructing fuzzy information granules; Dai et al. (2013) investigated 
UM for an incomplete decision IS.

In the view of the rapid growth of data, data generates a large number of attributes. 
However, some features have little effect on describing data. Therefore, attribute reduc-
tion or feature selection becomes very important in information processing. It is particu-
larly important to form a new attribute set by selecting features with important influence, 
which can keep the data information unchanged. From this, the dimensions of the data 
are reduced. Hu et  al. (2008) studied attribute reduction by using neighborhood rough 
set model.Singh et al. (2020) obtained a novel attribute reduction method in a set-valued 
IS. Wang et al. (2019) researched attribute reduction based on local conditional entropy. 
Dai et al. (2016) discussed attribute reduction in an interval-valued IS. Wang et al. (2020) 
investigated attribute reduction of self-information based on neighborhood. Hu et al. (2022) 
presented fast and robust attribute reduction in a fuzzy decision IS based on the separabil-
ity. Yuan et  al. (2022) explored interactive attribute reduction via fuzzy complementary 
entropy for unlabeled mixed data. Houssein et al. (2022) studied centroid mutation-based 
search, and rescued optimization algorithm for feature selection and classification. Ershadi 
and Seifi (2022) gave applications of dynamic feature selection and clustering methods to 
medical diagnosis. Pashaei and Pashaei (2022) proposed an efficient binary chimp optimi-
zation algorithm for feature selection in biomedical data classification. Tiwari and Chatur-
vedi (2022) introduced a hybrid feature selection approach based on information theory 
and dynamic butterfly optimization algorithm for data classification.

Sang et al. (2021) considered incremental feature selection using a conditional entropy 
based on fuzzy dominance neighborhood rough sets. Yuan et  al. (2021) put forward 
fuzzy complementary entropy using hybrid-kernel function and its unsupervised attribute 
reduction.

The deficiency of the existing work mentioned above is that there is less attention paid 
to attribute reduction for partially hybrid data.

1.2 �  Motivation and contributions

There are many high-dimensional complex data in many fields. Because of hardware fail-
ures, human sabotage, operational errors, virus infections and software failures, the labels 
of some samples in the data are lost. If only labeled data is used for attribute reduction, the 
reduction results can’t effectively reflect the distribution of data, and the classification per-
formance could be weak. Finding new labeling methods has become extremely important. 
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Semi-supervised attribute reduction aims to effectively utilize unlabeled data to enhance 
the effectiveness of attribute reduction, in order to improve the classification performance 
of learning model. In recent years, semi-supervised attribute reduction has attracted the 
attention of many scholars. For instance, Dai et  al. (2017) constructed a heuristic semi-
supervised attribute reduction algorithm on the basis of distinguishing pairs. Wang et al. 
(2018) designed a semi-supervised attribute reduction algorithm based on information 
entropy. Zhang et al. (2016) combined R-theory with ensemble learning framework, and 
constructed an ensemble base classifier. Xu et al. (2010) proposed a semi-supervised attrib-
ute reduction algorithm based on manifold regularization, which measures the importance 
of features by maximizing the spacing between different categories. Han et al. (2015) pre-
sented a semi-supervised attribute reduction algorithm, which effectively uses the informa-
tion in a large number of unmarked video data to distinguish target categories by combin-
ing semi-supervised scatter points. Wu et al. (2021) used minimal redundancy to research 
semi-supervised feature selection. Wan et al. (2021) proposed a semi-supervised attribute 
reduction method based on neighborhood rough set.

The comparative of this paper with the research results of UM or attribute reduction 
about some above literatures is shown in Table 1.

However, the existing studies face new challenges in attribute reduction. The discretiza-
tion of continuous attributes can result in the loss of structural information in the data. 
Additionally, when the amount of data increases, the quality of reduction becomes low. 
Attribute reduction based on an identification matrix and identification pair significantly 
increases the operation cost. While the existing studies can evaluate the uncertainty of 
hybrid data, they lack an effective mechanism for converting partially hybrid data into 
hybrid data. Furthermore, the existing studies often replace missing labels with pseudo-
labels, which are not real labels. This approach becomes difficult to sustain when encoun-
tering high label error rates.

Based on the above research motivation, this paper cleverly divides a p-HIS into the 
l-HIS and u-HIS, and views the sum of their importance degree as the importance degree 
of a p-HIS where the incomplete rate of labels is used as the weight. The major contribu-
tions are summarized as follows. 

(1)	 The facts that a discernibility pair set for hybrid data is actually a distinguishable rela-
tion and a p-HIS can induce the l-HIS and u-HIS are showed.

(2)	 Four kinds of important degrees on each attribute subset in a p-HIS are defined. They 
use the weighted importance degree sum of the induced l-HIS and u-HIS to deal with 
UM for each subsystem. The l-HIS and u-HIS can more deeply reflect the importance 
or classification ability of an attribute subset.

(3)	 The performance of four kinds of important degrees in a p-HIS is tested. Numerical 
experiments and statistical tests verify the effectiveness of these important degrees.

(4)	 Based on the selected important degrees, heuristic algorithms of semi-supervised attrib-
ute reduction in a p-HIS are constructed. The experiment results show the constructed 
algorithm is statistically better than some stat-of-the-art algorithms according to clas-
sification accuracy.
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1.3 � Organization

In Sect. 2, the indiscernibility relation and discernibility relation in a p-HIS are defined. 
In Sect. 3, four degrees of importance in a p-HIS are introduced. In Sect. 4, UM for a 
p-HIS is investigated. A new algorithm is proposed which is related to semi-supervised 
attribute reduction in a p-HIS. In Sect. 5, the experiments on algorithm performance and 
effectiveness analysis of the proposed degrees of importance are conducted. In Sect. 6, 
the statistical test of algorithm performance is conducted. In Sect. 7, this paper is sum-
marized. The logical structure of this paper is shown in Fig. 1.

2 �  Preliminaries

In this paper, U = {u1, u2,⋯ , un} , 2U is the set which contains all subsets of U and |X| 
represents the cardinality of X. Let

If R = � , R is called universal relation; if  R = △ , R is called identity relation.
Given that R is an equivalence relation and any u ∈ U , [u]R is an equivalence class of 

u which is denoted as: [u]R = {v ∈ U ∶ uRv}. U∕R = {[u]R ∶ u ∈ U} denotes all equiva-
lence classes of R.

𝛿 = U × U, △ = {(e, e) ∶ e ∈ U},R ⊆ 𝛿.

Fig. 1   The logical structure of the paper
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Definition 2.1  [(Pawlak 1982)] Let U be a universe and A a finite attribute set. (U, A) is 
called an information system (IS). a ∶ U → Va is called an information function for any 
a ∈ A , where Va = {a(e) ∶ e ∈ U}.

Let (U, A) be an IS, for any B ⊆ A , ind(B) can be defined as

ind(B) is called the indiscernibility relation of B.

Definition 2.2  [(Dai et al. 2017)] (U, A) is an IS, for any B ⊆ A . disd(B) is called the dis-
cernibility relation of B if

Let (U,  A) be an IS and B a subset of A. B is called a coordinate subset of A if 
ind(B) = ind(A) . All coordinate subsets of A is denoted by co(A). B is called a reducts of A 
if B ∈ co(A) and for each a ∈ B , B − {a} ∉ co(A) . All reducts of A is denoted by red(A).

Proposition 2.3  (U, A) is an IS and B a subset of A. Then B ∈ co(A) ⇔ dis(B) = dis(A).

Corollary 2.4  (U, A) is an IS with B ⊆ A . Then

(U, C, d) is called a DIS, if (U,C ∪ {d}) is an IS and d is a decision attribute.
Let (U, C, d) be a DIS with B ⊆ C and X ∈ 2U . Define

Definition 2.5  [(Dai et al. 2017)] Let (U, C, d) be a DIS with B ⊆ C . Define

Then disd(B) is called the discernibility relation of B with d.

Let (U,  C,  d) be a DIS with B ⊆ C . Define POSB(d) =
⋃

D∈U∕Rd

RB(D) and 

ΓB(d) =
|POSB(d)|

|U| . B is called a coordinate subset of C if RB = RC , All coordinate subsets of 
C with d is denoted by cod(C) . B is called a reduct of C with d if B ∈ cod(C) and for each 
a ∈ B , B − {a} ∉ cod(C) . All reducts of C with d is denoted by redd(C).

From Proposition 2.3 and Definition 2.5, we can get the following results.

Proposition 2.6  Let (U,  C,  d) be a DIS with B ⊆ C . The following conditions are 
equivalent: 

ind(B) = {(e, t) ∈ U × U ∶ ∀ a ∈ B, a(e) = a(t)}.

dis(B) = {(e, t) ∈ U × U ∶ ∃ a ∈ B, a(e) ≠ a(t)}.

B ∈ red(A) ⇔ dis(B) = dis(A) and ∀ a ∈ B, dis(B − {a}) ≠ dis(A).

RB ={(e, t) ∈ U × U ∶ ∀ a ∈ B, a(e) = a(t)}, [e]B = {t ∈ U ∶ (e, t) ∈ RB};

Rd ={(e, t) ∈ U × U ∶ d(e) = d(t)}, [e]d = {t ∈ U ∶ (e, t) ∈ Rd};

U∕Rd ={[e]d ∶ e ∈ U};

RB(X) ={e ∈ U ∶ [e]B ⊆ X}.

disd(B) = {(e, t) ∈ U × U ∶ ∃ a ∈ B, a(e) ≠ a(t)
⋀

d(e) ≠ d(t)}.
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(1)	 B ∈ cod(C);
(2)	 POSB(d) = POSC(d);

(3)	 ΓB(d) = ΓC(d);
(4)	 disd(B) = disd(C).

Corollary 2.7  (U, C, d) is a DIS with B ⊆ C . The following conditions are equivalent: 

(1)	 B ∈ redd(C);
(2)	 POSB(d) = POSC(d) , POSB−{a}(d) ≠ POSC(d) for any a ∈ B;

(3)	 ΓB(d) = ΓC(d) , ΓB−{a}(d) ≠ ΓC(d) for any a ∈ B;
(4)	 disd(B) = disd(C) , disd(B − {a}) ≠ disd(C) for any a ∈ B.

3 � An information system for partially labeled hybrid data

The information system for partially labeled hybrid data plays an important role in real life. 
In order to better study it, we first define the following definitions.

3.1 � The definition of a p‑HIS

⋄ represents an unknown information value, and ∗ stands for an unknown label.
Suppose that (U, C, d) is a DIS with a ∈ C . Put

From the above, V⋄
a
 and V∗

d
 are the sets which contain all known information values of a and 

all known labels of d respectively.

Definition 3.1  Let (U, C, d) be a DIS and C = Cc ∪ Cr , where Cc and Cr are categorical 
and real-valued attributes, respectively. Put

Then Ul ∪ Uu = U, Ul ∩ Uu = � . 

(1)	 (U, C, d) is called a DIS with l-HIS, if ∃ a ∈ C and u ∈ U , a(u) = ⋄ and Ul = U.
(2)	 (U, C, d) is called a DIS with p-HIS, if ∃ a ∈ C and u ∈ U , a(u) = ⋄ , Ul ≠ ∅ and Uu ≠ ∅

.
(3)	 (U, C, d) is called a DIS with u-HIS, if ∃ a ∈ C and u ∈ U , a(u) = ⋄ and Uu = U.

Obviously,

Since there are no labeled objects in u-HIS (U, C, d), we abbreviated (U, C, d) as (U, C).

V⋄
a
={a(u) ∶ u ∈ U, a(u) ≠ ⋄};

V∗
d
={d(u) ∶ u ∈ U, d(u) ≠∗}.

Ul = {u ∈ U ∶ d(u) ≠∗}, Uu = {u ∈ U ∶ d(u) =∗}.

V∗
d
= {d(u) ∶ u ∈ Ul}.
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Definition 3.2  Let (U, C, d) be a p-HIS. Here, (Ul,C, d) and (Uu,C, d) are called the l-HIS 
and u-HIS induced by (U, C, d), respectively.

Example 3.3  Table  2 is a p-HIS (U,  C,  d), where U = {u1, u2,⋯ , u9} , C = Cc ∪ Cr , 
Cc = {a1, a2} and Cr = {a3}.

Example 3.4  (Continue with Example 3.3)

Definition 3.5  (U, C, d) is a p-HIS. The incomplete rate � of labels is defined as

3.2 � A novel distance function in a p‑HIS

In order to effectively distinguish the difference between objects in a p-HIS, we will give a 
new concept.

Definition 3.6  [(Zhang et al. 2022)] (U, C, d) is a p-HIS and |V∗
d
| = s . Given a ∈ Cc and 

u ∈ Ul with a(u) ≠ ⋄.
Denote

Define

V⋄
a1
={Sick,Middle,No}, V⋄

a2
= {Yes,No},

V⋄
a3
={39.5, 40, 39, 38, 36.5, 36, 37};

V∗
d
={Flu,Rhinitis,Health} ≠ Vd;

Vl ={u1, u2, u4, u5, u6, u7, u8}, V
u = {u3, u9}.

� =
|Uu|
|U| .

V∗
d
= {d(v) ∶ v ∈ Ul} = {d1, d2,⋯ , ds}.

