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Abstract
Power supply from renewable energy is an important part of modern power grids. Robust 
methods for predicting production are required to balance production and demand to avoid 
losses. This study proposed an approach that incorporates signal decomposition techniques 
with Long Short-Term Memory (LSTM) neural networks tuned via a modified metaheuris-
tic algorithm used for wind power generation forecasting. LSTM networks perform nota-
bly well when addressing time-series prediction, and further hyperparameter tuning by a 
modified version of the reptile search algorithm (RSA) can help improve performance. The 
modified RSA was first evaluated against standard CEC2019 benchmark instances before 
being applied to the practical challenge. The proposed tuned LSTM model has been tested 
against two wind production datasets with hourly resolutions. The predictions were exe-
cuted without and with decomposition for one, two, and three steps ahead. Simulation out-
comes have been compared to LSTM networks tuned by other cutting-edge metaheuristics. 
It was observed that the introduced methodology notably exceed other contenders, as was 
later confirmed by the statistical analysis. Finally, this study also provides interpretations of 
the best-performing models on both observed datasets, accompanied by the analysis of the 
importance and impact each feature has on the predictions.

Keywords Long short-term memory networks · Metaheuristics optimization · Reptile 
search algorithm · Shapley additive explanations · Wind power generation

1 Introduction

Accurate power generation using renewable sources is crucial for several reasons. Renew-
able energy generation using wind power as well as photovoltaic sources is inherently 
variable (Li et  al. 2023), which means that their output can fluctuate based on weather 
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conditions and other factors. Accurate power generation data enables grid operators and 
energy companies to better anticipate these fluctuations and manage the overall power sup-
ply to ensure a stable and reliable grid (Coppitters and Contino 2023). Accurate power 
generation data is essential for billing purposes, as it ensures that energy providers are 
properly compensated for the power they generate. Finally, accurate power generation data 
is important for policy-making and research (Awerbuch and Berger 2003), as it helps to 
inform decisions about energy infrastructure investment, environmental impact, and renew-
able energy technology development. In short, accurate power generation data is critical for 
ensuring the efficiency, reliability, and sustainability of our energy systems.

Historical power generation data could prove a useful indicator for future forecast-
ing  (Shi et  al. 2012). However, several interconnected parameters affect power gen-
eration, all of which are prone to volatile changes. This makes prediction very dif-
ficult due to signal complexity. Decomposition techniques such as Variational Mode 
Decomposition  (VMD)  (Rehman and Aftab 2019) and Empirical Mode Decomposi-
tion (EMD) (Rehman and Mandic 2010) have the potential to deal with signal complex-
ity by breaking down a complex signal into simpler, more easily analyzed components. 
These techniques are particularly useful for signals that exhibit non-stationary and nonlin-
ear behavior. Both decompose a signal creating a set of intrinsic mode functions (IMFs) or 
variational modes, respectively, that capture the underlying frequency components of the 
signal. Each IMF or variational mode represents a distinct frequency component of the sig-
nal, with the highest frequency modes capturing the most rapid and transient changes, and 
the lowest frequency modes capturing the slower, more persistent changes. By analyzing 
the IMFs or variational modes separately, researchers can gain insights into the underly-
ing patterns and dynamics of the signal that may be obscured by its complexity. Overall, 
decomposition techniques such as VMD and EMD offer a powerful approach to dealing 
with signal complexity, providing researchers with a deeper understanding of the underly-
ing dynamics and behavior of complex signals.

Emerging artificial intelligence (AI) techniques have the potential for accurately fore-
casting production from wind sources in several ways. Models can be trained on large data-
sets of historical weather and wind data to better predict wind speeds and direction, which 
are critical factors in wind energy production. This can be leveraged to refine the accu-
racy of production forecasting and help energy providers to better anticipate fluctuations 
in wind power output. Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 
1997) neural networks are a type of recurrent neural network that are designed to model 
sequences and time series data. LSTMs are suitable for time series data because they can 
capture and remember long-term dependencies and patterns in the data over time, while 
also avoiding the vanishing gradient problem that can occur in traditional recurrent neural 
networks. LSTMs use a system of “gates” to moderate the transmission of data and control 
the memory of the network, allowing them to selectively forget or remember information 
from previous time steps. This makes LSTMs highly effective for modeling time series 
data with complex temporal dynamics. These types of networks offer a powerful tool for 
tackling time series data, allowing for accurate predictions and insights into the subtle pat-
terns and connections in the data. However, like many algorithms, they present a set of 
hyperparameters that require adequate adjustment to attain desirable outcomes.

Hyperparameters are an essential aspect of forecasting AI models, as they can signifi-
cantly influence model performance Probst et al. (2019). These parameters are not learned 
by the model during training but are set by the user before training. Choosing the right 
hyperparameters for a model is critical, as selecting the wrong values can lead to poor 
performance, slow convergence, or overfitting. Hyperparameter tuning involves selecting 
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optimal values for these hyperparameters so as to attain the best possible outcomes from 
the model. This is typically done through a combination of trial and error and automated 
techniques. The process involves training the model with different hyperparameter values 
and evaluating the performance on a validation set. The hyperparameter values that pro-
duce an optimized model are then selected.

