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Abstract

Microarray technology, as applied to the fields of bioinformatics, biotechnology, and
bioengineering, has made remarkable progress in both the treatment and prediction of
many biological problems. However, this technology presents a critical challenge due to
the size of the numerous genes present in the high-dimensional biological datasets asso-
ciated with an experiment, which leads to a curse of dimensionality on biological data.
Such high dimensionality of real biological data sets not only increases memory require-
ments and training costs, but also reduces the ability of learning algorithms to generalise.
Consequently, multiple feature selection (FS) methods have been proposed by research-
ers to choose the most significant and precise subset of classified genes from gene expres-
sion datasets while maintaining high classification accuracy. In this research work, a novel
binary method called iBABC-CGO based on the island model of the artificial bee colony
algorithm, combined with the chaos game optimization algorithm and SVM classifier, is
suggested for FS problems using gene expression data. Due to the binary nature of FS
problems, two distinct transfer functions are employed for converting the continuous search
space into a binary one, thus improving the efficiency of the exploration and exploitation
phases. The suggested strategy is tested on a variety of biological datasets with different
scales and compared to popular metaheuristic-based, filter-based, and hybrid FS methods.
Experimental results supplemented with the statistical measures, box plots, Wilcoxon tests,
Friedman tests, and radar plots demonstrate that compared to prior methods, the proposed
iBABC-CGO exhibit competitive performance in terms of classification accuracy, selection
of the most relevant subset of genes, data variability, and convergence rate. The suggested
method is also proven to identify unique sets of informative, relevant genes successfully
with the highest overall average accuracy in 15 tested biological datasets. Additionally, the
biological interpretations of the selected genes by the proposed method are also provided
in our research work.
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1 Introduction

In the domains of bioinformatics and biotechnology, DNA microarray technology is
regarded as a valuable asset. This technology’s breakthrough, combined with gene expres-
sion techniques, has revealed various mysteries about the biological characteristics of all
live cells, enabling the examination and therapy of such endogenous genetic expression.
However, conducting an experiment on hundreds of genes simultaneously (Yang et al.
2006), remains challenging work, not only because of the extensive number of genes but
also because of the redundancy and irrelevance of some of them, which reduces and affects
the performance of the microarray technology. As a result, the gene selection issue is being
addressed using the Feature Selection (FS) technique (Dash and Liu 1997). By using gene
expression data, the feature selection strategy can decrease the number of features, shorten
calculation times, improve accuracy, and make data easier to understand.

The fundamental goal of FS process is the reduction of the number of features (NFs) by
eliminating unnecessary ones. It could facilitate model inference and increase the classifi-
cation model’s precision. Filter, wrapper, and embedding are the different feature selection
techniques (Chandrashekar and Sahin 2014). Wrapper and embedded methods (Chen and
Chen 2015; Lal et al. 2006; Yan et al. 2019; Erguzel et al. 2015) are based on classification
techniques, and gene selection is a part of the training phase of the learning algorithms.
In contrast, filter methods are based on ranking techniques to select genes that are ranked
above the fixed threshold (Sanchez-Marofio et al. 2007). Due to the size of the solution
space and the overall NFs count, Selecting the optimal subset of attributes is viewed as a
hard combinatorial optimization problem (OP), with NP-completeness (Wang et al. 2007).

The search for the nearly ideal subset of characteristics is a crucial consideration while
building an FS algorithm. The standard comprehensive approaches, such as breadth searches,
depth searches, and others, are impractical for choosing the optimal subset of characteristics
in large datasets. The production and evaluation of 2N subsets of a dataset with N features
are required by wrapper-based methods like neural networks (Guyon and Elisseeff 2003),
which is a computationally demanding task, especially when assessing subsets separately. FS
is therefore thought of as an NP-hard optimization issue. Its primary purpose is to pick the
fewest possible characteristics while maintaining the highest level of classification accuracy.
To overcome this difficulty, FS is often built as a single-objective OP by merging these two
goals using the weighted-sum approach, or as a multi-objective OP to discover compromise
alternatives between the two competing goals (Xue et al. 2015). In the literature, two main
objectives are frequently used: minimizing the NFs count and the classification error rate,
which do not necessarily conflict with one another. For instance, in some subspaces, reducing
the NF's count also reduces the classification error rate (CER) because redundant features are
eliminated (Xue et al. 2012; Vieira et al. 2009; Al-Tashi et al. 2018). Due to this reason, we
choose to use a single-objective strategy rather than a multi-objective one.

Furthermore, metaheuristic strategies are incorporated into feature selection since they are
superior methodologies in many NP-hard issues. It can be explained by the fact that the search
for the best subset in feature space is also an NP-hard problem (Yusta 2009). Additionally, com-
pared to conventional optimization techniques, the wrapper approach based on meta-heuristic
algorithms may adjust classifier parameters and choose the best feature subset, both of which can
enhance classification outcomes (Huang 2009; Oliveira et al. 2010; Saha et al. 2009). Generally,
metaheuristics are inspired by nature, biological and social behaviour, several approaches were
proposed to handle the FS problem, such as Simulated Annealing (SA) (Meiri and Zahavi 2006),
Genetic Algorithm (GA) (Oliveira et al. 2003), Ant Colony Optimization (ACO) (Chen et al.
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2010; Liu et al. 2013), Differential Evolution (DE) (Hancer et al. 2018), Artificial Bee Colony
(ABC) (Rao et al. 2019), Particle swarm optimization (PSO) (Wang et al. 2018), Crow Search
Algorithm (CSA) (Al-Thanoon et al. 2021), Chaotic Binary Black Hole Algorithm (CBBHA)
(Qasim et al. 2020), Tabu Search (TS) (Oduntan et al. 2008), etc. However, these mentioned
approaches demand continuous adjustment of parameters and lack rapidity in execution time.

On the other hand, all metaheuristic algorithms must strike a balance between the
exploitation and exploitation phases to prevent being caught in local optima or failing to
converge (Del Ser et al. 2019). These issues have risen on by the MH algorithms’ unpre-
dictable solution-seeking process. In this situation, it is necessary to combine concepts
from many scientific disciplines. Hybridization, which combines the best features of sev-
eral algorithms into a single improved technique, can result in an algorithm with higher
performance and accuracy (Talbi 2002). The literature claims that hybrid algorithms out-
performed single ones. However, as per the No Free Lunch (NFL) theorem, no strategy
is better than all others in all feature selection tasks (Wolpert and Macready 1997). As a
result, in order to better handle feature selection challenges, new algorithms must be devel-
oped or existing algorithms must be improved by modifying some of their variables. Con-
sequently, we proposed a novel hybrid FS technique, named iABC-CGO, which is further
adapted to the discrete FS problem by developing the binary variant iBABC-CGO.

The main aims and contributions of this research work are summarized as follows:

(1) This paper proposes an enhanced binary version of an island-based model of artificial
bee colonies (iIBABC) combined with Chaos Game Optimization (CGO) to tackle
the FS problem using gene expression data. The integration of CGO principles in the
migration process aims to improve the convergence behaviour of iBABC and helps in
escaping local optimum.

(2) The performance of the suggested variants, iBABC-CGO-S and iBABC-CGO-V, is
first verified by extensive testing on 15 challenging biological datasets. With the use
of average accuracy values and the average number of selected features, performance
comparisons have been done with a variety of current metaheuristics. Results reveal
that the suggested strategy maintains performance accuracy despite controlling a large
number of genes and yielding the most important subset of attributes.

(3) The fitness of proposed iBABC-CGO variants for different biological data sets is further
tested and analysed with the standard statistical measures, Wilcoxon tests, Friedman
tests, Quade test, box plots, and radar plots. All of these tests and plots further dem-
onstrate the superiority of the proposed method in terms of average accuracy over the
compared metaheuristics for most of the datasets.

(4) Finally, we also provided the biological interpretations of the genes, which are selected
by the proposed iBABC-CGO method.

Accordingly, this paper is structured as follows: Section 2 provides insight into the estab-
lished prior works of the FS problem using gene expression data, Section 3 explains the
methodology of the island artificial bee colony (iABC) for global optimization metaheuris-
tic, Section 4 details the proposed binary version of iABC-CGO named iBABC with the
two versions iIBABC-CGO-S and iBABC-CGO-V. Section 5 provides the experimental
results based on several gene expression datasets, and Section 6 presents the biological
interpretations of the selected genes by the proposed iIBABC-CGO method. Section 7 pro-
vides insights into the pros and cons of the proposed approach. Finally, Section 8 presents
the paper’s conclusion and future directions.
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2 Related works

Metaheuristic techniques have emerged as powerful tools in the realm of optimization
problems. They have provided fresh insights into various optimization challenges, includ-
ing large-scale optimization functions, combinatorial optimization, and bioinformatics.

In large-scale optimization problems, the dimensionality of the solution space becomes
prohibitively high. Traditional optimization techniques often struggle with such problems
due to the sheer number of variables involved, leading to computational inefficiencies or
even infeasibility. Metaheuristics, with their iterative and heuristic-based approach, offer a
more scalable solution. They can handle a large number of variables and constraints more
effectively, making them particularly well-suited for problems where the search space is
vast and the optimal solution is difficult to locate.

Metaheuristics are strategies employed to solve optimization problems by targeting
near-optimal solutions for specific problems. This search process can involve multiple
agents who work together, applying mathematical equations or rules iteratively until a pre-
defined criterion is met. This point of near-optimality is known as convergence (Yang et al.
2014).

Unlike exact methods that provide optimal solutions at the cost of high computational
time, heuristic methods yield near-optimal solutions more quickly but are typically prob-
lem-specific. Metaheuristics, being a level above heuristics, have gained popularity due to
their ability to deliver solutions with reasonable computational costs. Combining effective
heuristics with established metaheuristics can produce high-quality solutions for a wide
range of real-world problems.

In order to comprehend metaheuristics, it’s crucial to understand the foundational
terms in metaheuristic computing, an approach that employs adaptive intelligent behavior.
According to Wang (2010), these terms can be defined as follows:

A heuristic is a problem-solving strategy based on trial-and-error.

A metaheuristic is a higher-level heuristic used for problem-solving.

Metaheuristic computing is adaptive computing that uses general heuristic rules to
solve a variety of computational problems.

Wang (2010) provides a generalized mathematical representation of a metaheuristic as:
MH = (0, A, Rc, Ri, Ro) (1)

where:

e O is a set of metaheuristic methodologies (metaheuristic, adaptive, automotive, trial-
and-error, cognitive, etc.)

e Ais a set of generic algorithms (e.g., genetic algorithm, particle swarm optimization,
evolutionary algorithm, ant colony optimization, etc.)
Rc = O X Ais a set of internal relations.
Ri CAXA,AAAis a set of input relations.
Ro C ¢ x C is a set of output relations.

Additional concepts such as neighborhood search, diversification, intensification, local
and global minima, and escaping local minima are also important. Fundamental strategies
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in metaheuristics involve balancing exploration and exploitation, identifying promising
neighbors, avoiding inefficient ones, and limiting searches to unpromising areas.

The exploration versus exploitation dichotomy, central to optimization methods,
requires expanding the search to explore unvisited areas (exploration) and focusing on
promising regions based on accumulated search experience for optimal utilization and con-
vergence (exploitation) (Crepin§ek et al. 2013).

Other key considerations in metaheuristics include local versus global search, single
versus population-based algorithms, and hybrid methods. The choice between single-solu-
tion or population-based algorithms depends on whether the metaheuristic is more inclined
towards exploitation or exploration. Ultimately, balancing exploration and exploitation is
vital for both types of algorithms (Abualigah et al. 2022).

Bioinformatics is a multidisciplinary field that combines biology, computer science, and
statistics to analyze and interpret biological data. With the advent of high-throughput tech-
nologies, bioinformaticians now deal with massive datasets that require efficient process-
ing and analysis. Metaheuristic techniques have found applications in areas such as protein
folding, sequence alignment, and phylogenetic tree reconstruction. They offer the ability to
handle complex biological data, accommodate uncertainties, and provide solutions that are
both computationally feasible and biologically meaningful.

Gene selection plays a crucial role in profiling and predicting different forms of abnor-
malities in the field of bioinformatics, particularly within the scope of optimization prob-
lems. Given the vast amount of gene expression data available, there is a need for a reliable
and accurate approach to selecting the most pertinent genes. The feature selection approach
serves this purpose by reducing the dimensionality and removing redundancy in gene
expression data.

