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Abstract
Integrating Machine Learning (ML) in medicine has unlocked many opportunities to har-
ness complex medical data, enhancing patient outcomes and advancing the field. However, 
the inherent imbalanced distribution of medical data poses a significant challenge, result-
ing in biased ML models that perform poorly on minority classes. Mitigating the impact 
of class imbalance has prompted researchers to explore various strategies, wherein Cost-
Sensitive Learning (CSL) arises as a promising approach to improve the accuracy and reli-
ability of ML models. This paper presents the first review of CSL for imbalanced medical 
data. A comprehensive exploration of the existing literature encompassed papers published 
from January 2010 to December 2022 and sourced from five major digital libraries. A total 
of 173 papers were selected, analysed, and classified based on key criteria, including pub-
lication years, channels and sources, research types, empirical types, medical sub-fields, 
medical tasks, CSL approaches, strengths and weaknesses of CSL, frequently used data-
sets and data types, evaluation metrics, and development tools. The results indicate a note-
worthy publication rise, particularly since 2020, and a strong preference for CSL direct 
approaches. Data type analysis unveiled diverse modalities, with medical images prevail-
ing. The underutilisation of cost-related metrics and the prevalence of Python as the pri-
mary programming tool are highlighted. The strengths and weaknesses analysis covered 
three aspects: CSL strategy, CSL approaches, and relevant works. This study serves as a 
valuable resource for researchers seeking to explore the current state of research, identify 
strengths and gaps in the existing literature and advance CSL’s application for imbalanced 
medical data.
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1  Introduction

Machine Learning (ML) techniques have gained significant attention in medicine 
(Rajkomar et al. 2019), offering promising opportunities to enhance diagnostic accuracy, 
improve treatment outcomes, and optimise healthcare delivery. However, the unique char-
acteristics of medical data present substantial challenges that must be addressed to harness 
the full potential of ML in healthcare.

One such challenge is the issue of class imbalance, which arises when the distribution 
of classes in a dataset is highly skewed. In medical datasets, imbalanced distributions are 
frequently observed, where the prevalence of certain medical conditions is significantly 
lower than others. For instance, in the context of postoperative risk evaluation, and consid-
ering the short planning period of one year, the number of patients surviving the expected 
duration is often significantly higher than the number of deceases recorded (Zieba et  al. 
2014). Traditional ML algorithms often struggle to handle these imbalances, leading to 
biased models that perform poorly on the minority class, which is more often than not the 
class of interest.

Addressing class imbalance is essential for building reliable and effective ML models 
in the medical domain. Many strategies have been proposed in the literature, including 
resampling (Khushi et al. 2021), ensemble learning (Galar et al. 2012), and Cost-Sensitive 
Learning (CSL) (Elkan 2001). Resampling techniques aim to rebalance the class distribu-
tion in the dataset by oversampling the minority class or undersampling the majority class. 
Rebalancing holds the potential to improve the performance of the models significantly. 
However, it is important to consider the limitations of resampling. Oversampling may lead 
to overfitting, where the model becomes overly specialised to the minority class, while 
undersampling may result in the loss of valuable information from the majority class (Hu 
et al. 2021). Ensemble learning, on the other hand, combines multiple models to improve 
overall performance. Ensemble-based methods can be tailored to tackle class imbalance 
by incorporating resampling or CSL (López et al. 2013; Fernández et al. 2018). However, 
adopting ensemble learning can introduce computational complexity (Galar et  al. 2012), 
requiring additional resources and time for training and inference.

In contrast, CSL offers an alternative strategy that preserves the data distribution while 
ensuring computational efficiency. CSL introduces distinct misclassification costs for each 
class. The underlying assumption is that higher misclassification costs are assigned to sam-
ples from the minority class, and the objective is to minimise the high-cost errors (López 
et  al. 2013). This strategy is advantageous in numerous real-world scenarios, particu-
larly medical applications, where certain misclassifications can have more severe conse-
quences (Sterner et al. 2021). For example, mislabelling a cancer patient as healthy is more 
detrimental than the opposite scenario, as it can result in delayed treatment and further 
complications.

Despite the growing interest in CSL for medical research, the existing literature remains 
fragmented and lacks comprehensive studies that provide a systematic overview of the field. 
Previous reviews (Sterner et al. 2021; Freitas et al. 2009) suffer from limitations such as a 
lack of systematic approach, outdatedness, or limited scope, hindering the development of 
a clear and up-to-date understanding of CSL’s application to imbalanced data in medicine. 
This paper systematically reviews the use of CSL for imbalanced medical data, marking 
the first study of its kind to the best of our knowledge. Our study entails a thorough review 
of peer-reviewed papers sourced from reputable databases. Through a systematic search 
process, meticulous analysis of pertinent literature, and extraction of key findings, our 
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objective is to provide valuable insights and practical guidance to researchers in this par-
ticular domain and suggest potential future research directions. Extensive exploration was 
undertaken to comprehensively investigate the existing literature, covering the period from 
January 2010 to December 2022. Five major digital libraries were meticulously searched to 
collect relevant materials, including PubMed, ScienceDirect, IEEE Xplore, SpringerLink, 
and Google Scholar. The 173 selected papers were subsequently analysed to answer nine 
Research Questions (RQs): (i) publication years, channels, and sources; (ii) research types; 
(iii) empirical types; (iv) medical disciplines; (v) medical tasks; (vi) CSL approaches; (vii) 
strengths and weaknesses of CSL, (viii) frequently used datasets, data types, and evaluation 
metrics; and (iv) development tools.

The remainder of this paper is organised as follows. Section  2 delves into the back-
ground of class imbalance and introduces the fundamental concepts of CSL. Section  3 
presents the research methodology employed in this study. Section 4 provides a detailed 
analysis of the derived statistical trends. In Sect.  5, a comprehensive overview of CSL 
approaches is presented. Section 6 offers an in-depth analysis of the strengths and weak-
nesses of CSL, along with a comparative assessment of selected works. Section 7 focuses 
on datasets and data types. Subsequently, Sect. 8 describes the performance metrics used to 
evaluate CSL techniques. Section 9 covers the development tools employed for CSL tech-
niques’ implementation. Section  10 discusses the limitations of this study. The implica-
tions of the results and practical guidance for researchers are presented in Sect. 11, empha-
sising the key takeaways and actionable recommendations for future investigations. Finally, 
Sect. 12 concludes the paper and outlines future research directions.

2 � Background

This section introduces two key concepts: class imbalance and CSL. We aim to define and 
establish a clear understanding of these concepts, offering background information on the 
challenges posed by class imbalance in medical data classification. Additionally, we will 
delve into the fundamental principles and considerations of CSL, setting the stage for fur-
ther exploration in subsequent sections.

2.1 � The class imbalance problem

Class imbalance is a prevalent phenomenon observed in many real-world datasets, where 
the distribution of instances across different classes is significantly skewed. While the tech-
nical definition of class imbalance encompasses any dataset with unequal class distribu-
tions, the term typically refers to datasets that exhibit substantial and sometimes extreme 
imbalances (He and Garcia 2009). This imbalance has garnered considerable attention 
from researchers and practitioners due to its widespread occurrence in various classifi-
cation problems, such as anomaly detection (Zhou et  al. 2021), face recognition (Huang 
et al. 2020), medical diagnosis (Mazurowski et al. 2008), and more. In such scenarios, the 
minority class, often referred to as the positive class, represents the concept of interest and 
is characterised by its low frequency. On the other hand, the majority class, also known 
as the negative class, constitutes the class with higher representation. The scarcity of 
instances belonging to the minority class can stem from their inherent exceptional or rare 
nature, or it may result from the high cost of acquiring data for these particular examples 
(López et  al. 2013). Consequently, accurately identifying and classifying instances from 
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the minority class becomes crucial, as it often carries significant implications in practical 
applications.

While class imbalance is commonly associated with binary classification tasks, it is cru-
cial to note that imbalanced distributions can extend to multi-class (Wang and Yao 2012) 
and multi-label (Lankireddy et  al. 2022) settings. Within such contexts, the presence of 
multiple minority classes introduces additional complexities, amplifying the challenge at 
hand (López et al. 2013; Lankireddy et al. 2022). Moreover, it is essential to acknowledge 
that class imbalance is not limited to classification tasks alone but can also manifest in seg-
mentation tasks, specifically in medical imaging (Rezaei et al. 2019). In such scenarios, a 
significant disparity emerges between the number of pixels or voxels representing regions 
of interest and those corresponding to the background class or other classes (Nasalwai 
et al. 2021).

The degree of class imbalance in a dataset can be quantified using the Imbalance Ratio 
(IR), which is calculated as the ratio of the number of examples in the majority class Nmaj 
to the number of examples in the minority class Nmin:

The IR metric quantifies the severity of class imbalance, providing insights into dataset 
composition and aiding in devising effective strategies to address imbalanced datasets. An 
annotation such as 1:100 can be used to represent an IR of 100, indicating that the majority 
class is approximately 100 times more prevalent than the minority class.

2.2 � Strategies to mitigate class imbalance

Mitigating class imbalance is crucial due to several key reasons. Primarily, biased learn-
ing poses a significant challenge. Standard learning algorithms are designed to work 
optimally on balanced datasets, where the numbers of instances in each class are roughly 
equal. When applied to imbalanced datasets, these algorithms tend to be biased towards 
the majority class, leading to suboptimal classification models and frequent misclassifica-
tion of minority class instances (Fernández et al. 2018). Consequently, the minority class 
instances are frequently misclassified, reducing overall performance. Moreover, the sig-
nificance of the minority class in various real-world scenarios cannot be overstated. Mis-
classifying samples from the minority class can have severe ramifications, such as missed 
opportunities, erroneous diagnoses, or potential risks. Furthermore, the natural occurrence 
of imbalanced datasets due to the inherent characteristics of the problem domain adds 
another layer of complexity. For instance, rare medical conditions often have limited data 
availability compared to more prevalent cases. To address these challenges, it is imperative 
to develop effective strategies that specifically target class imbalance. By doing so, clas-
sification performance can be significantly improved, ensuring accurate identification of 
minority class instances and enabling the extraction of valuable insights from the available 
imbalanced datasets.

Many strategies have been proposed in the literature to address the class imbalance chal-
lenge. These strategies can be classified into four groups (Fernández et al. 2018; Haixiang 
et al. 2017):

•	 Data-level strategies, also known as external strategies, focus on modifying the dataset 
to rebalance the class distribution. Techniques such as oversampling, undersampling, 

(1)IR =
Nmaj

Nmin
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and hybrid methods are employed. Oversampling methods generate synthetic exam-
ples or replicate existing instances of the minority class to augment its representation. 
Conversely, undersampling methods reduce the number of examples from the majority 
class to achieve a more balanced dataset. Hybrid methods combine oversampling and 
undersampling techniques to achieve the desired class distribution. These modifications 
are typically performed as a preprocessing step to ensure improved model performance 
(Fernández et al. 2018).

•	 Algorithm-level strategies, also called internal strategies, involve adapting the learning 
algorithms to assign greater importance to the minority class. These strategies require 
a deeper understanding of the model and the application domain to identify why the 
model fails when under imbalanced class distributions (Fernández et al. 2018).

•	 Cost-sensitive strategy considers the varying costs associated with misclassifications 
across different classes. This strategy lies between data-level and algorithm-level strat-
egies. They can operate at the data level by assigning costs to individual instances or 
at the algorithm level by incorporating cost considerations into the learning process 
(López et al. 2013; Fernández et al. 2018).

•	 Ensemble-based strategies combine multiple base learners to create a more accurate 
and robust classification model. These strategies can be adapted to handle imbalanced 
datasets in two ways. Firstly, the ensemble learning algorithm can be modified at the 
data level, enabling preprocessing steps to be performed on the data before the learning 
stage of each classifier (López et al. 2013; Fernández et al. 2018). Alternatively, a cost-
sensitive framework can be incorporated to build cost-sensitive ensembles. Rather than 
altering the base classifier to accept costs during the learning process, cost-sensitive 
ensembles are designed to guide the cost minimisation procedure through the ensem-
ble learning algorithm (López et al. 2013; Fernández et al. 2018). Galar et al. (2012) 
present a comprehensive taxonomy of ensemble methods for learning with imbalanced 
classes in their review. The authors predominantly categorise these ensemble strate-
gies into four distinct families. The first family encompasses cost-sensitive boosting 
methods, while the remaining three families incorporate data preprocessing techniques 
and are further classified based on the ensemble learning algorithm employed, namely 
boosting, bagging, and hybrid ensembles.

For a closer examination of these strategies, Table 1 provides a breakdown of their strengths 
and weaknesses, which have been carefully curated from prior reviews and discussions on 
addressing class imbalance. These strategies enhance model performance and effectively 
tackle class imbalance in various contexts. Data-level strategies offer a promising starting 
point due to their ease of implementation, straightforwardness, flexibility, and versatility, as 
they remain independent of the underlying algorithm. However, they are not without their 
trade-offs. Oversampling techniques risk overfitting and often demand extended training times, 
while undersampling methods can potentially discard informative samples from the majority 
class. In contrast, algorithm-level strategies introduce targeted solutions to class imbalance 
without altering the underlying data distribution. They exhibit an advantage in that they are 
less likely to affect training time, yet they demand an in-depth understanding of the algorithm 
in use and are inherently algorithm-specific, potentially compromising their flexibility and 
ease of implementation. CSL stands out for its computational efficiency and data distribution 
preservation while addressing class imbalance. Nonetheless, it presents challenges in setting 
appropriate misclassification costs, often requiring careful optimisation and facing poten-
tial overfitting to the minority class during cost tuning. Note that a detailed exposition of the 
strengths and weaknesses associated with CSL is provided in Subsection 6.1. Ensemble-based 
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strategies, leveraging multiple classifiers, offer superior predictive performance and improved 
resilience to noise, thereby enhancing generalizability. However, they come with the trade-off 
of reduced model interpretability and increased computational complexity. Considering these 
diverse strategies, researchers and practitioners can select the most suitable solution based on 
the specific problem’s requirements and constraints, as each strategy offers a unique blend of 
advantages and considerations to guide their decision-making process.

2.3 � CSL

This section introduces the core concepts of CSL and presents an illustrative example of cost-
sensitive logistic regression applied to a cervical cancer diagnosis dataset.

2.3.1 � Overview

CSL encompasses a group of algorithms designed to account for varying misclassifica-
tion costs associated with False Positives (FP) and False Negatives (FN). The CSL concept 
becomes particularly relevant in the medical field when examining the consequences of such 
misclassifications. For example, in the context of prognosis, specifically in predicting the risk 
of recurrence in cancer patients, misclassifying patients with a high risk of recurrence as low 
risk is more costly and dangerous than the opposite scenario. Such misclassification can lead 
to inadequate surveillance and delayed interventions, resulting in increased chances of disease 
progression, complications, and higher healthcare costs. On the other hand, misclassifying 
patients with a low risk of recurrence as high risk may result in unnecessary tests, which can 
still incur additional expenses but with less immediate harm to the patient. While misclassifi-
cation costs are the primary focus of this paper, it is worth mentioning that other types of costs 
(Turney 2002), such as attribute costs (Uguroglu et al. 2012), can also be incorporated into the 
learning process.

CSL has gained significant attention in addressing uneven class distributions. Nevertheless, 
it is essential to note that CSL is not limited to imbalanced scenarios but also finds appli-
cation in balanced datasets where misclassifications can have severe outcomes (Fernández 
et al. 2018). While resampling is more commonly employed in imbalanced data settings, CSL 
offers distinct advantages regarding computational efficiency (Haixiang et al. 2017). Further-
more, many empirical studies have showcased the superiority of cost-sensitive techniques over 
resampling techniques in some application domains (He and Garcia 2009).