Metaheuristic algorithms present a powerful class of optimization algorithms that may 
be applied to hyperparameter tuning in forecasting AI models Bacanin et al. (2023b). Itera-
tive optimization is designed to traverse and analyze the search space of possible solu-
tions, without making assumptions about the objective function or the structure of the 
problem. They are particularly well-suited to hyperparameter tuning, as they can handle 
high-dimensional and non-convex exploration spaces with many local optima. Metaheuris-
tic algorithms offer a promising approach to hyperparameter tuning in forecasting AI mod-
els and can help to overcome some of the limitations of traditional optimization methods. 
By leveraging the power of iterative search and exploration, metaheuristic algorithms can 
help to identify optimal hyperparameter values and improve the accuracy and performance 
of forecasting AI models. Swarm intelligence metaheuristic algorithms are a group of opti-
mization algorithms inspired by the collective behavior of social insects and animals. The 
concept of decentralized self-organization is at the core of these algorithms, in which a 
group of individuals mutually interact to reach a shared goal. By following simple sets of 
rules, complex behaviors emerge on a global scale. These algorithms have the ability to 
address non-deterministic polynomial-time hard (NP-hard) optimization problems spend-
ing time and resources reasonably, something often constituting a problem with traditional 
methods. This being said, in accordance with the no free lunch theorem (NFL) (Wolpert 
and Macready 1997), no single methodology is best for all problems, instead an individual 
approach is preferred. Therefore extensive investigation is needed to further improve tech-
niques and methods.

A notably well-performing metaheuristic algorithm used in this research is the reptile 
search algorithm (RSA) (Abualigah et al. 2022). It is a meta-learning approach that adapts 
a model to new tasks quickly. It works by training the model on a set of tasks for a fixed 
number of iterations and then fine-tuning it on new tasks using only a few gradient updates. 
Reptile search algorithm aims to learn a good initialization of model parameters that can be 
quickly adapted to new tasks with minimal updates.

A motivation for the conducted research was to further explore and expand the under-
standing of the novel RSA and its potential for hyperparameter tuning. Additionally, a key 
motivator was to determine if this already admirably performing metaheuristic can be fur-
ther improved through hybridization with other well-known powerful optimizers. Finally, 
this research hopes to introduce a robust AI-based method improved by the introduced 
metaheuristic in order to better address the pressing real-world issue of wind power genera-
tion forecasting.

With this in mind, this work proposes a novel method for forecasting power generated 
by wind farms based on a time series of meteorological and historical factors. To account 
for the complexities caused by the volatility associated with these predictors two signal 
decomposition techniques are utilized, VMD and EMD. The processed data is formulated 
as a time series and six input lags are utilized in order to train LSTM neural networks to 
create forecasts three steps ahead. With the goal of optimizing the performance of the mod-
els, metaheuristic algorithms are applied for hyperparameter selection. Several metaheuris-
tics are evaluated and a new modified version of the RSA is introduced. New and modified 
algorithm performance is usually initially evaluated using a set of standardized benchmark-
ing functions. Accordingly, the modified metaheuristic was evaluated using a wide range 
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of standard bound-constrained CEC2019 benchmarking functions before being applied to 
a real-world challenge. Following these evaluations, each metaheuristic optimized decom-
position-aided LSMT approach is evaluated on two real-world data sets covering two wind 
power plants in different parts of the world to determine their performance. The best-per-
forming models have been interpreted using SHapley Additive exPlanations (SHAP) (Lun-
dberg and Lee 2017) methods to determine the factors that have the highest influence on 
model predictions.

The central contributions of the presented research work are summarised as:

• A proposal for a modified variation of the recently introduced RSA that betters the 
commendable performance of the original

• An introduction of a decomposition-aided metaheuristic optimized methodology for 
wind power generation prognosis

• An interpretation of the best-performing models using SHapley SHAP analysis to bet-
ter understand the factors that contribute the most to wind power generation

The remainder of the word follows the structure hereby presented: preceding research that 
lay out a foundation for this research is presented in the related works Sect.  2. The uti-
lized methods and newly introduced metaheuristics are presented in Sect. 3. The capabili-
ties of the introduced algorithm on bound-constrained functions are shown and discussed 
in Sect. 4. The experimental setup followed by the attained results on the two real-world 
datasets along with the achieved results’ discussion are presented in Sects. 5 and 6, respec-
tively. Finally, a conclusion of the work and proposals for future research are shown in 
Sect.  7.

2  Overview of research background and literature review

In research, interest in LSTM neural networks has been renewed for forecasting wind 
power generation. Several studies have demonstrated the effectiveness of LSTM-based 
models in accurately predicting wind power output over short-term and long-term hori-
zons. One such study (Shahid et al. 2021) proposed an LSTM-based model for short-term 
wind power forecasting that incorporated both meteorological and power data. The authors 
demonstrated that the given model outperformed traditional time series models and other 
ML (ML) algorithms, achieving high accuracy and robustness across different locations 
and weather conditions.

Another study  (Liu et  al. 2019) focused on long-term wind power forecasting using 
LSTM networks. The authors introduced a hybrid model that combined LSTM and wavelet 
transform and principal component analysis to capture both the temporal and spatial varia-
tions in wind power data. The results showed that the proposed model did better than tradi-
tional statistical models and other ML algorithms, with improved accuracy and robustness 
over longer forecasting horizons.