Table 2   A p-HIS (U, C, d)

U Headache ( a1) Muscle pain ( a2) Temperature ( a3) Symptom (d)

u1 Sick Yes 39.5 Flu
u2 Sick Yes 40 Health
u3 Middle ⋄ 39 *
u4 No Yes 38 Flu
u5 ⋄ Yes 36.5 Rhinitis
u6 Middle No ⋄ Rhinitis
u7 No No 36 Health
u8 No ⋄ ⋄ Health
u9 ⋄ Yes 37 *
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By Definition 3.6, we have

Definition 3.7  [(Zhang et al. 2022)] Let (U, C, d) be a p-HIS with |V∗
d
| = s . Given a ∈ Cc , 

e, t ∈ Ul with a(e) ≠ ⋄ and a(t) ≠ ⋄ . Define the distance as follows

Obviously,

Definition 3.8  [(Zhang et al. 2022)] Let (U, C, d) be a p-HIS. Suppose a ∈ Cr and e, t ∈ Ul 
with a(e) ≠ ⋄ , a(t) ≠ ⋄ . Define the distance as follows

where â = max{a(e) ∶ e ∈ Ul} − min{a(e) ∶ e ∈ Ul}.

If â = 0 , let �l
r
(a(e), a(t)) = 0 . Obviously,

Definition 3.9  Let (U, C, d) be a p-HIS. Given a ∈ C and e, t ∈ Ul . Define the distance as 
follows

�(a(e), a(t)) =

N(a, u) =|{v ∈ Ul ∶ a(v) = a(u)}|,
Ni(a, u) =|{v ∈ Ul ∶ a(v) = a(u), d(v) = di}|.

N(a, u) =

s∑
i=1

Ni(a, u).

�l
c
(a(e), a(t)) =

1

2

s∑
i=1

|Ni(a, e)

N(a, e)
−

Ni(a, t)

N(a, t)
|.

�l
c
(a(u), a(u)) = 0, 0 ≤ �l

c
(a(u), a(v)) ≤ 1.

𝜌l
r
(a(e), a(t)) =

|a(e) − a(t)|
â

,

�l
r
(a(e), a(e)) = 0, �l

r
(a(e), a(t)) ≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, e = t;

0, e ≠ t, a ∈ C, a(e) =∗ or a(t) =∗, d(e) = d(t);

1 −
1

�V∗
a
�2 , e ≠ t, a ∈ C, a(e) =∗, a(t) =∗, d(e) ≠ d(t);

1 −
1

�V∗
a
� , e ≠ t, a ∈ C, a(e) ≠∗, a(t) =∗, d(e) ≠ d(t);

1 −
1

�V∗
a
� , e ≠ t, a ∈ C, a(e) =∗, a(t) ≠∗, d(e) ≠ d(t);

0, e ≠ t, a ∈ C, a(e) ≠∗, a(t) ≠∗, a(e) = a(t), d(e) = d(t);

0, e ≠ t, a ∈ C, a(e) ≠∗, a(t) ≠∗, a(e) = a(t), d(e) ≠ d(t);

�l
c
(a(e), a(t)), e ≠ t, a ∈ Cc, a(e) ≠∗, a(t) ≠∗, a(e) ≠ a(t), d(e) = d(t);

�l
c
(a(e), a(t)), e ≠ t, a ∈ Cc, a(e) ≠∗, a(t) ≠∗, a(e) ≠ a(t), d(e) ≠ d(t);

�l
r
(a(e), a(t)), e ≠ t, a ∈ Cr, a(e) ≠∗, a(t) ≠∗, a(e) ≠ a(t), d(e) = d(t)

�l
r
(a(e), a(t)), e ≠ t, a ∈ Cr, a(e) ≠∗, a(t) ≠∗, a(e) ≠ a(t), d(e) ≠ d(t).
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3.3 � Some concepts of a p‑HIS and related results

Definition 3.10  Let P be a subset of C and (U,  C,  d) a p-HIS. (Ul,C, d) is the l-HIS 
induced by (U, C, d). Denote

In the above definition, � is a parameter to control the distance between a(e) and a(t).

Definition 3.11  Let P be a subset of C and (U,  C,  d) a p-HIS. (Ul,C, d) is the l-HIS 
induced by (U, C, d). Denote

dis
l,�
d
(P) is called the relative discernibility relation of P to d on Ul.

Definition 3.12  Let P be a subset of C and (U,  C,  d) a p-HIS. (Uu,C, d) is the u-HIS 
induced by (Uu,C, d) . Then (Uu,C, d) can be seen as (Uu,C) , and

is called the discernibility relation of P on Uu.

P is a subset of C and (U, C, d) is a p-HIS, According to Kryszkiewicz’s ideal Kryszkie-
wicz (1999), �l,�

P
∶ Ul

→ 2V
∗
d is defined as follows:

Then �l,�
P
(u) is called generalized decision of u in (Ul,P, d) , and �l,�

P
= {�l,�

P
(u) ∶ u ∈ Ul}.

Definition 3.13  (U, C, d) is a p-HIS. ∀ u ∈ Ul , |�l,�
C
(u)| = 1 , (U, C, d) is a �-consistent; 

otherwise, (U, C, d) is called �-inconsistent.

Proposition 3.14  (U, C, d) is a p-HIS and P is a subset of C. ∀ u ∈ Ul.

|Ul| =nl;
R
l,𝜃
P

={(e, t) ∈ Ul × Ul ∶ ∀ a ∈ P, 𝜌(a(e), a(t)) ≤ 𝜃},

[e]l,𝜃
P

={t ∈ Ul ∶ (e, t) ∈ R
l,𝜃
P
};

R
l,𝜃
d

={(e, t) ∈ Ul × Ul ∶ d(e) = d(t)},

[e]l,𝜃
d

={t ∈ Ul ∶ (e, t) ∈ R
l,𝜃
d
};

R
l,𝜃
P
(X) ={e ∈ Ul ∶ [e]l,𝜃

P
⊆ X}, X ⊆ Ul;

Ul∕d ={[e]l,𝜃
d

∶ e ∈ Ul} = {D1,D2,⋯ ,Dr};

POS
l,𝜃
P
(d) =

r⋃
i=1

R
l,𝜃
P
(Di).

dis
l,𝜃
d
(P) = {(e, t) ∈ Ul × Ul ∶ ∃ a ∈ P, 𝜌(a(e), a(t)) > 𝜃

⋀
d(e) ≠ d(t)}.

indu
�
(P) = {(e, t) ∈ Uu × Uu ∶ ∀ a ∈ P, �(a(e), a(t)) ≤ �}

�l,�
P
(u) = d([u]l,�

P
),

[u]l,𝜃
P

⊆ [u]l,𝜃
d

⇔ |𝜕l,𝜃
P
(u)| = 1.
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Proof }} ⇒ ε . Let [u]l,𝜃
P

⊆ [u]l,𝜃
d

 . Suppose w ∈ �l,�
P
(u) . Then ∃ v ∈ [u]l,�

P
 , w = d(v) . v ∈ [u]l,�

P
 

implies that v ∈ [u]l,�
d

 . So w = d(v) = d(u ). Thus |�l,�
P
(u)| = 1.

}} ⇐ ε . Let |�l,�
P
(u)| = 1 . ∀ v ∈ [u]l,�

P
 . Then d(v) ∈ �l,�

P
(u) . Since d(u) ∈ �l,�

P
(u) and 

|�l,�
P
(u)| = 1 , therefore d(u) = d(v) . Then v ∈ [u]l,�

d
 . Thus [u]l,𝜃

P
⊆ [u]l,𝜃

d
 . 	�  ◻

Corollary 3.15  (U, C, d) is a p-HIS and P is a subset of A.

Proof  Obviously. 	�  ◻

Proposition 3.16  Let (U, C, d) be a p-HIS. (U, C, d) is �-consistent  ⇔  Rl,𝜃
C

⊆ R
l,𝜃
d
.

Proof  It can be proved by Corollary 3.15. 	�  ◻

4 �  Uncertainty measurement for a p‑HIS

In this part, UM for a p-HIS is investigated by using four kinds of important degrees on the 
given attribute subset.

4.1 � The type 1 importance of a subsystem in a p‑HIS

Definition 4.1  Let (U, C, d) be a p-HIS. P is a subset of C and |Ul| = nl . Put

Then Γl,�
P
(d) is called the dependence of P to d in Ul.

Proposition 4.2  Let (U, C, d) be a p-HIS with |Ul| = nl . Denote

(1) Γl,�
P
(d) =

r∑
i=1

�Rl,�
P
(Di)�

nl
.

(2) 0 ≤ Γl,�
P
(d) ≤ 1.

(3) If P ⊆ Q ⊆ C , then

Proof  (1) Obviously, ∀ i , Rl,𝜃
P
(Di) ⊆ Di.

{D1,D2 ⋯ ,Dr} is a partition of Ul . Then

R
l,𝜃
P

⊆ R
l,𝜃
d

⇔ ∀ u ∈ Ul, |𝜕l,𝜃
P
(u)| = 1.

Γl,�
P
(d) =

|POSl,�
P
(d)|

nl
;

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.

Γl,�
P
(d) ≤ Γl,�

Q
(d).
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Thus

(2) This holds by (1).
(3) Suppose P ⊆ Q ⊆ C . Then ∀ u ∈ Ul , [u]l,𝜃

Q
⊆ [u]l,𝜃

P
 . So

It implies that

By (1),

	�  ◻

Definition 4.3  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  and P ⊆ C . Then the type 1 impor-

tance of the subsystem (U, P, d) is defined as

In the above definition, Γ
l,�
P
(d)

Γl,�
C
(d)

 and |ind
u(C)|

|indu(P)| can be viewed as the importance of (Ul,P, d) and 
(Uu,P, d) , respectively. � means the missing rate of labels, which is processed as a weight. 
We define the sum of the importance of (Ul,P, d) and (Uu,P, d) with the missing rate of 
labels as the type 1 importance of (U, P, d).

|POSl,�
P
(d)| = |

r⋃
i=1

R
l,�
P
(Di)| =

r∑
i=1

|Rl,�
P
(Di)|.

Γl,�
P
(d) =

r∑
i=1

�Rl,�
P
(Di)�

nl
.

∀ i, R
l,𝜃
P
(Di) ⊆ R

l,𝜃
Q
(Di).

∀ i, |RP(Di) ≤ |RQ(Di)|.

Γl,�
P
(d) ≤ Γl,�

Q
(d).

imp
(1)

�,�
(P) = (1 − �)

Γl,�
P
(d)

Γl,�
C
(d)

+ �
|indu

�
(C)|

|indu
�
(P)| .



Semi‑supervised attribute reduction for hybrid data﻿	

1 3

Page 13 of 52  46

Example 4.4  (Continue with Example 3.3) Given � = 0.5 and � =
2

9
≈ 0.2222 . Then

Thus
Rl,�
{a1}

= {(u1, u1), (u1, u2), (u1, u4), (u1, u7), (u1, u8), (u2, u2), (u2, u4), (u2, u7), (u2, u8), (u4, u4),
(u4, u7), (u4, u8), (u5, u5), (u5, u6), (u6, u6), (u7, u7), (u7, u8), (u8, u8)} .

where D1 = {u1, u4} , D2 = {u2, u7, u8} , D3 = {u5, u6}.

Similarly, Γl,�

{a2}
(d) = 0, Γl,�

{a3}
(d) ≈ 0.2857, Γl,�

C
(d) ≈ 0.4286.

Next,

�(a1(u1), a1(u1)) = 0, �(a1(u1), a1(u2)) = 0, �(a1(u1), a1(u4)) = 0.1667,

�(a1(u1), a1(u5)) = 0.6667, �(a1(u1), a1(u6)) = 1,

�(a1(u1), a1(u7)) = 0.1667,

�(a1(u1), a1(u8)) = 0.1667, �(a1(u2), a1(u2)) = 0,

�(a1(u2), a1(u4)) = 0.1667,

�(a1(u2), a1(u5)) = 0.6667, �(a1(u2), a1(u6)) = 1,

�(a1(u2), a1(u7)) = 0.1667,

�(a1(u1), a1(u8)) = 0.1667, �(a1(u4), a1(u4)) = 0,

�(a1(u4), a1(u5)) = 0.6667,

�(a1(u4), a1(u6)) = 1, �(a1(u4), a1(u7)) = 0,

�(a1(u4), a1(u8)) = 0,

�(a1(u5), a1(u5)) = 0, �(a1(u5), a1(u6)) = 0,

�(a1(u5), a1(u7)) = 0.6667,

�(a1(u5), a1(u8)) = 0.6667, �(a1(u6), a1(u6)) = 0,

�(a1(u6), a1(u7)) = 1,

�(a1(u6), a1(u8)) = 1, �(a1(u7), a1(u7)) = 0,

�(a1(u7), a1(u8)) = 0,

�(a1(u8), a1(u8)) = 0.

[u1]
l,�

{a1}
= {u1, u2, u4, u7, u8}, [u2]

l,�

{a1}
= {u1, u2, u4, u7, u8},

[u4]
l,�

{a1}
= {u1, u2, u4, u7, u8}, [u5]

l,�

{a1}
= {u5, u6}, [u6]

l,�

{a1}
= {u5, u6},

[u7]
l,�

{a1}
= {u1, u2, u4, u7, u8}, [u8]

l,�

{a1}
= {u1, u2, u4, u7, u8}.