The efficacy of CSL heavily depends on the supplied cost matrix, which quantifies the 
costs C(i, j) associated with misclassifying samples from one class j as another class i. Table 2 
provides an illustrative example of a cost matrix for a binary classification scenario. These 
cost values can be determined by domain experts or estimated using training data (Fernán-
dez et al. 2018; Ling and Sheng 2008). Notably, cost attribution assumes a higher penalty for 

Table 2   Cost matrix for a binary 
classification scenario

Actual negative Actual positive

Predicted negative C(0,0) Cp=C(0,1)
Predicted positive Cn=C(1,0) C(1,1)
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misclassifying a positive instance compared to a negative one, while correct classifications 
incur no costs ( C(0, 0) = C(1, 1) = 0).

By leveraging the cost matrix, the classification of a given example is guided by the 
minimum expected cost principle (Elkan 2001; López et al. 2013; Fernández et al. 2018; 
Ling and Sheng 2008). Accordingly, the example is classified into the class with the lowest 
expected cost. The expected cost (conditional risk) R(i ∣ x) of classifying an example x into 
class i can be formulated as:

Here, P(j ∣ x) represents the probability estimate of classifying an example x as belonging 
to class j. In the context of binary classification, a cost-sensitive classifier will classify an 
example x into the positive class if and only if the following condition holds true:

This condition can be equivalently restated as:

Considering the assumption that C(0, 0) = C(1, 1) = 0 , the classifier will classify an exam-
ple x as belonging to the positive class if and only if:

As P(0 ∣ x) = 1 − P(1 ∣ x) , a threshold p∗ can be derived for classifying an instance x into 
the positive class if P(1 ∣ x) ≥ p∗ , where:

2.3.2 � Illustrative example

In this subsection, we present an illustrative example designed to provide a clear and 
insightful demonstration of how CSL can be practically applied in medical data analy-
sis. Our focus centres on diagnosing cervical cancer, employing the Cervical Cancer Risk 
Factors dataset (Fernandes et al. 2017). Here, the correct identification of cancer cases is 
prioritised, recognising its greater importance and critical nature compared to identifying 
non-cancer patients.

The Cervical Cancer Risk Factors dataset comprises 858 instances, with 803 catego-
rised as healthy individuals and 55 diagnosed with cervical cancer, resulting in a signifi-
cant class imbalance with an IR of approximately 1:15. This dataset includes 32 distinct 
features related to medical history, habits, and demographic information, all associated 
with the risk factors leading to biopsy examinations for cervical cancer.

Before applying CSL, we performed essential data preprocessing steps, including han-
dling missing values and feature scaling. These steps ensure the dataset is appropriately 
prepared for model training, although detailed elaboration falls beyond the primary focus 
of our discussion. We also split the dataset into training and test sets, allocating 80% for 
training and 20% for testing. The details of this dataset splitting are summarised in Table 3 
below.

(2)R(i ∣ x) =
∑

j

P(j ∣ x) ⋅ C(i, j)

P(0 ∣ x) ⋅ C(1, 0) + P(1 ∣ x) ⋅ C(1, 1) ≤ P(0 ∣ x) ⋅ C(0, 0) + P(1 ∣ x) ⋅ C(0, 1)

P(0 ∣ x) ⋅ (C(1, 0) − C(0, 0)) ≤ P(1 ∣ x) ⋅ (C(0, 1) − C(1, 1))

P(0 ∣ x) ⋅ C(1, 0) ≤ P(1 ∣ x) ⋅ C(0, 1)

(3)p∗ =
C(1, 0)

C(1, 0)+C(0, 1)
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Our construction of the cost matrix follows a common practice in CSL. We set the mis-
classification cost for the majority class (non-cancer cases) to 1 and for the minority class 
(cancer cases) to the IR. The cost matrix is presented in Table 4, and further details on 
selecting misclassification costs are discussed in Subsection 6.1.

For modelling, we opted for logistic regression for its simplicity and wide use in medi-
cal research. The following pseudo-code (Algorithm 1) outlines the steps for training the 
logistic regression model with the cost-sensitive strategy to account for class imbalance:

Algorithm 1   Logistic regression training

Initialise logistic regression model
for each training instance i do

Extract features Xi and true label yi
if yi corresponds to a diagnosis of cervical cancer then

Assign a higher misclassification cost (15)
else

Assign a lower misclassification cost (1)
end if

end for
Train the model with all training instances (X, y) and their assigned costs

In our evaluation, we conducted a comparative analysis of cost-insensitive and cost-sen-
sitive logistic regression to assess the impact of CSL on diagnostic accuracy. We employed 
standard evaluation metrics: accuracy, precision, sensitivity (recall), F1 score and the Area 
Under the Receiver Operating Characteristic Curve (AUC). These metrics allow us to com-
prehensively evaluate the model’s ability to distinguish cervical cancer from non-cancer 
cases. The results of this evaluation are presented in Table 5. For further insights about 
CSL evaluation, we refer readers to the detailed discussion in Sect. 8.

Applying CSL to our model resulted in substantial improvements in key performance 
metrics. Sensitivity increased substantially from 54.5% to 81.8%, allowing us to correctly 
identify 27.3% more cancer cases. This enhancement is pivotal in medical diagnostics, as 
it minimises the risk of missing cases. Moreover, precision improved from 50% to 56.2%, 

Table 3   Cervical cancer risk 
factors dataset splitting details

Total instances Cancer 
instances

Non-
cancer 
instances

Training set 686 44 642
Test set 172 11 161

Table 4   Cost matrix for the 
illustrative example on cervical 
cancer diagnosis

Actual non-cancer Actual cancer

Predicted non-cancer 0 15
Predicted cancer 1 0
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indicating increased accuracy in positive predictions and fewer false alarms. The F1 score 
rose from 52.2% to 66.6%, achieving a better balance between missed cases and false 
alarms. The AUC also increased from 89.2% to 95.4%, demonstrating the model’s height-
ened ability to distinguish cancer from non-cancer cases. While there was a slight improve-
ment in accuracy, rising from 93.6% to 94.8%, this demonstrates a modest yet valuable 
boost in overall classification correctness.

In essence, CSL elevated our model’s cancer diagnosis capabilities and refined its preci-
sion, making it a valuable tool for cervical cancer diagnosis. It is important to note that this 
analysis represents an illustrative simple example, and CSL’s benefits can extend further in 
more complex medical scenarios.

3 � Methodology

The present study follows the guidelines proposed by Petersen et al. (2015). The process 
covers: (i) clearly defining the RQs, (ii) developing a comprehensive search strategy to 
identify relevant papers, (iii) screening the identified papers based on inclusion and exclu-
sion criteria, (iv) designing a classification scheme, and (v) data extraction and analysis.

3.1 � Research questions

This study aims to provide an overview and a structured understanding of the existing lit-
erature on using CSL for imbalanced medical data. To this end, nine RQs were identified 
and are presented along with their rationales in Table 6.

3.2 � Search strategy

The search is conducted in five digital libraries: PubMed, ScienceDirect, IEEE Xplore, 
SpringerLink, and Google Scholar from January 2010 until December 2022. These librar-
ies were chosen based on their extensive coverage of peer-reviewed publications in the 
fields of medicine and health sciences, as well as computer science and engineering.

The search string was formulated based on the principal terms from the RQs and the 
PICO (Population, Intervention, Comparison, and Outcomes) framework (Kitchenham 
and Charters 2007). Note that the third and fourth letters of PICO were not included in 
the search string formulation since neither empirical comparison nor measurable out-
comes were considered in this study. Additionally, the search string was expanded to 

Table 5   Comparative analysis 
of cost-insensitive and cost-
sensitive logistic regression for 
cervical cancer diagnosis

Metric Cost-insensitive model Cost-
sensitive 
model

Accuracy 93.6% 94.8%
Precision 50% 56.2%
Sensitivity 54.5% 81.8%
F1 score 52.2% 66.6%
AUC​ 89.2% 95.4%
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include alternative spellings and synonyms of the derived terms to ensure a comprehen-
sive search.

The main search terms were initially linked with their substitutes using the Boolean 
operator “OR” and were joined using “AND” afterwards. Table 7 exhibits the complete 
search string, where the “scope” column demonstrates the main terms and the “search 
terms” column displays the related keywords.

3.3 � Study selection

The Inclusion Criteria (IC) and Exclusion Criteria (EC) utilised to identify the relevant 
papers are presented in Table 8. The systematic selection process involved a multi-tiered 
approach, as outlined below: 

1.	 Initial Screening: The evaluation of titles, abstracts, and keywords of papers obtained 
from the selected databases was initiated. This initial review facilitated the exclusion of 
papers that were clearly irrelevant to the study, thereby streamlining the candidate pool.

2.	 Extended Review: In cases where uncertainty about a paper’s relevance remained after 
the initial screening, a more thorough examination was undertaken. This involved 
reviewing the paper’s introduction, discussion, and conclusion sections to help deter-
mine whether it should be included in the study.

3.	 Full-Text Review: Full-text reading was selectively performed when the information 
obtained during the extended review was insufficient to decide on a paper’s relevance 
to the study.

One author conducted the initial examination of the papers, and the remaining authors 
evaluated the final selection. Any disagreements during this process were resolved 
through constructive discussions in meetings, ultimately leading to a consensus on the 
final set of included studies.

Table 7   Search string

Scope Search terms

Medicine Health* OR Medic* OR Disease OR Clinic*
AND Artificial Intelligence “Machine Learning” OR “Deep Learning” OR Intelligen* OR Classif* OR 

Predict* OR Diagnos* OR Prognos*
AND Technique Technique OR Method OR Tool OR Model OR Algorithm OR Approach OR 

Framework
AND CSL “Cost sensitive” OR Cost-sensitive OR “weighted cost function” OR 

“weighted loss function” OR “class weighting” OR re-weighting
AND Imbalance Imbalance* OR unbalance* OR “skewed class distribution” OR under-repre-

sented OR “majority class” OR “minority class”
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3.4 � Quality assessment

While Quality Assessment (QA) remains optional in the guidelines followed, it is still 
recommended (Petersen et al. 2015) as it can help minimise the risk of bias, guide the 
interpretation of findings, and determine the strength of inferences (Kitchenham and 
Charters 2007), thereby improving the overall validity of the study.

Each paper was evaluated by two authors based on the checklist in Table 9 to ensure 
that the selected studies are of sufficient quality and provide reliable and valid evidence 
to address the RQs. The checklist comprised six QA criteria, but only QA5 and QA6 
were deemed relevant for reviews and theoretical papers. The decision to exclude the 
first four criteria was based on their applicability to empirical studies only, and their use 
for reviews and theoretical papers may have compromised their eligibility for inclusion 
in this study.

3.5 � Data extraction strategy and synthesis

In this phase, a data extraction form was developed to retrieve relevant information from 
the selected papers, addressing the RQs in Table 6. The structure of the form is detailed 
in Table 10. One author conducted the task meticulously, while the other two authors 
rigorously reviewed the extracted data to ensure its accuracy and objectivity.

Data synthesis aims to summarise and synthesise the extracted data pertaining to 
each RQ. The vote-counting method is utilised to aid in result interpretation, followed 
by a narrative synthesis to comprehensively report and discuss the outcomes for each 

Table 8   Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

IC1: Studies developing new or using existing cost-
sensitive techniques in medicine

EC1: Papers published earlier than January 2010 or 
later than December 2022

IC2: Papers focusing mainly on cost-sensitive mod-
els in medicine, whether or not comparing them 
to other balancing techniques

EC2: Papers using several datasets from multiple 
areas with a mere presence of medical ones

IC3: Papers presenting fair comparisons of several 
balancing techniques in medicine, including cost-
sensitive methods

EC3: Papers using cost-sensitive techniques in public 
health, biology, pharmacology, or genomics

IC4: Papers presenting comparisons between CSL 
methods in medicine without proposing any newly 
developed techniques

EC4: Papers available as abstracts, posters, book 
chapters (excluded due to potential duplication with 
previously published conference or journal papers), 
or presentations

IC5: Papers providing an overview of studies inves-
tigating cost-sensitive methods in medicine

EC5: Non-peer-reviewed papers

IC6: Papers combining cost-sensitive methods with 
other balancing techniques in medicine

EC6: Duplicate publications of the same study

EC7: Studies published in languages other than 
English

EC8: Short papers
EC9: Papers for which the full texts are not available
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question. Additionally, visual representations in the form of charts and tables are incor-
porated to enhance the clarity and presentation of the findings.

3.6 � Study selection results

Figure 1 displays the number of articles at each stage of the selection process. Initially, 
49325 candidate papers were identified, from which 49124 studies were discarded accord-
ing to the IC and EC. 28 studies that did not fulfil the QA criteria were later excluded. 
Eventually, 173 papers were retained to answer the RQs. The list of selected papers and 
their extracted data can be obtained through an email request to the authors.

4 � Statistical trends

This section presents a detailed analysis of the statistical trends observed among the 
selected studies.

4.1 � Publication trends

Figure 2 shows the number of selected studies per publication channel from January 2010 
to December 2022. Three main channels were identified: journals, conferences, and work-
shops. Out of the 173 selected studies, the majority, precisely 69.9% (121 papers), were 
published in journals, 27.2% (47 papers) were published in conference proceedings, and 
only 2.9% (five papers) were published in workshops. Table  11 outlines the publication 
sources that have published more than two papers. The findings indicate that Computer 
Methods and Programs in Biomedicine was the most commonly targeted journal venue, 
while the International Conference on Medical Image Computing and Computer-Assisted 
Intervention (MICCAI) emerged as the most frequently occurring source for conference 
papers. Chronologically speaking, conference papers were the dominant publication type 

Table 9   QA checklist

ID Questions Possible answers and scoring

QA1 Does the study give clear empirical results? Yes (+1), No (+0)
QA2 Does the study give a justified empirical design? Yes (+1), No (+0), Partially (+0.5)
QA3 Does the study evaluate the performance of the developed 

solution?
Yes (+1), No (+0), Partially (+0.5)

QA4 Is the proposed solution in the study compared to other solu-
tions?

Yes (+1), No (+0)

QA5 Does the study explicitly present the proposed method’s ben-
efits and limitations?

Yes (+1), No (+0), Partially (+0.5)

QA6 Is the study published in a recognised source? For conferences and workshops:
Core2021: A/A* (+1.5), B (+1), C 

(+0.5), No Rank (+0)
For journals:
JCR2021: Q1 (+2), Q2 (+1.5), Q3 

(+1), No Rank (+0)
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in 2012 and 2013. However, the trend shifted in 2014 as the journal publication frequency 
surpassed that of conference papers in subsequent years. A key observation is that the 
gap between the two types of publications became increasingly pronounced from 2020 
onwards. The analysis further revealed a growing trend of publications, particularly since 
2020, when the count peaked significantly. Notably, no study was published in 2010, and 
only one workshop paper was published in 2011.

The dearth of published papers in 2010–2011 and the dominance of conference papers 
until 2013 suggest that CSL research in the medical field was in its early stages. However, 
as the field progressed, researchers began to prioritise top-tier journals due to their strict 
review processes and higher publication standards, resulting in more rigorous research. 
This shift towards journal publications started in 2014 when the number of journal arti-
cles surpassed conference papers and continued to widen in subsequent years. This trend 

Table 10   Data extraction form

Study identifier
Title
Publication year
Authors
Abstract
Digital library
RQ1: In which years, publication channels, and sources were the selected papers published?
Publication years, channels (journal, conference, or workshop), and sources were extracted to address this 

question.
RQ2: What types of research were published?
The research types were categorised as follows: evaluation research, validation research, solution pro-

posal, review, and others (philosophical papers, opinion papers, and experience papers) (Petersen et al. 
2015).

RQ3: Which empirical methods are used to evaluate cost-sensitive models in medicine?
The empirical methods can be classified as historical-based evaluation, case study, or survey (Petersen 

et al. 2015).
RQ4: In which disciplines of medicine was CSL mainly employed?
Each paper was examined to determine its specific medical focus, encompassing disciplines such as 

oncology, cardiology, ophthalmology, and others, as detailed exhaustively in (Careers in medicine 
2023).