In addition to LSTM neural networks, other techniques have been explored to help aug-
ment wind power forecasting precision, including the use of decomposition techniques 
such as VMD and EMD. Researchers (Zhang et al. 2016) proposed a VMD-based approach 
to upgrade the accuracy of wind power forecasting by decomposing the time series into 
different frequency components and applying separate models to each component. The 
authors demonstrated that the VMD-based approach outperformed traditional time series 



Optimizing long‑short‑term memory models via metaheuristics…

1 3

Page 5 of 57 45

models and other ML algorithms, achieving high accuracy and robustness across different 
locations and weather conditions. While other approaches for time-series forecasting exist 
their potential has been sufficiently explored in literature.

Hyperparameter tuning is a paramount aspect of ML and has been tested in the con-
text of wind power forecasting using metaheuristic algorithms. Previous works (Shao 
et  al. 2021) proposed a firework algorithm-based approach to optimize hyperparameters 
of LSTM neural networks for wind power forecasting. The authors demonstrated that the 
proposed approach achieved higher forecasting accuracy compared to other optimization 
techniques, indicating the importance of hyperparameter tuning for accurate wind power 
forecasting. Moreover, metaheuristics have been applied to optimization across several 
fields and have shown admirable results including crude oil price forecasting  (Jovanovic 
et al. 2022a), and environmental sciences (Jovanovic et al. 2023a).

Another approach to augment the interoperability of wind electricity production fore-
casting models is the use of SHAP (Lundberg and Lee 2017) values. These values provide 
a way to interpret the reasoning behind ML model decisions, by determining contribu-
tions made by available features towards the final outcome. The use of SHAP values could 
be used to understand the factors that influence wind power forecasting accuracy using 
LSTM-based models. SHAP values provided a more comprehensive and intuitive under-
standing of model performance, compared to traditional evaluation metrics.

2.1  Motivation

Renewable energy plays a crucial role in addressing our planet’s pressing environmental 
challenges (Akella et  al. 2009; Dinçer et  al., 2023; Yüksel et  al., 2024). By harnessing 
sources like solar and wind we can significantly reduce greenhouse gas emissions and 
combat climate change (Razmjoo et al. 2021). Embracing renewable energy not only safe-
guards the environment but also promotes energy security, job creation, and a healthier 
future for generations to come.

However, methods for generating energy in a renewable way are still developing. To 
facilitate large-scale adoption, many challenges need to be overcome (Züttel et al. 2022). 
One major challenge comes in the form of increased reliability. Being able to forecast the 
available power systems can improve reliability in the long run, increasing the viability of 
renewable systems.

The potential of metaheuristic algorithms for hyperparameter optimization is a well-
established approach (Tayebi and El Kafhali 2022), however, it has not yet been explored 
when applied to wind power generation using LSTM networks. With novel and more pow-
erful techniques constantly being developed (Mattos Neto et al. 2021; Belotti et al. 2020), 
evaluation and innovation are required in order to improve the body of work available to 
racehorses tackling optimizations. The potential of the recently introduced RSA (Abuali-
gah et al. 2022) has not yet been explored and implemented in energy forecasting. Further-
more, as a relatively recent approach, this algorithm has great potential for improvement 
through hybridization.

Decomposition techniques offer yet another technique that can improve model training, 
with new methods being developed experimentation is required to determine their poten-
tial for helping address this increasingly pressing problem. Model interpretation techniques 
(Dwivedi et al. 2023) are increasingly important to build more reliable models and robust 
systems. This work aims to address the observed research gap and improve the body of 
available techniques for renewable energy forecasting.
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2.2  Variational mode decomposition (VMD)

Variational mode decomposition (VMD)  (Rehman and Aftab 2019) is a methodology 
for decomposing signals into base components in a non-reducible way. The base of it 
is Wiener filtering and the Hilbert transform (Zhang et  al. 2021). This adaptive sig-
nal decomposition method can decompose a given signal f(t) into several components 
signals uk(t) within bandwidth constraints around a center frequency �k according to 
Eq. (1) (Wang and Li 2023).

where K presents the count of decomposed modes, {uk} = {u1, u2,… , uk} are modal com-
ponents with a center frequencies {�k} = {�1,�2,… ,�k} , �t is partial derivative. �(t) rep-
resents the Dirac distribution, f(t) depicts the original input signal, uk(t) represents k-th sub-
sequence of f(t) and * marks a convolution operator.

Lagrange multiplication operator � and the quadratic penalty factor � are incorpo-
rated to upgrade the optimal solution of constrained variation as per the following:

The Lagrange function is transformed from the time domain to the frequency domain. The 
alternate direction method of multipliers (ADMM) is utilized to minimize the optimization 
problem.The modes uk and their center frequency �k are calculated using the following 
equations respectively: Eqs. (2) and (3).

in which n is a number of iteration, � is Lagrange operator given by Eq. (4).

The iterative process will be executed until the condition given by Eq. (5) is met.
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2.3  Empirical mode decomposition (EMD)

Empirical mode decomposition (EMD) (Rehman and Mandic 2010) is a signal decompo-
sition approach for reducing the amount of noise in non-stationary time data series (Devi 
et al. 2020). Fourier and Wavelet analysis are used. This technique gives good results for 
analyzing wind speed data series. By using the EMD algorithm, complex time series data 
can be decomposed into a limited number of Intrinsic Mode Functions (IMFs) (Wang et al. 
2022b).