Ul∕Rl,�
d

= {D1,D2,D3},

R
l,�

{a1}
(D1) = �, Rl,�

{a1}
(D2) = {u5, u6}, R

l,�

{a1}
(D3) = �.

Γl,�

{a1}
(d) =

|Rl,�

{a1}
(D1)| + |Rl,�

{a1}
(D2)| + |Rl,�

{a1}
(D3)|

nl
=

0 + 2 + 0

7
≈ 0.2857.

�(a1(u3), a1(u3)) =0, �(a1(u3), a1(u9)) = 0,

�(a1(u9), a1(u3)) =0, �(a1(u9), a1(u9)) = 0.
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Then

Thus |indu
�
({a1})| = 4.

Similarly, |indu
�
({a2})| = 4 , |indu

�
({a3})| = 4, |indu(C)| = 4.

Finally, the imp(1)
�,�
(P) of each attribute is calculated as follows.

Proposition 4.5  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  . Then the following properties hold.

(1) 0 ≤ imp
(1)

�,�
(P) ≤ 1;

(2) imp(1)
�,�
(C) = 1;

(3) P ⊆ Q ⊆ C implies to imp(1)
�,�
(P) ≤ imp

(1)

�,�
(Q);

(4) imp(1)
�,�
(P) = 1  ⇔  Γl,�

P
(d) = Γl,�

C
(d) , |indu

�
(P)| = |indu

�
(C)|.

Proof  “(1) and (2)" are obvious.
(3) Since P ⊆ Q ⊆ C , we have

Then

Thus

Hence imp(1)
�,�
(P) ≤ imp

(1)

�,�
(Q).

(4) }} ⇐ ε is clear. Below, we prove }} ⇒ ε.
Suppose imp(1)

�,�
(P) = 1 . Then

This implies that

indu
�
({a1}) = {(u3, u3), (u3, u4), (u4, u3), (u4, u4)}.

imp
(1)

�,�
({a1}) =(1 − 0.2222) ∗

0.2857

0.4286
+ 0.2222 ∗

4

4
≈ 0.7407,

imp
(1)

�,�
({a2}) =(1 − 0.2222) ∗

0

0.4286
+ 0.2222 ∗

4

4
= 0.2222,

imp
(1)

�,�
({a3}) =(1 − 0.2222) ∗

0.2857

0.4286
+ 0.2222 ∗

4

4
≈ 0.7407.

Γl,�
P
(d) ≤ Γl,�

Q
(d), |indu

�
(Q)| ≤ |indu

�
(P)|.

Γl,�
P
(d)

Γl,�
C
(d)

≤
Γl,�
Q
(d)

Γl,�
C
(d)

,
|indu

�
(C)|

|indu
�
(P)| ≤

|indu
�
(C)|

|indu
�
(Q)| .

(1 − �)
Γl,�
P
(d)

Γl,�
C
(d)

≤ (1 − �)
Γl,�
Q
(d)

Γl,�
C
(d)

, �
|indu

�
(C)|

|indu
�
(P)| ≤ �

|indu
�
(C)|

|indu
�
(Q)| .

(1 − �)
Γl,�
P
(d)

Γl,�
C
(d)

+ �
|indu

�
(C)|

|indu
�
(P)| = 1 = (1 − �) + �.
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Note that 1 −
Γl,�
P
(d)

Γl,�
C
(d)

=
Γl,�
C
(d)−Γl,�

P
(d)

Γl,�
C
(d)

≥ 0 , 1 −
|indu

�
(C)|

|indu
�
(P)| =

|indu
�
(P)|−|indu

�
(C)|

|indu
�
(P)| ≥ 0 , Then 

1 −
Γl,�
P
(d)

Γl,�
C
(d)

= 0 , 1 − |indu
�
(C)|

|indu
�
(P)| = 0 . Thus

	�  ◻

4.2 � The type 2 importance of a subsystem in a p‑HIS

In the following definition, |dis
l,�
d
(P)|

|disl,�
d
(C)| and |ind

u
�
(C)|

|indu
�
(P)| can be viewed as the importance of (Ul,P, d) 

and (Uu,P, d) , respectively. � means the missing rate of labels, which is processed as a 
weight. We define the sum of the importance of (Ul,P, d) and (Uu,P, d) with the missing 
rate of labels as the type 2 importance of (U, P, d).

Definition 4.6  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  and P ⊆ C . Then the type 2 impor-

tance of the subsystem (U, P, d) is defined as

Example 4.7  (Continue with Example 4.4) Obviously,
disl,�d ({a1}) = {(u1, u5), (u1, u6), (u2, u5), (u2, u6), (u4, u5), (u4, u6), (u5, u7), (u5, u8), (u6, u7), (u6, u8)}.
Since disl,�

d
({a1}) is symmetric, we have |disl,�

d
({a1})| = 20.

Similarly, |disl,�
d
({a2})| = 0 , |disl,�

d
({a3})| = 22 , |disl,�

d
(C)| = 26.

This u-HIS is �-consistent with the result in Example 4.4. Then

Proposition 4.8  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  . Then the following properties hold.

(1) 0 ≤ imp
(2)

�,�
(P) ≤ 1;

(2) imp(2)
�,�
(C) = 1;

(3) P ⊆ Q ⊆ C implies to imp(2)
�,�
(P) ≤ imp

(2)

�,�
(Q);

(4) imp(2)
�,�
(P) = 1  ⇔  |disl,�

d
(P)| = |disl,�

d
(C)| , |indu

�
(P)| = |indu

�
(C)|.

(1 − �)(1 −
Γl,�
P
(d)

Γl,�
C
(d)

) + �(1 −
|indu

�
(C)|

|indu
�
(P)| ) = 0.

Γl,�
P
(d) = Γl,�

C
(d) and |indu

�
(P)| = |indu

�
(C)|.

imp
(2)

�,�
(P) = (1 − �)

|disl,�
d
(P)|

|disl,�
d
(C)| + �

|indu
�
(C)|

|indu
�
(P)| .

imp
(2)

�,�
({a1}) =(1 − 0.2222) ∗

22

26
+ 0.2222 ∗

4

4
≈ 0.8205,

imp
(2)

�,�
({a2}) =(1 − 0.2222) ∗

0

26
+ 0.2222 ∗

4

4
= 0.2222,

imp
(2)

�,�
({a3}) =(1 − 0.2222) ∗

22

26
+ 0.2222 ∗

4

4
≈ 0.8803.



	 Z. Li et al.

1 3

46  Page 16 of 52

Proof  “(1) and (2)" are obvious.
(3) Since P ⊆ Q ⊆ C , we have

Then

Hence imp(1)
�,�
(P) ≤ imp

(1)

�,�
(Q).

(4) }} ⇐ ε is clear. Below, we prove }} ⇒ ε.
Suppose imp(2)

�,�
(P) = 1 . Then

This implies that

Note that 1 −
|disl,�

d
(P)|

|disl,�
d
(C)| =

|disl,�
d
(C)|−|disl,�

d
(P)|

|disl,�
d
(C)| ≥ 0 , 1 −

|indu
�
(C)|

|indu
�
(P)| =

|indu
�
(P)|−|indu

�
(C)|

|indu
�
(P)| ≥ 0 , Then 

1 −
|disl,�

d
(P)|

|disl,�
d
(C)| = 0 , 1 − |indu

�
(C)|

|indu
�
(P)| = 0 . Thus

	�  ◻

4.3 � The type 3 importance of a subsystem in a p‑HIS

Stipulate 0 log2 0 = 0.

Definition 4.9  (U, C, d) is a p-HIS with |Ul| = nl . ∀ P ⊆ C . Hl
�
(P) is called information 

entropy of P, if

Proposition 4.10  Let (U, C, d) be a p-HIS with |Ul| = nl . Given P ⊆ C . Then

|disl,�
d
(P)| ≤ |disl,�

d
(Q)|, |indu

�
(Q)| ≤ |indu

�
(P)|.

|disl,�
d
(P)|

|disl,�
d
(C)| ≤

|disl,�
d
(Q)|

|disl,�
d
(C)| ,

|indu
�
(C)|

|indu
�
(P)| ≤

|indu
�
(C)|

|indu
�
(Q)| .

(1 − �)
|disl,�

d
(P)|

|disl,�
d
(C)| ≤ (1 − �)

|disl,�
d
(Q)|

|disl,�
d
(C)| , �

|indu
�
(C)|

|indu
�
(P)| ≤ �

|indu
�
(C)|

|indu
�
(Q)| .

(1 − �)
|disl,�

d
(P)|

|disl,�
d
(C)| + �

|indu
�
(C)|

|indu
�
(P)| = 1 = (1 − �) + �.

(1 − �)(1 −
|disl,�

d
(P)|

|disl,�
d
(C)| ) + �(1 −

|indu
�
(C)|

|indu
�
(P)| ) = 0.

|disl,�
d
(P)| = |disl,�

d
(C)| and |indu

�
(P)| = |indu

�
(C)|.

Hl
�
(P) = −

nl∑
i=1

|[ui]l,�P |
nl

log2
|[ui]l,�P |

nl
.

0 ≤ Hl
�
(P) ≤ nl log2 nl.
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Moreover, if Rl,�
P

= △ , then Hl
�
(P) = log2 nl ; if R

l,�
P

= � , then H has a minimum.

Proof  ∀ i , 1 ≤ |[ui]l,�P | ≤ nl , we have

Then

By Definition 4.19,

If Rl,�
P

= △ , then ∀ i , |[ui]l,�P | = 1 . So Hl
�
(P) = log2 nl.

If Rl,�
P

= � , then ∀ i , |[ui]l,�P | = nl . So Hl
�
(P) = 0.

	�  ◻

Definition 4.11  Let (U, C, d) be a p-HIS with P ⊆ C and |Ul| = nl . Hl
�
(P|d) is called con-

ditional information entropy of P, if

Proposition 4.12  (U, C, d) is a p-HIS with |Ul| = nl . If P ⊆ Q ⊆ C , then

Proof  Denote

Then

Obviously, ∀ i , Rl,𝜃
Q
(ui) ⊆ [ui]

l,𝜃
P
.

Then

1

nl
≤

|[ui]l,�P |
nl

≤ 1,

0 ≤ − log2
|[ui]l,�P |

nl
≤ log2 nl.

0 ≤ −
|[ui]l,�P |

nl
log2

|[ui]l,�P |
nl

≤ log2 nl.

0 ≤ Hl
�
(P) ≤ nl log2 nl.

Hl
�
(P|d) = −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P ∩ Dj|

|[ui]l,�P | .

Hl
�
(Q|d) ≤ Hl

�
(P|d).

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr};

p
(1)

ij
= |[ui]l,�P ∩ Dj|, p

(2)

ij
= |[ui]l,�P ∩ (Ul − Dj)|;

q
(1)

ij
= |Rl,�

Q
(ui) ∩ Dj|, q

(2)

ij
= |Rl,�

Q
(ui) ∩ (Ul − Dj)|.

∀ i, j, |[ui]l,�P | = p
(1)

ij
+ p

(2)

ij
, |Rl,�

Q
(ui)| = q

(1)

ij
+ q

(2)

ij
.

∀ i, j, 0 ≤ q
(1)

ij
≤ p

(1)

ij
, 0 ≤ q

(2)

ij
≤ p

(2)

ij
.
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Put f (x, y) = −x log2
x

x+y
(x > 0, y ≥ 0) . Then f(x,  y) increases with respect to x and 

increases with respect to y, respectively.
Since q(1)

ij
≤ p

(1)

ij
, q

(2)

ij
≤ p

(2)

ij
, we have

Thus

	�  ◻

Definition 4.13  (U,  C,  d) is a p-HIS with |Ul| = nl . ∀ P ⊆ C . Denote 
Ul∕Rl,�

d
= {D1,D2,⋯ ,Dr} . Hl

�
(P ∪ d) is called joint information entropy of P with d, if

Proposition 4.14  (U, C, d) is a p-HIS with |Ul| = nl . ∀ P ⊆ C . Then

Proof 
Then {D1,D2 ⋯ ,Dr} is a partition of Ul . ∀ i,

Hl
�
(P|d) = −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P ∩ Dj|

|[ui]l,�P |

= −

nl∑
i=1

r∑
j=1

p
(1)

ij

nl
log2

p
(1)

ij

p
(1)

ij
+ p

(2)

ij

≜ −

nl∑
i=1

r∑
j=1

f (p
(1)

ij
, p

(2)

ij
).

Hl
�
(Q|d) = −

nl∑
i=1

r∑
j=1

|Rl,�
Q
(ui) ∩ Dj|
nl

log2

|Rl,�
Q
(ui) ∩ Dj|

|Rl,�
Q
(ui)|

= −

nl∑
i=1

r∑
j=1

s
(1)

ij

nl
log2

s
(1)

ij

s
(1)

ij
+ s

(2)

ij

≜ −

nl∑
i=1

r∑
j=1

f (s
(1)

ij
, q

(2)

ij
).

f (q
(1)

ij
, q

(2)

ij
) ≤ f (p

(1)

ij
, q

(2)

ij
) ≤ f (p

(1)

ij
, p

(2)

ij
).