Gene expression data typically involves thousands of genes measured across various
experimental conditions or time points. However, not all these genes are equally relevant
for understanding or predicting biological processes or abnormalities. Many genes may
exhibit similar expression patterns, leading to redundancy in the data, while others may be
irrelevant to the specific condition under investigation. This high-dimensional and redun-
dant data poses significant challenges for analysis, making gene selection an essential step.

Feature selection aims to identify a subset of the most informative genes that contribute
significantly to the condition under study. This process involves three key steps: evaluation,
search, and validation. In the evaluation step, each gene is assessed based on its relevance
and contribution to the target condition. Statistical tests, information theory, or machine
learning techniques are commonly used to assign scores or ranks to genes according to
their importance.

In the search step, different algorithms, such as sequential forward selection, sequential
backward elimination, or metaheuristic algorithms, are applied to identify the optimal sub-
set of genes. These algorithms operate iteratively, adding or removing genes based on their
scores, and aim to balance the trade-off between including informative genes and minimiz-
ing redundancy.

In the validation step, the selected subset of genes is tested on independent data to assess
its performance in profiling or predicting the condition under investigation. Techniques like
cross-validation or bootstrapping are used to ensure that the selected genes are robust and
generalizable across different datasets.

The feature selection approach offers several advantages. By reducing the dimensional-
ity of the data, it facilitates easier and more interpretable analysis. Eliminating redundancy
leads to more robust and reliable results, as irrelevant or correlated genes are removed.
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Additionally, selecting a smaller subset of genes helps in reducing the cost and time associ-
ated with experimental validation.

Researchers have proposed a variety of techniques for applying Feature Selection (FS)
to gene expression data. Lu et al. (2017) proposed a hybrid FS approach that integrates
the mutual information maximization (MIM) and the adaptive genetic algorithm (AGA) to
classify gene expression data. This method reduces the size of the original gene expression
datasets and eliminates data redundancies. First, the authors used the MIM filter technique
to identify relevant genes. Subsequently, they applied the AGA algorithm, coupled with the
extreme learning machine (ELM) as a classifier.

In another study, Dhrif et al. (Dhrif et al. 2019) introduced an improved binary Particle
Swarm Optimization (PSO) algorithm with a local search strategy (LS) for feature selec-
tion in gene expression data. This approach facilitates the selection of specific features by
using the LS to guide the PSO search, thereby successfully reducing the overall number
of features. Shukla et al. (2019) presented a hybrid wrapper model for gene selection that
combines the gravitational search algorithm (GSA) and a teaching-learning-based optimi-
zation algorithm (TLBO). To apply the FS methodology, the authors converted the con-
tinuous search space into binary form.

Sharma and Rani (2019) employed a hybrid strategy for gene selection in cancer clas-
sification that integrates the Salp Swarm Algorithm (SSA) and a multi-objective spotted
hyena optimizer. The authors initially used the filter method to obtain a reduced subset
of significant genes. The most pertinent gene subset is then identified using the hybrid
gene selection approach, applied to the pre-processed gene expression data. Masoudi et al.
(2021) proposed a wrapper FS approach to select the optimal subset of genes based on
a Genetic Algorithm (GA) and World Competitive Contests (WCC). This method was
applied to 13 biological datasets with diverse features, including cancer diagnostics and
drug discovery, and demonstrated better performance than many currently used solutions.

Ghosh et al. (2019) developed a modified version of the Memetic Algorithm (MA),
called the Recursive MA (RMA), for gene selection in microarray data. The proposed
method outperformed the original MA and GA-based FS algorithms on seven microar-
ray datasets using SVM, KNN, and Multi-layer Perceptron (MLP) classifiers. Kabir et al.
(2012) proposed a wrapper FS methodology that employed an enhanced Ant Colony Opti-
mization (ACO) variant, termed ACOFS, as a search method. ACOFS showed remarkable
results compared to popular FS approaches when tested on multiple biological datasets.
For high-dimensional microarray data classification, authors in (Apolloni et al. 2016)
developed two hybrid FS algorithms by combining a Binary Differential Evolution (BDE)
algorithm with a rank-based filter methodology. These BDE-based FS algorithms were
tested for robustness using SVM, KNN, Naive Bayes (NB), Decision Trees (C4.5), and
six high-dimensional microarray datasets. It was observed that the proposed FS methods
produced substantially equivalent classification results with more than a 95% reduction in
the initial number of features/genes. In a recent study (Shukla et al. 2020), various feature
selection methods were investigated using gene expression data.

In the paper (Yaqoob et al. 2023), the authors address the challenge of dimensionality
in high-dimensional biomedical data, which complicates the identification of significant
genes in diseases like cancer. They explore new machine learning techniques for analyz-
ing raw gene expression data, which is crucial for disease detection, sample classification,
and early disease prediction. The paper introduces two dimensionality reduction methods,
feature selection and feature extraction, and systematically compares several techniques for
analyzing high-dimensional gene expression data. The authors present a review of popu-
lar nature-inspired algorithms, focusing on their underlying principles and applications in
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cancer classification and prediction. The paper also evaluates the pros and cons of using
nature-inspired algorithms for biomedical data. This review offers guidance for research-
ers seeking the most effective algorithms for cancer classification and prediction in high-
dimensional biomedical data analysis.

The article (Aziz 2022) addresses the challenge of designing an optimal framework
for predicting cancer from high-dimensional and imbalanced microarray data, a common
problem in bioinformatics and machine learning. The authors focus on the independent
component analysis (ICA) feature extraction method for Naive Bayes (NB) classification of
microarray data. The ICA method effectively extracts independent components from data-
sets, satisfying the classification criteria of the NB classifier. The authors propose a novel
hybrid method based on a nature-inspired metaheuristic algorithm to optimize the genes
extracted using ICA. They employ the cuckoo search (CS) and artificial bee colony (ABC)
algorithms to find the best subset of features, enhancing the performance of ICA for the NB
classifier. According to their research, this is the first application of the CS-ABC approach
with ICA to address the dimensionality reduction problem in high-dimensional microar-
ray biomedical datasets. The CS algorithm improves the local search process of the ABC
algorithm, and the hybrid CS-ABC method provides better optimal gene sets, improving
the classification accuracy of the NB classifier. Experimental comparisons show that the
CS-ABC approach with the ICA algorithm performs a deeper search in the iterative pro-
cess, avoiding premature convergence and producing better results compared to previously
published feature selection algorithms for the NB classifier.

The article (Chen et al. 2023) addresses the issue of high-dimensional genetic data
in contemporary medicine and biology. The authors propose a new wrapper gene selec-
tion algorithm called the artificial bee bare-bone hunger games search (ABHGS), which
integrates the hunger games search (HGS) with an artificial bee strategy and a Gaussian
bare-bone structure. The performance of ABHGS is evaluated by comparing it with the
original HGS and a single strategy embedded in HGS, as well as six classic algorithms and
ten advanced algorithms using the CEC 2017 functions. Experimental results show that
ABHGS outperforms the original HGS. In comparison to other algorithms, it improves
classification accuracy and reduces the number of selected features, indicating its practical
utility in spatial search and feature selection.

The work proposed by (Coleto-Alcudia and Vega-Rodriguez 2020), introduces a new
hybrid method for gene selection in cancer research, aimed at classifying tissue samples
into different classes (normal, tumor, tumor type, etc.) effectively with the fewest number
of genes. The proposed approach comprises two steps: gene filtering and optimization. The
first step employs the Analytic Hierarchy Process, using five ranking methods to select the
most relevant genes and reduce the number of genes for consideration. In the second step,
a multi-objective optimization approach is applied to achieve two objectives: minimize the
number of selected genes and maximize classification accuracy. An Artificial Bee Col-
ony based on Dominance (ABCD) algorithm is proposed for this purpose. The method is
tested on eleven real cancer datasets, and results are compared with several multi-objective
methods from the scientific literature. The approach achieves high classification accuracy
with small subsets of genes. A biological analysis on the selected genes confirms their rel-
evance, as they are closely linked to their respective cancer datasets.

The paper (Pashaei and Pashaei 2022) presents a new wrapper feature selection method
based on the chimp optimization algorithm (ChOA) for the classification of high-dimen-
sional biomedical data. Due to the presence of irrelevant or redundant features in biomedi-
cal data, classification methods struggle to accurately identify patterns without a feature
selection algorithm. The ChOA is a newly introduced metaheuristic algorithm, and this
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work explores its potential for feature selection. Two binary variants of the ChOA are pro-
posed, using transfer functions (S-shaped and V-shaped) or a crossover operator to con-
vert the continuous version of ChOA to binary. The proposed methods are validated on
five high-dimensional biomedical datasets, as well as datasets from life, text, and image
domains. The performance of the proposed approaches is compared to six well-known
wrapper-based feature selection methods (GA, PSO, BA, ACO, FA, FP) and two stand-
ard filter-based methods using three different classifiers. Experimental results show that
the proposed methods effectively remove less significant features, improving classification
accuracy, and outperforming other existing methods in terms of selected genes and classifi-
cation accuracy in most cases.

The paper (Pashaei and Pashaei 2021) presents a new hybrid approach (DBH) for gene
selection that combines the strengths of the binary dragonfly algorithm (BDF) and binary
black hole algorithm (BBHA). The proposed approach aims to identify a small and stable
set of discriminative genes without sacrificing classification accuracy. The approach first
applies the minimum redundancy maximum relevancy (MRMR) filter method to reduce
feature dimensionality and then uses the hybrid DBH algorithm to select a smaller set of
significant genes. The method was evaluated on eight benchmark gene expression datasets
and compared against the latest state-of-art techniques, showing a significant improvement
in classification accuracy and the number of selected genes. Furthermore, the approach
was tested on real RNA-Seq coronavirus-related gene expression data of asthmatic patients
to select significant genes for improving the discriminative accuracy of angiotensin-con-
verting enzyme 2 (ACE2), a coronavirus receptor and biomarker for classifying infected
and uninfected patients. The results indicate that the MRMR-DBH approach is a promising
framework for identifying new combinations of highly discriminative genes with high clas-
sification accuracy.

The paper (Pashaei 2022) addresses the challenge of microarray data classification in
bioinformatics. The authors propose a new wrapper gene selection method called mutated
binary Aquila Optimizer (MBAO) with a time-varying mirrored S-shaped (TVMS) transfer
function. This hybrid approach employs the Minimum Redundancy Maximum Relevance
(mRMR) filter to initially select top-ranked genes and then uses MBAO-TVMS to identify
the most discriminative genes. TVMS is used to convert the continuous version of Aquila
Optimizer (AO) to binary, and a mutation mechanism is added to the binary AO to enhance
global search capabilities and avoid local optima. The method was tested on eleven bench-
mark microarray datasets and compared to other state-of-the-art methods. The results indi-
cate that the proposed mRMR-MBAO approach outperforms the mRMR-BAO algorithm
and other comparative gene selection methods in terms of classification accuracy and the
number of selected genes on most of the medical datasets.

To tackle the challenges associated with analyzing gene expression data generated by
DNA microarray technology, authors in (Alomari et al. 2021) propose a new hybrid filter-
wrapper gene selection method combining robust Minimum Redundancy Maximum Rele-
vancy (tMRMR) as a filter approach to select top-ranked genes, and a Modified Gray Wolf
Optimizer (MGWO) as a wrapper approach to identify smaller, more informative gene sets.
The MGWO incorporates new optimization operators inspired by the TRIZ-inventive solu-
tion, enhancing population diversity. The method is evaluated on nine well-known microar-
ray datasets using a support vector machine (SVM) for classification. The impact of TRIZ
optimization operators on MGWO’s convergence behavior is examined, and the results
are compared to seven state-of-the-art gene selection methods. The proposed method
achieves the best results on four datasets and performs remarkably well on the others. The
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experiments confirm the effectiveness of the method in searching the gene search space
and identifying optimal gene combinations.

However, these methods still have several drawbacks, such as local optima stagnation,
premature convergence, and onerous criteria and execution times (Abu Khurma et al. 2022;
Agrawal et al. 2021; Abiodun et al. 2021). To mitigate these shortcomings, this paper
introduces a new, enhanced wrapper algorithm based on the island model of the ABC
metaheuristic. Over the years, numerous extensions and applications of the ABC algo-
rithm have been proposed. For instance, the study in (Zorarpact and Ozel 2016) presented
a hybrid approach that integrates differential evolution with the ABC method for feature
selection. In (Garro et al. 2014), distance classifiers and the ABC method were employed
to classify DNA microarrays. The study in (Alshamlan et al. 2019) introduced an ABC-
based technique for accurate cancer microarray data classification, utilizing an SVM as a
classifier. Various other hybridizations and expansions of the ABC algorithm have been
proposed over time. Recently, (Awadallah et al. 2020) introduced the island model to the
standard ABC algorithm for global optimization (denoted as iABC), achieving impressive
success compared to its competitors.