RQ5: Which medical tasks are addressed in the selected papers?
The medical tasks can be classified into screening, diagnosis, prognosis, treatment, monitoring, and man-

agement (Esfandiari et al. 2014).
RQ6: Which CSL approaches were most frequently used in medicine?
The developed cost-sensitive methods in the selected studies were identified. These methods can be clas-

sified as either direct or meta-learning approaches. The latter could further be classified as preprocess-
ing or postprocessing methods (Fernández et al. 2018).

RQ7: What are the strengths and weaknesses of cost-sensitive methods in medicine?
The strengths and weaknesses of CSL, CSL approaches, and some selected works were outlined.
RQ8: What are the frequently used medical datasets, data types, and metrics to assess the performance of 

cost-sensitive models?
The frequently used medical datasets, data types (numeric, categorical, time series, images, or text), and 

evaluation metrics were retrieved.
RQ9: Which development tools are used for cost-sensitive techniques’ implementation?
The reported development tools (programming language, package, or software) were identified.
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indicates a maturing field and researchers increasingly meeting the demanding standards of 
high-quality journals.

The growing interest and abundance of publications on CSL can be attributed to sev-
eral key factors. Firstly, the development of high-throughput technologies has resulted 
in massive amounts of medical data (Johnson et  al. 2018), including clinical data, elec-
tronic health records, and data from wearable devices. These advancements in data col-
lection have created an urgent need for novel methods to analyse and leverage this data for 
improved medical outcomes. Secondly, the inherent imbalanced nature of this collected 

Fig. 1   Selection process

Fig. 2   Distribution of the selected papers per publication year and channel
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data poses a critical challenge that impacts the accuracy and reliability of ML models in 
medical applications. Thirdly, the significant advances in CSL algorithms (Khan et  al. 
2018) and their success in other fields (Sahin et al. 2013) have encouraged researchers to 
apply these techniques in the medical domain, where they are much needed. Additionally, 
the advances in Deep Learning (DL) techniques have been a significant catalyst for pro-
gress in medical data analysis (Esteva et al. 2019). Finally, the increasing availability of 
public datasets and tools for analysing medical data has facilitated the dissemination and 
replication of research findings. As a result, the research community has become more 
aware of the importance of addressing the imbalance problem, leading to a surge in publi-
cations on this topic, particularly in recent years.

Besides, the findings revealed diverse publication sources covering various disciplines 
such as medicine, medical informatics, computer science, and artificial intelligence. This 
diversity reflects the interdisciplinary nature of the research topic, requiring a multi-faceted 
approach that draws on expertise from different fields.

4.2 � Research types

After scrutinising the selected studies, four distinct research types were identified: Eval-
uation Research (ER), Validation Research (VR), Solution Proposal (SP), and reviews. 
No other research types were observed. Of the studied literature, 147 papers (85%) were 
found to be both SP and ER, introducing new or improved cost-sensitive methods and 
testing them on medical data. ER was the second most frequent type, comprising 23 
studies (13.3%), whereas VR was the focus of only two papers (1.2%) published in the 

Table 11   Publication sources

Journal source #Papers Percentage

Computer Methods and Programs in Biomedicine 9 5.2%
Computers in Biology and Medicine 8 4.6%
BMC Medical Informatics and Decision Making 5 2.9%
Neurocomputing 5 2.9%
Multimedia Tools and Applications 5 2.9%
Medical Image Analysis 4 2.3%
Biomedical Signal Processing and Control 4 2.3%
Artificial Intelligence in Medicine 3 1.7%
Applied Soft Computing 3 1.7%
Other 75 43.4%

Conference source #Papers Percentage

International Conference on Medical Image Computing and 
Computer-Assisted Intervention (MICCAI)

5 2.9%

Other 42 24.3%

Workshop source #Papers Percentage

International Workshop on Machine Learning in Medical Imaging 
(MLMI)

3 1.7%

Other 2 1.2%
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years 2018 and 2021 (Wang et  al. 2018a; Aldraimli et  al. 2021). Notably, one paper 
(0.6%) in 2021 stood out as a combined review and ER effort, initially surveying exist-
ing methods before conducting performance benchmarking (Rahman et al. 2021b).

The evolution over time of the two most frequent research types, ER and SP, is dis-
played in Fig. 3. It is apparent from the line chart that the number of SP with ER was 
consistently higher than that of ER alone. The number of papers proposing new cost-
sensitive techniques or enhancing existing ones rose from 2011 to 2013, peaking at six 
papers per year before falling in 2014 and levelling off at three papers until 2016. After 
that, SP+ER studies surged significantly, especially after 2020, with the highest num-
ber of papers (52) published in 2022. Conversely, the trend for studies evaluating exist-
ing solutions followed a different pattern. They first appeared in 2012 with one paper, 
peaked at three papers in 2013, and then declined to zero papers in 2016, where they 
remained until 2019, except for one paper published in 2017. In 2020, five ER studies 
resurfaced, increasing slightly to six studies in 2021 and then falling to four studies in 
2022.

The analysis revealed that all the papers proposing new CSL methods also conducted 
experimental evaluations to demonstrate their effectiveness. This is a noteworthy point, 
as it indicates that researchers are not simply proposing theoretical solutions but are also 
committed to demonstrating the practical value of their work.

Furthermore, the dominance of SP+ER papers in the literature suggests that 
researchers primarily focus on proposing new methods for CSL rather than evaluating 
existing solutions. While this could be attributed to the complexity of the CSL problem 
and the unique challenges posed by imbalanced medical data, it also indicates the sig-
nificant investment and interest in advancing the state-of-the-art in this area. The surge 
of SP+ER studies after 2020 suggests an increasing awareness of the importance of 
effective CSL methods in medical applications. This trend is further fueled by advance-
ments in ML, the availability of larger datasets, and increasing computational resources, 

Fig. 3   Evolution of research types per year
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enabling researchers to develop more effective CSL techniques and conduct more exten-
sive and complex experiments.

Out of all the selected papers, only two focused on validating cost-sensitive methods, 
which may be attributed to the challenges associated with conducting validation studies in 
hospital settings. Such studies require close collaboration with medical professionals and 
access to sensitive patient data. Nevertheless, the limited number of validation studies sug-
gests a need for further research to demonstrate and validate the practical value of CSL 
in real-world medical settings. Besides, the fact that there is only one review paper in the 
literature points to the necessity for more synthesis and critical evaluation of existing CSL 
methods in medicine.

Overall, the findings suggest a promising outlook for the future of CSL for medical data 
but also underscore the need for continued validation and rigorous evaluation of the devel-
oped techniques.

4.3 � Empirical types

The selected studies were evaluated using three empirical methods: Case Study (CS), His-
torical-Based evaluation (HBE), and survey. Figure 4 illustrates the distribution of research 
and empirical types. It can be observed from the bubble plot that HBE was the most prev-
alent empirical type, with 117 papers (65.4%) using publicly available medical datasets 
to assess their models. Of these papers, the majority (105) proposed and evaluated novel 
or improved solutions, 11 studies evaluated existing ones, and only one study was dedi-
cated to reviewing and evaluating previously suggested methods. The CS empirical type 
ranked second, with 60 papers (33.5%) using real-world datasets from hospitals or health-
care units. Among these papers, 46 were classified as SP studies, 12 as ER studies, and 
two as VR studies. By contrast, survey-based evaluations were relatively uncommon, with 
only two SP studies (1.1%) employing this method. It is worth noting that six papers used 
both public and real-life datasets and were hence double-counted in HBE and CS empirical 
types. Besides, 12 CS papers used real-world data from their previous works.

The prevalence of HBE studies indicates that many scholars rely on existing, pub-
licly available datasets to assess their models. This practice partly owes to the abundance 
and ease of accessibility of historical data. However, it also stems from the challenges 

Fig. 4   Distribution of the selected studies per research and empirical types
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associated with obtaining real-world medical data, including ethical and legal considera-
tions (Mello et al. 2018). HBE is considered a cost-effective and accessible way to evaluate 
models on a large scale and benchmark novel solutions against existing literature. Nonethe-
less, it is essential to recognise that HBE may not accurately reflect the complexities and 
nuances of real-world medical data. Therefore, researchers may need to supplement their 
HBE findings with other empirical methods, such as CS.

A less yet significant number of papers used CS with real-world data collected from 
healthcare units or hospitals. This indicates that researchers are keenly interested in testing 
their models in practical settings to ensure their applicability. CS provides a more detailed 
and nuanced understanding of how models perform in specific contexts and can prove val-
uable in validating or fine-tuning models developed using publicly available datasets. How-
ever, it is worth acknowledging that CS is typically more resource-intensive than HBE and 
requires collaboration with medical professionals and institutions.

Combining public and real-life medical datasets demonstrates an understanding of the 
strengths and limitations of each. Four papers merged these two types of data and employed 
the CS type for tasks such as collecting healthy controls (Wang et  al. 2018b), gathering 
additional negative samples (Calderon-Ramirez et al. 2021), or testing solutions after train-
ing on historical data (Pranto et al. 2020). While this approach may enhance models’ gen-
eralizability and practical applicability, it may also introduce complexity by requiring addi-
tional preprocessing to ensure data comparability and consistency, as highlighted by Wang 
et al. (2018b). Therefore, researchers using this approach should be transparent about their 
methodology. The remaining two studies (Hu et  al. 2021; Xu et  al. 2020) employed the 
datasets separately to assess the generalizability of their methods. By testing their models 
on datasets with diverse characteristics and features, researchers can assess how well their 
models perform in various settings and contexts, contributing to their research’s overall 
reliability and validity.

The relatively limited number of survey-based evaluations may be attributed to the inher-
ent challenges associated with effectively designing and implementing surveys and the mul-
tiple sources of bias (Cunningham et al. 2015) that may arise. These sources of bias include, 
among others: non-response bias, which occurs when patients who choose not to participate 
in the survey are systematically different from those who do participate; social desirability 
bias, which stems from respondents providing answers they perceive to be socially desirable 
rather than truthful; recall bias, which arises from patients inaccurately recalling past events 
or experiences, such as the duration and timing of symptoms or treatments; and instrument 
bias, which can occur if the survey instrument itself is flawed or biased, such as when a ques-
tion is phrased confusingly, potentially distorting the accuracy of responses.

4.4 � Medical disciplines

The 173 selected studies collectively explored 21 distinct medical disciplines. Interestingly, 17 
papers addressed more than one discipline, either by investigating a topic at the intersection of 
two medical sub-fields (e.g., (Sung et al. 2021)) or by testing their methods on a diverse range 
of disciplines (e.g., (Gan et al. 2020)). Figure 5 showcases the distribution of studies per medi-
cal sub-field, focusing solely on sub-fields addressed by at least 2% of the selected papers.

The findings revealed that oncology emerged as the discipline garnering the high-
est degree of attention, accounting for 31.2% (54 papers) of the selected studies. As per 
the World Health Organization (WHO), cancer is a leading cause of mortality globally, 
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accounting for approximately 10 million deaths in 2020 alone (World Health Organi-
zation 2022). The significance of accurate and timely diagnosis and treatment is para-
mount, and ML techniques hold great promise in this regard. However, cancer is a highly 
heterogeneous disease that can manifest differently in each patient. Additionally, patients 
often present with complex medical histories and comorbidities, which can complicate 
diagnosis and treatment. These factors can contribute to imbalanced medical data, mak-
ing CSL an attractive approach to address these challenges and improve cancer care.

Cardiology and neurology received significant focus in subsequent order, constituting 15% 
(26 papers) and 12.7% (22 papers) of the investigated literature, respectively. CSL has demon-
strated significant benefits in addressing cardiovascular and neurological diseases, widely rec-
ognised as significant health concerns. This finding is in line with the WHO’s report (2021), 
which identifies cardiovascular diseases as the primary cause of mortality globally, responsible 
for 17.9 million deaths in 2019. Additionally, the WHO acknowledges that neurological disor-
ders such as stroke, Alzheimer’s disease, and other dementias are among the leading causes of 
disability and death worldwide (World Health Organization 2016). Given the high mortality 
rate associated with these diseases, accurate predictions are imperative. However, data imbal-
ance can lead to biased models that fail to capture important patterns in the data. By adopting 
CSL, researchers aim to improve prediction accuracy and contribute to preserving human life.

Infectious diseases occupy the fourth position, representing 8.7% (15 papers) of the 
total studies. Notable attention has been dedicated to researching this sub-field since 2020. 
This trend is not surprising, considering the urgency and global impact of the COVID-19 

Fig. 5   Distribution of the selected papers per medical discipline
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pandemic, which first emerged in 2019 and has since garnered substantial research attention. 
Additionally, imbalanced data is a common issue in COVID-19 studies due to various factors 
such as differences in testing availability and criteria, variations in reporting standards, differ-
ences in demographics, healthcare infrastructure, and compliance with public health meas-
ures. Besides, there may be a publication bias towards COVID-19 studies due to the pandem-
ic’s global impact, and funding agencies may have prioritised research on this topic. Lastly, 
data availability may have contributed to the popularity of COVID-19 as a research subject.

Other medical sub-fields, such as ophthalmology, endocrinology, and hepatology, were 
investigated by 11 papers (6.8%) each, demonstrating the relevance of cost-sensitive meth-
ods in these domains. Galdran and colleagues (2020) highlighted the value of cost-sensi-
tive classifiers in addressing two critical challenges in diabetic retinopathy grading. These 
classifiers can effectively model the complex structure of a heterogeneous label space and 
are also advantageous in addressing severely class-imbalanced scenarios. Fan et al. (2022) 
pointed out the inadequacy of conventional models in considering the imbalanced distri-
bution of diabetic datasets and the varying misclassification costs across distinct patient 
categories. In a previous study by Yang et al. (2021), the predictive accuracy of traditional 
ML methods and cost-sensitive models were compared for predicting hepatic encephalopa-
thy in cirrhotic patients. The study’s results demonstrated the superiority of cost-sensitive 
models, underscoring their high suitability and potential for future prognosis studies.

Pulmonology was featured in 8 articles (4.6%), and nephrology, dermatology, and 
medical and health services were each investigated by six studies (3.5%). On the other 
hand, emergency medicine (2.9%), radiology (2.9%), and obstetrics & gynecology (2.9%) 
received relatively little attention, as did orthopaedics, which was addressed by only 2.3% 
of the selected studies (four papers).

Disciplines that received the least amount of attention in the selected studies were clas-
sified as "other," which included geriatric psychiatry and neonatology, each addressed by 
two papers (1.2%), as well as intensive care, radiomics, urology, and podiatry, which were 
each the focus of only one study (0.6%). This may be explained by factors such as limited 
data availability and researchers prioritising other research areas deemed more crucial and 
pertinent to patient care.

4.5 � Medical tasks

Upon rigorous analysis, it was observed that all six predefined medical tasks, namely 
screening, diagnosis, prognosis, management, monitoring, and treatment, were covered in 
the selected literature. Notably, a small subset of seven papers delved into multiple medical 
tasks, owing to their utilisation of diverse datasets associated with distinct objectives.

The distribution of studies per medical task is graphically presented in Fig. 6, providing 
a clear overview of the prevalence of each task within the selected studies. The findings 
unveiled diagnosis as the most extensively explored medical task, dominating the literature 
with an overwhelming majority of 66.5% (115 papers). This dominance can be attributed 
to a multitude of factors. Foremost, diagnosis is the keystone of patient care and treatment 
decisions, guiding healthcare professionals in determining appropriate therapeutic inter-
ventions. Accurate and timely diagnosis allows for identifying the most suitable treatment 
strategies (Mirbabaie et  al. 2021), thereby increasing survival prospects and enhancing 
patient well-being. Recognising this fundamental role, researchers and practitioners invest 
significant efforts in developing effective and accurate diagnostic models and algorithms. 
Moreover, the availability of diverse and well-annotated datasets specifically designed for 
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diagnostic purposes contributes to the preponderance of diagnosis-focused studies. These 
datasets serve as invaluable resources for training and evaluating diagnostic algorithms, 
encompassing various medical conditions and their associated diagnostic information. Fur-
thermore, the relatively lower frequency of certain medical conditions within the popula-
tion results in a scarcity of positive instances. This inherent imbalance within diagnostic 
datasets further accentuates the significance of exploring and advancing diagnostic meth-
odologies. Additionally, the diagnostic process itself can introduce imbalances in datasets 
due to the requirement of invasive procedures or expensive tests to confirm certain cases. 
As a result, researchers are actively exploring CSL techniques tailored to address the chal-
lenges posed by imbalanced diagnostic datasets.