Hl
�
(Q|d) ≤ Hl

�
(P|d).

Hl
�
(P ∪ d) = −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P ∩ Dj|

nl
.

Hl
�
(P|d) = Hl

�
(P ∪ d) − Hl

�
(P).

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.
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	�  ◻

Proposition 4.15  Let (U, C, d) be a p-HIS with |Ul| = nl . ∀ P ⊆ C . Then Hl
�
(P|d) ≥ 0.

Proof 
We have

{D1,D2 ⋯ ,Dr} is a partition of Ul . ∀ i,

Then

By Definition 4.13,

r∑
j=1

|[ui]l,�P ∩ Dj| = |[ui]l,�P |.

Hl
�
(P|d) = −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P ∩ Dj|

|[ui]l,�P |

= −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

(log2
|[ui]l,�P ∩ Dj|

nl

− log2
|[ui]l,�P |

nl
)

= −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P ∩ Dj|

nl

+

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P |

nl

=Hl
�
(P ∪ d) +

nl∑
i=1

|[ui]l,�P |
nl

log2
|[ui]l,�P |

nl

=Hl
�
(P ∪ d) − Hl

�
(P).

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.

Hl
�
(P) = −

nl∑
i=1

|[ui]l,�P |
nl

log2
|[ui]l,�P |

nl
.

r∑
j=1

|[ui]l,�P ∩ Dj| = |[ui]l,�P |.

Hl
�
(P) = −

nl�
i=1

r∑
j=1

�[ui]l,�P ∩ Dj�
nl

log2
�[ui]l,�P �

nl
.

= −

nl�
i=1

r�
j=1

�[ui]l,�P ∩ Dj�
nl

log2
�[ui]l,�P �

nl
.
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∀ i, j,

Then

By Proposition 4.14,

Hence Hl
�
(P|d) ≥ 0.

	�  ◻

Definition 4.16  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  and P ⊆ C . Then the type 3 impor-

tance of the subsystem (U, P, d) is defined as

In the above definition, H
l
�
(C|d)

Hl
�
(P|d) and |ind

u
�
(C)|

|indu
�
(P)| can be viewed as the importance of (Ul,P, d) 

and (Uu,P, d) , respectively. � means the missing rate of labels, which is processed as a 
weight. We define the sum of the importance of (Ul,P, d) and (Uu,P, d) with the missing 
rate of labels as the type 3 importance of (U, P, d).

Example 4.17  (Continue with Example 4.4) We have
Hl

� ({a1}|d) = −( 27 ∗ log2
2
5 + 2

7 ∗ log2
2
5 + 2

7 ∗ log2
2
5 + 0

7 ∗ log2
0
2 + 0

7 ∗ log2
0
2 + 2

7 ∗ log2
2
5 + 2

7 ∗ log2
2
5

+ 3
7 ∗ log2

3
5 + 3

7 ∗ log2
3
5 + 3

7 ∗ log2
3
5 + 0

7 ∗ log2
0
2 + 0

7 ∗ log2
0
2 + 3

7 ∗ log2
3
5 + 3

7 ∗ log2
3
5

+ 0
7 ∗ log2

0
5 + 0

7 ∗ log2
0
5 + 0

7 ∗ log2
0
5 + 2

7 ∗ log2
2
2 + 2

7 ∗ log2
2
2 + 0

7 ∗ log2
0
5 + 0

7 ∗ log2
0
5 ) ≈ 3.4677 .

Similarly, Hl
�
({a2}|d) ≈ 10.8966 , Hl

�
({a3}|d) ≈ 3.7664 , Hl

�
(C|d) ≈ 1.93.

Then

Proposition 4.18  Let (U,  C,  d) be a p-HIS with |Ul| = nl . Then the following properties 
hold.

(1) 0 ≤ imp
(3)

�,�
(P) ≤ 1;

Hl
�
(P ∪ d) = −

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

log2
|[ui]l,�P ∩ Dj|

nl
.

log2

|[ui]l,�P ∩ Dj|
nl

≤ log2
|[ui]l,�P |

nl
.

Hl
�
(P) ≤ Hl

�
(P ∪ d).

Hl
�
(P|d) = Hl

�
(P ∪ d) − Hl

�
(P).

imp
(3)

�,�
(P) = (1 − �)

Hl
�
(C|d)

Hl
�
(P|d) + �

|indu
�
(C)|

|indu
�
(P)| .

imp
(3)

�,�
({a1}) =(1 − 0.2222) ∗

1.93

3.4677
+ 0.2222 ∗

4

4
≈ 0.6551,

imp
(3)

�,�
({a2}) =(1 − 0.2222) ∗

1.93

10.8966
+ 0.2222 ∗

4

4
≈ 0.3600,

imp
(3)

�,�
({a3}) =(1 − 0.2222) ∗

1.93

3.7664
+ 0.2222 ∗

4

4
≈ 0.6208.
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(2) imp(3)
�,�
(C) = 1;

(3) P ⊆ Q ⊆ C implies to imp(3)
�,�
(Q) ≤ imp

(3)

�,�
(P);

(4) imp(3)
�,�
(P) = 1  ⇔  Hl

�
(P|d) = Hl

�
(C|d) , |indu

�
(P)| = |indu

�
(C)|.

Proof  “(1) and (2)" are obvious.
(3) Since P ⊆ Q ⊆ C , we have

Then

Thus

Hence imp(1)
�,�
(Q) ≤ imp

(1)

�,�
(P).

(4) }} ⇐ ε is clear. Below, we prove }} ⇒ ε.
Suppose imp(3)

�,�
(P) = 1 . Then

This implies that

Note that 1 −
Hl

�
(C|d)

Hl
�
(P|d) =

Hl
�
(P|d)−Hl

�
(C|d)

Hl
�
(P|d) ≥ 0 , 1 −

|indu
�
(C)|

|indu
�
(P)| =

|indu
�
(P)|−|indu

�
(C)|

|indu
�
(P)| ≥ 0 . Then 

1 −
Hl

�
(C|d)

Hl
�
(P|d) = 0 , 1 − |indu

�
(C)|

|indu
�
(P)| = 0 . Thus

	�  ◻

4.4 � The type 4 importance of a subsystem in a p‑HIS

Definition 4.19  (U, C, d) is a p-HIS with |Ul| = nl . ∀ P ⊆ C . Then information amount of 
P is defined as

Hl
�
(Q|d) ≤ Hl

�
(P|d), |indu

�
(Q)| ≤ |indu

�
(P)|.

Hl
�
(Q|d)

Hl
�
(C|d) ≤

Hl
�
(P|d)

Hl
�
(C|d) ,

|indu
�
(Q)|

|indu
�
(C)| ≤

|indu
�
(P)|

|indu
�
(C)| .

(1 − �)
Hl

�
(Q|d)

Hl
�
(C|d) ≤ (1 − �)

Hl
�
(P|d)

Hl
�
(C|d) , �

|indu
�
(Q)|

|indu
�
(C)| ≤ �

|indu
�
(P)|

|indu
�
(C)| .

(1 − �)
Hl

�
(C|d)

Hl
�
(P|d) + �

|indu
�
(C)|

|indu
�
(P)| = 1 = (1 − �) + �.

(1 − �)(1 −
Hl

�
(C|d)

Hl
�
(P|d) ) + �(1 −

|indu
�
(C)|

|indu
�
(P)| ) = 0.

Hl
�
(C|d) = Hl

�
(P|d), |indu

�
(P)| = |indu

�
(C)|.
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Obviously, El
�
(P) =

nl∑
i=1

�[ui]l,�P �
nl

(1 −
�[ui]l,�P �

nl
).

Proposition 4.20  Let (U, C, d) be a p-HIS with |Ul| = nl . Given P ⊆ C . Then

Moreover, if Rl,�
P

= △ , then El
�
 achieves the maximum value 1 − 1

nl
 ; if Rl,�

P
= � , then El

�
 

achieves the minimum value 0.

Proof  Since ∀ i , 1 ≤ |[ui]l,�P | ≤ nl , we have

Thus

If Rl,�
P

= △ , then ∀ i , |[ui]l,�P | = 1 . So El
�
(P) = 1 −

1

nl
.

If Rl,�
P

= � , then ∀ i , |[ui]l,�P | = nl . So El
�
(P) = 0.

	�  ◻

Definition 4.21  Let (U, C, d) be a p-HIS with |Ul| = nl . Given P ⊆ C . Denote

Put

Then El
�
(P|d) are called conditional information amount of P to d in Ul.

Proposition 4.22  (U, C, d) is a p-HIS with |Ul| = nl . If P ⊆ Q ⊆ C , then

Proof  Denote

El
�
(P) =

nl∑
i=1

|[ui]l,�P |
nl

|Ul − [ui]
l,�
P
|

nl
.

0 ≤ El
�
(P) ≤ 1 −

1

nl
.

1

nl
≤

|[ui]l,�P |
nl

≤ 1,

0 ≤ 1 −
|[ui]l,�P |

nl
≤ 1 −

1

nl
.

0 ≤ El
�
(P) ≤ 1 −

1

nl
.

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.

El
�
(P|d) =

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

|[ui]l,�P − Dj|
nl

.

El
�
(Q|d) ≤ El

�
(P|d).
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Suppose P ⊆ Q ⊆ C . Then ∀ i , Rl,𝜃
Q
(ui) ⊆ [ui]

l,𝜃
P

 . So

This implies that

Thus

	�  ◻

Definition 4.23  (U, C, d) is a p-HIS with |Ul| = nl . ∀ P ⊆ C . Denote

Then joint information amount of P and d is defined as

Proposition 4.24  (U, C, d) is a p-HIS with |Ul| = nl . ∀ P ⊆ C . Then

Proof  {D1,D2 ⋯ ,Dr} is a partition of Ul . ∀ i,

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.

∀ i, j, R
l,𝜃
Q
(ui) ∩ Dj ⊆ [ui]

l,𝜃
P

∩ Dj, R
l,𝜃
Q
(ui) − Dj ⊆ [ui]

l,𝜃
P

− Dj.

∀ i, j, |Rl,�
Q
(ui) ∩ Dj| ≤ |[ui]l,�P ∩ Dj|, |Rl,�

Q
(ui) − Dj| ≤ |[ui]l,�P − Dj|.

El
�
(Q|d) ≤ El

�
(P|d).

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.

El
�
(P ∪ d) =

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

(1 −
|[ui]l,�P ∩ Dj|

nl
).

El
�
(P|d) = El

�
(P ∪ d) − El

�
(P).
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	�  ◻

Proposition 4.25  Let (U, C, d) be a p-HIS with |Ul| = nl . Given P ⊆ C . Then El
�
(P|d) ≥ 0.

Proof 
By Definition 4.19, we have

{D1,D2 ⋯ ,Dr} is a partition of Ul . ∀ i,

Then

r∑
j=1

|[ui]l,�P ∩ Dj| = |[ui]l,�P |.

El
�
(P|d) =

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

|[ui]l,�P − [ui]
l,�
P

∩ Dj|
nl

=

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

|[ui]l,�P | − |[ui]l,�P ∩ Dj|
nl

=

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

(
|[ui]l,�P |

nl
−

|[ui]l,�P ∩ Dj|
nl

)

=

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

((1 −
|[ui]l,�P ∩ Dj|

nl
) − (1 −

|[ui]l,�P |
nl

))

=

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

(1 −
|[ui]l,�P ∩ Dj|

nl
)−

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

(1 −
|[ui]l,�P |

nl
)

=El
�
(P ∪ d) −

nl∑
i=1

|[ui]l,�P |
nl

(1 −
|[ui]l,�P |

nl
)

=El
�
(P ∪ d) − El

�
(P).

Ul∕Rl,�
d

= {D1,D2,⋯ ,Dr}.

El
�
(P) =

nl∑
i=1

|[ui]l,�P |
nl

log2
|[ui]l,�P |

nl
.

r∑
j=1

|[ui]l,�P ∩ Dj| = |[ui]l,�P |.
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By Definition 4.23, we have

∀ i, j,

Then

By Proposition 4.24,

Hence El
�
(P|d) ≥ 0.

	�  ◻

In the following definition, E
l
�
(C|d)

El
�
(P|d) and |ind

u
�
(C)|

|indu
�
(P)| can be viewed as the importance of 

(Ul,P, d) and (Uu,P, d) , respectively. � means the missing rate of labels, which is processed 
as a weight. We define the sum of the importance of (Ul,P, d) and (Uu,P, d) with the miss-
ing rate of labels as the type 4 importance of (U, P, d).