Building upon these developments, the objective of this study is twofold. First, we pro-
pose a hybridized version of iABC, termed iABC-CGO, which incorporates Chaos Game
optimization to tackle the standard ABC’s slow convergence problem, which arises from
modifying only a single decision vector dimension. Subsequently, we introduce a binary
variant of ;ABC-CGO, referred to as iBABC-CGO, designed to address the feature selec-
tion (FS) problem in the context of gene expression data. This hybrid approach aims to
harness the strengths of both Chaos Game optimization and the island model of the ABC
metaheuristic, potentially offering improved convergence rates and enhanced feature selec-
tion capabilities.

3 Preliminaries
3.1 Overview of island ABC (/ABC) for optimization

ABC algorithm is a swarm-based metaheuristic motivated by how bees forage for food,
where the location of the food source indicates potential ideal solutions and the quantity of
nectar suggests the quality of the solution (Rao et al. 2019). ABC intrigued the authors of
(Awadallah et al. 2020) due to its many benefits, and they suggested a new version of ABC
paired with the island model for enhancing the convergence speed and diversity of solu-
tions. However, the original ABC algorithm still struggles with three major deficiencies in
the search behaviour, which are: (i) the search equation favours exploration over explora-
tion (Zhu and Kwong 2010; (ii) numerous fitness evaluations (Mernik et al. 2015); and (iii)
tendency to stuck in local optima due to premature convergence, especially while applying
to complex optimization problems (Karaboga et al. 2014).

Therefore, the island model concept (Wu et al. 2019) has been introduced mainly to
address the lack of heterogeneity from which most population-based algorithms suffer.
The original algorithm is independently run, either synchronously or asynchronously, on
each island. Therefore, a migration mechanism is used to shift certain individuals from one
island to another in order to increase the algorithm’s effectiveness. This procedure might
adhere to a number of strategies that guarantee the spatial exploration of newer areas of
the search area (Tomassini 2006). The wide use of this technique can be explained by its
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balance between exploration and exploitation. Moreover, dividing individuals (potential
solutions) into different islands reduces the computational time and increases the probabil-
ity that weak solutions reach the best values (Whitley et al. 1997).

Several island-based metaheuristic studies were proposed such as island ACO (Mora
et al. 2013), island bat algorithm (Al-Betar and Awadallah 2018), island GA (Corcoran and
Wainwright 1994; Whitley et al. 1997; Palomo-Romero et al. 2017), island PSO (Abadlia
et al. 2017), island harmony search algorithm (Al-Betar et al. 2015), and island crow search
algorithm (Turgut et al. 2020). The proposed approaches succeeded in reducing the com-
putational requirements and providing good results. However, choosing the adequate val-
ues of different parameters and adopting the suitable migration policy for the island-based
technique greatly impact the final results as proved by many studies (Canti-Paz et al. 1998;
Fernandez et al. 2003; Skolicki and De Jong 2005; Tomassini 2006; Rucinski et al. 2010).

The island model requires at first two parameters: the quantity also referred to as the
number of islands (Z,) and the size of islands (/). Then, the four key variables that deter-
mine the migration process between the islands are the migration rate, the migration fre-
quency, the migration policy, and the migration topology. The migration rate (R,,) repre-
sents the number of solutions transferred between islands. The migration frequency (F,,)
defines the periodic time for the exchange. The migration topology structures the path of
exchanging solutions among islands. Several topologies were proposed in the literature and
mainly categorized into two sets, one for static and the second for dynamic. Static topolo-
gies include ring, mesh, and star, where the structured paths are predefined and remain
static during the migration process (da Silveira et al. 2019). Dynamic topologies, as the
name implies, randomly define paths and changes in every migration process (Duarte et al.
2017). The migration policy determines which solutions are exchanged between islands.
Researchers introduced different policies based on greed or random selection. The most
used policies are the best-worst policy dealing with replacing the worst solutions of one
island with the best solutions from the other(Kushida et al. 2013). The random policy con-
sists of migrating solutions randomly(Araujo and Merelo 2011). Finally, the migration pro-
cess with all its factors can be carried out in two ways: synchronously or asynchronously. In
iABC algorithm, the artificial bee colony population is divided into islands, and solutions
are enhanced separately and locally on each island. Once a certain number of iterations are
over, a migration procedure based on random ring topology is applied to exchange solu-
tions within islands. The flowchart of iABC is presented in Fig. 1 and detailed in (Awadal-
lah et al. 2020).

3.2 Overview of choas game optimization (CGO)

Chaos game optimization (CGO) (Talatahari and Azizi 2021), which incorporates both
game theory and the mathematical idea of fractals, is a recent innovative optimization
metaheuristic method. Fractals are built using a polygon form that begins with a random
beginning point and an affine function. The iterative series of points produces the fractal
shape by continually applying the chosen function to a new point. The CGO algorithm
seeks to produce a Sierpinski Triangle based on characteristics of fractals in chaos theory.
There are many solution candidates (X) in the CGO’s initial population. Each potential
solution (X;), which comprises the decision variables (xi, j), offers a Sierpinski triangle as
an eligible point in the search space. The following criteria are used to generate the eligible
points:
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Step 5

/ - \ Step 4

Start
Step 1

\ Initialize /ABC parameters ‘

Step 2 l

Create /ABC Initial populath 1

Step 3 l

Divide the population into /,
Islands

Memorize the best solution In | |
each Island

Fig.1 The flowchart of iABC algorithm

2, ...,0
2.....d @

)C:(O) = xé,min +rand. (xjt,mm - xi',min)’ { ; ; i
The dimension of each solution is given by d, where r is the total number of candidates for
eligible solutions. The beginning locations of the solutions are indicated by the variable
x(0). The maximum and minimum values of the x, and x; . variables serve as the ik
decision variable of the i solution, while the rand variable denotes a random value in the
range of [0, 1] .
For the initial search, a temporary Sierpinski triangle is created inside the search space for
each potential solution depending on the locations of three vertices as follows:

e The Global Best (GB).
e The Mean Group (MG)).
e Thei” solution candidate (X,).

Four different approaches are used to update positions. The first one mimics how the solution
X; moves to GB and MG; using the following mathematical formulation:

Seed! =X, +a;X (B, XxGB -y, xMG,), i=12....,n 3)
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where ai denotes a factorial formed at random, fi and yi denote a random number equal
to 0 or 1, respectively. The following equation models how GB moves in relation to X; and
MG

Seed? =GB+ a; X (f;x X, —y,xMG,), i=12...,n @)

The tertiary technique shows how MG; moves in the direction of X; and GB. This technique
is mathematically represented:

Seed? = MG; + a; X (XX, —7;xGB), i=12,...,n 5)

The exploitation phase of the CGO optimization process is defined by the position update
described by the first three approaches. The mutation for the exploration phase is shown in
the fourth technique, which is mathematically represented as follows:

Seed { = X;(xf =x{ +R), k=[1,2,....d] (6)

where k is a randomly generated integer in the range of [1, d] and R is a uniformly distrib-
uted random (UDR) number in the range of [0, 1]. Four possible formulations for «; are
considered to adjust the global and local search rates of the CGO.

Rand
o = 2 x Rand
iTYGx Rand)+1 ° Q)

(ex Rand ) + (~ ¢)

The variables 6 and € denote random numbers in the interval [0, 1], where Rand is a UDR
number in the range of [0, 1]. Figure 2 shows the CGO algorithm’s flowchart.

The CGO algorithm offers an efficient optimization technique using multigroup behav-
iour as a basis. Easy to implement and simple to understand is what best describes the
CGO algorithm, where it performs well in many optimization problems (Talatahari and
Azizi 2020; Ponmalar and Dhanakoti 2022; Ramadan et al. 2021). However, it con-
verges early due to a talent imbalance between exploration and exploitation. In fact,

Search

process Yes

‘ Select Best solution BG H itr=1 /7,;<M,,;;,> [ = ]

Compute fitness of all No I=i#1
solutions T
Divide the solutioniin/l | Update the best solution BG |
Create CGO initial groups and MGj
population according to
eq(1)
Calculate the fractal random Compute fitness function of
i
using o4 (6) the 4 new solutions
cGo
(N, D, Maxitr, ...)

4 new
according to eq (2), (3), (4), (5)

)

C Start - \
A 4 U
ot

Fig.2 The flowchart of CGO algorithm
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excessive exploration wastes time and has a poor convergence rate, whereas high exploita-
tion destroys variety and traps people in local optimums (Roshanzamir et al. 2020).

4 Proposed approach

FS can be formulated as a binary optimization problem since it deals with the binary deci-
sion of whether to select a feature or not. Consequently, to adapt the FS problem using
gene expression data, a hybrid binary version of iABC algorithm with CGO algorithm is
suggested in this work named iBABC-CGO. The proposed iBABC-CGO approach com-
bines the swarm intelligence ABC metaheuristic, the island model concept, the chaos game
optimization principles and the binary version to handle the large dimension of the gene
expression data and the considerable number of irrelevant and redundant genes.

4.1 iABC-CGO

The island model offers one of the most useful techniques for partitioning the population into a
number of sub-population. The searching activities of the metaheuristic algorithm are repeated
synchronously or asynchronously on each island. In order to exchange migrants between
islands, a migration mechanism must be implemented. This procedure allows the metaheuris-
tic algorithm to rigorously explore the search space resulting in performance improvement of
the final solution (Tomassini 2006). The algorithm can arrive at a global optimal solution due
to the increased population diversity because of the exchange of individuals with diverse fit-
ness values across islands (Tomassini 2006). Indeed, the count of islands in the model or the
frequency of inter-island migrant transfers impacts the efficiency of the algorithm.

The migration policy, which specifies who will be relocated off the island and decides
their location on the other island, influences the efficacy of the island model (Araujo
and Merelo 2010; Rucinski et al. 2010). Numerous academics have examined the influ-
ence of the chosen migration topology on the algorithm efficiency (Canti-Paz et al. 1998;
Tomassini 2006; Rucinski et al. 2010; Fernandez et al. 2003). Therefore, we decide to
introduce a new migration policy based on the principles of the CGO algorithm.

Indeed, the CGO method relies on the Sierpinski triangle, which consists of three posi-
tional vertices of the global Best, the mean group, and the i” solution candidate (X,). Since
the CGO method is developed on the concept of sub-populations, the idea of replacing the
traditional random ring topology with the CGO position update formulas emerged.

Therefore, the R, X I, solutions are to be exchanged among islands after a predefined
number of iteration F,,. Those solutions are selected using the roulette wheel technique
(Lipowski and Lipowska 2012).

The detailed proposed iABC-CGO algorithm is represented by the flowchart in Fig. 3.

4.2 Binary version of iABC-CGO (/BABC-CGO)

In the continuous version of the proposed iABC-CGO algorithm, the bees change their
position in a continuous search space. Therefore, a feature subset is encoded as a one-
dimensional vector with the same length as the NFs count in the binary optimization,
where limits on the search agents’ positions (the bees) are enforced in the order of 0, 1
values. Non-chosen features are set to 0, while those selected are set to 1.
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Step 4
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Step 3
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Calculate the fractal random
using eq(6)

| Generate new solutions using
equations (2,3,4 and 5)

Fig.3 The flowchart of ;/ABC-CGO

Afterward, the conversion of the continuous optimization algorithm into a binary ver-
sion is performed using transfer functions (TFs) which are an effective tool to perform this
conversion (Mirjalili and Lewis 2013). In this work, two commonly used S-shaped and
V-shaped TFs are chosen to develop the two binary versions of iABC, namely iBABC-
CGO-S and iBABC-CGO-V. The probability of updating an element’s position in the TFs §
and V in binary form to be 1 or 0 is given by Eq (7):

P(x{(1)) = TR (1)), (8)

where TF is the transfer function that can be Sigmoid for the S-shaped TF given in Eq. (8)
or Hyperbolic tang for V-shaped TF defined in Eq. (9), and x;.i(t) presents the i bee posi-
tion in dimension 4" at iteration ¢.

d _ 1
TF(x; (1) = P )
TF(x!(1)) = | tanh(x{ (1)) (10)

The probability value produced by Eq. (7) is then applied to Eq. (10) to generate the binary
value for the S-shaped transfer function or Eq. (11) for the V-shaped TF in order to update
the position vectors of bees.