EMD process has the following procedure: 

(1) Determine the local maximum and minimum value for any processed signal x(t). 
Record h1(t) as difference between x(t) and mean value of upper and lower envelope 
m1(t) , according to Eq. (6) 

(2) h1(t) filtered out of the original signal tends to contain the signal’s highest frequency 
component. Difference signal, r1(t) , is gained by separating h1(t) from x(t). That way, 
the high-frequency component is removed. Filtering steps are repeated, with r1(t ) as a 
new signal, with the goal of the residual signal in the n-th stage becoming a monotonic 
function. This is shown by Eq. (7). 

 in which x(t) can be represented as a sum of n IMFs and a single residual according 
to Eq. (8). 

 where rn(t) is the residual that denotes the signal average trend, hj(t) is the j-th IMF, 
j = 1, 2,… , n , represents the various signal components in the direction from high to 
low frequencies.

Standard deviation (SD)is given by Eq. (9). It is mainly set from 0.2 to 0.3.
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2.4  Long short‑term memory (LSTM)

Recurrent neural networks (RNN) (Amalou et al. 2022), represent network architecture spe-
cialized for processing sequential data. However, RNNs have a problem of gradient disap-
pearance or gradient explosion. To overcome this, researchers proposed the Long Short-Term 
Memory Neural Network (LSTM) (Hochreiter and Schmidhuber 1997). This type of RNN can 
learn long-term dependent information (Liu et al. 2020). It can remember the relationship of 
the current information with the long-term information in the time sequence. The hidden level 
of traditional RNN has been replaced with memory cell (Wang et al. 2022a). It is comprised 
of a forget gate, input, and output gate, as shown in Fig. 1 (Liu et al. 2020; Wang et al. 2022a).

The basic structure in an LSTM is a memory block. This unit contains a cell used to store 
data as a system consisting of three control gates: forget, input, and output. All gate units have 
the same structure and consist of the same sequence: sigmoid activation function and multipli-
cation in a range [0, 1], and determines the amount of information passing through. The output 
of activation function tanh is in the range [− 1, 1] (Wang et al. 2022b).

LSTM input is made up of previous sequences ht−1 as well as the ongoing input xt . The 
forgot gate determines values in the cell state Ct−1 to be discarded, as it is defined by Eq. (10) 
(Fu et al. 2019).

where ft is an output vector with values in the range [0,1], � is the sigmoid function, Wf  and 
Uf  are the weight matrices and bf  is the bias vector. The input gate updates the information 
using the result of the sigmoid layer it according to Eq. (11).

where Wi , Ui are the weight matrices and bi is the bias vector.
The new potential values of cell state vector C̃t are generated by tanh function, determined 

by Eq. (12).

(10)ft = �
(
Wf xt + Uf ht−1 + bf

)

(11)it = �
(
Wixt + Uiht−1 + bi

)

(12)C̃t = tanh
(
Wcxt + Ucht−1 + bc

)

Fig. 1  The architecture of LSTM 
cell
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Ct is obtained by multiplying the old cell state Ct−1 with ft (to forget the unwanted informa-
tion) and adding new potential information it ⊗ C̃t , as it is given by Eq. (13)

with the ⊗ indicating an element-wise multiplication (Wang et al. 2022a; Fan et al. 2020). 
The output gates value ot is obtained according to Eq. (14)

where Wo,Uo are the weight matrices and bo is the bias vector. The value of output ht is cal-
culated using Eq. (15).

With the tanh function, cell state Ct is scaled in the range [− 1,1], and multiplying it with 
the output of output gate ot , a new output value ht has been calculated.

2.5  Metaheuristics optimization

Stochastic algorithms, including metaheuristics, are often necessary for computer sci-
ence to tackle NP-hard challenges because deterministic algorithms are not practical. 
Metaheuristics algorithms may be classified into categories emulating natural processes 
to lead the search method. For instance, some methods are inspired by evolution, natural 
selection, or birds and insects’ collective behavior (Stegherr et al. 2020; Emmerich et al. 
2018; Fausto et al. 2020). The most prominent groups of metaheuristics approaches include 
nature-inspired algorithms, consisting of genetic algorithms and swarm intelligence, as 
well as algorithms based on some physical phenomena (e.g., storm, gravitational and elec-
tromagnetic fields). Other approaches include those that mimic facets of human behavior 
such as teaching and learning, brainstorming, or social media activity and those that were 
derived from fundamental mathematical laws that pilot the search, e.g. through the use of 
trigonometric function oscillations.

Swarm intelligence methods have been based on groups’ cooperative actions composed 
of relatively simple individuals, such as swarms of insects or flocks of birds, which can 
exhibit astonishingly coordinated and sophisticated behavior patterns while performing 
fundamental survival tasks such as hunting, foraging, mating, or migrating (Beni 2020; 
Abraham et al. 2006). These methods have demonstrated significant potential when tack-
ling real-world NP-hard problems. However, they have been sometimes known to fail. 
Several popular swarm intelligence algorithms include particle swarm optimization (PSO) 
(Kennedy and Eberhart 1995), ant colony optimization (ACO) (Dorigo et al. 2006), fire-
fly algorithm (FA) (Yang 2009), and bat algorithm (BA) (Yang 2010; Yang and Gandomi 
2012). In the past few years, a highly effective group of metaheuristics has been developed 
based on mathematical functions and their behavior patterns to guide the search process, 
where the most notable samples are the sine-cosine algorithm (SCA) (Mirjalili 2016) and 
the arithmetic optimization algorithm (AOA) (Abualigah et al. 2021).