Definition 4.26  Let (U, C, d) be a p-HIS with |Ul| = nl . ∀ P ⊆ C . Then the type 4 impor-
tance of the subsystem (U, P, d) is defined as

Example 4.27  (Continue with Example 4.4) We have
El� ({a1}|d) =

2
7 ∗ log2

3
7 +

2
7 ∗ log2

3
7 +

2
7 ∗ log2

3
7 +

0
7 ∗ log2

2
7 +

0
7 ∗ log2

2
7 +

2
7 ∗ log2

3
7 +

2
7 ∗ log2

3
7 +

3
7 ∗ log2

2
7 +

3
7 ∗ log2

2
7 +

3
7 ∗

log2
2
7 + 0

7 ∗ log2
2
7 + 0

7 ∗ log2
2
7 + 3

7 ∗ log2
2
7 + 3

7 ∗ log2
2
7 + 0

7 ∗ log2
5
7 + 0

7 ∗ log2
5
7 + 0

7 ∗ log2
5
7 + 2

7 ∗ log2
0
7 + 2

7 ∗ log2
0
7 + 0

7 ∗

log2
5
7 + 0

7 ∗ log2
5
7 ≈ 1.2245

.

El
�
(P) =

nl�
i=1

r∑
j=1

�[ui]l,�P ∩ Dj�
nl

(1 −
�[ui]l,�P �

nl
).

=

nl�
i=1

r�
j=1

�[ui]l,�P ∩ Dj�
nl

(1 −
�[ui]l,�P �

nl
).

El
�
(P ∪ d) =

nl∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
nl

(1 −
|[ui]l,�P ∩ Dj|

nl
).

|[ui]l,�P ∩ Dj|
nl

≤
|[ui]l,�P |

nl
.

El
�
(P) ≤ El

�
(P ∪ d).

El
�
(P|d) = El

�
(P ∪ d) − El

�
(P).

imp
(4)

�,�
(P) = (1 − �)

El
�
(C|d)

El
�
(P|d) + �

|indu
�
(C)|

|indu
�
(P)| .



	 Z. Li et al.

1 3

46  Page 26 of 52

Similarly, El
�
({a2}|d) ≈ 4.5714 , El

�
({a3}|d) ≈ 0.9796 , El

�
(C|d) ≈ 0.4898.

Then

Proposition 4.28  Let (U,  C,  d) be a p-HIS with |Ul| = nl . Then the following properties 
hold.

(1) 0 ≤ imp
(4)

�,�
(P) ≤ 1;

(2) imp(4)
�,�
(C) = 1;

(3) P ⊆ Q ⊆ C implies to imp(4)
�,�
(Q) ≤ imp

(4)

�,�
(P);

(4) imp(4)
�,�
(P) = 1  ⇔  El

�
(P|d) = El

�
(C|d) , |indu

�
(P)| = |indu

�
(C)|.

Proof  “(1) and (2)" are obvious.
(3) Since P ⊆ Q ⊆ C , we have

Then

Thus

Hence imp(1)
�,�
(Q) ≤ imp

(1)

�,�
(P).

(4) }} ⇐ ε is clear. Below, we prove }} ⇒ ε.
Suppose imp(4)

�,�
(P) = 1 . Then

This implies that

imp
(4)

�,�
({a1}) =(1 − 0.2222) ∗

0.4898

1.2245
+ 0.2222 ∗

4

4
≈ 0.5333,

imp
(4)

�,�
({a2}) =(1 − 0.2222) ∗

0.4898

4.5714
+ 0.2222 ∗

4

4
≈ 0.3056,

imp
(4)

�,�
({a3}) =(1 − 0.2222) ∗

0.4898

0.9796
+ 0.2222 ∗

4

4
≈ 0.6111.

El
�
(Q|d) ≤ El

�
(P|d), |indu

�
(Q)| ≤ |indu

�
(P)|.

El
�
(Q|d)

El
�
(C|d) ≤

El
�
(P|d)

El
�
(C|d) ,

|indu
�
(Q)|

|indu
�
(C)| ≤

|indu
�
(P)|

|indu
�
(C)| .

(1 − �)
El
�
(Q|d)

El
�
(C|d) ≤ (1 − �)

El
�
(P|d)

El
�
(C|d) , �

|indu
�
(Q)|

|indu
�
(C)| ≤ �

|indu
�
(P)|

|indu
�
(C)| .

(1 − �)
El
�
(C|d)

El
�
(P|d) + �

|indu
�
(C)|

|indu
�
(P)| = 1 = (1 − �) + �.

(1 − �)(1 −
El
�
(C|d)

El
�
(P|d) ) + �(1 −

|indu
�
(C)|

|indu
�
(P)| ) = 0.



Semi‑supervised attribute reduction for hybrid data﻿	

1 3

Page 27 of 52  46

Note that 1 −
El
�
(C|d)

El
�
(P|d) =

El
�
(P|d)−El

�
(C|d)

El
�
(P|d) ≥ 0 , 1 −

|indu
�
(C)|

|indu
�
(P)| =

|indu
�
(P)|−|indu

�
(C)|

|indu
�
(P)| ≥ 0 . Then 

1 −
El
�
(C|d)

El
�
(P|d) = 0 , 1 − |indu

�
(C)|

|indu
�
(P)| = 0 . Thus

	�  ◻

5 �  Statistical analysis

In this section, we make statistical analysis on the four UMs. Experimental analysis is car-
ried out to test the effect of measurements.

5.1 � Measurement analysis

Twelve hybrid datasets (see Table 3) are selected from UCI (machine learning repository) 
database for experiments. Since the labels of these datasets are not missing, for the con-
venience of the experiment, we make the labels randomly missing by 50%. As a result, 
the following experiments were conducted with � = 0.5 . The experimental setup utilized 
a Lenovo computer equipped with an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 
16GB of memory. The code is programmed with MATLAB 2019 software.

In order to test the performance of these four measures, all datasets need to be preproc-
essed. For any dataset, let Pi = {p1,⋯ , pi}(i = 1,⋯ , n), n = |C| , four measure sets are as 
follows:

El
�
(C|d) = El

�
(P|d), |indu

�
(P)| = |indu

�
(C)|.

Xj(dataset) = {imp
(j)

�,�
(P1),⋯ , imp

(j)

�,�
(Pn))}(j = 1, 2, 3, 4).

Table 3   The datasets excerpted from the UCI

ID Data set Abbreviation Instance Attribute Class Type

1 Abalone Aba 4177 8 29 Mix
2 Anneal Ann 798 38 6 Mix
3 Arrhythmia Arr 452 279 16 Mix
4 AustralianCreditApproval ACA​ 690 14 2 Mix
5 Bands Ban 539 39 2 Mix
6 SteelPlatesFaults SPF 1940 27 7 Mix
7 Ionosphere Ion 350 32 2 Mix
8 DiabeticRetinopathyDebrecen DRD 1151 19 2 Mix
9 QSARbiodegradation QSA 1055 41 2 Mix
11 Spambase Spa 4601 57 2 Mix
10 Thyroid_sick Thy 2800 29 2 Mix
12 EEGEyeState EES 14980 14 2 Mix
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This formula means that we need to observe the change of these measurements as the 
number of subsets increases. Using this formula, the measurement change curves for 12 
data sets are plotted as shown in Fig. 2. The x-axis indicates the cardinality of subset, 
and the y-axis represents the value of Xj(dataset) . It can be seen that when the number 
of attributes gradually increases, the four UMs gradually rise to 1. It can be concluded 
that the certainty of A p-HIS increase with the growth of the attribute subset. We also 
find that the area enclosed by the blue curve with the x-axis on datasets Ann, Ban and 
Ion is slightly smaller than that of other curves. However, in other datasets, the blue 
line is above other color curves. This indicates that imp(3)

�,�
(P) sometimes have the better 

effect. Consequently, four UMs all can be used to measure the uncertainty of partially 
labeled hybrid data.

(a) Aba (b) Ann (c) Arr

(d) ACA (e) Ban (f) SPF

(g) Ion (h) DRD (i) QSA

(j) Spa (k) Thy (l) EES

Fig. 2   Four values of measures on each of twelve datasets
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5.2 � Dispersion analysis

Many literatures employ the standard deviation and discrete coefficient along with the 
mean to report statistical analysis results, and discrete analysis of hybrid data can use them. 
Next, we analyze the discretization of 12 datasets by using four UMs.

Suppose that Xj(dataset) = {x1, x2 ⋯ xn} is a dataset, let x̄, 𝜎(X),CV(X) be the arithme-
tic average value, standard deviation and coefficient of variation for X respectively. Their 

formulas are as follows: x̄ = 1

n

n∑
i=1

xi , 𝜎(X) =

�
1

n

n∑
i=1

(xi − x̄) , CV(X) = 𝜎(X)

x̄
 . For the sake of 

simplicity, the coefficient of variation is called CV-value.
The smaller the coefficient of variation is, the more reliable the information system for 

measuring uncertainty is and the smaller the risk is. The CV-value of each dataset is calcu-
lated and displayed in Table 4. Table 4 reports four UMS measure the discretization of dif-
ferent datasets. As we can see that the minimum average value is 0.3517, and the maximum 
value is 0.4608. In order to more intuitively compare the advantages and disadvantages of 
these four UMS, we rank them according to the results in Table 4. Since the smaller the 
CV-value, the smaller the risk, the data in Table 4 are sorted from small to large, and the 
results are shown in Table 4. It is easy to find that the lowest and highest average ranking 
are imp(3)

�,�
(P) (1.6667) and imp(1)

�,�
(P) (3.0833) respectively. Consequently, it can be con-

cluded that imp(3)
�,�
(P) is the most stable and the other UMS take more risk.

5.3 � Statistical analysis of four UMs

Next, we conduct a statistical analysis on these four UMs. The Friedman test is a nonpara-
metric test used to determine if there are significant differences among the four UMs by 
ranking them. The data in Table  5 are input into the software SPSS, and the calculated 
results are shown in Table  6. If the significance level is taken as � = 0.05 , then 
p = 0.0307 < 𝛼 in Table 6, indicating that there are significant differences among the four 

Table 4   CV-values of four 
measures

Data set imp
(1)

�,�
(P) imp

(2)

�,�
(P) imp

(3)

�,�
(P) imp

(4)

�,�
(P)

Aba 0.7182 0.6458 0.2624 0.2642
Ann 0.5896 0.3292 0.7023 0.7023
Arr 0.2450 0.1233 0.1216 0.2616
ACA​ 0.4631 0.4511 0.3562 0.4036
Ban 0.1690 0.0632 0.2231 0.2485
SPF 0.3950 0.3738 0.2816 0.2827
Ion 0.1192 0.2092 0.2181 0.2637
DRD 0.6742 0.4631 0.2555 0.2832
QSA 0.2414 0.1881 0.1408 0.1791
Spa 0.6945 0.9711 0.3235 0.4142
Thy 1.0050 0.9968 0.9914 1.0052
EES 0.3374 0.2278 0.2204 0.2781
Average 0.4608 0.4201 0.3517 0.3822
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UMs. Then, multiple comparisons are implemented by Nemenyi test. The critical range of 
the difference between the average ordinal values calculated is CD = q�

√
k(k+1)

6N
.

It is known that k = 4 represents four UMs and N = 12 represents 12 datasets. Let 
� = 0.1 , then look up table q� = 2.291 and calculate CD = 1.2075 . The test results are plot-
ted in Fig. 3 for visual comparison. It can be seen from Fig. 3 that: 

Table 5   rank of CV-values with 
four measures

Data set imp
(1)

�,�
(P) imp

(2)

�,�
(P) imp

(3)

�,�
(P) imp

(4)

�,�
(P)

Aba 4 3 1 2
Ann 2 1 3 4
Arr 2 1 3 4
ACA​ 4 3 1 2
Ban 2 1 3 4
SPF 4 3 1 2
Ion 1 2 3 4
DRD 4 3 1 2
QSA 4 3 1 2
Spa 3 4 1 2
Thy 3 2 1 4
EES 4 2 1 3
Average 3.0833 2.3333 1.6667 2.9167

Table 6   Friedman test for four 
UMs

Source SS df MS �2 p

Groups 14.8333 3 4.9444 8.9 0.0307
Error 45.1667 33 1.3687
Total 60 47

Fig. 3   Nemenyi test
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(1)	 The blue line is closer to the y-axis than the other lines;
(2)	 In the horizontal direction, the blue line does not overlap the green and red lines;
(3)	 In the horizontal direction, the blue line partially overlaps the magenta line.

It can be concluded that: 

(a)	 imp
(3)

�,�
(P) is statistically better than imp(1)

�,�
(P) and imp(4)

�,�
(P);

(b)	 There is no significant difference between imp(3)
�,�
(P) , imp(2)

�,�
(P);

(c)	 There is no significant difference between imp(1)
�,�
(P) , imp(2)

�,�
(P) and imp(4)

�,�
(P).

Therefore, imp(3)
�,�
(P) performs better than the other three UMs and next we will focus on it.

6 �  Semi‑supervised attribute reduction for hybrid data

In this section, we study Semi-supervised attribute reduction for hybrid data.

6.1 � Semi‑supervised attribute reduction in a p‑HIS

Definition 6.1  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  and P ⊆ C . Then P is called a coor-

dinate subset of C with respect to d in a p-HIS (U,  C,  d), if POSl,�
P
(d) = POS

l,�
C
(d) , 

indu
�
(P) = indu

�
(C).

All coordinate subsets of C with respect to d is denoted by cop
�,�
(C).

Definition 6.2  Let (U, C, d) be a p-HIS with � =
|Uu|
|U|  and P ⊆ C . Then P is called a reduct 

of C with d, if P ∈ co
p

�,�
(C) and for each a ∈ P , P − {a} ∉ co

p

�,�
(C).