_J0 if rand < P(4(1))
"lii(’“)‘{] it randzP(x;f(t))} (I

-1 d
x?(t_'_l):{xf(t) if rand<P(xl.(t))} )

x(@)  if rand > P(x(r))
with rand as a random vector in [0, 1].

The general steps of iIBABC-CGO are presented in Algorithm 1 and followed by a flow-
chart as illustrated in Fig. 4 and detailed as follows:
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e Step 1: Set iIBABC-CGO algorithm’s parameters to initial values. These parameters
are Solution number (SN), Maximum cycle number (MCN), limit, Island number (Z,),
Island size (/;), Migration frequency (F,,) and Migration rate (R,,).

e Step 2: Generate randomly the initial population. Each Bee (i.e. Solution) is spawned
according to this formula: X’ =r#* (Ub; — Ul)) + Ul, where r is a uniform random
number between 0 and 1, and Ub; and Lb are respectively the upper bound and the
lower bound of the j" dimension.

Step 3: Create a set of I, islands from the iBABC-CGO population.
Step 4: The search process according to ABC principles. The four stages (Steps 4a—4d)
of this procedure are as follows:

Step 4a: Send the employed bees using island based mechanism as per lines no.
19-31 in the pseudo-code (Algorithm 1). This stage involves doing a binary trans-
formation in accordance with the function binary_transformation’s pseudo code.
Step 4b: Calculate the probability values as per line no. 32-36 (Algorithm 1). In
this stage, a binary transformation is carried out in accordance with the function
binary_transformation’s pseudo code.

Step 4c: Send the onlooker bee as per line no. 37—46 (Algorithm 1). In accordance
with the pseudo-code of the function binary_transformation, a binary transforma-
tion is carried out in this phase.

Step 4d: Send the scout bee as per line no. 53—-57 (Algorithm 1). During this step, a
binary transformation is performed as per the pseudo-code of the function binary_
transformation.

e Step 5: The migration procedure of the iBABC-CGO algorithm is in charge of transfer-
ring food supplies across islands, which starts when a certain number of iterations (Fm)
are finished. This process is described in Algorithm 1 as shown in Lines 58-71.

Step 6: Record the best solution in each island (MG,).
Step 7: Memorize the best solution (GB) of all islands.
Step 8: Stop condition. Repeat steps 4, 5, 6, and 7 until the MCN is reached.

Step 4b
- Calculate the Island-based send the r -
Com ) s | | e v
‘each scout bee
Step 1 Calculate the fitness of each ¥
employed bee Calculate the of ||| [Catcumem

Initialize IABC-CGO |
parameters

Step2

Step4 Step da

Step 4c Step 4d

bees position according to
Eq7

bees position -ocomlnn lo
Eq7

Calculate the p y of
bees position according to
Eq7

Generate Initial

Calculate the fitness of | | | lisland-based send the scout
h bee bee

[ Island-based send the

Step 3

into I

Divide the popuunon

employed bee
A

Steps

Y -
Calculate the fitness of new Select Rm x Is Solutions using
solutions Roulette Wheel selection

Calculate the probabillty of bees
position according to Eq.1

Memorize the best |
solution In each I
«

tep 7 l

Memorize the best
solution of all Islands

Fig.4 The flowchart of iIBABC-CGO algorithm

@ Springer



51 Page160f74

M. Nssibi et al.

@ Springer

Algorithm 1: Pseudo code of iBABC-CGO algorithm

6
7
s
o

@n
(38)
(39)
(a0)
(a1)
(42)
3)

(44)
(45)
(46)
@7
(a8)
(a9)
(50)
[GY]
(52)

(53)
(54)
(55)
(56)
€]

(58)
(59)
(60)
(61)

(62)
(63)
(64)
(65)
(66)

(Gl
(68)
(69)
(70)
[4¥]

1 Initialization of iABC and problem parameters // Step 1
2 Set the ABC and the island parameters (SN, MCN, limit, I+, In, R, Fin)
a Define the fitness function min or max f(z),z = (z!, 22z, ., z5V)
4 Initialize TF to use // TF:transfer function
5 Construct ABC population based on binary initialization.// Step 2
Calculate fitness values f(x7),¥j = (1,2
Divide iABC into I, islands // Step 3
Flag(j) = False,¥j = (1,2,..., SN)
for t ¢ 1 to I do
for i < 1 to I, do
select j,where j€{1,2,...SN}
while Flag(j) is true do

| select j,where j€{1,:
enc
Added 29 to island (o
flag(j) = true

SN}

end

// Step 4
// Step 4a: Island based send the employed bee
for t + 1 to I, do
for i + 1 to I, do
select a* € Grwhere k#i
select j where j€{1,2,..,d}
@ (Gr) = MGy + U(0,1) x () (Gt) — 2,(Gt)
ar] (Gt) = binarytrans formation(TF,x#]((;))// Binary transformation
i (f(ri(C) < (f(:)(C)) then
2i(Ge) = ati(Ge)
trial; () =0
else
| triali(Ge) = trial;(G) +1

end

end

// Step 4b: Calculate the probability values
for t ¢ 1 to I do

for i < 1to I, do

[T
‘ O ot cowmrron)

end
// Step 4c: Island-based send the onlooker bee
rand(0,1)
sum_prob =0
fort + 1 to I, do
for i + 1 to I, do

sum_prob = sum_prob + p;({;)

if sum_prob > r then

| break loop

select a* € ¢, where k#i
select j, where i € {1,2,....d}
@f](G) = MGy +U(0,1) x (}(¢) = a7,(G))
a1 (¢;) = binarytrans formation(TF, ar)((;)// Binary transformation
if (f(21i(Cr) < (f(x:(Gr))) then
xi(G) = 1i(C)
triali(C,) = 0
else
| triali(G) = trial;(G) +1
// Step 4d: TIsland based send the scout bee
if triali(¢;) > limit then
22(¢) = @ (min) + (¢ (maz) — 2 (m
22(¢) = binary-trans formation(TF,
Caleulate  f(x17(C;))
trial;(C;) =0
// Step 5: Migration Process
if itr mod F,,, = 0 then
for t + 1 to I, do
j=1
while j < R,, x I, do
// Apply CGO algorithm using its equations
. = RouletteW heel(Pop,)
Xhew = Ts + g X (B X GB — v, x MGYy)
X2 = GB + g X (B X 2y — v x MGy)
X Gy + v % (By X 24 — s X GB)
cy (2f = 2b + R)
// Binary transfornation
L0, = binary_trans formation(TF, z},,,)
x2,,, = binary_trans formation(TF, z?

) x U(0,1),Vj = 1,2,....d

r7((1))// Binary transformation

new =

Xnew =

Thew ew)

Tnew =

new
Tnew H

Evaluate fitness values of

4
news and x

new

22 g3
Thews Tnew

// Step 6: Memorize the best solution in each island
Memorize Best solution MG, in island ¢,
// Step T: Memorize the best solution of all islands
Memorize Best solution G B of all islands
// Step 8: Stop condition
while time < MCN do
| Repeat step 4 to step 6
Function Binary transformation(TF, X;):
calculate the probability of updating position as Eq. (1)
if (TF ==' S') then
| Apply Eq. (10)

else
| Apply Eq. (11)
End if

return X;
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4.3 iBABC-CGO complexity

According to the original iABC, the time complexity is O(MCN X I, X I, X d) by neglect-
ing the compute time for calculating the objective function. However, for our proposed
approach iBABC, the fitness assessment takes more time than other modules and we note
it as ’fe’. In addition, the slight variation between the original /ABC and the binary vari-
ant IBABC lies in the integration of the transfer function (TF) calculation. Overall, the
complexity of iBABC is O(MCN X I, X I, X d X fe X TF). The latter could be simplified by
neglecting the part TF since the function used in this study is simple and fast to calculate.

However, the migration method for iBABC-CGO is the main difference from that of
iBABC. In this stage, the proposed approach uses the principles of the CGO algorithm by
updating a randomly selected solution using roulette wheel selection. This update proce-
dure concerns R, * I, solutions on each island as same as the iBABC. The used migra-
tion mechanism in iBABC is the random ring topology which is based on replacing the
worst solution of an island ¢ with the best solution in the previous island ¢ — 1. Since the
computational complexity of the newly proposed migration mechanism is slightly more
time-consuming than the random ring topology, we decide to consider them equivalent.
Therefore, the complexity of iIBABC-CGO does not differ from the complexity of iBABC
which is OMCN X I, X I, X d X fe).

4.4 iBABC for feature selection using gene expression data

As previously stated, FS is a binary optimization problem that involves identifying and
evaluating a subset of significant features while maintaining good accuracy. The best rel-
evant subset of features is chosen based on two objectives: the lowest CER and the fewest
features, as expressed in the objective function Eq. (12). At the core of the fitness function,
each determined solution is evaluated with the KNN machine learning classifier.
| fmess = L]

fitness = ayr(D) + (1 — @) il (13)
where y,(D) denotes the CER of the classifier R with respect to the decision D as formu-
lated in Egs. (13) and (14), IRI defines the length of the selected feature subset, |Cl shows
the total features count, and « € [0, 1], (1 — a) parameters defines the importance of the
classification quality and the length of the subset as adopted from literature (Emary et al.
2016). During this study, we set the value of a to 0.1.

rr(D) =1-Acc (14)
Cnum
Acc = ——— *x 100%, (15)
Cnum + Inum
where C ., and I . denote the count of correctly and incorrectly classified labels,
respectively.
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5 Experimental results

The proposed approaches were implemented using MATLABR2020a and run on an Intel
Core 17 machine, 2.6 GHz CPU and 16GB of RAM. Experiments were repeated 51 inde-
pendent times to obtain statistically meaningful results. For evaluation purposes, the k—fold
(Fushiki 2011) cross-validation method is used to evaluate the consistency of the generated
results. The data is partitioned into K equivalent folds, with K — 1 folds used for training
the classifier during the optimization phase and the remaining fold used for testing and
validating the classifier. Using different folds as a test set, the method runs K times. The
standard form of this technique in wrapper feature selection algorithms is based on the
KNN (k-nearest neighbor) classifier with K = 5 (Friedman et al. 2001), which will be held
during this study.

5.1 Datasets description and parameter settings

For evaluating the proposed iBABC-CGO, fifteen biological gene expression datasets are
used for experiments detailed in Table 1. The studied datasets express different types of
cancerous diseases and contain two different types: binary-class (BC) and multi-class (MC)
datasets. For performance comparison, seven metaheuristic feature selection approaches
are chosen, namely: original ABC (Rao et al. 2019), Island-based ABC (iABC) (Awadal-
lah et al. 2020). In addition, four recent metaheuristics: Binary Atom Search Optimization
(BASO) (Too and Rahim Abdullah 2020), Binary Equilibrium Optimizer (BEO) (Gao et al.
2020), and Binary Henry Gas Solubility Optimization (BHGSO) (Neggaz et al. 2020), are
chosen. In the end, another state-of-the-art metaheuristic Binary Genetic Algorithm (BGA)
(Babatunde et al. 2014) is selected. These selected comparative metaheuristics have per-
formed well in the past in solving different OPs including the feature selection problem.
Table 2 summarizes details of all the comparative studies and models examined during
this study.The parameters of these methods for the feature selection problem are detailed in
Table 3 and selected according to their original respective papers.

5.2 Results for microarray datasets

Table 4 presents the average performance of three classifiers KNN, SVM, and NB across
15 microarray datasets. The performance is measured in terms of four metrics: Accuracy
(Acc), Precision (Pr), Recall (Rc), and ROC (Roc). Across the datasets: The "Lymphoma"
dataset shows an impressive performance with the KNN classifier, achieving perfection
across all metrics. The "9-tumors" dataset appears challenging for all classifiers, though
SVM manages to outperform the others slightly. The "Leukemia-1" dataset highlights
the strength of the SVM classifier, with nearly perfect scores across the metrics. In the
"Ovarian" dataset, while KNN and SVM offer competitive performances, the NB classifier
shines with near-perfect results. For the "SRBCT" dataset, the SVM classifier emerges as
the dominant one, showcasing an accuracy close to 95.12%. While each classifier exhibits
strengths in specific datasets, SVM consistently demonstrates a robust performance across
a broader range.

The presented Table 5, details the classification accuracy of three classifiers (KNN,
SVM, and NB) when utilizing filter-based gene selection methods. Each classifier was
tested with four different filters: mRMR, CMIM, Chi-square, and Relief-F. The experiment
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kept the number of selected genes constant at 50 for each filter. The data indicates that
no single classifier or filter consistently outperforms others across all datasets; the optimal
combination varies depending on the specific dataset. For instance, KNN achieves standout
results with the CMIM filter on the "11-tumors" dataset and with mRMR for the "Lym-
phoma" dataset. For the majority of datasets, KNN’s performance is quite variable, but in
several cases, it either matches or slightly surpasses the other classifiers.