The NFL is the main cause of such a variety of optimization methodologies exist-
ing. The NFL states that there is no single algorithm that can be universally superior for 
every optimization task. Therefore, while one algorithm may perform well on a particu-
lar problem, it may fall short entirely on another, highlighting the necessity for diverse 

(13)Ct = ft ⊗ Ct−1 + it ⊗ C̃t

(14)ot = �
(
Woxt + Uoht−1 + bo

)

(15)ht = ot ⊗ tanh(Ct)
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metaheuristic methods and the need to select the most appropriate method for each indi-
vidual optimization task.

Population-based algorithms have lately become a usual choice for addressing different 
real-world problems. These algorithms are useful for many fields, such as prediction of 
COVID-19 cases (Zivkovic et al. 2021a, b), organizing on demand computational services 
(Bacanin et al. 2019; Bezdan et al. 2020a, b; Zivkovic et al. 2021c), optimizing wireless 
sensors and IoT (Zivkovic et al. 2020, 2021d), feature selection (Bezdan et al. 2021; Baca-
nin et al. 2023a), processing and classifying medical images (Bezdan et al. 2020c; Zivko-
vic et al. 2022), addressing global optimization problems (Strumberger et al. 2019; Preuss 
et  al. 2011), identifying credit card fraud (Jovanovic et  al. 2022b; Petrovic et  al. 2022), 
monitoring and forecasting air pollution (Bacanin et  al. 2022a; Jovanovic et  al. 2023a), 
detecting network and computer system intrusions (Bacanin et al. 2022b; Stankovic et al. 
2022), predicting power generation and energy load (Bacanin et  al. 2023b; Stoean et  al. 
2023), and optimizing different ML models (Salb et al. 2022; Milosevic et al. 2021; Gajic 
et al. 2021; Bacanin et al. 2022c, d; Jovanovic et al. 2022a, 2023b; Bukumira et al. 2022).

2.6  SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP)  (Lundberg and Lee 2017) is a method for inter-
preting the output of ML models, particularly those that are a black-box or difficult to inter-
pret. The methodology of SHAP is the computation of the Shapley value concept rooted 
in cooperative game theory to explain the role of the available feature and its impact on 
decisions. In SHAP, the Shapley value for a feature represents the average influence of that 
feature on the model’s output across all possible subsets of features.

To calculate the Shapley value for a feature, we first define a reference value for that 
feature. This reference value could be the average value of that feature in the dataset, or 
it could be a user-defined value. We then create a set of all possible feature subsets that 
include the feature we are interested in. For example, if we are interested in the Shapley 
value of feature A, we might create subsets that include just A, or A and B, or A and C, and 
so on.

For each subset, we calculate the contribution of the feature to the model’s output rela-
tive to the reference value. This contribution might be positive or negative, causing the fea-
ture’s value in the subset to increase or decrease the model’s output. We then calculate the 
average contribution of the feature across all possible subsets, which gives us the Shapley 
value.

Mathematically, the Shapley value for a feature j is determined by:

Here, M is the set of all features, and f(S) is the model’s output for a given subset of fea-
tures S. The term inside the summation calculates the marginal contribution of feature j 
to the subset S, and the summation calculates the average contribution across all possible 
subsets.

In practice, we can estimate the Shapley values for a model using a technique called 
Kernel SHAP. This involves generating a set of “background” instances that are representa-
tive of the dataset and then using these instances to estimate the expected model output for 

(16)𝜙j =
∑

S⊆M�j

|S|!(|M| − |S| − 1)!

|M|! (f (S ∪ j) − f (S))
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each subset of features. The Shapley values can then be calculated using these expected 
outputs.

Once we have the Shapley values for all features, we can use them to create a SHAP 
summary plot, which shows the contribution of each feature to the model’s output. This 
plot can help us identify which features are most important for the model’s predictions, and 
how each feature contributes to those predictions.

3  Methods

3.1  The original reptile search algorithm (RSA)

The RSA  (Abualigah et  al. 2022) is an optimization algorithm that mathematically sim-
ulates the predatory techniques of Crocodiles. This algorithm simulates two main tech-
niques: encircling and hunting. The details of both are outlined in the original work (Abua-
ligah et al. 2022).

3.2  Initialization phase

Optimization initialized with a stochastically generated candidates (X) shown in Eq. (17)

in which xi,j represents the jth location of the ith agent, N is the count of potential agent, and 
n represents the dimensions for the given challenge. In Eq. (18), rand is a random value 
from a uniform distribution, LB is lower and UB is the upper bound of the given chal-
lenge. During independent testing, multiple distributions were considered, and it has been 
deduced that using a uniform distribution yielded the best results.

3.2.1  Encircling phase (exploration)

During the encircling phase, Crocodiles have two kinds of movements: high walking and 
belly walking. The RSA can alternate two search phases: encircling (exploration) and hunt-
ing (exploitation). The change is made according to four criteria and is determined by the 
current iteration. The position updating for the exploration phase is presented by Eq. (19).

in which Bestj(t) represents the jth location in the current optimal agent, rand signifies an 
arbitrary number in range [0, 1], t represents the ongoing iterative count, and T maximum 

(17)X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 … x1,j x1,n−1 x1,n
x2,1 … x2,j … x2,n
… … xi,j … …