Prognosis ranked second in terms of research focus, accounting for 13.3% (23 papers) of 
the selected studies. The presence of a substantial body of research focused on prognostic 
prediction underscores its significance in medical research. The study of prognosis holds 
paramount importance in understanding and predicting the future course of various medi-
cal conditions (Moons et al. 2009). It provides healthcare professionals with vital insights 
into potential outcomes, recovery rates, disease progression, and possible complications. 
This information enables informed decision-making regarding treatment options, care 
plans, and patient management strategies. Furthermore, the emphasis on prognosis aligns 
with the contemporary shift towards precision medicine and patient-centred care (König 
et al. 2017). By customising interventions based on individual predictions, healthcare pro-
viders can improve patient outcomes and enhance the overall quality of care.

Screening was represented by 9.8% (17 papers) of the selected studies, highlighting 
the importance of early detection in the medical domain. Researchers have recognised the 
importance of developing effective techniques and models to identify individuals at risk or 
needing further diagnostic evaluation. Furthermore, the presence of 14 papers (8.1%) dedi-
cated to treatment highlights the efforts invested in optimising therapeutic interventions and 
evaluating their effectiveness. These papers explore various treatment modalities, including 

Fig. 6   Distribution of the selected papers per medical task
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pharmacological interventions (e.g. Wu et  al. 2022), surgical procedures (e.g. Dorado-
Moreno et al. 2017) and non-pharmacological approaches (e.g. Aldraimli et al. 2022).

On the other hand, management was featured in a limited number of seven papers 
(4%). The relatively scant attention given to this particular medical task may be attributed 
to various factors. One potential explanation is that management often involves intricate 
and multi-faceted strategies, which necessitate a combination of clinical expertise, patient 
engagement, and healthcare system considerations, which may be challenging to capture 
solely through data-driven approaches. Additionally, the focus on other medical tasks, 
namely diagnosis, prognosis, screening, and treatment in the selected studies, reflects the 
immediate priorities in medical research, where there is substantial stress on improving 
diagnostic accuracy, predicting clinical results, and optimising treatment interventions. 
However, despite the scarcity of selected papers on management, it remains a critical aspect 
of healthcare research. Effective management strategies can significantly impact long-term 
patient outcomes, quality of care, and resource allocation (Esfandiari et al. 2014). The pau-
city of publications highlights the need for future investigations and multidisciplinary col-
laborations to address the complexities of managing medical conditions.

The monitoring task exhibited the lowest representation within selected research, with a 
modest inclusion of only five papers (2.9%). This disparity in attention can be attributed to 
the immediate impact that other medical tasks hold, which often overshadows the percep-
tion of monitoring as a complementary aspect of care rather than a primary focus. Moreo-
ver, the findings may be elucidated by considering data and research resources availability. 
Monitoring requires longitudinal data collection and continuous observation of patients 
(Esfandiari et al. 2014), which can be challenging and resource-intensive. Researchers may 
face constraints when seeking access to large-scale, high-quality monitoring data, result-
ing in fewer studies in this area. Nonetheless, the limited number of papers on monitoring 
does not diminish its importance in healthcare. Monitoring assumes a crucial function in 
evaluating treatment efficacy, identifying early signs of complications, and ensuring patient 
safety (Khan et al. 2016). Moving forward, future research needs to consider the signifi-
cance of monitoring in providing comprehensive patient care. Furthermore, researchers 
should explore innovative approaches to address the challenges encountered in monitoring 
within medical research.

5 � CSL approaches

This section extensively examines CSL approaches, providing detailed explanations for 
each approach and highlighting their prevalence across the selected research papers.

5.1 � Overview

CSL techniques can be broadly classified into two categories: direct approaches and meta-
learning approaches (Fernández et  al. 2018; Liu et  al. 2021; Johnson and Khoshgoftaar 
2019; Ling and Sheng 2008; Sheng and Ling 2006). The former category modifies the 
learning algorithms by incorporating misclassification costs during the model train-
ing phase (Fernández et al. 2018; Feng et al. 2020). Conversely, the latter category does 
not alter the learning algorithms per se (Liu et  al. 2021). Instead, meta-learning adjusts 
the training data (preprocessing) or the model’s outputs (postprocessing) to ensure cost 
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sensitivity. Popular preprocessing techniques include instance weighting based on a cost 
matrix and MetaCost (Fernández et al. 2018), which relabels the training data according to 
misclassification costs. Postprocessing techniques, meanwhile, often involve adjusting the 
decision thresholds based on the predefined costs (Fernández et al. 2018; Liu et al. 2021).

5.1.1 � Direct approaches

The fundamental concept behind developing a direct cost-sensitive algorithm involves 
directly incorporating misclassification costs into the underlying learning algorithm. This 
integration is designed to elevate the significance of the positive class. As a result, the opti-
misation process transitions from minimising total error to minimising total cost (John-
son and Khoshgoftaar 2019). Numerous research efforts within the literature have explored 
direct approaches, yielding multiple cost-sensitive adaptations of conventional algorithms. 
One such algorithm, decision trees (Ling et al. 2004), has seen extensive utilisation in prior 
studies.

In their work, Ling and colleagues (2004) presented a cost-sensitive modification of 
decision trees that considers both attribute and misclassification costs with equal impor-
tance. This consideration enables the algorithm to handle data imbalance while minimising 
the feature-related costs. We present a simplified summary of the procedure through a six-
step process as follows: 

1.	 Data preprocessing: 

(a)	 Discretise numerical attributes if necessary
(b)	 Assign cost values for FP and FN ( Cn and Cp)

2.	 Attribute selection and splitting: 

(a)	 Calculate the total cost of splitting based on test cost and misclassification cost
(b)	 Choose the attribute that minimises the total cost as the splitting attribute
(c)	 If attribute costs are non-zero, select attributes that can improve predictive accu-

racy while minimising the cost

3.	 Handling unknown attribute values: 

(a)	 Treat missing values as a special category
(b)	 Do not build leaves or sub-trees for instances with unknown values
(c)	 Keep examples with unknown values within the node representing the attribute

4.	 Leaf labelling: 

(a)	 At each leaf node, determine whether it should be labelled positive or negative 
based on cost minimisation

(b)	 Compare the cost of predicting negative (FP) with predicting positive (FN): if 
(Np × Cp) > (Nn × Cn) , label the leaf as positive; otherwise, label it as negative. 
Here, Np and Nn represent the number of positive and negative instances in the 
leaf node, respectively.
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5.	 Tree expansion: 

(a)	 Continue the process recursively for examples falling into branches of the splitting 
attribute

(b)	 If the cost of splitting further is not beneficial, stop building sub-trees and create 
a leaf node

6.	 Overfitting control (optional): While the algorithm does not incorporate tree pruning 
in its basic form, consider adding post-tree pruning procedures to simplify the tree if 
needed. Pruning can help control overfitting in scenarios where the tree becomes too 
complex.

In the scope of direct approaches, other adaptations have emerged beyond decision trees. 
For instance, a straightforward method can be employed to make K-Nearest Neighbors 
(KNN) cost-sensitive (Qin et al. 2013; Zhang 2020). In this method, standard KNN is used 
for training a classifier. When predicting the class for a test sample, k nearest neighbours 
are selected from the training data. The class probabilities are estimated by considering the 
ratio of the number of neighbours from each class to the total number of neighbours:

where ki is the number of k nearest neighbours for class i. By adhering to the minimum 
expected cost principle and employing Eqs. 2 and 4, the optimal class label for each test 
sample can be computed straightforwardly. Other examples include Support Vector 
Machines (SVM) (Iranmehr et al. 2019), artificial neural networks (Kukar and Kononenko 
1998), Naïve Bayes (Di Nunzio 2014) and random forest (Devi et al. 2019), among several 
others.

Another aspect of direct approaches involves new cost-sensitive loss functions that 
enable the minority samples to contribute more to the loss (Johnson and Khoshgoftaar 
2019). These specialised loss functions are designed to address class imbalance by assign-
ing higher penalties to the misclassification of minority class instances. Several popular 
cost-sensitive loss functions have been proposed in the literature. One notable example is 
the weighted cross-entropy loss (Naceur et al. 2020; Rahman et al. 2021b; Punn and Agar-
wal 2021), a modification of the standard cross-entropy loss function used in classification 
problems. The weighted cross-entropy loss can be expressed as:

where K is the number of classes, Ci is the cost associated with class i, and yi is the true 
label for class i.

Additionally, the Focal loss function was initially proposed by Lin et  al. (2020) for 
object detection tasks, where positive foreground samples are significantly outnumbered by 
negative background samples (Johnson and Khoshgoftaar 2019).

Focal loss provides a dynamic weighting scheme that downplays easily classified 
instances and emphasises hard-to-classify ones, effectively giving more significance to 
minority class samples. This is accomplished by multiplying the cross-entropy loss by 
a scaling factor, �i(1 − P(i|x))� . The hyperparameter � controls the extent to which easy 
examples are de-emphasised, while �i serves as a class-specific weight to increase the 

(4)P(i|x) =
ki

k

(5)L = −
∑K

i=1
Ciyi log(P(i|x))
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importance of the minority class (Johnson and Khoshgoftaar 2019; Lee et  al. 2023; Lu 
et al. 2021; Li et al. 2022b).

In addition to the weighted cross-entropy loss and Focal loss functions, other cost-sen-
sitive loss functions proposed in the literature include Dice loss (Shirokikh et  al. 2020; 
Taghanaki et al. 2019), asymmetric similarity loss Shirokikh et al. (2020), weighted hinge 
loss (Wu et al. 2022), and accelerated Tversky loss (Nasalwai et al. 2021).

5.1.2 � Instance weighting

In contrast to direct approaches, instance weighting presents a different way of addressing 
misclassification costs. In this method, greater emphasis is placed on positive instances with 
higher misclassification costs by assigning them higher weights. Notably, instance weighting 
operates as a preprocessing solution, diverging from resampling, as it preserves the size of the 
original training set. To ensure a clear exposition of how cost-sensitivity is achieved through 
instance weighting, its utilisation within decision trees as an example is expounded upon.

Distinct from the direct incorporation of costs into split creation, Ting (2002) pro-
posed a simple method for assigning instance weights to induce cost-sensitive trees. This 
method can be seamlessly applied to any existing tree learning. The procedure is as follows 
(Fernández et al. 2018; Ting 2002): 

1.	 Initially, the cost matrix must be transformed into a cost vector for each class. The 
conversion formula proposed by Breiman et al. (1984) is employed: 

 where C(i, j) is the cost of misclassifying an instance from class j as belonging to class 
i, and I is the number of classes.

2.	 Next, the weight of class j is calculated as: 

 In the context of this equation, N represents the total number of instances within the 
training set, Ni signifies the count of instances belonging to class j, and the summation 
of all instance weights can be expressed as 

∑
j w(j)Nj = N.When C(j) ≥ 1 , the weight 

w(j) assumes its minimum value 0 <
N∑

i C(i)Ni

≤ 1 when C(j) = 1 and reaches its maxi-

mum value w(j) = C(j)
∑

i Ni∑
i C(i)Ni

≥ 1 when C(j) = maxi C(i).
3.	 The following equation is employed to derive the ratio of the total weight of instances 

belonging to class j to the total weight in node t: 

4.	 Any chosen training procedure for constructing decision trees can be applied without 
alterations, with the sole adjustment being the substitution of Wj(t) for Nj(t) when calcu-
lating the splitting criterion value at each node during the tree growth process, as well 
as in the error estimation in the pruning process.

(6)C(j) =
∑I

i
C(i, j)

(7)w(j) =
C(j)N

∑
i C(i)Ni

(8)pw(j�t) =
Wj(t)∑
i Wi(t)

=
w(j)Nj(t)∑
i w(i)Ni(t)
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5.1.3 � MetaCost

MetaCost is known for its versatility in making classifiers cost-sensitive. This method 
acts as a wrapper, compatible with various classifier types, regardless of their output, be it 
class labels or probability estimates (Fernández et al. 2018; Domingos 1999). MetaCost, as 
introduced by Domingos (1999), can be conceptually dissected into three phases: Private 
ensemble building, relabelling, and classification (Siers and Islam 2020). MetaCost starts 
by creating multiple bootstrap samples from the initial training set following the bagging 
ensemble method, and each of these samples is used to train individual classifiers. These 
classifiers are then aggregated, either through averaging if the classifier used produces 
class probabilities or through a majority-voting scheme, to determine the probabilities of 
each example belonging to different classes. The original training examples in the dataset 
are subsequently relabelled to minimise the conditional risk defined in Equation  2. The 
resulting relabelled training data are then utilised to train the final classifier.

The pseudo-code (Domingos 1999) for the MetaCost procedure is provided in 
Algorithm 2.

Algorithm 2   MetaCost algorithm
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5.1.4 � Thresholding

Thresholding is a postprocessing technique employed in CSL to fine-tune the classification 
decisions of a trained model based on specific cost considerations. Unlike other approaches, 
thresholding operates on the output probability estimates produced by a model after train-
ing during the test phase (Fernández et al. 2018; Johnson and Khoshgoftaar 2019; Vander-
schueren et al. 2022). It serves as a meta-learning approach, allowing the conversion of any 
cost-insensitive model into a cost-sensitive one (Johnson and Khoshgoftaar 2019; Sheng 
and Ling 2006), and possesses the advantage of being more accessible and comprehensible 
to practitioners (Feng et al. 2020).

Thresholding operates by minimising the expected cost based on the specified cost 
matrix. It employs the threshold p* defined in Eq. 3 to adapt the decision threshold (usually 
set at 0.5 in conventional classification) when categorising samples in a way that reduces 
bias towards the majority class (Johnson and Khoshgoftaar 2019; Sheng and Ling 2006). 
Owing to its versatility, thresholding has found practical utility in a wide range of algo-
rithms in the literature (Liu et al. 2021; Sheng and Ling 2006; Zhou and Liu 2006; Zhang 
and Shen 2011; Cao et al. 2013a; Zhou et al. 2014; Zhao 2008), consistently demonstrating 
positive performance results.

In addition to the technique described above, another method for threshold optimisation 
is empirical thresholding (Zhao et  al. 2018; Reychav et  al. 2019). This method involves 
iteratively searching for the optimal threshold that minimises the total cost on a validation 
set (Vanderschueren et al. 2022), offering an alternative means of optimising cost-sensitive 
classification.

5.2 � The distribution of CSL approaches in the selected studies

This study seeks to categorise the selected papers according to the cost-sensitive 
approaches they have employed, with the goal of obtaining a thorough understanding of 
the distribution and prevalence of these approaches within the medical literature. Figure 7 
illustrates the distribution of cost-sensitive approaches used in the selected studies.