On the other hand, SVM often shines when paired with the Chi-square filter, as seen
in its exemplary performance on the "SRBCT" dataset. The variation in classifier per-
formance emphasizes the importance of method selection tailored to individual datasets.
NB achieves perfect scores on both the "Lymphoma" and "SRBCT" datasets when paired
with the mRMR and Chi-square filters respectively. In several datasets like "Brain tumor
1", "DLBCL", and "Prostate tumor", NB outperforms both KNN and SVM, illustrating
its potential strength when the underlying assumptions of the Naive Bayes classifier hold
true for the data. As for the mRMR filter method, it shows consistently competitive perfor-
mance across all three classifiers. Especially for NB, it offers the best results in a signifi-
cant number of datasets. While the CMIM filter provides leading results in a few datasets
(notably for KNN), its performance is not consistently top-tier across all datasets. On the
other hand, Chi-square filter especially when paired with SVM and NB, produces some of
the highest accuracy across multiple datasets. Relief-F results are mixed. While it yields
the best performance in a few cases, it doesn’t consistently outperform the other filters.
While SVM paired with the Chi-square filter method often yields strong results, it’s clear
that no single combination of classifier and filter universally outperforms others across all
datasets.

Table 6, displays the classification accuracy obtained from various combinations of clas-
sifiers and filter-based gene selection methods, using a consistent set of 100 selected genes.
Three classifiers KNN, SVM, and NB are evaluated with four filter methods: mRMR,
CMIM, Chi-square, and Relief-F. The results are presented for 15 datasets. A single glance
reveals that the best-performing combination varies greatly across datasets, highlighting
the non-uniform nature of optimal classifier and filter method pairing. For instance, in the
"11-tumors" dataset, KNN combined with the CMIM filter shows a peak performance of
88.99%. Meanwhile, in the "SRBCT" dataset, both SVM and NB, when paired with the
Chi-square filter, achieve a perfect accuracy of 100%. The fluctuations in performance
underscore the dataset specific efficiency of each combination.

Fig. 5, represents the classification accuracy achieved using a fixed set of genes 50 and
100 across various combinations of classifiers and filter-based gene selection methods.
When comparing the two sets, it becomes evident that the number of selected genes and
the dataset in use significantly influence the optimal choice of classifier and filter method.
Across the two configurations, the KNN, SVM, and NB classifiers are evaluated using four
filter methods: mRMR, CMIM, Chi-square, and Relief-F for 15 distinct datasets. Nota-
bly, for some datasets, an increase in the number of genes from 50 to 100 leads to notice-
able changes in classification accuracy. For example, in the "11-tumors" dataset, when
100 genes are used, KNN combined with the CMIM filter achieves a peak performance
of 88.99%. On the other hand, when using 50 genes, different combinations might exhibit
optimal performance. The variability in results underscores the importance of selecting an
appropriate number of genes, classifier, and filter method combinations, tailored to the spe-
cific characteristics of each dataset.
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Table 3 Algorithms parameter

. Algorithm Parameter Value
settings
iABC Limit 0.1*SN*d
In 5
Fm 5
Rm 20%
ABC limit 0.1*SN*d
BASO a(depth weight) 50
Pf(multiplier weight) 0.2
Vmax (maximum velocity) 6
BEO a 1
B 2
BGA Crossover rate 0.9
Mutation rate 0.1
BHGSO M, 0.1
M, 0.2
a,f 1
K 1

All of them Search agents (atoms, bees, particles,...) 30
Maximum iterations 100

Table 4 Percentage of average performance using KNN, SVM, and NB classifiers on 15 microarray data-
sets

Dataset KNN SVM NB

Acc Pr Re Roc ACC Pr Re Roc ACC Pr Re Roc

11-tumors 71,10 78,09 62,28 0,99 89,02 90,88 83,79 1 74,57 67,41 60,27 1
9-tumors 37,29 29,99 32,94 097 49,15 55,55 4345 1 35,59 21,66 29,56 0,51
Brain tumor 1 77,53 48,86 40,00 0,98 83,15 55,95 50,00 1 80,90 55,53 46,00 1
Brain tumor 2 73,47 71,07 69,33 0,96 73,47 80,86 68,33 0,99 73,47 81,89 66,19 1,00

Breast 62,50 63,36 61,31 0,82 52,08 51,00 50,85 0,61 62,50 62,58 61,70 0,92
CNS 59,32 57,52 58,27 0,77 62,71 59,21 59,62 0,88 66,10 33,05 50,00 0,55
Colon 80,33 84,61 73,72 0,93 59,02 61,32 62,00 0,90 78,69 80,85 72,44 0,98
DLBCL 84,21 78,84 82,46 097 76,32 68,92 70,18 0,94 76,32 88,00 52,63 1
Leukemia 1 80,28 80,99 74,74 0,98 98,59 98,94 98,00 1 87,32 91,82 82,00 1
Lung cancer 89,60 73,16 67,32 0,99 88,61 87,39 73,59 0,96 89,11 73,50 66,06 1
Lymphoma 100 100 100 1 90,77 96,08 79,12 1 95,38 97,92 88,89 1
MLL 90,14 91,36 90,37 0,99 95,77 95,59 9595 1 88,73 88,46 88,01 1
Ovarian 92,06 92,84 89,88 0,99 90,87 89,87 90,43 0,95 98,41 98,27 98,27 1
Prostate tumor 82,18 82,68 81,99 0,95 61,39 63,38 60,73 0,66 87,13 87,15 87,09 0,98
SRBCT 73,17 74,20 77,65 0,99 95,12 96,48 93,56 1 91,46 93,38 91,27 1

Bold indicates the best values in the table
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5.3 Evaluation of the proposed iBABC-CGO using different classifiers

In this part, we run a comprehensive series of simulations to identify the optimal classifier
to pair with our Feature Selection (FS) algorithm. By conducting these rigorous simula-
tions, we aim to ensure that the chosen classifier synergizes well with our FS approach,
thus maximizing the overall effectiveness of the solution. This process not only under-
scores our commitment to a methodical research approach but also emphasizes our pursuit
to ensure that each component of our solution - from the FS algorithm to the classifier - is
optimized for peak performance. However, it is important to bear in mind that once the
optimal subset has been determined, the performance of the iBABC-CGO on biomedical
datasets is assessed using leave-one-out cross-validation (LOOCV).

Therefore, in an effort to find the best classifier for our proposed approach, Table 7,
represents the performance results in terms of statistical metrics i.e. Best and mean val-
ues for various datasets using the proposed iBABC-CGO with different classifiers: KNN,
SVM, and NB. When examining the KNN classifier, for datasets such as "11-tumors"
and "9-tumors", the IBABC-CGO-V variant seems to have an edge in terms of both best
and mean values. However, for other datasets like "Brain tumor 1", "Brain tumor 2", and
"CNS", the iIBABC-CGO-S version performs slightly better in terms of best values. In the
case of SVM, the iIBABC-CGO-S consistently outperforms the iIBABC-CGO-V across all
datasets for the best metric values, though for mean metric values, there’s a mixed per-
formance between the two versions. For the Naive Bayes classifier, the iBABC-CGO-V
version holds better best values for several datasets, including "Brain tumor 1" and "CNS".
Interestingly, for the "Ovarian" dataset, the performance remains the same across all classi-
fiers and versions, suggesting a consistent result for that particular dataset. It is clear from
the statistical results that among KNN, SVM, and NB classifiers, the SVM classifier is the
best classifier to be combined with the proposed iBABC-CGO-V variant.

Table 8, presents the average accuracy of the proposed iIBABC-CGO method using vari-
ous classifiers: KNN, SVM, and NB. Upon a cursory examination, the SVM classifier with
the iIBABC-CGO-V version displays the highest accuracy for several datasets, achieving a
perfect score of 100% on multiple occasions. Both the "Lymphoma" and "Ovarian" data-
sets achieved consistent 100% accuracy across all classifiers and versions, indicating that
the model fits them perfectly. For datasets like "11-tumors" and "9-tumors", the KNN clas-
sifier using IBABC-CGO-S has higher accuracy compared to its iBABC-CGO-V counter-
part. The Naive Bayes classifier, indicated as "NB", also exhibits competitive performance,
especially with the IBABC-CGO-S version.

Table 9, showcases the average number of selected features for various datasets
using the proposed iIBABC-CGO method paired with different classifiers: KNN, SVM,
and NB. A glance at the data reveals a distinct pattern. The SVM classifier with the
iBABC-CGO-V version often tends to select a larger number of features compared to
the iIBABC-CGO-S variant, as seen in the "9-tumors" and "Breast" datasets. The mini-
mal differences in feature selection numbers across classifiers for datasets like "Brain
tumor 2", "DLBCL", and "Lymphoma" indicate a level of consistency in the impor-
tance of certain features across different classification methods. The "Lymphoma"
dataset stands out with a consistent selection of 2 features across all classifiers and ver-
sions, suggesting that a minimal set of features is significant for classification in this
particular dataset.
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Fig.5 Comparing the Mean Classification Accuracy of KNN, NB, and SVM Classifiers for Top 50 and Top
100 Genes Selected via Various Filter-Based Feature Selection Algorithms

5.4 Statistical analysis compared to other NIOAs

In the remaining parts of the experiments, we have fixed the SVM classifier (since it
provided the best results among other classifiers) to be used in combination with all the
metaheuristics that are to be tested. The results for comparison are based on statistical
tests in terms of Best, Mean and Standard deviation (Std) fitness values, which represent
the minimum, average, and standard deviation, respectively of the 51 independent read-
ings collected from every FS experiment. The results of these parameters are displayed
in Table 10, which clearly indicate that the proposed iBABC-CGO-V approach produced
minimum average fitness values by performing much better than the traditional ABC,
iABC, iBABC-S, iBABC-V, and other binary metaheuristic approaches on 8 out of 15 data-
sets. In the rest of the datasets, the suggested iBABC-CGO-V also performs competitively
well against the comparative algorithms, where only the iIBABC-V algorithm shows better
results. Results regarding the Average classification accuracy (CLACC) and the reduction
of the selected number of features (SNFs) values are also shown in Tables 11 and 13 in the
next sub-section.

5.4.1 Analysis using average accuracy and number of selected features

To further investigate the efficacy of the suggested approach, a classification accuracy
(CLACC) comparison is outlined in Table 11. The highest value of this metric is desired
as it signifies the ability of the suggested approach to classify the features accurately. The
introduced iBABC-CGO-V method attained the best classification accuracy on 43.5%
datasets (i.e. 7 out of 15 datasets shown in boldface) as compared to the other tested FS
approaches. Whereas, for the rest of the 9 datasets, the CLACC results of the suggested
method are very competitive in comparison to the other metaheuristics. Moreover, the
proposed iBABC-CGO-V variant also obtained the highest overall classification accu-
racy of all datasets as depicted in Fig. 6, which demonstrates the strength of the suggested
approach in classifying selected features accurately.
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Table 7 Statistical results of the proposed iBABC-CGO using different classifiers (KNN, SVM and NB)