⋮ ⋮ ⋮ ⋮

xN−1,1 … xN−1,j … xN−1,n
xN,1 … xN,j xN,n−1 xN,n

⎤⎥⎥⎥⎥⎥⎥⎦

(18)xi,j =rand × (UB − LB) + LB, j = 1, 2, ..., n

(19)x(i,j)(t + 1) =

{
Bestj(t) × −𝜂(i,j)(t) × 𝛽 − R(i,j)(t) × rand, t ≤ T

4

Bestj(t) × x(r1,j) × ES(t) × rand, t ≤ 2
T

4
and t >

T

4
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iterations. The value of �(i,j) id calculated by Eq. (20), and describes hunting operator for the 
jth position in the ith solution. The value of � is used to control sensitivity. R(i,j) is a reduced 
function (a value used to reduce the search area) presented by Eq. (21). The value of r1 is 
arbitrarily selecting form [1, N], variable x(r1,j) denotes the ith solutions arbitrary location. 
Evolutionary Sense, denoted as ES(t), is a probability ratio with randomly decreasing val-
ues between [2,− 2], which is calculated using Eq. (22).

in which P(i,j) defines the dissimilarity in percent of the jth and best attained jth solution 
location determined via Eq. (23). Variable � stores a minimal value used to avoid division 
with zero. Value r2 and r3 are arbitrary values between [1, N] and [−1, 1] respectively.

in which M(xi) represents the mean location of the ith agent, determined per Eq. (24). LB(j) 
and UB(j) are the lower and upper constraints for the jth location, variable � is used to regu-
lated sensitivity.

3.2.2  Hunting phase (exploitation)

During the hunting phase, the exploitation mechanisms of RSA are presented. During the 
hunting process, crocodiles perform either hunting coordination or cooperation. According to 
this, the position updating for the exploitation phase is presented by Eq. (25).

in which Bestj(t) represents the jth location for the best-obtained agent thus far, � a small 
value, P(i,j) , �(i,j) and R(i,j) are given by Eqs. (23), (20) and (21), respectively.

The Pseudocode for the described RSA is shown in 1.

(20)�(i,j) =Bestj(t) × P(i,j)

(21)R(i,j) =
Bestj(t) − x(r2,j)

Bestj(t) + �

(22)ES(t) = 2 × r3 ×
(
1 −

1

T

)

(23)P(i,j) = � +
x(i,j) −M(xi)

Bestj(t) × (UB(j) − LB(j)) + �

(24)M(xi) =
1

n

n∑
j=1

x(i,j)

(25)x(i,j)(t + 1) =

{
Bestj(t) × −P(i,j)(t) × rand, t ≤ 3

T

4
and t > 2

T

4

Bestj(t) − 𝜂(i,j)(t) × 𝜖 − R(i,j)(t) × rand, t ≤ T and t > 3
T

4
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Algorithm 1  Pseudo-code of the RSA

3.3  Proposed modified RSA approach

The prioritization of exploitation over exploration in RSA leads to a lack of variety among 
the population and early convergence. This implies that the starting positions of the solu-
tions have a significant influence on the final outcomes. The objective of this research is 
to enhance the RSA algorithm by tackling the problem of limited exploration by ensur-
ing adequate population diversity during initialization and during execution. To accom-
plish this, two adjustments are implemented in the elementary RSA metaheuristics: a new 
approach to initialization and a mechanism for preserving diverse solutions during the exe-
cution of the algorithm.

3.3.1  New initialization scheme

The method introduced in this study utilizes a traditional initialization equation to produce 
the set of individuals in the initial population:

in which Xi,j denotes the j-th item of the i-th solution, lbj and ubj represent the lower and 
upper constraints of the component j, and � is an arbitrary value drawn from the normal 
distribution within limits [0, 1].

Still, the study by Rahnamayan et al. (2007) has shown that incorporation of the quasi-
reflection-based learning (QRL) (Rahnamayan et al. 2007) approach to the population pro-
duced by Eq. (26) could allow the exploration of the wider search area. Consequently, for 
every component j belonging to the solution ( Xj ), a quasi-reflective-opposite component 
( Xqr

j
 ) is produced in the following way:

(26)Xi,j = lbj + � ⋅ (ubj − lbj),
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where rnd allows to select an arbitrary number within 
[
lbj + ubj

2
, xj

]
 limits.

According to the QRL procedure, the proposed initialization approach doesn’t affect the 
complexity of the algorithm with respect to FFEs as it produces only half of the entire popula-
tion (NP/2). The initialization procedure used in this research is outlined in Algorithm 2.

Algorithm 2  Proposed initialization procedure that incorporates the QRL method

The intensive experiments have demonstrated that this initialization scheme exhibits two 
important advantages. First, it enhances the diversification of the starting population, which 
can improve the outcomes of the algorithm at the beginning of the run. Second, it enables the 
algorithm to cover a wider search area with the same size of the population, allowing the ini-
tial boost to the search procedure as well.

3.3.2  Procedure to keep the diversity of population

To evaluate whether the algorithm’s search mechanism is converging or diverging, one method 
is to assess the diversity of the population, which is explained in Cheng and Shi (2011). The 
study employs a new definition of measuring population diversity, specifically using the L1 
norm. This norm considers diversities resulting from two factors: the solutions generated by 
the population and the problem’s dimensionality.

Furthermore, Cheng and Shi (2011) emphasizes the importance of data obtained from the 
dimension-wise element of the L1 norm, which can be utilized to evaluate the search mecha-
nism of the algorithm being studied.