All reducts of C with d is denoted by redp
�,�
(C).

Theorem 6.3  (U, C, d) is a p-HIS with � =
|Uu|
|U|  . The following conditions are equivalent:

(1) P ∈ co
p

�,�
(C);

(2) imp(1)
�,�
(P) = 1;

(3) imp(2)
�,�
(P) = 1;

Proof  (1) ⇒ (2). P ∈ co
p

�,�
(C) . Then POSl,�

P
(d) = POS

l,�
C
(d) , indu

�
(P) = indu

�
(C) . Thus 

Γl,�
P
(d) = Γl,�

C
(d) , |indu

�
(P)| = |indu

�
(C)|.

By Proposition 4.5, imp(1)
�,�
(P) = 1.

(2) ⇒ (3). Suppose imp(1)
�,�
(P) = 1 . Then by Proposition 4.5,

Γl,�
P
(d) = Γl,�

C
(d), |indu

�
(P)| = |indu

�
(C)|.
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By Proposition 2.6, disl,�
d
(P) = dis

l,�
d
(C) . Then |disl,�

d
(P)| = |disl,�

d
(C)|.

By Proposition 4.8, imp(2)
�,�
(P) = 1.

(3) ⇒ (1). Suppose imp(2)
�,�
(P) = 1 . Then by Proposition 4.8,

Note that dis
l,𝜃
d
(P) ⊆ dis

l,𝜃
d
(C) and indu

𝜃
(P) ⊇ indu

𝜃
(C) . Then dis

l,�
d
(P) = dis

l,�
d
(C) and 

indu
�
(P) = indu

�
(C).

By Proposition 2.6, POSl,�
P
(d) = POS

l,�
C
(d).

Thus P ∈ co
p

�,�
(C).

	�  ◻

Corollary 6.4  (U, C, d) is a p-HIS with � =
|Uu|
|U|  and P ⊆ C . The following conditions are 

equivalent:

(1) P ∈ red
p

�,�
(C);

(2) imp(1)
�,�
(P) = 1 and ∀ a ∈ P , imp(1)

𝜆,𝜃
(P − {a}) < 1;

(3) imp(2)
�,�
(P) = 1 and ∀ a ∈ P , imp(2)

𝜆,𝜃
(P − {a}) < 1;

Proof  It follows from Theorem 6.3. 	�  ◻

Lemma 6.5  (U, C, d) is a p-HIS and P is a subset of C. If Rl,𝜃
P

⊆ R
l,𝜃
d

 , then ∀ u ∈ Ul and j,

Proof  (1) u ∈ Dj , Dj = [u]l,�
d

 . Since R
l,𝜃
P

⊆ R
l,𝜃
d

 , therefore [u]l,𝜃
P

⊆ [u]l,𝜃
d

 . Thus 
[u]l,�

P
∩ Dj = [u]l,�

P
.

(2) u ∉ Dj , then [u]l,�
d

∩ Dj = � . Since R
l,𝜃
P

⊆ R
l,𝜃
d

 , therefore [u]l,𝜃
P

⊆ [u]l,𝜃
d

 . Thus 
[u]l,�

P
∩ Dj = � . 	�  ◻

Lemma 6.6  (U, C, d) is a p-HIS. ∀ P ⊆ C . If Rl,𝜃
P

⊆ R
l,𝜃
d

 , ∀ u ∈ Ul,

Proof  Since Rl,𝜃
P

⊆ R
l,𝜃
d

 , by Lemma 6.5, we have

Thus

|disl,�
d
(P)| = |disl,�

d
(C)|, |indu

�
(P)| = |indu

�
(C)|.

[u]l,�
P

∩ Dj =

{
[u]l,�

P
u ∈ Dj

� u ∉ Dj

.

r∑
j=1

|[u]l,�
P

∩ Dj|
n

(1 −
|[u]l,�

P
∩ Dj|
n

) =
|[u]l,�

P
|

n
(1 −

|[u]l,�
P
|

n
),

r∑
j=1

|[u]l,�
P

∩ Dj|
n

log2
|[u]l,�

P
∩ Dj|
n

=
|[u]l,�

P
|

n
log2

|[u]l,�
P
|

n
.

[u]l,�
P

∩ Dj =

{
[u]l,�

P
j = j∗

� j ≠ j∗
.
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	�  ◻

Proposition 6.7  (U, C, d) is a p-HIS and P is a subset of C. the following conditions are 
equivalent:

(1) Rl,𝜃
P

⊆ R
l,𝜃
d

;

(2) Hl
�
(P ∪ d) = Hl

�
(P);

(3) Hl
�
(P|d) = 0.

Proof  “(1) ⇒ (2) " is proved by Lemma 6.6.
“(2) ⇒ (3) " follows from Proposition 4.14.
(3) ⇒ (1) . Suppose Hl

�
(P|d) = 0. Then

Suppose Rl,𝜃
P

⊈ R
l,𝜃
d
. Then ∃ i∗ ∈ {1,⋯ , n} , [ui∗ ]

l,𝜃
P

⊈ [ui∗ ]
l,𝜃
d
. Denote

We have

This follows that

Note that

Then

So

r∑
j=1

|[u]l,�
P

∩ Dj|
n

(1 −
|[u]l,�

P
∩ Dj|
n

) =
|[u]l,�

P
|

n
(1 −

|[u]l,�
P
|

n
),

r∑
j=1

|[u]l,�
P

∩ Dj|
n

log2
|[u]l,�

P
∩ Dj|
n

=
|[u]l,�

P
|

n
log2

|[u]l,�
P
|

n
.

n∑
i=1

r∑
j=1

|[ui]l,�P ∩ Dj|
n

log2
|[ui]l,�P |

|[ui]l,�P ∩ Dj|
= 0.

[ui∗ ]
l,�
d

= Dj∗ (j
∗ ∈ {1,⋯ , r}).

|[ui∗ ]l,𝜃P | > |[ui]l,𝜃P ∩ Dj∗ |.

|Rl,𝜃
P
(ui∗ ) ∩ Dj∗ |

n
log2

|[ui∗ ]l,𝜃P |
|Rl,𝜃

P
(ui∗ ) ∩ Dj∗ |

> 0.

∀ i, j, |[ui]l,�P | ≥ |[ui]l,�P ∩ Dj|.

∀ i, j,
|[ui]l,�P ∩ Dj|

n
log2

|[ui]l,�P |
|[ui]l,�P ∩ Dj|

≥ 0.
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This is a contradiction.
Thus Rl,𝜃

P
⊆ R

l,𝜃
d
.

	�  ◻

Proposition 6.8  (U, C, d) is a p-HIS. Given P ⊆ C . If Rl,𝜃
P

⊆ R
l,𝜃
d

 , then El
�
(P|d) = 0.

Proof  It is directly proved by Proposition 4.24 and Lemma 6.6.
	�  ◻

Corollary 6.9  (U, C, d) is a p-HIS and �-consistent. Then Hl
�
(C|d) = El

�
(C|d) = 0.

Proof  It follows from and Propositions 3.16, 6.7 and 6.8. 	�  ◻

Theorem 6.10  (U, C, d) is a �-consistent p-HIS with � =
|Uu|
|U|  . The following conditions are 

equivalent:

(1) P ∈ co
p

�,�
(C);

(2) imp(3)
�,�
(P) = 1.

Proof  (1) ⇒ (2). P ∈ co
p

�,�
(C) , we have POSl,�

P
(d) = POS

l,�
C
(d) , indu

�
(P) = indu

�
(C) . Thus 

Γl,�
P
(d) = Γl,�

C
(d) , |indu

�
(P)| = |indu

�
(C)|.

By Proposition 4.2, we have

Obviously, ∀ j , Rl,𝜃
C
(Dj) ⊇ R

l,𝜃
P
(Dj), which implies

Thus,

Therefore ∀ j,

This means that

(U, C, d) is �-consistent, from Proposition 3.16, we have Rl,𝜃
C

⊆ R
l,𝜃
d
.

Then ∀ u ∈ Ul,

n∑
i=1

r∑
j=1

|[ui]l,𝜃P ∩ Dj|
n

log2
|[ui]l,𝜃P |

|[ui]l,𝜃P ∩ Dj|
> 0.

r∑
j=1

(|Rl,�
C
(Dj)| − |Rl,�

P
(Dj)|) = 0.

|Rl,�
C
(Dj)| − |Rl,�

P
(Dj)| ≥ 0.

|Rl,�
C
(Dj)| − |Rl,�

P
(Dj)| = 0.

R
l,�
C
(Dj) = R

l,�
P
(Dj).

[u]l,𝜃
C

⊆ Dj ⇔ [u]l,𝜃
P

⊆ Dj.
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Let [u]l,�
d

= Du . ∀ u ∈ Ul , [u]l,𝜃
P

⊆ Du = [u]l,𝜃
d
, which implies Rl,𝜃

P
⊆ R

l,𝜃
d
.

By Proposition 6.7, Hl
�
(P|d) = 0.

(U,  C,  d) is �-consistent, from Corollary 6.9, we have Hl
�
(C|d) = 0. Then 

Hl
�
(P|d) = Hl

�
(C|d).

By Proposition 4.18, imp(3)
�,�
(P) = 1.

(2) ⇒ (1). Suppose imp(3)
�,�
(P) = 1 . Then by Proposition 4.18, Hl

�
(P|d) = Hl

�
(C|d), 

|indu
�
(P)| = |indu

�
(C)|.

Since indu
𝜃
(P) ⊇ indu

𝜃
(C) , we have indu

�
(P) = indu

�
(C).

(U, C, d) is �-consistent, from Corollary 6.9, we have Hl
�
(C|d) = 0 . Then Hl

�
(P|d) = 0. 

From Proposition 6.7, Rl,𝜃
P

⊆ R
l,𝜃
d
.

Suppose that ∃ j∗,

Then Rl,�
C
(Dj∗ ) − R

l,�
P
(Dj∗ ) ≠ �.

Thus

u∗ ∈ R
l,�
C
(Dj∗ ) implies that u∗ ∈ R

l,𝜃
C
(u∗) ⊆ Dj∗ . Therefore Dj∗ = [u∗]l

d
 . u∗ ∉ R

l,�
P
(Dj∗ ) implies 

that [u∗]l
P
⊈ Dj∗ . Thus [u∗]l

P
⊈ [u∗]l

d
 . So Rl,𝜃

P
⊈ R

l,𝜃
d

 . This is a contradiction.
Hence ∀ j,

Obviously, ∀ j , Rl,𝜃
C
(Dj) ⊇ R

l,𝜃
P
(Dj).

Then Rl,�
C
(Dj) = R

l,�
P
(Dj). Thus

Hence P ∈ co
p

�,�
(C).

	�  ◻

Corollary 6.11  (U, C, d) is a �-consistent p-HIS with � =
|Uu|
|U|  . The following conditions are 

equivalent:

(1) P ∈ red
p

�,�
(C);

(2) imp(3)
�,�
(P) = 1 and ∀ a ∈ P , imp(3)

𝜆,𝜃
(P − {a}) < 1.

Proof  It is straightly proved by Theorem 6.10. 	� ◻

[u]l,𝜃
C

⊆ [u]l,𝜃
d
.

R
l,𝜃
C
(Dj∗ ) ⊈ R

l,𝜃
P
(Dj∗ ).

u∗ ∈ R
l,�
C
(Dj∗ ) − R

l,�
P
(Dj∗ ).

u∗ ∈ R
l,�
C
(Dj∗ ), u

∗ ∉ R
l,�
P
(Dj∗ ).

R
l,𝜃
C
(Dj) ⊆ R

l,𝜃
P
(Dj).

POS
l,�
C
(d) =

r⋃
j=1

R
l,�
C
(Dj) =

r⋃
j=1

R
l,�
P
(Dj) = POS

l,�
P
(d).
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Theorem  6.12  (U,  C,  d) is a �-consistent p-HIS with � =
|Uu|
|U|  . If P ∈ co

p

�,�
(C) , then 

imp
(4)

�,�
(P) = 1.

Proof  Suppose P ∈ co
p

�,�
(C) . Then POS

l,�
P
(d) = POS

l,�
C
(d) , indu

�
(P) = indu

�
(C) . Thus 

Γl,�
P
(d) = Γl,�

C
(d) , |indu

�
(P)| = |indu

�
(C)|.

It is easily proved that Rl,𝜃
P

⊆ R
l,𝜃
d
. El

�
(P|d) = 0 by Proposition 6.7.

(U,  C,  d) is �-consistent, from Corollary 6.9, we have El
�
(C|d) = 0. Therefore 

El
�
(P|d) = El

�
(C|d).

By Proposition 4.28, imp(4)
�,�
(P) = 1.

	�  ◻

Corollary 6.13  (U,  C,  d) is a �-consistent p-HIS with � =
|Uu|
|U|  . If P ∈ red

p

�,�
(C) , then 

imp
(4)

�,�
(P) = 1 and ∀ a ∈ P , imp(4)

𝜆,𝜃
(P − {a}) < 1.