Dataset Metric KNN SVM NB

iBABC- iBABC- iBABC- iBABC- iBABC- iBABC-
CGO-S CGO-vV CGO-S CGO-vV CGO-S CGO-vV

11-tumors Best 0,0944 0,1978 0,0837 0,0890 0,1152 0,1562
Mean 0,1027 0,2041 0,0911 0,1066 0,1316 0,1729
9-tumors Best 0,3678 0,4579 0,2605 0,3060 0,3526 0,3665
Mean 0,3916 0,4915 0,3337 0,3458 0,3641 0,4304
Brain tumor 1 Best 0,1123 0,1315 0,0821 0,0723 0,0918 0,0609
Mean 0,1144 0,1356 0,1083 0,0902 0,0920 0,1176
Brain tumor 2 Best 0,1290 0,1470 0,0919 0,0735 0,1107 0,1103
Mean 0,1328 0,1470 0,1102 0,1249 0,1108 0,1434
Breast Best 0,1781 0,1969 0,1407 0,1500 0,1690 0,1500
Mean 0,1800 0,1969 0,1689 0,1725 0,1728 0,1856
CNS Best 0,1841 0,2138 0,1379 0,0917 0,1381 0,1527
Mean 0,1962 0,2229 0,1626 0,1137 0,1385 0,1710
Colon Best 0,1206 0,1477 0,0903 0,0887 0,1064 0,1039
Mean 0,1217 0,1654 0,1154 0,1013 0,1176 0,1600
DLBCL Best 0,0358 0,0595 0,0010 0,0010 0,0018 0,0239
Mean 0,0458 0,0689 0,0180 0,0107 0,0084 0,0500
Leukemia 1 Best 0,0133 0,0381 421E-05 4,21E-05 0,0133 0,0127
Mean 0,0136 0,0381 0,0178 0,0254 0,0134 0,0305
Lung cancer Best 0,0541 0,0535 0,0405 0,0359 0,0452 0,0402
Mean 0,0575 0,0562 0,0513 0,0371 0,0461 0,0446
Lymphoma Best 0,0009 0,0005 4,97E-05 4,97E-05  0,0006 4,97E-05
Mean 0,0011 0,0086 0,0056 0,0111 0,0007 0,0111
MLL Best 0,0127 0,0254 0,0127 0,0004 0,0133 0,0127
Mean 0,0152 0,0254 0,0127 0,0081 0,0183 0,0152
Ovarian Best 1,98E-05 1,98E-05 198E-05 1,98E-05 198E-05 1,98E-05
Mean 1,98E-05 1,98E-05 198E-05 1,98E-05 198E-05 1,98E-05
Prostate tumor Best 0,0633 0,0624 0,0535 0,0268 0,0542 0,0535
Mean 0,0702 0,0767 0,0624 0,0517 0,0542 0,0553
SRBCT Best 0,0134 0,0660 0,0014 0,0009 0,0014 0,0222

Mean 0,0138 0,0683 0,0052 0,0016 0,0023 0,0420

Bold indicates the best values in the table

Table 13 presents the comparative results of the suggested method in terms of the aver-
age number of selected features (SNFs) with the other algorithms. The minimum value of
this performance parameter is desired. As can be seen, the suggested approach provides
better results in terms of the minimum SNFs for nearly 31% datasets (i.e. 5 out of 15 data-
sets) against the compared algorithms and for the rest of the datasets, the standard binary
version iBABC-V performed better than all tested metaheuristics. It should be noted that
except iBABC-CGO-V and iBABC-V, no other comparative algorithm performed well in
providing good SNFs results. However, for all the minimum SNFs outcomes provided by

@ Springer



Gene selection for high dimensional biological datasets using... Page290f74 51

Table 8 Average accuracy of the proposed iBABC-CGO using different classifiers (KNN, SVM and NB)

Dataset KNN SVM NB

iBABC- iBABC- iBABC- iBABC- iBABC- iBABC-

CGO-S CGO-vV CGO-S CGO-vV CGO-S CGO-vV
11-tumors 88,67 77,34 90,75 100 85,90 80,81
9-tumors 56,61 45,42 81,19 96,92 59,66 52,88
Brain tumor 1 87,42 84,94 91,01 100 89,89 86,97
Brain tumor 2 85,31 83,67 89,8 93,88 87,76 85,31
Breast 80,00 78,13 84,38 90,14 80,83 79,79
CNS 78,31 75,25 84,75 89,83 84,75 81,02
Colon 86,89 82,62 92,36 96,16 87,21 85,57
DLBCL 96,05 92,37 100 100 99,21 95,26
Leukemia 1 98,59 95,77 100 100 98,59 96,90
Lung cancer 93,66 93,76 95,54 96,04 94,95 95,05
Lymphoma 100,00 99,08 100 100 100,00 100,00
MLL 98,31 97,18 98,59 100 98,03 98,31
Ovarian 100,00 100,00 100 100 100,00 100,00
Prostate tumor 92,28 91,49 94,06 97,03 94,06 93,86
SRBCT 98,78 92,44 100 100 100,00 95,37

Bold indicates the best values in the table

Table 9 Average selected features of the proposed iBABC-CGO using different classifiers (KNN, SVM and
NB)

Dataset KNN SVM NB

iBABC- iBABC- iBABC- iBABC- iBABC- iBABC-

CGO-S CGO-vV CGO-S CGO-vV CGO-S CGO-vV
11-tumors 16,8 134 18,8 21,2 15 15,8
9-tumors 10,6 10,2 9 24 11,2 9,8
Brain tumor 1 4.4 4,2 4,8 8.8 38 4.4
Brain tumor 2 32 2,8 32 34 3 34
Breast 4,2 3,6 4,8 24,6 4,6 44
CNS 3 32 2,6 7.6 34 2,6
Colon 2,8 2,6 2,2 2,2 3 2,6
DLBCL 2,6 2.4 2,4 2 2,2 2,2
Leukemia 1 2 2,4 2,4 2,4 2,2 2,4
Lung cancer 8,4 7,2 7,2 7,6 7,2 7,6
Lymphoma 2 2 2 2 2 2
MLL 2,4 2 2 2,2 2,4 2
Ovarian 2,8 2,6 2,2 3 3 2,8
Prostate tumor 2,4 2 2.8 2.4 2,8 2.8
SRBCT 4,6 5 4,6 4,8 52 5

Bold indicates the best values in the table
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the iIBABC-V are not supported by good accuracy values, as it manages to provide good
accuracy in only 18.7% datasets. Therefore, the overall findings confirm that the proposed
iBABC-CGO-V method has the best ability to maintain an adequate exploration-exploita-
tion ratio during the optimization search process, which resulted in providing good average
CLACC and competitive average SNFs outcomes. Moreover, the proposed iBABC-CGO-S
variant scored the minimum number of selected features overall all algorithms on the aver-
age of 15 datasets, as depicted in Fig. 7, which demonstrates the capacity of the suggested
approach in reducing the number of selected features.

Table 14 contains the Wilcoxon rank sum (WRS) test, a non-parametric statistical
test to examine whether the suggested method’s outcomes are statistically distinguish-
able from those of other algorithms (Rey and Neuhiduser 2011). WRS test produces a
p-value to compare the significance levels of the two methods. P-values below 0.05
imply the existence of a statistically significant difference at the 5% confidence level
between iBABC-CGO and the other compared method.

The p-values in Table 14 indicate that the suggested iBABC-CGO-V technique
produces significantly different outcomes than most existing algorithms on most gene
expression datasets with 95% confidence level except for the binary iBABC-V. In order
to further strengthen the evidence of the superiority of our suggested iBABC-CGO-V
method over the compared algorithms, we conducted statistical tests such as the Fried-
man test (whose lower rank is desired), Friedman align test (higher rank is desirable)
and Quade test (lower rank is considered best) on the average CLACC results to rank
the performance of each FS algorithm. The collected outcomes as shown in Table 15,
clearly indicate that the suggested iBABC-CGO-V obtained the best ranks among tested
algorithms for all the tests followed by the iBABC-V approach.

5.4.2 Box plot and radar plot analysis

The boxplot analysis is the best way to represent the data distribution characteristics of
collected results and to find out data anomalies such as skewness and outliers. Boxplots
show the data distributions in the form of different quartiles namely the lower (low-
est point/edge of the whisker) and upper (highest point/edge of the whisker) quartiles,
which represent the minimum and maximum values of the data distribution. The lower
and higher quartiles are shown by the corners of the rectangles. A small boxplot rectan-
gle represents strong data concordance. Figures 8 and 14 show the box plots generated
from the results of different algorithms for different medical datasets. The boxplots of
the proposed iBABC-CGO-V, for most datasets are very narrow as compared to other
algorithm distributions. Indeed, the proposed iIBABC-CGO-V method is superior to the
other algorithms on the bulk of the investigated datasets.

Figure 9 presents the radar chart that ranks the algorithms based on their average
best and average mean fitness results. Levels near the centre of the radar graph rep-
resent higher best fitness and average fitness values. Therefore, a resilient algorithm
has a narrow area, which is the proposed iBABC-CGO-V approach at first, followed
by the iBABC-V algorithm. The performance of the tested FS methods is compared in
Tables 12, 13 and the radar plot in Fig. 9, from which it can be deduced that the sug-
gested method is superior to the established methods.
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5.4.3 Convergence analysis

Additionally, Figs. 10 and 15 demonstrate that for practically all sixteen datasets, the
convergence values of iIBABC-CGO-V considerably increase after a few iterations. This
tendency suggests that iIBABC-CGO-V requires identifying only a few genes from high-
dimensional data to improve classification performance. As can be seen from Figs. 10
and 15, iIBABC-CGO-V obtained a better convergence rate followed by the iBABC-V
algorithm.

5.5 Statistical analysis compared to other state-of-art approaches

In this section, we perform a rigorous comparison of the performance of the proposed
method with other state-of-the-art approaches. The datasets cover a variety of biologi-
cal conditions and reflect the diverse applications of these algorithms. Results showing
accuracy percentages and their variability provide an overview of the robustness and
consistency of each method. With these results, we aim to highlight not only a method’s
accuracy, but also its reliability over multiple iterations.

In the presented Table 16, various algorithms are compared for their performance
on several datasets, with the iBABC algorithm standing out in particular. The iBABC-
CGO-S variant demonstrates commendable accuracy, particularly when considering
levels such as 90.75% for dataset 11 tumors and 91.01% for brain tumor 1. However,
the iBABC-CGO-V variant stands out for its impressive performance, achieving 100%
accuracy on datasets 11 tumors and brain tumor 1. While the iBABC algorithm shines
in many scenarios, it’s pertinent to note that other methods also have their moments
of excellence. For example, the BAOAC-SA algorithm achieved almost 97% on the
11-tumors and Brain tumor 1 datasets, while BChOA-C-KNN presented levels in excess
of 95% in the datasets on which it was evaluated. However, even among these high-
performance algorithms, the iBABC-CGO-V variant stands out for its unrivalled accu-
racy across multiple datasets. This analysis therefore underlines the superiority of the
iBABC algorithm, particularly its CGO-V variant, while acknowledging the strengths of
the other methods.

In Table 17, which evaluates the performance of various algorithms on different data-
sets (namely CNS, Colon, DLBCL, Leukemia 1, and Lung Cancer), we can observe a
continuation of the trend noted in the previous table. The iBABC algorithm remains
competitive, with the iBABC-CGO-S variant achieving 100% accuracy on the DLBCL
and Leukemia 1 datasets, and the iBABC-CGO-V variant also achieving the same 100%
accuracy on these two datasets, but with slightly lower variability. However, it is essen-
tial to note that other algorithms also show good results. The rIMRMR-MGWO algo-
rithm, for example, achieves a remarkable 99.38% on the CNS dataset. The TLBOSA-
SVM algorithm performs extraordinarily well, achieving a near-perfect 99.87% on the
lung cancer dataset and 99.01% on the colon dataset. Another remarkable observation is
the performance of CFC-FBBA, which boasts 100% accuracy on the DLBCL and Leu-
kemia 1 datasets. On the other hand, algorithms such as BChOA-C-KNN and BChOA-
KNN present impeccable results with 100% accuracy on the Leukemia 1 dataset. The
IG-MBKH algorithm also deserves special mention, as it has consistently achieved
results above 96% in all datasets on which it has been tested. While iBABC variants
continue to achieve admirable results on different datasets, several algorithms show
comparable performance in specific cases.
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Fig.7 Average number of features selected on 15 datasets

Table 18, evaluates the performance of the algorithms on the Lymphoma, MLL, Ovary,
Prostate Tumor and SRBCT datasets. Many algorithms in the hybrid category, such as IG-
MBKH, rMRMR-MGWO and CFC-FBBA, show consistently high performance across
multiple datasets, reaching 100% accuracy in several cases. For example, the IG-MBKH
method achieves perfect scores for the MLL and Ovarian datasets. Interestingly, the perfor-
mance of the iBABC algorithm remains excellent, with both its variants (iBABC-CGO-S
and iBABC-CGO-V) achieving impressive results. Both variants consistently achieve 100%
accuracy on datasets such as Lymphoma, Ovarian and SRBCT, with minor variations in
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Fig. 8 Boxplots analysis of algorithms across six datasets

variability. The TLBOSA-SVM algorithm achieves a remarkable 99.13% on the prostate
tumor dataset, and the BCOOT-CSA and BAOAC-SA methods both stand out for their
uniform 100% accuracy across multiple datasets with minimal variability. On the SRBCT
dataset, numerous algorithms, including BChOA-C-KNN, IG-MBKH, rMRMR-MGWO,
IDGA-F-SVM, BCO-KNN, iBABC-CGO-S and iBABC-CGO-V, all achieved perfect
100% accuracy, despite variations in the associated variability values. In the filter category,
the NB-mRMR method continues to display the robust performance of previous data sets.
Both variants (100 and 50) achieved 100% accuracy for the Lymphoma and SRBCT data-
sets, making it a consistent contender. This comparative table reaffirms the effectiveness of
hybrid algorithms, particularly the iBABC variants.