Direct approaches account for the largest share of papers, representing 76% (133 papers) 
of the qualified studies, indicating a clear focus on integrating cost-sensitive considerations 
directly into the learning process. Some researchers modified the objective function of the 
model to minimise the expected cost of misclassification. For example, Al-Sawwa and 
Ludwig (2019) introduced a new objective function within their cost-sensitive centroid-
based differential evolution classification algorithm. This function involves two key steps: 
allocating misclassification costs to each class label and evaluating the fitness of individual 
vectors from the population. Initially, instances are assigned to the closest centroid based 
on the Euclidean distance. Subsequently, the misclassification cost is computed by sum-
ming over the misclassified instances. Other works incorporated the cost matrix directly 
into the loss function. For instance, in (Naceur et al. 2020), the authors used a weighted 
cross-entropy loss function in their Convolutional Neural Network (CNN) model for brain 
tumor segmentation. Furthermore, researchers have explored the fusion of multiple loss 
functions to tackle diverse problems effectively. Notably, one study fused the Focal loss 
with the Dice loss (Wang et al. 2022), while another investigation integrated the Dice loss 
with the weighted cross-entropy (Taghanaki et  al. 2019). The ease of implementation is 
the primary factor contributing to this trend since most ML libraries offer readily available 
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implementations (Sterner et  al. 2021). Moreover, certain packages provide the flexibility 
to apply custom loss functions directly to the algorithm, allowing users to employ cost-
sensitive loss functions tailored to their specific applications.

A considerable share of the selected studies (16.6%) adopted meta-learning approaches. 
Precisely, preprocessing was applied in 24 papers (13.7%), and postprocessing was 
employed in 5 papers (2.9%). Preprocessing was carried out using weighting or MetaCost. 
For instance, Wang et al. (2013) implemented cost-sensitive logistic regression and deci-
sion trees by weighting training instances based on the total cost associated with each class 
in the provided cost matrix. In another study, Afzal et  al. (2013) employed MetaCost to 
integrate cost sensitivity into four ML models. Preprocessing techniques are adopted by 
researchers as they alter the training data instead of the underlying algorithm (Fernández 
et al. 2018), rendering them a suitable approach for different types of classifiers. On the 
other hand, postprocessing relied on thresholding. In a study conducted by Zhao et  al. 
(2018), empirical thresholding was employed to iteratively adjust the decision thresh-
old, aiming to select the classifier with minimal total cost. Alternatively, Liu et al. (2021) 
determined the threshold as per Eq. 3, leveraging prior knowledge about misclassification 
costs when developing a multi-label ECG classifier. This method demonstrated superior 
performance compared to commonly used thresholding techniques, including rank-based 
thresholding, proportion-based thresholding, and fixed thresholding. Thresholding is less 
frequently used in the selected studies due to the computational challenge of tuning mul-
tiple thresholds (equivalent to the number of labels considered), particularly in multi-label 
classification (Liu et al. 2021).

Note that direct and preprocessing approaches were utilised together in two papers, 
resulting in double counting in these categories. Additionally, 13 articles (7.4%) did not 
provide information on the cost-sensitive approach they adopted and were thus categorised 
as “unspecified”. Incomplete reporting may hinder the reproducibility and comparability 
of results and the identification of effective methods for dealing with imbalanced medi-
cal data. Given the importance of transparency in medical research, future studies should 
provide a clear and detailed description of the implemented cost-sensitive techniques, 

Fig. 7   Distribution of the selected studies per CSL approach
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including any modifications made to the model, to allow for better understanding, compari-
son and replication of findings.

6 � Strengths and weaknesses

In this section, a detailed examination of the strengths and weaknesses of CSL is conducted 
across different dimensions. The section is divided into three subsections: the first explores 
the general strengths and limitations of CSL, the second delves into the strengths and limi-
tations of CSL approaches, and the third analyses the reported strengths and limitations in 
selected works.

6.1 � Strengths and weaknesses of CSL

CSL, as applied to imbalanced medical data, presents a unique framework that brings both 
advantages and limitations to the table. Understanding these strengths and weaknesses is 
crucial to making informed decisions and driving advancements in the field. Dedicated 
tables have been prepared to provide a comprehensive overview of these aspects.

Table 12 presents the strengths and weaknesses of CSL in addressing class-imbalanced 
medical datasets. CSL techniques offer a multitude of advantages when dealing with such 
challenging scenarios. Firstly, they efficiently mitigate class imbalance, leading to more 
balanced predictions and improved performance across all classes. Notably, an overwhelm-
ing majority of the selected studies (97.7%, 169 papers) reported enhanced performance 
compared to cost-insensitive methods, state-of-the-art models, or other balancing tech-
niques. Moreover, CSL explicitly considers the unequal misclassification costs in cost-
sensitive problems, particularly inherent in medical decision-making (Liu et  al. 2021; 
Siddiqui et al. 2020; Wang and Cheng 2021), ensuring that the model’s predictions align 
with the critical consequences of FP and FN. Importantly, these techniques achieve these 
benefits without altering the underlying data distribution, conserving the integrity and 
representativeness of the dataset. This preservation of the original data structure allows 
for full utilisation of all available data, in contrast to resampling techniques. Additionally, 
CSL techniques exhibit computational efficiency, enabling their application to large-scale 
medical datasets without excessive resource requirements. This finding aligns with the 
broader consensus from other reviews (Haixiang et al. 2017; Kaur et al. 2019; Tarekegn 
et al. 2021). Lastly, they prove particularly effective in handling severely class-imbalanced 
scenarios where conventional learning algorithms struggle to provide accurate predictions. 
This notable characteristic has also been highlighted in the survey conducted by Leevy 
et al. (2018), reaffirming the effectiveness of CSL in addressing highly imbalanced data. 
Together, these advantages position CSL as a valuable tool in tackling class imbalance and 
enhancing the reliability and applicability of ML models in challenging medical contexts.

Building upon the strengths and benefits of CSL, it is essential to also acknowledge 
the associated limitations and challenges that require careful consideration. One significant 
concern arises from the unknown nature of misclassification cost values, a challenge ech-
oed in previous review studies (He and Garcia 2009; Haixiang et al. 2017; Kaur et al. 2019; 
Tarekegn et al. 2021; Leevy et al. 2018; Johnson and Khoshgoftaar 2019; Elrahman and 
Abraham 2013; Sun et al. 2011; Feng et al. 2020). Accurately defining the costs of mis-
classifying different classes can be intricate and challenging. The design of the cost matrix 
often requires expert judgment and domain-specific knowledge (Fernando and Tsokos 
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2022), making it a delicate and complex task, especially considering that such expertise 
and knowledge may not always be readily available or accessible.

One strategy to address the issue of unknown costs is to conduct a thorough search for 
the optimal cost setup (Nunes et al. 2013). This approach entails exploring various com-
binations or configurations of cost values and assessing their impact on the performance 
of the cost-sensitive model. Techniques such as cross-validation or grid search can be 
employed to identify the best cost setup by iteratively testing and evaluating different cost 
values using predefined performance metrics. Additionally, the literature proposes specific 
cost assignment strategies. For example, a potential solution suggested in previous research 
(Haixiang et al. 2017) consists of setting the misclassification cost of the majority class to 
1 and equating the penalty for the minority class to the IR. This approach has been adopted 
by several selected studies (e.g., (Fan et al. 2022; Wang et al. 2013; Liu et al. 2019; Wang 
et al. 2020c; Ashfaq et al. 2019; Hashemi et al. 2018), while other studies have proposed 
alternative cost formulas (e.g., (Zieba et al. 2014; Calderon-Ramirez et al. 2021; Roy et al. 
2022; Yao et al. 2022; Zieba 2014).

In a noteworthy contribution, a study (Gan et al. 2020) highlighted a particular concern 
about the prevalent use of fixed misclassification costs in most CSL methods. In response 
to this constraint, researchers have investigated dynamic weight assignments during the 
training process. For instance, Focal loss (e.g., (Galdran et al. 2020; Li et al. 2022b; Lu 
et al. 2021; Naseem et al. 2020; Shirokikh et al. 2020; Lee et al. 2023)) adapts the costs 
based on the varying difficulty or significance of individual samples. Another study (Liu 
et al. 2019) incorporates an online-learning step to dynamically reweight each batch of the 
training set based on its validation performance.

Another limitation that warrants attention is the risk of overfitting the under-repre-
sented classes. When misclassification costs are inadequately defined and heavily weighted 
towards the minority classes, CSL methods can exhibit excessive adaptation to these 
classes (Sun et  al. 2011), which may lead to overfitting (Elrahman and Abraham 2013) 
and reduced generalization performance. Therefore, thoughtful attention should be paid to 
defining the costs, ensuring their appropriateness, and mitigating the risks associated with 
excessive adaptation.

6.2 � Strengths and weaknesses of CSL approaches

Transitioning to the analysis of CSL approaches, it is essential to acknowledge their inher-
itance of the broader advantages and disadvantages of CSL. Additionally, they exhibit their 
own specific strengths and weaknesses, which are succinctly outlined in Table 13 for refer-
ence. It should be noted that some of these particular strengths and weaknesses are derived 
from existing reviews beyond the scope of the selected papers in this study.

Direct approaches offer both advantages and disadvantages. On the positive side, these 
approaches benefit from the availability of readily implemented solutions in many ML 
libraries. This accessibility allows researchers and practitioners to apply CSL techniques 
easily without extensive coding efforts. However, it is important to note that direct modifi-
cations in the learning algorithm, such as modifying the Gini index to account for misclas-
sification costs in decision trees (Barot and Jethva 2021b, a), require a deep understanding 
of the underlying algorithms. This requirement means that researchers and practitioners 
must possess comprehensive knowledge of the specific algorithms being utilised. Another 
limitation of direct approaches is their potentially reduced versatility compared to other 
CSL approaches. By directly modifying the learning algorithm, these approaches are often 
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customised for specific ML models, constraining their applicability across a broader range 
of models.

Preprocessing approaches, particularly weighting, offer several advantages in the con-
text of CSL. Firstly, weighting is a simple technique that is easy to implement and inter-
pret, as it involves adjusting the weights assigned to training instances. Moreover, it exhib-
its high flexibility by not necessitating any alterations to the underlying learning algorithm, 
ensuring adaptability to various ML models. As such, weighting emerges as a versatile 
approach for incorporating cost sensitivity.

Similarly, one key strength of MetaCost as a preprocessing approach is its flexibility, 
which allows for adapting classifiers to cost-sensitive scenarios without altering the under-
lying learning algorithm, operating at the instance level. This preserves compatibility with 
different ML models. Nevertheless, it is crucial to consider the computational implications 
of MetaCost, as it introduces additional steps during the training phase, such as data rela-
belling, which may result in increased computational complexity and longer training times.

In the realm of postprocessing approaches, particularly thresholding, a set of distinct 
advantages and limitations emerges. Notably, thresholding techniques exhibit a remark-
able level of flexibility, enabling the adjustment of the classification model to various cost 
definitions without the need for retraining (Liu et  al. 2021). This flexibility empowers 
researchers to adaptably fine-tune the model’s behaviour to align with specific cost-sensi-
tive requirements. Furthermore, it is worth highlighting that thresholding does not require 
modifications to the underlying learning algorithm. However, it is important to acknowl-
edge the limitations associated with thresholding techniques. One such limitation lies in 
the division between the training and the subsequent cost-sensitive evaluation phases. Dur-
ing the initial training, where cost information is unavailable, the classifier is driven by 
error minimisation rather than cost optimisation (Fernández et al. 2018). This implies that 
the estimation of cost parameters is initialised using a cost-insensitive method, which may 
introduce inherent biases into the outcomes. The problem is effectively addressed by incor-
porating an ROC-based criterion into classifier training, as performance for both classes 
can be evaluated at once (Fernández et al. 2018). Another challenge is the tuning of thresh-
olds, as the number of thresholds that need to be adjusted is typically no less than the 
number of considered labels. This process can be time-consuming and may require careful 
fine-tuning to achieve optimal cost-sensitive performance.

Expanding upon our exploration of the strengths and weaknesses of CSL approaches, it 
is crucial to consider the valuable insights derived from other studies in the field. Recent 
research (Vanderschueren et al. 2022) categorises CSL approaches based on the stage at 
which misclassification costs are incorporated into two classes: cost-sensitive training of 
models and cost-sensitive decision-making. The former category encompasses techniques 
applied before or during model training to construct a classifier, notably direct approaches 
and meta-learning preprocessing methods. Conversely, the latter category concerns thresh-
olding techniques used after training to inform decision-making processes. Regarding per-
formance, models utilising thresholding may yield superior overall predictive accuracy; 
however, those adopting cost-sensitive training excel in their ability to make high-quality 
decisions, focusing on accurate predictions as they impact decision outcomes. Notably, the 
study, conducted on nine datasets from various application areas, revealed that training a 
cost-insensitive model and subsequently introducing misclassification costs during the test 
phase through thresholding can be conceptually straightforward and effective. Neverthe-
less, it was highlighted that, under specific conditions, cost-sensitive training may emerge 
as the optimal choice. For instance, in cases of model misspecification, adopting a cost-
sensitive objective function may outperform thresholding. Furthermore, the investigation 
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indicated that combining cost-sensitive training and thresholding may not consistently 
enhance performance. In light of these results, we hold the view that exploring the combi-
nation of CSL approaches presents a promising avenue that merits further experimentation 
and investigation.

In a previous comparison of instance weighting and thresholding (Zhao 2008), it was 
observed that instance weighting is computationally more demanding, particularly in sce-
narios with uncertain cost settings. Unlike thresholding, which adjusts the decision thresh-
old, instance weighting requires retraining the classifier when changing cost settings. An 
interesting observation from this study was that when instance weighting is applied and 
the classifier is insensitive to the cost ratio, the thresholding technique suffices. However, 
when the classifier is highly sensitive to the cost ratio under instance weighting, it becomes 
crucial to incorporate misclassification costs during training. These findings underscore the 
importance of conducting more extensive evaluations and comparisons of CSL approaches 
to validate these observations, as we emphasise the need for further research in this 
direction.

Building on these insights, it becomes evident that the choice of a CSL approach in 
medical applications, especially in cases characterised by imbalanced class distributions, 
has significant implications for model performance. Researchers and practitioners should 
commence by evaluating the computational resources at their disposal. Preprocessing 
techniques such as weighting offer an expedient and versatile avenue for implementation, 
requiring no modifications to the underlying algorithms. However, direct approaches may 
offer tailored solutions for individuals with a deep understanding of algorithms, emphasis-
ing the need to balance computational efficiency and model customisation. Moreover, the 
tuning task when dealing with thresholding necessitates anticipation. Additionally, staying 
abreast of the most recent advancements in CSL is crucial, as new techniques may yield 
enhanced results. Regardless of the chosen CSL approach, thorough validation on the spe-
cific medical dataset at hand remains non-negotiable. This validation ensures the alignment 
of the selected approach with the data’s inherent characteristics and the fulfilment of par-
ticular research objectives. Consequently, well-informed decisions can be made to enhance 
model performance across various medical disciplines and tasks.

6.3 � Strengths and weaknesses highlighted in certain selected works

Examining the implemented methods in the selected research necessitates a thorough 
assessment of their strengths and weaknesses. Table 14 compares various proposed meth-
ods to facilitate this evaluation, encompassing their main tasks, data types, employed CSL 
techniques, weighting formulas, and the reported advantages and limitations for each 
method.

The information provided in Table  14 illuminates several key trends and findings. 
Firstly, it is evident that the proposed solutions encompass a wide range of models, span-
ning from traditional ML to DL architectures. This diversity highlights the versatility and 
adaptability of CSL across different modelling paradigms. Furthermore, the application of 
CSL is not limited to specific types of data. The selected studies showcase the use of CSL 
for various data types, including numerical data, categorical data, images, time series, and 
textual data. This broad utilisation of CSL underscores its effectiveness in addressing cost-
sensitive challenges across diverse data modalities.

A common thread among the presented works is the consistent achievement of enhanced 
performance by leveraging CSL techniques, effectively addressing the challenges posed by 
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class-imbalanced medical datasets. Moreover, many methods exhibit reduced computa-
tional time indicating their efficiency and practicality in real-world applications. However, 
one work (Zhenya and Zhang 2021) employing ensemble learning deviated from this trend, 
possibly due to the inherent complexity of the ensemble approach. Additionally, the robust-
ness of the proposed methods is apparent, with several studies highlighting their ability 
to deliver reliable and stable results. This robustness enhances the trustworthiness of the 
proposed solutions in practical healthcare settings. Notably, one study (Ashfaq et al. 2019) 
even emphasised the potential cost savings associated with CSL, further underscoring the 
practical benefits of these approaches.