Proof  It follows from Theorem 6.12. 	� ◻

6.2 � Semi‑supervised attribute reduction algorithms in a p‑HIS

The coefficient of variation for the four UMS are discussed in the above chapters. As we 
know that imp(3)

�,�
(P) work best, so it is selected to compile the attribute reduction algorithm. 

Algorithm 1: Attribute reduction algorithm for a p-HIS based on the type 3 importance 
(T3I).

Input: A p-HIS (U,C, d), and λ, θ ∈ [0, 1].
Output: One attribute reduct P .

1 P ← ∅.
2 Calculate imp

(3)
λ,θ(P ).

3 while imp
(3)
λ,θ(P ) ≤ 1− 5% do

4 for each a ∈ C − P do
5 Calculate imp

(3)
λ,θ(P ∪ {a}).

6 end
7 Find a∗ ∈ C − P such that

imp
(3)
λ,θ(P ∪ {a∗}) = max{imp

(3)
λ,θ(P ∪ {a}) : a ∈ C − P}.

8 P ← P ∪ {a∗}.
9 end

10 Return P .

The key of T3I is to calculate the importance of the attribute subsets. By traversing the 
importance of all attributes, the attributes with the greatest importance are found, and then 
they are put into the reduction set in turn until the stopping condition is satisfied. The spe-
cific process of this algorithm is shown in Fig. 4.
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We consider the algorithm in terms of time and space complex-
ity. The complexity of step 1 is O(|C||U|2) , and the complexity of steps 3-9 is 
O(|C||U|2 + (|C| − 1)|U|2 +⋯ ,+|P||U|2) . So the total complexity of the algorithm 
is O(( |C|

2

2
+

|C|
2
−

|P|2
2

+
|P|
2
)|U|2) . When P = � , it means that the algorithm has not 

completed the reduction. At this time, the maximum complexity of the algorithm is 
O(|C|2|U|2) . The spatial complexity of the algorithm is O(|C||U|2).

7 �  Experimental analysis

7.1 � Numerical experiments

There are two important parameters � and � in T3I algorithm. To facilitate the experiments, 
let � = 0.5 , which means that 50% of the labels are randomly missing. � is a parameter that 
controls the distance between information values. In order to analyze the influence of � on 
the reduction algorithm, two classifiers are used to analyze the accuracy of the reduced 
attribute subset. Two classification algorithms were used: one is gradient Boosting Deci-
sion Tree (BDT), the other is K-NearestNeighbor(KNN, K=3). An average performance 
measure was computed based on a 10-fold cross validation result repeated 10 times. We 
have plotted the relationship between � and classification accuracy, as shown in Fig. 5. The 
experiments show that the � can affect the classification accuracy of the model. Moreover, 
when the maximum classification accuracy is obtained, different datasets correspond to 
different parameters � . This can provide a basis for us to find out the maximum classifica-
tion accuracy.

In order to further study the performance of the algorithm, four algorithms are selected 
from other literatures for comparison to illustrate the effectiveness of the algorithm. They 
are MEHAR (Hu et  al. 2021), SHIVAM (Shreevastava et  al. 2019), SFSE (Wan et  al. 
2021), and RnR-SSFSM (Solorio-Fernndez et  al. 2020). Algorithm SHIVAM has no 
abbreviation, so it is replaced by the author’s name. MEHAR, SHIVAM and SFSE are 

Fig. 4   T3I flow
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algorithms for partially labeled hybrid data. RnR-SSFSM is for supervised hybrid data. 
The five algorithms are restored by programming, and the same 12 datasets are used for 
numerical experiments.

Table 7 shows the attribute subset of each algorithm after reduction. Black bold type 
indicates optimal value, and the last line is the average number of reduction. It can be seen 

Table 7   Number of selected attributes

Data set Raw data MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 8 5 7 7 8 5
Ann 38 11 8 15 11 4
Arr 279 13 14 25 20 16
ACA​ 14 8 9 7 7 5
Ban 39 10 13 11 5 10
SPF 27 11 18 5 5 4
Ion 33 7 11 11 17 15
DRD 19 8 9 14 9 8
QSA 41 15 14 15 13 16
Spa 57 7 12 15 14 11
Thy 29 1 14 13 8 11
EES 14 5 7 14 7 4
Average 49.83 8.42 11.33 12.67 10.33 9.08

Table 8   Comparison of classification accuracies of reduction set with BDT

Data set Raw data MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 0.2607 0.2624 0.2643 0.2473 0.259 0.2677
Ann 0.9060 0.9787 0.7907 0.8421 0.985 0.8860
Arr 0.7080 0.5907 0.5088 0.5465 0.6018 0.6261
ACA​ 0.8696 0.7826 0.7667 0.8565 0.8101 0.8609
Ban 0.7829 0.7477 0.7514 0.6939 0.6252 0.7829
SPF 0.6909 0.6625 0.6842 0.5440 0.5641 0.6146
Ion 0.7436 0.7493 0.8803 0.8063 0.9202 0.8405
DRD 0.6620 0.6699 0.6525 0.6594 0.6690 0.6846
QSA 0.8607 0.8502 0.8512 0.8133 0.8436 0.8673
Spa 0.9400 0.8642 0.8366 0.8153 0.8583 0.8883
Thy 0.9846 0.9389 0.9379 0.9386 0.9789 0.9811
EES 0.7749 0.6743 0.6314 0.7799 0.6611 0.7187
Average 0.7653 0.7310 0.7130 0.7119 0.7314 0.7516
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Table 9   Comparison of classification accuracies of reduction set with KNN

Data set Raw data MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 0.2332 0.2205 0.2305 0.2375 0.2301 0.2437
Ann 0.9311 0.9173 0.7782 0.8321 0.8772 0.8496
Arr 0.5841 0.5863 0.4757 0.5487 0.5686 0.5929
ACA​ 0.8565 0.7246 0.7826 0.8522 0.7565 0.8536
Ban 0.7328 0.6883 0.6939 0.6698 0.5362 0.7050
SPF 0.7367 0.6728 0.7223 0.5703 0.5374 0.5600
Ion 0.8234 0.8120 0.8177 0.8234 0.8348 0.8575
DRD 0.6247 0.6646 0.6290 0.6551 0.6560 0.6890
QSA 0.8550 0.8512 0.8389 0.7981 0.8408 0.8521
Spa 0.9081 0.8618 0.7403 0.5008 0.8474 0.8650
Thy 0.9386 0.9371 0.9386 0.9389 0.9393 0.9482
EES 0.8579 0.6546 0.8070 0.8703 0.8150 0.7510
Average 0.7568 0.7159 0.7046 0.6914 0.7033 0.7306

that MEHAR performs best, which is 8.42. The proposed algorithm T3I takes the second 
place, which is 9.08. This shows that T3I reduction efficiency is above the average level.

Then, we analyze the classification accuracy of the reduction set. The comparison of 
classification accuracy calculated is shown in Tables 8 and 9. It can be seen that TI3 has 
reached its optimal value in many datasets, with a total of 17 tests ranking first in Tables 8 
and 9. This is significantly more than the 2 first-place rankings achieved by MEHAR, the 2 
first-place rankings achieved by SHIVAM, the 2 first-place rankings achieved by SFSE and 
the 1 first-place rankings achieved by RnR-SSFSM. In addition, T3I also get the best aver-
age classification accuracy in these two tables, with 0.7516 and 0.7306, respectively. So it 
can be concluded that T3I performs well in most cases.

To analyze these algorithms, it is not sufficient to compare classification accuracy. We 
also need to calculate the True Position Rate (TPR)and False Positive Rate (FPR) to evalu-
ate the effect of data prediction. According to the real and predicted values it can be divided 
into: (1) True Positive (TP); (2) False Positive (FP); (3) True Negative (TN); (4) False Neg-
ative (FN). Then True Position Rate (TPR) and False Positive Rate (FPR) can be calculated 
respectively as follows: TPR = TP∕TP + FN and FPR = FP∕FP + TN . The precision (P) 
and the recall (R) which is also call sensitivity can be expressed as P = TP∕(TP + FP) and 
R = TP∕(TP + FN) . Geometric mean (G-mean) can be showed as GM =

√
(P ∗ R).

Therefore, we plotted the Receiver Operating Characteristic Curve (ROC) Narkhede 
(2018) and calculated the Area Under Curve(AUC) area. See Figs. 6 and 7 for details. The 
x-axis is FPR, and the y-axis is TPR. The blue line in the figures represents the T3I algo-
rithm. From the Fig. 6, the blue line is not drawn on the outermost edge of the subgraphs 
Ann, SPF, lon and EES. It can be also seen from Fig. 7 that the blue line is not located on 
the outermost layer of subgraphs Ban, SPF, Ion and EES. This indicates that T3I does not 
have any advantages in these datasets, but it performs very well in the remaining datasets. 
From these two figures, we find that all curves of subgraph Aba are concave, and the area 
enclosed by the x-axis is less than 0.5, which indicates that the classification characteristics 
of dataset AD are not good, and key attributes are missing during data collection. Tables 10 
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and 11 record the area enclosed by each curve in Figs. 6 and 7. The larger the area is, the 
better the effect of the algorithm classification is. As can be seen from the Tables, the aver-
age AUC of T3I is the largest, 0.8688 and 0.8402 respectively. Thus, the attribute subset of 
T3I after reduction has a nice classification effect.

Furthermore, the G-mean is employed as an additional indicator to evaluate the effec-
tiveness of classification. Prior to that, precision and recall metrics are calculated for 
the reduction set of these algorithms using two classifiers(See Tables  12 and 13). From 

(a) Aba (b) Ann (c) Arr

(d) ACA (e) Ban (f) SPF

(g) lon (h) DRD (i) QSA

(j) Spa (k) Thy (l) EES

Fig. 5   Effect of parameter � on classification accuracy
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Tables 12 and 13, it is apparent that while the computed P and R values from the reduction 
set of T3I may not always be optimal for each dataset individually, the average perfor-
mance is the most favorable. However, these tables alone do not provide sufficient insight 
into the overall quality of these algorithms. For this reason, G-mean is calculated as shown 
in Tables 14 and 15 according to the data in Tables 12 and 13. Then, we can easily deter-
mine which algorithm performs better. It is evident that T3I has achieved a total of 18 top 
rankings in Tables 14 and 15, surpassing MEHAR’s 2 first places, SHIVAM’s 1 first place, 

(a) Aba (b) Ann (c) Arr

(d) ACA (e) Ban (f) SPF

(g) lon (h) DRD (i) QSA

(j) Spa (k) Thy (l) EES

Fig. 6   ROC curve comparison of five algorithms on classifier BDT
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SFSE’s 2 first places, and RnR-SSFSM’s 1 first place by a significant margin. It is not diffi-
cult to intuitively analyze from the above results that T3I performs better. However, further 
statistical analysis is needed to determine whether our judgment is accurate.

7.2 � Friedman and Nemenyi test of algorithms

Next, we analyze the differences between these five algorithms. Friedman test was used 
for significance analysis. The data in Tables 8 and 9 and Tables 14 and 15 are sorted 
in descending order, and the results are shown in Tables 16, 17, 18 and 19. Once the 
data is input into SPSS software for statistical analysis, then the calculated results are 
shown in Tables 20 and 21. It can be seen that the values of p in Tables 20 and 21 are 

(a) Aba (b) Ann (c) Arr

(d) ACA (e) Ban (f) SPF

(g) lon (h) DRD (i) QSA

(j) Spa (k) Thy (l) EES

Fig. 7   ROC curve comparison of five algorithms on classifier KNN



Semi‑supervised attribute reduction for hybrid data﻿	

1 3

Page 43 of 52  46

0.0041, 0.0251, 0.0103 and 0.0116, respectively, all of which are less than the signifi-
cance � = 0.05 . Consequently, it can be concluded that the five algorithms have signifi-
cant differences.

Afterwards, the Nemenyi test was conducted as a post-hoc test with the purpose of 
further distinguishing the advantages and disadvantages of each algorithm. The calcula-
tion formula of the critical range CD is consistent with the description in section 5.3. It is 
known that k = 5 represents 5 algorithms, and N = 12 represents 12 datasets. Let � = 0.1 , 
q� = 2.459 was obtained by referencing the table, and CD = 1.5873 was calculated. Fig-
ure 8 was plotted based on the calculated CD value. By Fig. 8a, we have: 

(a)	 The classification accuracy of T3I is significantly better than RnR-SSFSM, and SFSE;

Table 10   AUC with classifier 
BDT

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 0.1936 0.0644 0.1918 0.1942 0.2014
Ann 0.9995 0.9192 0.7358 0.9976 0.9952
Arr 0.8202 0.6899 0.6267 0.7124 0.8353
ACA​ 0.9457 0.9421 0.9456 0.9675 0.9779
Ban 0.9776 0.9698 0.784 0.8893 0.9868
SPF 0.9046 0.9270 0.7588 0.7352 0.8615
Ion 0.9313 0.9436 0.9005 0.9343 0.9328
DRD 0.8563 0.8750 0.8556 0.8733 0.8879
QSA 0.9602 0.9745 0.8890 0.9728 0.9834
Spa 0.9464 0.9164 0.8609 0.9399 0.9688
Thy 0.7655 0.9762 0.6219 0.9718 0.9996
EES 0.7587 0.7892 0.8748 0.7493 0.7955
Average 0.8383 0.8323 0.7538 0.8281 0.8688

Table 11   AUC with classifier 
KNN

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 0.0450 0.1968 0.1938 0.1685 0.2110
Ann 0.9825 0.8104 0.6856 0.9962 0.9968
Arr 0.8065 0.6582 0.5548 0.7697 0.8509
ACA​ 0.8431 0.8796 0.9355 0.8963 0.9432
Ban 0.8547 0.8370 0.7364 0.7161 0.8173
SPF 0.9469 0.9614 0.8809 0.8852 0.8962
Ion 0.9366 0.9264 0.9043 0.9277 0.9289
DRD 0.8236 0.7889 0.8096 0.8270 0.8366
QSA 0.9459 0.9367 0.8649 0.9442 0.9505
Spa 0.9582 0.8199 0.4990 0.9524 0.9642
Thy 0.7606 0.9235 0.5089 0.9127 0.9264
EES 0.7844 0.9094 0.9518 0.8679 0.7601
Average 0.8073 0.8040 0.7105 0.8220 0.8402
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(b)	 MEHAR, SHIVAM, RnR-SSFSM and SFSE have no significant statistical difference 
in classification accuracy.