As also can be seen from Fig. 11, algorithms classified as hybrid methods frequently
achieve high accuracy rates on a wide range of data sets. In the hybrid category, iBABC-
CGO-S and iBABC-CGO-V variants consistently deliver first-rate performance. Their
near-perfect or perfect accuracy scores on multiple datasets underline their robustness and
efficiency. The NB-mRMR filter-based method also produces competitive accuracy rates.
This shows that while hybrid methods can be powerful, well-optimized traditional methods
can still be of great use. Beyond accuracy, the variability values provided with many algo-
rithms give a better understanding of the situation. Algorithms with lower variability can
be more consistent and therefore more reliable, particularly in critical applications such as
medical diagnostics.
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Fig.9 The radar plot curves of the proposed iBABC-CGO and the comparative algorithms obtained with
15 medical datasets
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Fig. 10 Convergence curves of algorithms on six datasets

5.6 Overall assessment

Overall, the simulation results in the previous subsections demonstrate that iBABC-CGO-
V is an effective wrapper-based feature selection method capable of solving a wide range
of feature selection problems. Feature selection optimization differs from the continuous
search space in which search agents can freely move. A thorough exploration is required
to change the variable from 0 to 1 and vice versa. The algorithm must also avoid local
optima, which occurs when the variables of a binary problem are changed infrequently
compared to the number of iterations. The adaptive mechanism of the binary island ABC
algorithm accelerates convergence. It also plays a crucial role in establishing an adequate
exploitation-exploration balance, so that feature selection problems do not have many local
solutions. This fundamentally distinguishes iBABC-CGO-V from the other algorithms in
this study in terms of performance.

We have seen that the iBABC-CGO-V offers the highest accuracy and the fewest num-
ber of genes. Having said that, it is also important to note that iBABC-CGO-V demands
more time to compute than the many other algorithms in this study. The suggested method
uses the SVM classifier, and switching to a different classifier could result in longer execu-
tion times. As a result, attention should be taken when using a different classifier. We can
conclude from the experimental analysis and comparisons that the V-shaped version of
iBABC-CGO has the advantage of superior outcomes and high performance compared to
other algorithms. The reasons for this high performance are attributed to the given factors;
the island binary ABC provides the benefits of mobility, which can strike a better explo-
ration-exploitation balance; the integration of the CGO algorithm further escapes local
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Table 16 Evaluating the performance of the proposed method in comparison to existing approaches (Partl)

Type Dataset 11-tumors
algorithm

9-tumors

Brain tumor
1

Brain tumor Breast
2

Hybrid-based BChOA-C- 95.14 (22.6)
KNN

BChOA- 93.75 (17.8)
KNN

IG-MBKH -

rMRMR- -
MGWO

IWSS2>-MB -
(INN)

TLBOSA- 92.23 (13)
SVM

IDGA-F- -
SVM

VLPSO-LS-  82.81 (367.4)
KNN

BCO-KNN 89.62 (24.1)

PS-NSGA- 83.94 (338.3)
KNN

CDNC-SVM -

PSO-ensem- —
ble

BCOOT-CSA  95.54 (35.2)
BAOAC-SA  96.94 (24)
CFC-FBBA -

iBABC- 90.75 (18.8)
CGO-S
iBABC- 100 (21.2)
CGO-V
Filter-based = NB- 79.15 (100)
mRMR-100

NB- 70.50 (50)
mRMR-50

73.51 (11)

56.78 (61.9)

92.22 (28.3)
58.30 (194.8)

81.19 (9)

96.92 (24)

68.03 (100)

59.39 (50)

95.85 (13.22)

95.77 (10.33)

96.98 (12)

75.54 (102.1)

96.30 (20.5)
73.81 (57.8)

95.42 (12.66)
96.21 (7.5)
97.82 (10)
91.01 (4.8)

100 (8.8)

88.75 (100)

86.47 (50)

- 93.0 (7.6)

73.25(61.4)

100 9)
73.07 (76.7)

- 86.36 (45)

- 95.54 (15)
- 96.188 (10.8)

89.8 (3.2) 84.38 (4.8)

93.88 (3.4) 90.14 (24.6)

77.55 (100)  66.73 (100)

77.55 (50) 64.68(50)

Bold indicates the best values in the table

optima and improves convergence rate. These advantages allow for avoiding the local opti-
mum and accelerating convergence to the global optimum. Besides, when the solution is
in an unsatisfactory search space region, the binary transfer function based on the V shape
causes it to move. This feature, therefore, suggests that the algorithm operates effectively

for the gene selection problem.
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Table 17 Evaluating the performance of the proposed method in comparison to existing approaches (Part2)

Type Dataset algo- CNS Colon DLBCL Leukemial Lung cancer
rithm
Hybrid-based BChOA-C- - - - 100 (3.1) -
KNN
BChOA-KNN - - - 100 (3.4) -
IG-MBKH - 96.47 (17.1) - 100.00 (4.20) 96.12(23.8)
rMRMR- 99.38 (17.46) 95.86(9.8) - 100 (5.06) 97.91(15.8)
MGWO
IWSS2-MB - 71.0 (5.4) 93.4(9.1) 957(7.3) -
(INN)
TLBOSA-SVM - 99.01 (11) 99.52 (11)  95.31(12) 99.87(10)
IDGA-F-SVM - - 98.8 (9.7) 100 (15) -
VLPSO-LS- - - 96.13 (59.9) 93.75(59.3) 90.17 (242.9)
KNN
BCO-KNN - - 100 (3.1) 100 (3) 99.34 (32.1)
PS-NSGA- - - 87.02 (9.4) 9198 (16.2) 88.48 (107.6)
KNN
CDNC-SVM - 88.89 (13.45) - 91.16 (21.98) 91.82(28.21)

PSO-ensemble 92.86 (41) - 100 (26) -
BCOOT-CSA  93.22(7) 94.75 (8.75) - - -
BAOAC-SA 94.60 (5.2) 95.68(7.66) - - -
CFC-FBBA - 98.83 (1.80)  100.00 (5.7) 100 (3) -

iBABC-CGO-S 84.75(2.6)  92.36(2.2) 100 (2.4) 100 2.4) 95.54 (7.2)

iBABC-CGO-V 89.83 (7.6)  96.16 (2.2) 100 (2) 100 (2.4) 96.04 (7.6)

Filter-based  NB- 82.87 (100)  88.33 (100) 96 (100) 97.14 (100)  94.03 (100)
mRMR-100

NB-mRMR-50 79.39 (50)  86.66 (50) 96 (50) 97.14(50)  93.51 (50)

Bold indicates the best values in the table

6 The biological interpretations of the selected genes by the proposed
iBABC-CGO method

In this section, we delve into the biological significance of the best subset of genes that
have been identified using our proposed method. For each binary dataset, which includes
Breast, CNS, Colon, DLBCL, Leukemia, Ovarian, and Prostate, the gene names and indi-
ces are shown in Table 19. Their specific biological relevance can be further consulted in
Tables 20, 21, 22, 23, and 24.

It should be mentioned that the interpretation of genes from the prostate cancer and
DLBCL datasets is not included, given the absence of specific gene names in these
datasets.

To further comprehend the biological implications of the selected genes, we relied on
two reputable online resources and comprehensive databases of human genes, namely
GeneCards (https://www.genecards.org/), and the National Center for Biotechnology
Information (NCBI) (https://pubmed.ncbi.nlm.nih.gov/). These two databases present
searchable and comprehensive genetic analysis data that provides concise informa-
tion on all known and predicted human genes in the genome, proteome, transcription,
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Table 18 Evaluating the performance of the proposed method in comparison to existing approaches (Part3)

Type Dataset algo- Lymphoma MLL Ovarian Prostate tumor SRBCT
rithm

Hybrid-based BChOA-C-KNN - - - 97.52 (5.75) 100 (4.4)
BChOA-KNN - - - 97.49 (6) 100 (6.20)
IG-MBKH - 99.72 (11.1) 100 (3.4) - 100 (6.30)
rMRMR-MGWO - 100 (8.4) 100 (3.56) — 100 (37.5)
IWSS2-MB - - - 90.40 (9) 93.80 (7.3)

(INN)
TLBOSA-SVM - - - 99.13 (8) 99.91 (5)
IDGA-F-SVM - - - 96.3 (14) 100 (18)
VLPSO-LS- - - - 92.58 (56.4) 99.75 (71.4)
KNN

BCO-KNN - - - 100 (7) 100 (7.4)
PS-NSGA-KNN - - - 89.44 (65) 96.35 (18.6)
CDNC-SVM 100 (3) - 83.91 (22.81) 82.79 (17.43)
PSO-ensemble - - 100 (13) - -
BCOOT-CSA 100 (2) - 100 (2.6) - 100 (6.34)
BAOAC-SA 100 (2) 100 (3.6) 100 (2.6) - 100 (5.8)
CFC-FBBA 100 (4.37) 100 (9.4) 100 (3) 99.42 (5.25) -
iBABC-CGO-S 100 (2) 98.59 (2) 100 (2.2) 94.06 (2.8) 100 (4.6)
iBABC-CGO-V 100 (2) 100 (2.2) 100 (3) 97.03 (2.4) 100 (4.8)

Filter-based ~NB-mRMR-100 100 (100)  95.71 (100) 98.4 (100) 93 (100) 100 (100)
NB-mRMR-50 100 (50) 95.71 (50)  97.20 (50) 93 (50) 100 (50)

Bold indicates the best values in the table

genetics and function. The insights gained from these platforms confirm that our method
is capable of identifying cancer-relevant genes in each respective dataset.

Furthermore, to better visualize the expression patterns of genes across various tumor
samples, we employed heat maps Figs. 12 and 13. These graphical representations
facilitate a deeper understanding of the data distribution and highlight differential gene
expression across samples. The process involves the grouping of genes that share simi-
lar expression profiles into clusters. What’s particularly noteworthy is that upon closer
examination, a substantial proportion of these genes within these clusters exhibit a syn-
chronized down-regulation in their expression levels. This coordinated down-regulation
of gene expression suggests a strong likelihood of these genes being subject to shared
regulatory mechanisms or being functionally linked. This result highlights not only the
importance of understanding the collective behavior of genes, but also the potential
importance of these co-regulated genes in specific biological processes or pathways.

The comprehensive gene analysis for the 28 genes listed in the Table 20, was carried out
to ascertain their potential relation with breast cancer. These genes were studied for their
respective pathways and functional associations using authoritative genomic databases.

Our analysis indicates that several of these genes are implicated in key cellular pro-
cesses, fundamental for maintaining cell integrity and function. Some genes are particu-
larly noteworthy:
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Fig. 11 Accuracy results of the various state-of-the-art hybrid methods and proposed iBABC algorithms for
different datasets

-MDM4: Known to inhibit the p53 tumor suppressor protein, its overexpression
has been linked with various human cancers. Its potential role in breast cancer could be
explored in the context of pS3 pathway dysregulation.

-CD44: This cell-surface glycoprotein is involved in cell-cell interactions, cell adhesion,
and migration. It’s implicated in many types of cancers, including breast cancer.

-CD69 Molecule: While CD69 is primarily known for its role in immune regulation, the
association of this gene with diseases like Coccidioidomycosis and Eosinophilic Pneumo-
nia suggests an inflammatory component that might be relevant in the tumor microenviron-
ment of breast cancer.

-HIG1 Hypoxia Inducible Domain Family Member 2A: Hypoxia, or low oxygen levels,
is a common feature in solid tumors like breast cancer. Genes associated with hypoxia can
contribute to the survival and proliferation of tumor cells.

Based on their identified functions and associations, it is plausible that these genes
can influence cellular activities such as adhesion, migration, differentiation, prolifera-
tion, and apoptosis processes that, when disrupted, can lead to tumorigenesis. Notably,
the involvement of certain genes in pathways associated with cancer development makes
them promising candidates as tumor-specific biomarkers.