The papers also consistently underscore the significance of validation and generaliz-
ability in medical applications. Acknowledging the importance of validating the proposed 
models with diverse datasets and across different clinical sites reflects a commitment to 
ensuring the reliability and applicability of the methods in real-world scenarios. Further-
more, interpretability surfaces as a critical consideration in developing cost-sensitive solu-
tions. One study (Liu et al. 2021) highlighted the challenge of interpretability as a potential 
limitation, recognising the need to balance model complexity and interpretability to facili-
tate transparency and understanding in clinical decision-making processes. Moreover, the 
studies shed light on the challenges related to the specificity and sensitivity trade-off, a 
common concern in CSL. Achieving an optimal balance between these measures is crucial 
for attaining accurate predictions while minimising false alarms.

It is also noteworthy that several works compared CSL with alternative strategies such 
as resampling and ensemble learning. The outcomes of these comparisons varied, with 
some studies showcasing the superior performance of CSL, while others found alternative 
strategies to be more effective. These findings highlight the importance of carefully select-
ing the most suitable strategy based on the specific characteristics of the dataset and the 
learning task at hand.

7 � Datasets and data types

This section provides an overview of the datasets and data types utilised in the selected 
studies, shedding light on the variety and characteristics of the data employed to evaluate 
cost-sensitive methods.

7.1 � Datasets

The medical datasets used in the selected studies are imbalanced and thus perfectly suit-
able to assess the performance of the developed cost-sensitive methods and evaluate their 
effectiveness. A total of 196 datasets were identified across the 173 selected papers. Note 
that 52 papers (30%) employed multiple datasets to evaluate their methods. Table 15 pre-
sents the most common datasets used in at least four studies, along with their sources, data 
types, number of instances, attributes, classes and papers. All the presented datasets are 
publicly available. The MIT-BIH Arrhythmia database was the most commonly used in 
seven selected studies, followed by COVID-19 Chest X-ray, Wisconsin Diagnostic Breast 
Cancer, and Pima Indians Diabetes datasets, each employed in six papers. The ISIC 2019 
dataset was used in five papers, while Thyroid Disease, HAM10000, ILPD, and BUPA 
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Liver Disorders datasets were each used in four papers. Of the 187 remaining datasets, 70% 
were publicly available, and 30% were acquired from hospitals and healthcare units.

Based on the findings, the MIT-BIH Arrhythmia Database (Moody and Mark 1980) was 
the most commonly used dataset, owing to the numerous selected studies in cardiology 
and its reputation as a well-known benchmark dataset. The MIT-BIH Arrhythmia Database 
comprises 48 ECG recordings, each with a duration of 30 min and a sampling frequency 
of 360 Hz (Shi et al. 2019). All heartbeats within the recordings are expertly annotated and 
categorised into one of 15 heartbeat types. The AAMI standard provides a standardised 
approach for labelling these arrhythmias to ensure consistency and comparability across 
different studies. According to this standard, heartbeats are recommended to be grouped 
into five main classes (Shi et al. 2019): Normal (N), Supraventricular ectopic beat (S), Ven-
tricular ectopic beat (V), Fusion of ventricular and normal beat (F), and Unknown beat 
(Q). Although most studies adhere to this standard (Li et al. 2022b; Zhao et al. 2023; Wang 
et al. 2019; Han et al. 2022), some may choose alternative classification schemes (Lu et al. 
2021). The extensive use of this database has resulted in numerous published studies, pro-
viding ample opportunities for comparisons with previous results. The reported IRs of the 
database differ based on the class distribution employed for the classification task. One 
such study, conducted by Zubair and Yoon (2022), reported an IR of approximately 9:1, 
with normal beats accounting for 89.5% of the dataset and abnormal beats accounting for 
the remaining 10.5%. This severe class imbalance makes the MIT-BIH Arrhythmia Data-
base an exceedingly challenging dataset for cost-insensitive models.

The COVID-19 Chest X-ray dataset (Cohen et al. 2020a), assembled by Cohen and col-
leagues (2020b) in February 2020 from publicly available sources, has gained widespread 
recognition as a reference dataset for developing and evaluating DL algorithms to detect 
COVID-19 from chest X-ray images. Comprising five distinct types of pneumonia cases, 
including COVID-19, SARS, Streptococcus spp., Pneumocystis spp., and ARDS, this data-
set has been extensively utilised as a starting point for exploring various DL techniques, 
particularly during the surge of research amidst the COVID-19 pandemic. Its public avail-
ability and recognition have made it a convenient choice for researchers to compare their 
findings with other studies in the field. Moreover, the dataset’s acknowledged class imbal-
ance, with a higher number of COVID-19-positive cases compared to other respiratory dis-
eases, makes it a relevant and challenging testbed for evaluating the performance of CSL 
algorithms. Consequently, the COVID-19 Chest X-ray dataset is frequently employed in 
the selected studies for these compelling reasons. Nevertheless, it is noteworthy that the 
dataset has certain limitations, as it may not provide a fully comprehensive or representa-
tive sample of the general population. This is likely why the six studies that employed the 
dataset incorporated additional datasets to supplement their findings. In September 2020, 
the dataset was updated with 679 frontal chest X-ray images from 412 individuals in 26 
countries (Cohen et al. 2020c).

The Wisconsin Diagnostic Breast Cancer dataset (Wolberg et al. 1995) has been exten-
sively employed in numerous studies, primarily due to the prominence of oncology in the 
selected research. Of the 54 studies conducted in this sub-field, 38.9% focused on breast 
cancer, making it a prevalent research topic. Moreover, the dataset’s imbalanced distribu-
tion, with a disproportionate number of malignant cases (212) compared to benign cases 
(357), makes it a relevant resource for research on CSL in the medical field. The Pima 
Indians Diabetes dataset (National Institute of Diabetes and Digestive and Kidney Diseases 
1990) has garnered equal attention in the selected research papers owing to its pertinence 
in the diagnosis of diabetes, a critical healthcare concern that affects a large population 
worldwide. Moreover, the dataset suffers from a significant class imbalance between the 
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presence (34.9%) and absence (65.1%) of diabetes cases, rendering it an appropriate choice 
for evaluating the performance of cost-sensitive models.

In the selected research, using multiple datasets to evaluate model performance was 
commonplace. This approach is highly beneficial as it enables the assessment of model 
generalizability, facilitates a more comprehensive evaluation, and establishes benchmarks 
for the field. Datasets with varying difficulty levels, IRs, and feature spaces can expose the 
strengths and limitations of models. Using multiple datasets mitigates the risk of models 
overfitting to one particular dataset, ensuring models are more readily applicable to new 
and unseen data.

7.2 � Data types

Data represents a fundamental aspect of CSL in the medical field, and comprehending the 
used data types is paramount. The analysis of the selected papers revealed a diverse range of 
attribute types. Of the 173 studies analysed, 78 papers (45.1%) utilised images as the primary 
data type, while numerical and categorical data were combined in 51 papers (29.5%). Addi-
tionally, time series (24 papers, 13.9%), textual data (seven papers, 4%), and numeric data 
(four papers, 2.3%) were also employed. Less prevalent combinations included images with 
numerical and categorical data (seven papers, 4%), time series with text (one paper, 0.6%), 
time series with numerical data (one paper, 0.6%), time series with numerical and categori-
cal data (one paper, 0.6%), and images with numerical data (one paper, 0.6%). For a more 
granular perspective, the most prominent types of medical imagery data included Computed 
Tomography (CT) scans (19 papers), Magnetic Resonance Imaging (MRI) (16 papers), Chest 
X-ray (13 papers), dermoscopic images (10 papers), fundus photographs (eight papers) and 
thermograms (four papers). Regarding time series data, the most commonly used types were 
Electrocardiogram (ECG) records (nine papers), Electroencephalogram (EEG) records (five 
papers), and Cardiotocography (CTG) records (two papers).

Regardless of the data types, medical data is inherently prone to imbalance due to the 
nature of medical conditions and patient populations. The analysis revealed a broad spectrum 
of data types among the selected studies. This diversity in data types can be justified by the 
fact that different medical applications require different types of data for accurate outcomes. 
For instance, medical imaging techniques, such as CT scans, MRI, and Chest X-rays, are 
essential for detecting anomalies in anatomical structures. In contrast, time-series data, such 
as ECG and EEG records, are necessary to monitor physiological function changes over time.

The dominance of images as the primary data type can be attributed to the increasing use 
of medical imaging techniques in clinical practice and research. With the advancements in 
imaging technology, clinicians can now obtain high-quality images that provide detailed infor-
mation about the structure and function of various organs and tissues. Additionally, numeri-
cal data can capture continuous measurements such as blood pressure, heart rate, and body 
temperature. In contrast, categorical data can capture non-continuous measurements such as 
gender, age, and medical history. Combining these two data types can help achieve a more 
comprehensive understanding of a patient’s health status. Moreover, the use of time series data 
highlights the importance of temporal information in medical applications. Time series data 
can capture changes in a patient’s health status throughout time, aiding in the detection and 
prediction of medical conditions.

Among the selected research, the presence of text data was also observed. Textual data can 
capture unstructured information like clinical notes, medical reports, and patient history. Such 
data can provide valuable insights into the subjective nature of a patient’s medical condition, 



Cost‑sensitive learning for imbalanced medical data: a review﻿	

1 3

Page 49 of 72  80

including their symptoms, emotions, and experiences, which may not be accurately captured 
by numerical or categorical data alone. Additionally, textual data can be leveraged to identify 
patterns and relationships between medical conditions and patient characteristics, paving the 
way for developing personalised treatment plans.

8 � Performance metrics

Assessing the performance of cost-sensitive algorithms in medical applications requires 
appropriate performance metrics. Two categories of metrics commonly used in the literature 
are traditional metrics and cost-related metrics. This study focuses on presenting the com-
monly used metrics from both categories.

8.1 � Traditional metrics

Traditional performance metrics, such as accuracy, precision, sensitivity, and F1 score, 
provide insights into the overall predictive performance of cost-sensitive algorithms. 
These metrics evaluate the model’s ability to correctly classify instances without explic-
itly considering the cost associated with misclassifications. To quantify these metrics, a 
fundamental tool called a confusion matrix is employed.

The confusion matrix, showcased in Table 16, provides a detailed breakdown of the 
model’s predictions and the actual class labels. It summarises the counts of True Posi-
tives (TP), True Negatives (TN), FP, and FN. TP corresponds to the accurately predicted 
positive instances, while TN represents the accurately predicted negative instances. 
Conversely, FP and FN denote instances that were erroneously classified as positive or 
negative, respectively.

•	 Accuracy is a standard evaluation measure in ML used to assess a model’s ability to 
predict class labels accurately. It is defined as the ratio of correct predictions to the 
total number of predictions made: 

 Relying solely on accuracy may not be appropriate for imbalanced datasets, as it can 
cause misleading results, where a model that appears to perform well may, in fact, be 
biased towards the majority class. To avoid such bias, all the selected studies using 
accuracy, except one (Naseem et al. 2020), utilised complementary metrics to evaluate 
model performance comprehensively.

•	 Error rate is the complement of accuracy. It quantifies the percentage of misclassi-
fied instances and is calculated as follows: 

(9)Accuracy =
TP + TN

TP + FP + TN + FN

Table 16   Confusion matrix Actual negative Actual positive

Predicted negative TN FN
Predicted positive FP TP
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•	 Sensitivity, also called recall or True Positive Rate (TPR), quantifies the proportion 
of TP predictions among all positive predictions: 

 A high sensitivity value in medical contexts is particularly desirable as it reduces the 
risk of FN and ensures the correct identification of all positive cases. This holds crucial 
significance in medical diagnosis, where detecting all individuals with the disease (TP) 
is paramount, and missing a diagnosis can lead to delayed treatment and severe health 
complications.

•	 Specificity, also known as the True Negative Rate (TNR), measures the proportion 
of TN predictions relative to all negative predictions: 

 In medical settings, a high specificity rating is critical to reduce the occurrence of 
FP and ensure accurate identification of all negative cases. FP can lead to unnecessary 
medical interventions or additional diagnostic procedures, highlighting the critical role 
of specificity in reliable medical diagnosis.

•	 Precision is a performance metric that quantifies the accuracy of positive predictions 
made by a model. It is computed as follows: 

 It is worth noting that precision and sensitivity demonstrate an inverse correlation, 
whereby improving one metric often leads to a decline in the other. When dealing with 
imbalanced medical data, prioritising sensitivity at the expense of precision may result 
in increased FP, resulting in unwarranted medical interventions or additional tests. 
Thus, precision becomes a crucial metric in evaluating the performance of a model that 
seeks to minimise the number of FP while maximising TP.

•	 The AUC metric quantifies a model’s ability to discern between positive and nega-
tive cases, rendering it a compelling choice for medical applications. The AUC 
metric ranges between 0 and 1, with a higher value indicating better overall perfor-
mance. The AUC is computed as the area under the Receiver Operating Character-
istic (ROC) curve, which graphically represents the model’s TPR plotted against the 
False Positive Rate (FPR) at varying threshold levels. The FPR can be derived as the 
complement of specificity: 

 The ROC curve visually illustrates the trade-off between sensitivity and specificity 
across different classification thresholds. Frequently paired with the AUC metric, the 
ROC curve facilitates visual comparison and evaluation of diverse models’ perfor-
mances. In medical research and decision-making, the ROC curve and AUC metric 
assume significance by aiding in selecting an optimal threshold that strikes a balance 
between sensitivity and specificity, catering to the specific requirements of the medical 

(10)Error rate = 1 − Accuracy =
FP + FN

TP + FP + TN + FN

(11)Sensitivity =
TP

TP + FN

(12)Specificity =
TN

TN + FP

(13)Precision =
TP

TP + FP

(14)FPR = 1 − Specificity
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task at hand. An ideal classifier would be positioned in the top-left corner, representing 
a perfect balance between sensitivity and specificity. The closer the ROC curve of a 
model approaches this ideal point, the better its performance.

•	 The Geometric Mean (G-Mean) is another performance metric that comprehensively 
evaluates a model’s accuracy by combining sensitivity and specificity. It is com-
monly employed in scenarios involving imbalanced datasets. G-mean is defined as 
the geometric mean of sensitivity and specificity: 

 By considering sensitivity and specificity, the G-Mean offers a balanced assessment of 
a classifier’s performance on both minority and majority classes. It provides a reliable 
measure of accuracy, accounting for the occurrence of FP and FN. This metric is par-
ticularly valuable in medical datasets where the costs associated with FP and FN can 
vary significantly.

•	 The balanced accuracy metric offers a comprehensive evaluation of a classifier’s 
accuracy on both positive and negative classes, taking into account both sensitivity 
and specificity. It is calculated as the average of sensitivity and specificity: 

 Balanced accuracy provides an equitable assessment by considering the performance 
on both classes equally, addressing the potential bias towards the majority class in the 
traditional accuracy measure. This makes it particularly suitable for evaluating classi-
fiers in scenarios with imbalanced datasets and enhances its clinical relevance as an 
evaluation criterion.

•	 F1 score, also known as the F-measure, combines precision and sensitivity to assess the 
overall effectiveness of a classifier. It provides a balanced evaluation by considering the 
model’s ability to correctly identify positive instances (precision) and capture all posi-
tive instances (sensitivity). The F1 score is calculated as the harmonic mean of preci-
sion and sensitivity, ensuring that both measures are considered equally: 

 The F1 score finds particular utility in scenarios where both precision and sensitivity 
are important, such as medical diagnosis.