Suppose m represents the number of solutions in the population, and n denotes the prob-
lem’s dimensionality. The L1 norm can be calculated as presented in Eqs. (28) to (30):

In this context, x is referring to the array containing the average positions of the solu-
tions across each dimension, while Θp

j
 represents the array of position diversities of the 

(27)X
qr

j
= rnd

(
lbj + ubj

2
, xj

)
,

(28)xj =
1

m

m∑
i=1

xij

(29)Θ
p

j
=
1

m

m∑
i=1

|||||
xij − xj

|||||

(30)Θp =
1

n

n∑
i=1

Θ
p

j
,
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individuals, calculated using the L1 norm. Θp denotes the overall diversity value of the 
population as a scalar.

During the initial rounds of the algorithm’s execution, the population’s diversity should be 
high since the solutions are generated using the standard initialization equation (26). Never-
theless, while the method is converging to the optimal or sub-optimal solution in later rounds, 
the diversity should decrease dynamically. In order to tackle this, the enhanced RSA algorithm 
proposed in this study makes use of the L1 norm for regulating the population’s diversity dur-
ing the entire run. This is achieved through a dynamic diversity threshold control parameter, 
represented by Θt.

A technique has been suggested to preserve variety within a population by introducing an 
extra control factor, referred to as nrs, that specifies the number of individuals to be substi-
tuted. The approach functions in the following way: at the outset of the algorithm, the dynamic 
threshold for diversity, labeled as Θt0 , is established. During each round of execution, the latest 
population diversity, represented as ΘP , is assessed and compared to the dynamic diversity 
threshold, Θt . If the condition ΘP < Θt is met, suggesting that the population’s diversity is 
insufficient, the worst nrs individuals are replaced with random solutions created utilizing a 
method comparable to the one used to initialize the population.

After conducting empirical simulations and theoretical analysis, the formula for computing 
Θt0 can be expressed in the following manner.

As the algorithm progresses, it is anticipated that the population will gradually approach 
the optimal search area. Thus, the dynamic diversity threshold, Θt , must be lowered from 
its starting value, Θt0 , which is calculated by applying the Eq. (31). To accomplish this 
reduction in Θt , a linear decreasing function can be employed, as shown in Eq. (32), with 
T denoting the maximum number of rounds and Θt0 representing the initial diversity 
threshold.

Here, t and t + 1 represent the current as well as the next rounds. Additionally, T represents 
the iterative maximum. As the algorithm continues, the dynamic reduction of Θt occurs, 
and eventually, the mechanism described will no longer be utilized, disregarding ΘP.

3.3.3  Inner workings of the suggested algorithm

Since the introduced modified RSA algorithm improved on the admirable performance of the 
basic RSA, it was therefore named the enhanced RSA - ERSA, and its internal structure is pro-
vided in Algorithm 3. While looking at the proposed pseudo-code, it is possible to note that 
the suggested modifications have been integrated into the basic variant of the RSA algorithm 
described in Algorithm 1 (Abualigah et al. 2022).

(31)Θt0 =

NP∑
j=1

(ubj − lbj)

2 ⋅ NP

(32)Θt+1 = Θt − Θt ⋅
t

T
,
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Algorithm 3  ERSA pseudocode

3.4  Evaluation metrics

The observed models’ simulation outcomes have been validated by applying the collection of 
traditional ML measurements, namely mean squared error (MSE) calculated by Eq. (33), root 
mean squared error (RMSE) that can be obtained by Eq.  (34), mean absolute error (MAE) 
specified by Eq. (36), and finally the coefficient of determination (R2) that can be determined 
with Eq. (36).

where pi and p̂i mark arrays that consist of the observed and predicted values, both con-
taining N entries. This research employs MSE as the objective function with the goal to 
minimize it.

(33)MSE =
1

N

N∑
i=1

(
p̂i − pi

)2

(34)RMSE =

√√√√ 1

N

N∑
i=1

(
p̂i − pi

)2

(35)MAE =
1

N

N∑
i=1

||p̂i − pi
||

(36)R2,=1 −

∑n

i=1

�
pi − p̂i

�2
∑n

i=1

�
pi − p̄

�2 ,
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4  Experiments with standard bound‑constrained functions

Before evaluating the performance of ERSA metaheuristics on practical RNN tuning for 
wind energy time-series forecasting, in compliance with well-established practices from 
the modern literature, the proposed method was first tested against standard bound-con-
strained (unconstrained) benchmarks.

The CEC2019 test suite was chosen for this purpose due to dual reasons: this set of 
functions is more challenging and complex than other benchmarking suites (e.g. stand-
ard test instances and CEC2017); the basic RSA was also evaluated on them when this 
approach was introduced for the first time  (Abualigah et al. 2022). This package consists 
of ten functions and its details (name, dimension, search space constraints, global opti-
mum) have been demonstrated in Table 1.

The CEC2019 simulations were conducted with both, the introduced ERSA and 
the original RSA algorithms. Additionally, to make a comparative analysis more wide-
spread, other cutting-edge metaheuristics were also considered in comparative analysis: 
particle swarm optimization (PSO)  (Kennedy and Eberhart 1995), artificial bee colony 
(ABC)  (Karaboga and Basturk 2008), firefly algorithm (FA)  (Yang 2009), harris hawks 
optimization (HHO) (Heidari et al. 2019), whale optimization algorithm (WOA) (Mirjalili 
and Lewis 2016) and chimp swarm optimization (ChOA) (Khishe and Mosavi 2020). This 
particular set of algorithms was chosen to make a balance between traditional methods like 
PSO and more recent ones, e.g. ChOA.