(c)	 In terms of classification accuracy, there is no obvious difference among T3I, MEHAR 
and SHIVAM.

Table 12   Precision and Recall with classifier BDT

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

P R P R P R P R P R

P &R

Aba 0.2246 0.2382 0.2130 0.3517 0.2033 0.3849 0.1979 0.3927 0.2393 0.3628
Ann 0.9885 0.9868 0.7955 0.9918 0.8292 0.9984 0.9918 0.9918 0.9245 0.9671
Arr 0.6706 0.9224 0.5569 0.9592 0.5545 0.9551 0.6385 0.8939 0.6837 0.9265
ACA​ 0.7667 0.8668 0.7644 0.8642 0.8684 0.8616 0.7737 0.8747 0.8790 0.8538
Ban 0.7824 0.5859 0.7964 0.5859 0.7006 0.4846 0.5542 0.4053 0.7705 0.6211
SPF 0.6732 0.7263 0.8359 0.8579 0.5568 0.7737 0.4029 0.5895 0.8952 0.8082
Ion 0.9185 0.9511 0.8841 0.9156 0.8938 0.8978 0.9174 0.9378 0.7782 0.9822
DRD 0.6124 0.7519 0.6254 0.7111 0.6334 0.7296 0.6293 0.7389 0.6203 0.7685
QSA 0.7557 0.7472 0.8018 0.7612 0.7026 0.7500 0.7988 0.7360 0.7982 0.7669
Spa 0.9138 0.8522 0.8294 0.9157 0.7899 0.9466 0.891 0.8734 0.8925 0.9469
Thy 0.9398 0.9985 0.9908 0.9863 0.9392 0.9996 0.9889 0.9855 0.9908 0.9871
EES 0.6413 0.8793 0.7253 0.768 0.7663 0.8518 0.6414 0.8803 0.6891 0.8484
Average 0.7406 0.7922 0.7349 0.8057 0.7032 0.8028 0.7022 0.7750 0.7634 0.8200

Table 13   Precision and Recall with classifier KNN

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

P R P R P R P R P R

P &R

Aba 0.2095 0.2902 0.2295 0.3139 0.2437 0.3060 0.2267 0.3028 0.2348 0.3344
Ann 0.9119 0.9539 0.7992 0.9490 0.8194 1 0.9392 0.9655 0.9700 0.9572
Arr 0.6057 0.9592 0.5668 0.8653 0.5561 0.9918 0.6087 0.9714 0.6020 0.9878
ACA​ 0.7130 0.8564 0.7689 0.8512 0.8469 0.8668 0.7361 0.8956 0.8794 0.8564
Ban 0.6879 0.4758 0.6650 0.5771 0.6726 0.4978 0.5125 0.3612 0.6437 0.4934
SPF 0.6116 0.7211 0.7914 0.8440 0.5278 0.6000 0.5105 0.5105 0.7650 0.8737
Ion 0.8467 0.9822 0.7739 0.9733 0.8036 0.9822 0.8066 0.9822 0.8333 0.9778
DRD 0.6280 0.7222 0.5821 0.6370 0.6175 0.6907 0.6279 0.7000 0.6506 0.7241
QSA 0.7837 0.7837 0.7730 0.7556 0.6652 0.8371 0.7600 0.7472 0.7769 0.8118
Spa 0.9087 0.8680 0.8343 0.7242 0.7730 0.2407 0.8897 0.8619 0.8958 0.8999
Thy 0.9402 0.9981 0.9387 0.9966 0.9389 1 0.9414 0.9958 0.9421 0.9970
EES 0.6468 0.7205 0.7923 0.8228 0.8718 0.8840 0.7514 0.7832 0.6671 0.7497
Average 0.7078 0.7776 0.7096 0.7758 0.69471 0.7414 0.6926 0.7564 0.7384 0.8053
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By Fig. 8b, we have: 

(a)	 The classification accuracy of T3I is significantly better than MEHAR, SFSE and RnR-
SSFSM;

(b)	 SHIVAM, MEHAR, SFSE and RnR-SSFSM have no significant statistical differences 
in classification accuracy;

(c)	 In terms of classification accuracy, there is no obvious difference between T3I and 
SHIVAM.

By Fig. 9a, we have: 

(a)	 The G-mean of T3I is significantly better than MEHAR, SHIVAM and SFSE;
(b)	 T3I and RnR-SSFSM have no significant statistical difference in G-mean.

Table 14   G-mean with classifier 
BDT

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 0.2313 0.2737 0.2797 0.2788 0.2946
Ann 0.9877 0.8882 0.9099 0.9918 0.9456
Arr 0.7865 0.7309 0.7277 0.7555 0.7959
ACA​ 0.8152 0.8128 0.8650 0.8227 0.8663
Ban 0.6771 0.6831 0.5827 0.4739 0.6918
SPF 0.6992 0.8468 0.6564 0.4873 0.8506
Ion 0.9347 0.8997 0.8958 0.9275 0.8743
DRD 0.6786 0.6669 0.6798 0.6819 0.6904
QSA 0.7514 0.7812 0.7259 0.7668 0.7824
Spa 0.8825 0.8715 0.8647 0.8822 0.9193
Thy 0.9687 0.9885 0.9689 0.9872 0.9889
EES 0.7509 0.7463 0.8079 0.7514 0.7646
Average 0.7636 0.7658 0.7470 0.7339 0.7887

Table 15   G-mean with classifier 
KNN

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 0.2466 0.2684 0.2731 0.2620 0.2802
Ann 0.9327 0.8709 0.9052 0.9523 0.9636
Arr 0.7622 0.7003 0.7427 0.7690 0.7711
ACA​ 0.7814 0.8090 0.8568 0.8119 0.8678
Ban 0.5721 0.6195 0.5786 0.4302 0.5636
SPF 0.6641 0.8173 0.5627 0.5105 0.8175
Ion 0.9119 0.8679 0.8884 0.8901 0.9027
DRD 0.6735 0.6089 0.6531 0.6630 0.6864
QSA 0.7837 0.7643 0.7462 0.7536 0.7942
Spa 0.8881 0.7773 0.4313 0.8757 0.8978
Thy 0.9687 0.9672 0.9690 0.9682 0.9692
EES 0.6827 0.8074 0.8779 0.7671 0.7072
Average 0.7390 0.7399 0.7071 0.7211 0.7684
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By Fig. 9b, we have: 

(a)	 The G-mean of T3I is significantly better than SFSE, RnR-SSFSM and SHIVAM;
(b)	 In terms of G-mean, there is no obvious difference between T3I and MEHAR.

It can be seen that the comprehensive ranking of T3I is higher than other algorithms, as 
shown in Figs. 8 and 9. In summary, the results confirm that the suggested T3I outper-
forms the other algorithms.

Table 16   Ranking of 
classification accuracies of 
reduction set with BDT

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 3 2 5 4 1
Ann 2 5 4 1 3
Arr 3 5 4 2 1
ACA​ 4 5 2 3 1
Ban 3 2 4 5 1
SPF 2 1 5 4 3
Ion 5 2 4 1 3
DRD 2 5 4 3 1
QSA 3 2 5 4 1
Spa 2 4 5 3 1
Thy 3 5 4 2 1
EES 3 5 1 4 2
Average 2.9167 3.0000 3.9167 3.5833 1.5833

Table 17   Ranking of 
classification accuracies of 
reduction set with KNN

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 5 3 2 4 1
Ann 1 5 4 2 3
Arr 2 5 4 3 1
ACA​ 5 3 2 4 1
Ban 3 2 4 5 1
SPF 2 1 3 5 4
Ion 5 4 3 2 1
DRD 2 5 4 3 1
QSA 2 4 5 3 1
Spa 2 4 5 3 1
Thy 5 4 3 2 1
EES 5 3 1 2 4
Average 3.2500 3.1667 3.3333 3.5833 1.6667
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7.3 �  Experimental analysis of the parameter �

Let’s next discuss another parameter � of T3I. � control the missing rate of labels. 
MEHAR, SHIVAM, SFSE and T3I are all algorithms dealing with semi-supervised infor-
mation systems. When a takes different values, in order to compare the changes of the four 

Table 18   Ranking of G-mean 
with classifier BDT

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 5 4 2 3 1
Ann 2 5 4 1 3
Arr 2 4 5 3 1
ACA​ 4 5 2 3 1
Ban 3 2 4 5 1
SPF 3 2 4 5 1
Ion 1 3 4 2 5
DRD 4 5 3 2 1
QSA 4 2 5 3 1
Spa 2 4 5 3 1
Thy 5 2 4 3 1
EES 4 5 1 3 2
Average 3.25 3.58 3.58 3 1.58

Table 19   Ranking of G-mean 
with classifier KNN

Data set MEHAR SHIVAM SFSE RnR-SSFSM T3I

Aba 5 3 2 4 1
Ann 3 5 4 2 1
Arr 3 5 4 2 1
ACA​ 5 4 2 3 1
Ban 3 1 2 5 4
SPF 3 2 4 5 1
Ion 1 5 4 3 2
DRD 2 5 4 3 1
QSA 2 3 5 4 1
Spa 2 4 5 3 1
Thy 3 5 2 4 1
EES 5 2 1 3 4
Average 3.08 3.67 3.25 3.42 1.58

Table 20   Friedman test for 
classification accuracy on two 
classifiers

Source SS df MS �2 p

Groups(BDT) 38.3333 4 9.5833 15.33 0.0041
Error(BDT) 81.6667 44 1.85606
Groups(KNN) 27.8333 4 6.9582 11.13 0.0251
Error(KNN) 92.1667 44 2.0947
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algorithms, Fig. 10 is drawn for observation. The x-axis is parameter � , ranging from 0.1 
to 0.9, indicating that the label missing rate ranges from 10% to 90%, and the y-axis is the 
classification accuracy. Each algorithm in the figure has two curves, and the solid line and 
dotted line respectively correspond to the accuracy under BDT and KNN classifiers. The 
blue line represents T3I, and other color lines are shown in the legend.

The classification accuracy curves of datasets Ann and SPF are relatively stable, indi-
cating that they are not affected by missing labels. Other subgraphs shows that � has a 
great impact on the classification accuracy, and the curve fluctuates obviously. We find 
that no matter what the value of � is, the blue lines in the subgraphs Aba, Arr, QSA and 
Thy are closer to the line y = 1 than those in other colors. This confirms that the Aba, Arr, 

Table 21   Friedman test for 
G-mean on two classifiers

Source SS df MS �2 p

Groups(BDT) 33 4 8.25 13.2 0.0103
Error(BDT) 87 44 1.98
Groups(KNN) 32 4 8.08 12.93 0.0116
Error(KNN) 87.67 44 1.99

Fig. 9   Nemenyi test for G-mean on two classifiers

Fig. 8   Nemenyi test for accuracy on two classifiers
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QSA and Thy datasets of T3I algorithm experiment have higher classification accuracy. 
MEHAR performs better in dataset Ann, while SHIVAM performs better in dataset EES. 
The classification accuracy of other datasets does not show an obvious rule under different 
algorithms and �.

Therefore, we come to the conclusion that T3I has obvious advantages in attribute 
reduction of most hybrid datasets. However, with the different values of parameters � and 
� , the benefits are not clear, resulting in a small range of oscillations.

(a) Aba (b) Ann (c) Arr

(d) ACA (e) Ban (f) SPF

(g) lon (h) DRD (i) QSA

(j) Spa (k) Thy (l) EES

Fig. 10   Influence of parameter � on classification accuracy
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8 �  Conclusions

Based on the defined degrees of importance, we propose the semi-supervised attribute 
reduction algorithm. The algorithm can flexibly adapt to various missing rates of label. 
Experimental results and statistical tests on 12 datasets have shown that the degrees of 
importance are effective, the proposed algorithm is not prone to over-fitting and under-
fitting, and can deal with various missing rates more effectively by the comparison with 
other state-of-the-art algorithms. The findings can enable us to effectively cope with all 
kinds of data with different missing rates. In the future, we will consider applying this idea 
to gene data.
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