	   Moreover, the F-measure encompasses a range of metrics beyond the F1 score. 
These metrics, collectively called F � scores, introduce a parameter � that allows for 
flexible weighting of precision and sensitivity based on specific application require-
ments. The F � score is calculated using the following formula: 

 The � parameter controls the relative emphasis placed on precision versus sensitiv-
ity. A higher � value (e.g., F2 score) favours sensitivity over precision, making it suit-
able when the cost of FN is significant. Conversely, a lower � value (e.g., F0.5 score) 
emphasises precision, making it appropriate when the cost of FP is more critical.

(15)G-mean =
√
Sensitivity ⋅ Specificity

(16)Balanced Accuracy =
Sensitivity + Specificity

2

(17)F1 score =
2 ⋅ (Precision ⋅ Sensitivity)

Precision + Sensitivity

(18)F� score =
(1 + �2) ⋅ (Precision ⋅ Sensitivity)

(�2 ⋅ Precision) + Sensitivity
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•	 The Area Under the Precision-Recall Curve (AUPRC) serves as a comprehensive 
measure of a classifier’s overall effectiveness in capturing positive instances across 
different classification thresholds. In contrast to the ROC curve, which considers the 
trade-off between sensitivity and specificity, the Precision-Recall (PR) curve focuses 
on the trade-off between precision and sensitivity (recall). The PR curve plots precision 
values against corresponding sensitivity values at various thresholds.

	   The AUPRC is computed as the area under the PR curve. Spanning the interval of 
0 to 1, a higher AUPRC value reflects superior performance, indicating that the classi-
fier achieves high precision while maintaining a high sensitivity rate. This implies that 
the classifier accurately identifies positive instances while minimising FP. The AUPRC 
metric is especially beneficial with datasets exhibiting significant class imbalance or 
when the consequences of FN and FP differ, as commonly seen in medical applications.

•	 The Matthews Correlation Coefficient (MCC) metric measures the quality of binary 
classifiers, taking into account TP, TN, FP, and FN. MCC is calculated using the fol-
lowing formula: 

 MCC ranges from -1 to +1, where a score of 1 indicates a perfect prediction, 0 repre-
sents a random prediction, and -1 indicates a complete disagreement between the pre-
diction and the actual label.

	   MCC is commonly used in fields such as bioinformatics, where imbalanced data-
sets and binary classification problems are prevalent (Chicco and Jurman 2020). It is 
considered a robust statistical measure (Sadeghi et al. 2022) as it yields a high score 
only when the predictions exhibit strong performance across all four categories of 
the confusion matrix (TP, FP, TN, and FN).

•	 The Kappa score, also known as Cohen’s Kappa, is a statistical measure that assesses 
the level of agreement between two annotators or raters in categorical classification 
tasks. It considers both the accuracy of the classifier and the possibility of agree-
ment occurring by chance. The Kappa score is computed via the subsequent for-
mula, where p0 is the observed agreement or accuracy (the proportion of instances 
where the classifier and the actual labels agree) and pe is the expected agreement 
(the agreement expected by chance alone): 

pe is calculated based on the marginal probabilities of the classifier’s predictions and 
the true labels.

	   The Kappa score ranges from -1 to 1, with higher values indicating a higher level 
of agreement between the classifier’s predictions and the true labels. A score of 1 
represents a perfect agreement beyond chance, 0 indicates agreement equivalent to 
chance, and negative values indicate less agreement than expected by chance.

	   The Kappa score is instrumental in  situations with a class imbalance or where 
relying solely on accuracy can be misleading. It serves as a useful metric for assess-
ing the consistency and reliability of categorical classifications, providing insights 
into the quality of annotations or the performance of classifiers compared to human 
annotators.

(19)MCC =
(TP ⋅ TN) − (FP ⋅ FN)

√
(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)

(20)Kappa =
p0 − pe

1 − pe
= 1 −

1 − p0

1 − pe
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8.2 � Cost‑related metrics

Cost-related metrics thoroughly evaluate classifier performance by explicitly incorporating 
the costs associated with different misclassifications. These metrics go beyond traditional 
metrics and take into account the real-world impact of classification errors. By considering 
the consequences of misclassification, cost-related metrics offer a more nuanced and prac-
tical assessment of a classifier’s effectiveness, especially in domains where misclassifica-
tion costs are high, such as medicine.

•	 The Misclassification Cost (MC) metric, sometimes called average cost (Guido et al. 
2022), provides a comprehensive evaluation of a classifier’s performance by consider-
ing the potential costs associated with misclassifying instances in a classification task. 
Unlike traditional accuracy, which treats all misclassifications equally, the MC metric 
assigns specific costs to different types of errors based on their impact or significance 
in a given application. This performance measure enables a more informed evaluation 
in cost-sensitive applications, as is the case for medical ones. The MC metric is calcu-
lated as follows: 

•	 The cost curve is a graphical depiction representing a binary classifier’s performance 
(expected cost) over the full range of possible class distributions and misclassification 
costs (Drummond and Holte 2000, 2006). The y-axis corresponds to the normalised 
expected cost, which can be computed using the following formula: 

 where P(+) is the probability of an example being from the positive class.
	   The x-axis corresponds to the “probability times cost”, which summarises misclas-

sification costs and class distributions in a single number: 

Drummond and Holte (2000) introduced cost curves as a remedy to address the limita-
tions of ROC curves. Cost curves offer a comprehensive evaluation of classifier perfor-
mance by considering specific misclassification costs, class probabilities, performance 
comparisons between different classifiers, average performance across multiple evalu-
ations, confidence intervals, and statistical significance of performance differences, 
making them a powerful tool for decision-making in classification tasks.

	   In their notable research, Drummond and Holte (2006) provide an illustrative exam-
ple that complements their prior work. The illustration showcases the cost lines associ-
ated with C4.5 decision trees and 1R models on the Japanese credit dataset, where costs 
are taken into consideration.

•	 The weighted Kappa score (Cohen 1968) is a modified version of the Kappa score, 
which incorporates weights (the misclassification costs) that reflect the severity or 
importance of disagreement for each class based on a cost matrix. It can be formulated 
as follows: 

(21)MC =
(FP ⋅ Cp) + (FN ⋅ Cn)

TP + TN + FP + FN

(22)ECnorm =
FN ⋅ P(+) ⋅ Cp + FP ⋅ (1 − P(+)) ⋅ Cn

P(+) ⋅ Cp + (1 − P(+)) ⋅ Cn

(23)P(+) ⋅ cost =
P(+) ⋅ Cp

P(+) ⋅ Cp + (1 − P(+)) ⋅ Cn
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 where wij refers to the weight associated with the value in the ith row and jth column of 
the confusion matrix, and Pi. and P.j are the marginal probabilities.

	   Weighted Kappa is a valuable tool for effectively addressing cost-sensitive classifica-
tion (Ben-David 2008). In  situations where misclassification costs are unknown and 
can only be estimated, conducting sensitivity analysis using weighted Kappa is strongly 
advised (Ben-David 2008).

•	 Cost-Weighted Accuracy (CWA), proposed by the PhysioNet/CinC challenge (Alday 
et al. 2020), is a multi-class scoring metric that extends the traditional accuracy met-
ric by incorporating cost-based weights. To calculate the cost-weighted accuracy, the 
prediction results are organised in a multi-class confusion matrix denoted by A = [aij] , 
where aij represents the number of instances from class j classified as class i. The scor-
ing is derived by performing a weighted averaging of the matrix A, where each entry is 
multiplied by its corresponding cost-based weight, wij : 

 Here, wij represents the cost of misclassifying an instance of class j into class i based 
on treatment similarities or differences in risks. The score is then normalised to range 
between 0 and 1, where a perfect classifier receives a score of 1 for correctly predict-
ing the true labels, and an inactive classifier gets a score of 0 for always predicting the 
normal class. The scoring metric fully acknowledges and rewards accurate diagnoses 
while granting partial credit to misdiagnoses with similar risks or outcomes as the true 
diagnosis.

8.3 � The distribution of performance metrics in the selected studies

Figure 8 presents the most commonly used performance metrics in the selected studies. 
Among these metrics, sensitivity was the most frequently used, appearing in 139 papers. 
Accuracy and specificity followed, being utilised in 100 and 91 studies, respectively. AUC 
and precision were employed in 77 papers each, while the ROC curve was utilised in 54 
papers. G-mean was observed in 43 papers. The Dice score and balanced accuracy exhib-
ited similar usage, being used in 14 studies each. On the other hand, FPR and MC were 
employed in nine studies each. Less common metrics included, among others, AUPRC and 
FNR, which were utilised in five and four papers, respectively.

In addition to the MC metric, other cost-related metrics were also relatively underu-
tilised. Specifically, the CWA metric was identified in only one paper, while cost curves 
and the weighted Kappa score were not employed. This finding highlights the need for 
increased emphasis on incorporating and exploring cost-related metrics in CSL research.

It is also noteworthy that the vast majority of the selected studies incorporated several 
metrics in their performance evaluation. Combining multiple evaluation metrics is a widely 
adopted practice in ML research, particularly when dealing with imbalanced datasets. This 
approach ensures a comprehensive assessment of the model’s performance. Additionally, 
different metrics can capture distinct aspects of model performance. By integrating multi-
ple metrics, researchers can obtain a more nuanced understanding of the model’s strengths 

(24)Kappaw =

∑I

i=1

∑I

j=1
wij ⋅ Pij −

∑I

i=1

∑I

j=1
wij ⋅ Pi.P.j

1 −
∑I

i=1

∑I

j=1
wij ⋅ Pi.P.j

(25)CWA =
∑

i,j

aijwij
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and limitations, allowing them to make informed decisions about which model best suits a 
given problem.

9 � Development tools

Identifying the development tools employed in implementing CSL techniques is crucial 
for understanding the technical landscape of this research domain. This information pro-
vides insights into the practical aspects and technical capabilities of CSL models, thereby 
facilitating reproducibility, collaboration, and future advancements in the field. However, a 
significant challenge arose as a considerable number of papers (63, 36.4%) did not disclose 
the specific tools adopted. The ones employed in the remaining studies were ascertained 
through explicit disclosure or meticulous analysis of shared code. Notably, our investiga-
tion focuses on the tools used for implementing the cost-sensitive property within CSL 
techniques, distinct from those employed for statistical analysis, preprocessing, plotting, 
and other related tasks. The identified tools, along with their corresponding frequencies 
and license information, are presented in Table 17.

Among the selected studies, Python (2023), an open-source programming language, 
emerged as the most widely used tool, appearing in 64 papers (37%). Python’s exten-
sive usage can be attributed to its popularity in the ML community, its ease of use for 
prototyping and experimentation, and its rich ecosystem of libraries and frameworks. 
Notably, libraries such as TensorFlow (2023b), Keras (2023), PyTorch (2023a), Scikit-
learn (2023a), XGBoost (2022), and LightGBM (2023) have contributed significantly to 
Python’s prominence and were widely employed in the selected studies. These libraries 
offer comprehensive support for implementing ML models, providing various functionali-
ties, including handling class imbalance.

Fig. 8   Most commonly used metrics in the selected studies
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TensorFlow and Keras provide options to implement the cost-sensitive property by 
weighting the loss function, enabling researchers to assign higher importance to minor-
ity classes and effectively address class imbalance. One example of such functionality is 
the weighted_cross_entropy_with_logits function (TensorFlow 2023a) in 
TensorFlow, which allows applying class weights directly to the loss calculation using the 
pos_weight parameter. Furthermore, Keras offers the class_weight parameter in its 
models, enabling users to set class weights during training, thereby enhancing the capabil-
ity to handle class imbalance within the Keras framework. Scikit-learn also provides the 
class_weight parameter in various classifiers. Additionally, XGBoost, a popular gradi-
ent boosting library in Python, offers the scale_pos_weight parameter. By assigning 
a higher weight to the minority class, XGBoost ensures balanced learning and improved 
performance on imbalanced datasets. LightGBM, another robust gradient boosting library 
in Python, enables handling class imbalance through the class_weight parameter. By 
assigning appropriate weights to different classes, LightGBM adjusts the impact of each 
class during model training, leading to enhanced performance on imbalanced data.

PyTorch is another popular library widely used for implementing DL models. While 
PyTorch does not provide a specific parameter or functionality for directly handling class 
imbalance in the same way as the aforementioned libraries, it offers a flexible and cus-
tomisable framework that allows researchers to implement various techniques for CSL. 
In PyTorch, researchers can manually assign class weights during the training process by 
modifying the loss function. By multiplying the loss for each sample by its corresponding 
class weight, researchers can give higher importance to the minority classes. This approach 
allows for fine-grained control and customisation in handling class imbalance based on 
the specific requirements of the problem. Additionally, PyTorch integrates well with other 
Python libraries, such as Scikit-learn, which offers class weight support in its classifi-
ers. Researchers have the option to utilise the compute_class_weight (Scikit-learn 
2023b) function provided by Scikit-learn to calculate weights, which can then be incorpo-
rated into the weight parameter of the CrossEntropyLoss function (PyTorch 2023b), 
for example.

MATLAB (2023b), a popular proprietary programming environment and language, was 
the second most frequently employed, featuring in 15 papers (8.7%). MATLAB’s wide-
spread adoption in various scientific domains, including ML and data analysis, explains 
its presence in the selected research. Its extensive collection of toolboxes offers a wide 
range of pre-built algorithms and functions that facilitate implementing ML models, 
including those designed for cost-sensitive applications. MATLAB supports CSL through 
two key parameters in the fitting functions: Cost, (MATLAB 2023a) which utilises cost 

Table 17   Tools used in the 
selected studies for CSL 
techniques’ implementation

Tool License #Papers

Python Open-source 64
Weka Open-source 14
MATLAB Proprietary 15
R Open-source 9
Libsvm Open-source 7
KEEL Open-source 2
Caffe Open-source 2
Java Open-source 1
RapidMiner Commercial 1
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matrices to represent misclassification costs for different classes, and ClassWeights, 
(MATLAB 2023c) allowing users to assign specific weights to each class during training. 
These features provide flexibility in addressing class imbalance and implementing effective 
cost-sensitive models. Moreover, MATLAB’s efficient handling of large datasets, high-
performance computing capabilities, compatibility with other programming languages, and 
active user community contribute to its popularity and usability in ML and data analy-
sis. These additional advantages, combined with its support for CSL, solidify MATLAB’s 
position as a versatile and powerful tool for implementing cost-sensitive models.

WEKA (2023), an open-source tool, ranked as the third most utilised tool, account-
ing for 14 papers (8.1%). Its inclusion can be attributed to its comprehensive set of ML 
tools and algorithms, its support for CSL, and its large user base. Weka offers users the 
choice between a user-friendly Graphical User Interface (GUI) and a Java API, catering 
to individuals with different preferences and programming expertise. The GUI serves as 
an accessible option for users with limited programming knowledge, while the Java API 
provides greater control and flexibility for those with programming skills. In the context 
of CSL, Weka provides wrappers and meta-classifiers that streamline the implementa-
tion process. One such meta-classifier is the CostSensitiveClassifier (Trigg 
2023a), which enables users to transform a base classifier in Weka into a cost-sensitive 
model by incorporating a cost matrix during model training. The cost matrix can be 
conveniently specified as input, facilitating the automatic handling of class imbalance. 
Another available meta-classifier is MetaCost (Trigg 2023b).

The open-source programming language R (2023) appeared prominently in 9 
papers (5.2%) within the selected studies, owing to its extensive collection of pack-
ages designed for ML and statistical modelling. R offers a wide range of packages that 
support CSL. For instance, the Mlr package enables users to implement cost-sensitive 
models through thresholding and weighting techniques (Bischl et  al. 2022). Another 
package, Caret, provides a unified interface for training and evaluating various ML 
models, offering CSL support through the train function (Kuhn 2008). This func-
tion allows users to specify the misclassification cost for each class using the weights 
argument. Similarly, the Rpart library incorporates the weights argument (R 
2022b), allowing users to assign different weights to classes while constructing decision 
trees. Additionally, the LiblineaR package permits the assignment of higher weights 
to instances of the minority class using the wi argument during the development of lin-
ear models (R 2022a). Moreover, the active community support, flexibility, and seam-
less integration with complementary data manipulation and visualisation tools further 
contribute to R’s prominence in CSL research.