For the CNS Cancer Dataset presented in Table 21, a deep-dive was executed into
a selection of genes to determine their potential significance in CNS cancer. Notable
genes and their relevance include:
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Table 19 The best subset of selected genes from the gene selection method iBABC-CGO-V for binary data-
sets

Dataset Index of genes Gene names

Breast 651, 1488, 2085, 2370, 3280, 3671, 3939, NM_002393, NM_001781, NM_002575,
4358, 4439,5076, 6264, 6373, 67317, Contig50520_RC, Contigd6075_RC,
7583, 8908, 9855, 10548, 10562,10567,  Contig37204_RC, Contig36703_RC,
10595, 10887, 12479, 12507, 14497, Contig28311_RC, Contig37051_RC,
17968, 18191, 19950, 20382, 23766 NM_004304, AL117571, NM_003712,

Contigd48716_RC, X07695, NM_014166,
NM_004859, NM_014391, NM_005647,
NM_006378, AKO0O0001, AL080058,
NM_006597, NM_005878, Contig44611_
RC, Contig28383_RC, NM_000036,
NM_017687, NM_000308, X05299

CNS 318, 346, 842, 1003, 1052, 1429, 1690,  D26561_cds2_at, D29954_at, HG2416-
1695, 1804, 2402, 2472, 2494, 2693, HT2512_at, HG4458-HT4727_at, J00306_
2715, 2801, 2991, 2994, 3006, 3222, at, L25876_at, M12529_at, M13149_at,
3483, 4147, 4171, 5635, 5810, 5885 M21389_at, M96684_at, S71129_at,

S76067_at, U08989_at, U09584 _at,
U14973_at, U28727_at, U28833_at,
U29725_at, U43923_at, U60415_at,
X14675_at, X15875_at, Z84497_s_at,
HG2987-HT3136_s_at, HG4264-

HT4534_s_at
Colon 188, 1421, 1464, 1669 T63133, R48303, M18216
DLBCL 1451,2226 -
Leukemia 3521, 4845, 6330 U62962_at, X95654_at, X52282_s_at
Ovarian 1677, 1822, 2235 MZ244.66041, MZ288.82415, MZ434.68588
Prostate 3570, 6416, 7446, 8764 -

CDP-Diacylglycerol Synthase 2: It functions downstream of many G protein-coupled
receptors and tyrosine kinases, which are crucial in various cellular signalling path-
ways. Any aberrations here can influence cell growth and proliferation, common in CNS
cancers. It could be explored as a potential biomarker for signalling anomalies in CNS
tumors.

Non-SMC Condensin II Complex Subunit D3: Its primary function in mitotic chro-
mosome assembly suggests its importance in cell division. Malfunctions could lead to
uncontrolled proliferation, a hallmark of cancer. Given its association with developmen-
tal diseases, this gene might be indicative of tumors with proliferative behavior.

Somatostatin: This hormone is involved in various physiological processes, includ-
ing neurotransmission. Disruption in its expression might influence tumor growth, espe-
cially if CNS tumors show deregulation of neuroendocrine pathways.

Cyclin Dependent Kinase Inhibitor 3: Cyclin-dependent kinases play pivotal roles
in cell cycle progression. Abnormalities in these pathways can lead to unchecked cell
growth, typical of cancers. If overexpressed or silenced in CNS tumors, it may be a
strong candidate biomarker for aggressive growth.

Apolipoprotein E: While its primary function relates to lipid metabolism, any genetic
mutations might affect cell membrane structure or function, possibly aiding tumor cell
survival or migration in CNS.
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Fig. 12 A heatmap representation of the gene expression patterns (Part 1)

Histidine Rich Glycoprotein: Given its presence in plasma and platelets, any asso-
ciations with vascular or angiogenesis-related changes in CNS tumors might make it a
relevant biomarker.

Purine Rich Element Binding Protein A: DNA-binding proteins have regulatory
functions. Disruptions can affect genes downstream, potentially driving tumorigenesis.
It may be a marker for transcriptional anomalies in CNS tumors.

Solute Carrier Family 1 Member 1: Involved in neurotransmission, changes in its
expression might relate to neurologically active tumors or those affecting neurotrans-
mission in CNS cancer.

Bromodomain Containing 2: As a transcriptional regulator, its abnormal activity can
lead to broad changes in gene expression profiles. If found to be consistently deregulated
in CNS tumors, it may be a viable biomarker for diagnostic or prognostic purposes.

Several of these genes, based on their function and associated diseases, have clear
implications in critical cellular processes and diseases. Some of these processes include
cell growth, chromosome assembly, protein synthesis, neurotransmission, and DNA
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binding. Understanding these genes’ pathways and interactions can shed light on their
role in CNS cancers.

For the Colon Cancer Dataset, the implications of each gene presented in Table 22
and their potential as diagnostic or prognostic biomarkers are explored below:

-Thymosin Beta 10: Thymosins play key roles in cell migration, differentiation, and
proliferation, processes that are crucial during tumorigenesis. Thymosin Beta 10 is
implicated in actin monomer binding, suggesting a potential role in the cell’s cytoskel-
etal dynamics. Its association with thyroid gland cancer implies it might be involved in
other malignancies as well.

-Dermatopontin: Extracellular matrix (ECM) proteins are fundamental in tissue
architecture and integrity. Dysregulation of ECM components, like Dermatopontin, can
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influence cell-cell and cell-matrix interactions, potentially facilitating tumor growth,
invasion, and metastasis in the colon.

-CEA Cell Adhesion Molecule 6: Carcinoembryonic antigen (CEA) family members,
including CEACAMBS6, have been previously associated with various cancers. They play
roles in cell adhesion, a fundamental process that when altered can contribute to the
invasiveness of cancer cells and their potential to metastasize. Given its association with
gastrointestinal carcinoma, CEACAM6 might serve as a diagnostic or prognostic bio-
marker in colon cancer.

As with any potential biomarkers, it is essential to validate their association with
colon cancer in extensive clinical studies. This involves comparing their expression or
mutation status in a broad range of colon cancer samples and correlating these findings
with clinical outcomes.

For the Leukemia Cancer Dataset, each gene’s potential implications in leukemia
presenetd in Table 23 and their possible utility as diagnostic or prognostic biomarkers is
depicted below:

-Eukaryotic Translation Initiation Factor 3 Subunit E: Translation initiation factors
are vital for protein synthesis. Any aberrations in their function can lead to deregulated
protein synthesis, which might contribute to malignant transformation and tumor pro-
gression. EIF3E’s association with breast cancer implies that its dysregulation might be
important in other cancers as well.

-Natriuretic Peptide Receptor 3: Natriuretic peptides play roles in regulating blood
volume, blood pressure, and certain metabolic processes. Changes in the function of
their receptors, like NPR3, might lead to altered cellular responses, which could poten-
tially influence the leukemic microenvironment or the behavior of leukemia cells.

For the Ovarian Cancer Dataset, understanding the role of each gene and its implica-
tions in ovarian cancer presented in Table 24 can shed light on potential diagnostic or
prognostic biomarkers.

-ADAM Metallopeptidase With Thrombospondin Type 1 Motif 18: ADAMTS fam-
ily members are known for their roles in tissue remodeling and cell-matrix interactions.
Given that cancer often involves tissue remodeling, changes in the expression of this
gene may influence ovarian tumor growth, invasion, or metastasis. If ADAMTSIS8 is
found to be consistently deregulated (either overexpressed or underexpressed) in ovarian
tumors compared to normal tissue, it could serve as a potential biomarker for disease
onset, progression, or even therapeutic targeting.

-APC Regulator Of WNT Signaling Pathway: The Wnt signaling pathway is pivotal
in numerous cellular processes, including cell growth, differentiation, and migration.
The APC protein acts as a tumor suppressor, and its dysfunction can lead to aberrant
activation of the Wnt pathway, promoting tumorigenesis. Its role is well-established in
colorectal cancers, but any changes in ovarian tumors could indicate similar pathway
dysregulation.

-Collagen Triple Helix Repeat Containing 1: While primarily involved in vascular
remodeling, the process is also crucial in tumor growth, as tumors require new blood
vessels to support their rapid growth-a process called angiogenesis. Alterations in
CTHRC1 might be linked to ovarian tumor vascularization or metastatic potential.

For effective clinical translation, it would be essential to study these genes in a larger
cohort of ovarian cancer patients, assessing their expression or mutation status and cor-
relating with clinical outcomes. This will determine their true potential as biomarkers
for ovarian cancer diagnosis, prognosis, or therapeutic intervention.
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7 Pros and Cons of the proposed method

This section describes the advantages and disadvantages of the suggested iBABC-CGO-V
method. In addition, suggestions for improving this strategy are also highlighted. Numer-
ous research works demonstrate that metaheuristic algorithms (MHs) are excellent optimi-
zation approaches, although they may have downsides such as premature convergence, an
imbalanced exploration-exploitation ratio, and an inability to escape from the local opti-
mal region. In order to create an efficient FS approach using an MH algorithm to improve
classification performance, we researched contemporary algorithms and their features. The
iABC is a relatively latest modified version of the ABC metaheuristic algorithm that has
been shown in the literature to be effective at resolving practical optimization issues. It uti-
lises the structured population mechanism by incorporating the island model for improving
the exploration of the original ABC. Due to its straightforward approach and few param-
eters, the /ABC is simple to implement. It demonstrated better performance on CEC 2015
functions in (Awadallah et al. 2020) when compared to a number of other MH methods.

However, besides its advantages, the iABC still struggles with slow convergence, lack
of direct application to the discrete optimization problems, unbalanced exploration-exploi-
tation ratio, and the possibility of getting trapped in local optima. Therefore, we integrated
two mechanisms to the original iABC, which are highlighted as the following:

e We adapted the S and V transfer functions to convert the continuous version of the
iABC to its equivalent binary version so that it fits the discrete FS problem. Besides the
binary conversion, the transfer functions also reportedly help in improving exploration
and exploitation abilities.

e CGO method is incorporated in the migration phase of the original iABC to further
improve exploration, rate of convergence, and escape local optima.

These advantages of integration of binary transfer functions, CGO method, and use of
SVM classifier in iBABC-CGO-V approach also come with certain disadvantages, which
are listed along with their future proposed resolutions below:

e However, to select the minimum NFs for classifying features accurately, the proposed
approach still requires more improvement as it provides second-best results. This may
be due to the use of a weighted approach and manual adjustment of weights for the
lowest classification error rate and the fewest features in the fitness calculation. This
problem can be resolved by employing the multi-objective approach, which considers
both objectives viz. classification error and selection of the fewest features simultane-
ously.

e BABC-CGO-V requires more time to compute than many compared algorithms in this
study due to the use and integration of binary transfer functions, the CGO method, and
the use of an island approach. Careful use and integration with the other metaheuristic
approach are the resolutions to reduce the compute time of the suggested approach. The
convergence rate can be further enhanced by using chaotic maps or opposition-based
learning methods in the initialization phase.

However, as per the NFL theory, no universally effective optimization algorithm exists
for all optimization problems for all datasets. As a result, the authors conclude that the
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proposed iBABC-CGO-V, like the other MH methods, follows the same rule; nonetheless,
it surpasses several other contemporary and well-known algorithms.

8 Conclusion

This paper presents a unique Hybrid island Binary Artificial Bee Colony with Chaos Game
Optimization ((BABC-CGO) method as a wrapper-based technique for feature selection
problem. This new approach merges the simplicity and flexibility of the ABC algorithm,
the island concept that ensures diversity during the search process of solutions, the advan-
tage of the CGO algorithm ensuring better exploration-exploitation ratio and escaping
local optima, and a binary model to better address the discrete feature selection optimiza-
tion problem using microarray data. In this work, the efficacy of the proposed technique
was validated using 15 real-world high-dimensional datasets. According to our research,
the suggested iBABC-CGO method beats the competing algorithms across most datasets.
Furthermore, the iIBABC-CGO successfully identified a subset of highly discriminative
characteristics that effectively characterised the target ideas among competitors. Overall,
in feature selection operations on 15 datasets, the iBABC-CGO frequently attains the best
accuracy on most individual datasets and the highest overall average accuracy as well. The
proposed method obtained the best results among tested metaheuristics in terms of highest
classification accuracy, highest overall average accuracy, competitive number of selected
features, and largest area under the ROC curves. At last, the biological interpretations of
the selected genes by the proposed method are provided, which delve into the biological
significance of the best subset of genes that have been identified by our method. Future
research can utilize IBABC-CGO-V for various technical and clinical applications, includ-
ing electromyography pattern recognition, optimized deep neural networks, and power
quality. The performance of iIBABC-CGO can also be improved by using several improved
initialization procedures, the selection of an alternative classifier, and the use of a multi-
objective approach for optimizing classification accuracy and the fewest number of features
selected objectives simultaneously.

Additional simulations

See Figs. 14 and 15.
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Fig. 14 Boxplots analysis of algorithms across 9 remaining datasets
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Fig. 15 Convergence analysis of algorithms across 9 remaining datasets
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