Despite appearing in fewer papers (7 papers, 4%), LibSVM’s inclusion in the selected 
studies highlights its notable contributions to CSL research. LibSVM (Chang and Lin 
2023) is an open-source software package renowned for its efficiency and flexibility in 
implementing SVM algorithms. One of LibSVM’s key strengths lies in its ability to sup-
port CSL. This is achieved by leveraging the -wi option, which allows specific weight 
values to be assigned to each class during model training. Furthermore, LibSVM’s multi-
language support and extensive documentation further enhance its recognition and adop-
tion in the research community, solidifying its position as a valuable tool for researchers 
exploring CSL.

KEEL (2018), an open-source Java software tool, appeared twice (1.2%) in the selected 
research. KEEL is specifically designed for knowledge data discovery tasks. Its user-
friendly interface and wide range of functionalities make it a valuable resource for ML 
researchers and educators. KEEL provides pre-built, ready-to-use cost-sensitive versions 
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of popular ML algorithms, namely C4.5 decision trees (Ting 2002), multilayer perception 
(Zhou and Liu 2006), SVM (Tang et al. 2009), and Adaptive Boosting (AdaBoost) (Sun 
et al. 2007).

The open-source DL framework Caffe (Jia et al. 2014) and the programming language 
Java (Oracle 2023) had low occurrences in the selected studies. Caffe was utilised in two 
papers (1.2%), while Java appeared only in one paper (0.6%). These low occurrences can 
be attributed to multiple factors. One reason is that, as per our understanding, Caffe and 
Java do not offer built-in functionalities for CSL. However, researchers have the flexibility 
to implement cost-sensitive models by developing custom functions tailored to their spe-
cific needs. Additionally, it is worth mentioning that the merger of Caffe2 into PyTorch in 
2018 (Caffe2 2018) may have contributed to the underutilisation of Caffe, as researchers 
have increasingly migrated to PyTorch for its comprehensive support and capabilities.

Likewise, the commercial data science platform RapidMiner (2023a) made a modest 
appearance in the selected research, with only one paper (0.6%) acknowledging its pres-
ence. To implement CSL, users can utilise the software’s cost-sensitive operator (Rapid-
Miner 2023b), conveniently accessible through its GUI. This operator allows specifying 
the costs associated with different classes and incorporates these costs into the learning 
process. In addition, RapidMiner offers a dedicated implementation of the MetaCost algo-
rithm through the MetaCost operator (RapidMiner 2023c).

A noteworthy observation in this study is that some papers combined two development 
tools, resulting in their double counting in both respective tool categories. Among them, 
three papers (1.7%) utilised both LibSVM and MATLAB (Liu et al. 2018; Razzaghi et al. 
2015; Prashanth and Roy 2018), while one paper (0.6%) employed Python alongside MAT-
LAB (Rahman et al. 2021a). Additionally, one study (0.6%) leveraged the combined capa-
bilities of Python and Weka (Wu et al. 2020). These combinations highlight researchers’ 
versatility and adaptability in harnessing various tools to address their specific research 
objectives.

10 � Limitations

This section aims to critically examine the limitations encountered in this study, which are 
primarily associated with the following factors:

•	 Selection bias: Various measures were taken to minimise potential selection bias in this 
review. A comprehensive search strategy was implemented, incorporating a diverse set 
of search terms, alternative spellings, and synonyms. The search comprised all article 
fields and was carried out across multiple databases, including PubMed, IEEE Xplore, 
Springer Link, Science Direct, and Google Scholar. The inclusion of Google Scholar 
was explicitly intended to retrieve papers that may not have been available in the first 
four libraries. Moreover, the selection criteria were rigorously defined and applied care-
fully to the candidate papers by one author while the remaining authors evaluated the 
final selection. Any disagreements between the three authors were resolved through 
meetings until a consensus was reached. To reduce exclusions, reasonable QA criteria 
were designed to ensure that papers of sufficient quality were included in the study. 
Besides, theoretical papers and reviews were assessed using only two non-empirical 
QA questions to avoid overlooking them. Despite these efforts, some limitations should 
be acknowledged. It is plausible that some relevant works may have been missed, spe-
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cifically those published in languages other than English, in other databases, or in non-
peer-reviewed sources not encompassed in the search. Additionally, snowballing (i.e. 
manual search in reference lists) was not conducted, which could have identified addi-
tional relevant studies.

•	 Data extraction bias: In light of the critical and time-intensive nature of data extrac-
tion, a meticulous approach was taken to mitigate potential bias. One author conducted 
the task carefully, while the other two authors diligently reviewed the extracted data to 
ensure its accuracy and impartiality. Despite our efforts, some degree of subjectivity 
may have been introduced. Regular meetings were held to reconcile divergences and 
achieve a mutually agreed-upon interpretation of the data to counteract this possibility.

11 � Implications for future research

This section discusses the key implications of our review and provides practical guidance 
for researchers. We outline the following implications that can drive advancements in this 
field and support practical applications:

•	 Understanding domain-specific imbalance: Imbalanced medical datasets present substan-
tial challenges arising from the inherent characteristics of medical data, where certain 
conditions exhibit significantly lower prevalence than others. To address these challenges, 
researchers must cultivate a profound understanding of the specific class imbalance issues 
within their targeted medical domain. This necessitates a comprehensive examination of 
the distribution patterns of medical conditions in the dataset, the identification of critical 
minority classes, and an exploration of the underlying factors contributing to this imbal-
ance. Furthermore, researchers must evaluate the potential consequences of misclassifica-
tion within their specific medical context. This evaluation entails a thorough considera-
tion of the associated risks, costs, and implications associated with FN and FP.

•	 Cost matrix design and evaluation: As CSL relies on the accurate estimation of misclas-
sification costs, researchers should carefully consider the design and evaluation of the 
cost matrix. Collaborating with domain experts and healthcare professionals is highly 
valuable to define the costs associated with different types of misclassifications, espe-
cially in medical settings where the consequences of FN and FP can differ significantly. 
Researchers are encouraged to explore methods for cost matrix estimation, including 
expert opinions, data-driven approaches, and incorporating contextual factors.

•	 Combining attribute and misclassification costs: While misclassification costs capture 
the consequences of FN and FP, attribute costs reflect the challenges associated with 
acquiring specific features, encompassing aspects such as financial expenses, time con-
straints, or the invasiveness of required tests (Fernández et  al. 2018). By combining 
these two types of costs, researchers can develop comprehensive cost-sensitive models 
that simultaneously account for predictive performance and cost-efficiency in feature 
selection. Striking an optimal balance between the performance achieved by utilising 
certain features and the costs associated with their acquisition enables the development 
of more effective and resource-efficient models for medical decision-making.

•	 Hybrid CSL: Combining CSL with other balancing strategies presents a promis-
ing avenue for addressing class imbalance in medical datasets. By integrating CSL 
with strategies like resampling or ensemble learning, researchers can leverage the 
strengths of multiple strategies to handle class imbalance and address the associated 
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misclassification costs effectively. It is crucial, however, to gain a deep understanding 
of the characteristics and requirements of the specific medical dataset under investi-
gation. This understanding allows for identifying scenarios where CSL or other bal-
ancing strategies excel individually and situations where combining them yields bet-
ter results, ultimately leading to more effective and tailored solutions for imbalanced 
medical data.

•	 Cost-sensitive evaluation: Traditional performance metrics may not fully capture 
the effectiveness of models when misclassification costs are unequally distributed. 
Researchers are strongly encouraged to expand the evaluation beyond conventional 
metrics and employ cost-sensitive metrics that directly incorporate the associated mis-
classification costs. Additionally, a comprehensive evaluation strategy should combine 
multiple metrics to gain a holistic understanding of the model’s performance in terms 
of both classification accuracy and cost-effectiveness.

•	 Addressing less investigated medical disciplines and tasks: While disciplines such as 
oncology, cardiology, neurology, and infectious diseases have garnered significant 
research attention, other medical disciplines have received relatively less investigation. 
Similarly, diagnosis has been extensively studied, while other medical tasks remain 
relatively unexplored. To address this gap, researchers are urged to broaden their focus 
beyond the well-investigated medical sub-fields and tasks and delve into the untapped 
potential of less investigated medical domains. This exploration will facilitate a deeper 
understanding of the applicability and effectiveness of CSL in a broader range of medi-
cal applications. Furthermore, promoting data sharing is highly recommended, as lim-
ited dataset availability may have contributed to the underrepresentation of certain 
medical disciplines and tasks in the existing literature.

•	 Advancing validation research: The scarcity of papers dedicated to validation research 
reflects the inherent challenges in conducting assessments of cost-sensitive methods in 
real-world hospital settings. Therefore, researchers must establish close collaborations 
with medical professionals and actively engage in validation studies to demonstrate the 
effectiveness and reliability of CSL methods in real medical scenarios. These valida-
tion studies can provide valuable insights into the practical performance of CSL models 
and enhance the trust and confidence of healthcare practitioners.

•	 Ensuring generalizability: Researchers should focus on developing models that can 
effectively handle class imbalance across diverse datasets and healthcare contexts. 
This involves evaluating the performance of cost-sensitive methods on multiple data-
sets, encompassing different medical institutions and patient populations. Furthermore, 
efforts should be made to address potential sources of dataset bias, covariate shift, and 
concept drift to enhance the models’ generalizability to unseen data.

•	 Considering interpretability: Interpretability is recognised as a critical consideration in 
developing cost-sensitive solutions. Guaranteeing interpretability within these models 
is paramount for cultivating transparency and understanding in clinical decision-mak-
ing processes. Researchers are urged to prioritise the development of interpretable cost-
sensitive techniques that strike a balance between model complexity and transparency. 
This emphasis empowers medical professionals to accurately interpret and trust the pre-
dictions made by these models.

•	 Enhancing reproducibility: Researchers are encouraged to actively engage in data and 
code-sharing practices, fostering a collaborative environment that enables the scientific 
community to reproduce and validate research findings. Furthermore, it is crucial to 
provide detailed reports on the cost-sensitive methods employed, covering the specific 
cost matrix used, the chosen cost-sensitive approach, and the algorithmic configura-
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tions. Comprehensive reporting promotes transparency and facilitates comparisons 
between different CSL methods.

•	 Broader applicability: Researchers should extend their focus beyond single-label clas-
sification and segmentation tasks and dedicate more attention to multi-label (Tarekegn 
et al. 2021) and regression (Wang et al. 2020a) problems. While single-label classifica-
tion and segmentation have received significant attention, there is a need for compre-
hensive investigations and advancements in cost-sensitive methods for tasks involving 
multiple labels and continuous outcome prediction. By broadening the scope of CSL to 
encompass these diverse problems, researchers can expand the applicability of CSL in a 
wider range of medical scenarios.

12 � Conclusion and future work

This review aimed to provide an overview of the available literature on CSL for imbal-
anced medical data. Our study marks a novel contribution to the domain, being the first of 
its kind. A total of 173 papers published between January 2010 and December 2022 and 
sourced from five digital libraries were carefully selected, analysed and classified.

The results demonstrated an apparent rise in interest and research activity in CSL for 
imbalanced medical data, particularly since 2020. This growing recognition underscores 
the challenges of class imbalance in medical datasets and the pressing need for effec-
tive solutions. The substantial number of papers published in renowned journals further 
highlights the scholarly significance and impact of this research area. Among the selected 
works, a considerable portion focused on proposing novel solutions and evaluating their 
effectiveness, demonstrating the dual nature of research efforts in addressing class imbal-
ance. The prevalence of HBE as the primary empirical type suggests the extensive use of 
past data to assess the performance of CSL methods. This practice is driven by the abun-
dance of available historical datasets and the challenges associated with accessing real-
world medical data.

Furthermore, the investigation of medical sub-fields revealed that oncology received 
the highest level of attention, emphasising the critical importance of accurate prediction 
and diagnosis in cancer-related applications. In parallel, the prominence of diagnosis as 
the most widely studied medical task underscores the significance of precise and timely 
diagnostic capabilities in medical decision-making. Notably, researchers have displayed 
a strong preference for CSL direct approaches, highlighting the relevance of integrating 
cost sensitivity directly into the learning process. This preference may be attributed to 
the availability of readily implemented solutions in popular ML libraries. This study also 
detailedly explored the strengths and weaknesses of CSL strategy and approaches, equip-
ping researchers with crucial insights and recommendations to make informed decisions. 
In addition, a comparative analysis was conducted on a selection of relevant works, allow-
ing for a deeper understanding of the performance and characteristics of different CSL 
techniques.

For datasets, a total of 196 datasets were identified from the selected papers. The com-
mon practice of using multiple datasets enabled the assessment of model generalizability 
and facilitated a more comprehensive evaluation of cost-sensitive methods. The findings 
additionally showed that MIT-BIH Arrhythmia emerged as the most frequently used data-
set, owing to the numerous selected studies in cardiology and its recognition as a repu-
table benchmark dataset. Moreover, the analysis of data types revealed a wide range of 
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modalities, with images being the dominant type. This observation aligns with the increas-
ing utilisation of medical imaging techniques in clinical practice and research.

The evaluation metrics employed in the selected studies encompassed two categories: 
traditional metrics and cost-related metrics. The underutilisation of cost-related metrics 
stresses the need for their incorporation in CSL research. Additionally, combining multiple 
evaluation metrics was commonplace, ensuring a comprehensive assessment of model per-
formance, particularly in the context of imbalanced datasets. This study also shed light on 
the development tools employed for CSL implementation. Nine tools were identified, each 
accompanied by a detailed explanation of how they incorporate CSL. Python emerged as 
the most widely adopted programming tool, aligning with its popularity in the broader ML 
community.

Lastly, this paper elucidated several significant implications, offering researchers valu-
able insights and practical guidance and contributing to the advancement of the field. First 
and foremost, understanding the specific nature of class imbalance within medical datasets 
is crucial for developing effective CSL techniques. Additionally, the design and evaluation 
of cost matrices play a pivotal role in accurately reflecting the misclassification costs asso-
ciated with different classes. Furthermore, combining attribute costs with misclassifica-
tion costs enables researchers to develop comprehensive cost-sensitive models that balance 
performance and cost efficiency in feature selection. Integrating CSL with other balancing 
techniques offers promising avenues for addressing class imbalance in medical datasets. 
Moreover, the study highlighted the importance of adopting cost-sensitive evaluation met-
rics that go beyond traditional performance measures to capture the true impact of misclas-
sification costs. The study also emphasised the need to address less investigated medical 
disciplines and tasks and advance validation research to demonstrate the effectiveness and 
reliability of CSL models. Additionally, ensuring the generalizability of CSL techniques 
across different medical datasets and settings is crucial for their practical application and 
broader adoption in the field. Considering the interpretability of CSL models is also essen-
tial for fostering trust and transparency in medical decision-making processes. Further-
more, promoting reproducibility by sharing datasets, code, and detailed reporting of CSL 
approaches enhances collaboration and facilitates comparisons between different methods. 
Lastly, there is a need for further exploration and application of CSL techniques on multi-
label and regression problems. Such efforts hold great potential for advancing accurate and 
cost-aware modelling in various imbalanced contexts.

We posit that our study will offer researchers and practitioners pertinent insights into 
the current landscape of CSL literature in medicine, along with recommendations for 
subsequent publications. Moreover, this study serves as a foundational step for our future 
research, which will entail a more focused and comprehensive systematic literature review 
on the performance evaluation of cost-sensitive techniques for imbalanced medical data. 
By narrowing down the research scope and delving deeper into specific performance 
aspects, our future work aims to provide a more nuanced understanding of the effectiveness 
and limitations of CSL in addressing class imbalance in the medical domain.
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