Similar experimental conditions as in Abualigah et al. (2022), where maximum itera-
tions (T) and the agents in population count (N) were adjusted to 500 and 30, respectively, 
were set for the purpose of this research as well. Additionally, due to the methods’ stochas-
tic behavior, experiments are repeated 30 independent times (runtime = 30), with the best, 
worst, mean, average, and standard deviation metrics captured.

All evaluated methods were implemented specifically for this research work and results 
for the approaches tested also in Abualigah et al. (2022) were not taken. However, it should 
be pointed out that very similar results for the basic RSA, WOA, and PSO as those reported 
in Abualigah et al. (2022) were obtained in simulations conducted for the purpose of this 
work.

The performance metrics comparison between the competitive algorithms is given in 
Table 2, with the best-attained outcomes highlighted in bold text.

Table 1  Review of CEC2019 benchmark function problems details

No Functions F
∗
i
= F

i
(x∗) Dim Search range

1 Storn’s Chebyshev polynomial fitting problem 1 9 [−8192,8192]
2 Inverse Hilbert matrix problem 1 16 [−16384,16384]
3 Lennard–Jones minimum energy cluster 1 18 [−4,4]
4 Rastrigin’s function 1 10 [−100,100]
5 Griewangk’s function 1 10 [−100,100]
6 Weierstrass function 1 10 [−100,100]
7 Modified Schwefel’s function 1 10 [−100,100]
8 Expanded Schaffer’s F6 function 1 10 [−100,100]
9 Happy cat function 1 10 [−100,100]
10 Ackley function 1 10 [−100,100]
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Table 2  Results of the RSA using the CEC2019 test functions

Function Measure ERSA RSA PSO ABC FA HHO WOA ChOA

1 Worst 4.38E+04 6.33E+04 2.23E+13 4.66E+10 3.15E+08 1.15E+10 1.22E+11 1.01E+09

Average 3.71E+04 5.65E+04 8.12E+12 2.41E+10 1.01E+08 4.35E+09 5.81E+10 5.12E+08
Best 3.22E+04 5.06E+04 8.26E+11 4.33E+09 5.03E+05 1.29E+09 1.55E+09 2.57E+08
STD 4.65E+03 4.93E+03 8.60E+12 2.16E+10 1.45E+08 4.19E+09 4.73E+10 2.76E+08
Rank 1 2 8 7 3 5 6 4

2 Worst 1.73E+01 1.73E+01 1.63E+04 1.73E+01 1.73E+01 1.75E+01 1.74E+01 1.35E+02
Average 1.73E+01 1.73E+01 1.27E+04 1.73E+01 1.73E+01 1.75E+01 1.74E+01 8.34E+01
Best 1.73E+01 1.73E+01 8.32E+03 1.73E+01 1.73E+01 1.74E+01 1.73E+01 4.35E+01
STD 4.56E−08 1.26E−07 3.13E+03 2.41E−04 3.45E−05 4.68E−02 6.19E−03 3.06E+01
Rank 1 1 5 1 1 3 2 4

3 Worst 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01
Average 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01
Best 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01 1.27E+01
STD 0.00E+00 5.43E−05 0.00E+00 5.64E−17 4.29E−06 3.42E−05 7.43E−07 5.23E−05
Rank 1 1 1 1 1 1 1 1

4 Worst 1.32E+01 2.71E+01 2.36E+01 1.15E+02 1.65E+02 3.61E+03 8.64E+02 2.72E+01
Average 9.13E+00 2.45E+01 1.73E+01 5.63E+01 7.54E+01 1.95E+03 5.86E+02 2.43E+01
Best 5.02E+00 2.13E+01 4.96E+00 1.11E+01 4.88E+01 1.08E+03 2.25E+02 2.07E+01
STD 3.41E+00 2.44E+00 6.53E+00 3.73E+01 5.13E+01 9.55E+02 2.63E+02 2.40E+00
Rank 1 4 2 5 6 8 7 3

5 Worst 1.11E+00 1.09E+00 1.66E+00 1.09E+00 2.68E+00 2.68E+00 1.55E+00 1.71E+00
Average 1.06E+00 1.05E+00 1.45E+00 1.05E+00 2.41E+00 2.37E+00 1.26E+00 1.54E+00
Best 1.00E+00 1.00E+00 1.25E+00 1.00E+00 2.17E+00 2.17E+00 1.12E+00 1.31E+00
STD 5.79E−02 4.66E−02 1.63E−01 4.23E−02 2.57E−01 1.99E−01 1.59E−01 1.66E−01
Rank 2 1 4 1 7 6 3 5

6 Worst 8.76E+00 8.54E+00 1.25E+01 1.21E+01 1.21E+01 1.16E+01 1.13E+01 1.14E+01

Average 5.21E+00 5.32E+00 9.85E+00 1.14E+01 1.16E+01 1.10E+01 9.62E+00 1.06E+01

Best 2.94E+00 3.05E+00 8.96E+00 1.05E+01 1.14E+01 9.69E+00 8.27E+00 9.15E+00

STD 2.66E−01 2.31E−01 9.48E−01 4.72E−01 2.38E−01 7.46E−01 1.12E+00 8.05E−01

Rank 1 2 4 7 8 6 3 5
7 Worst 1.44E+02 6.51E+02 4.13E+02 1.41E+03 6.63E+02 1.05E+03 1.15E+03 6.06E+02

Average 4.69E+01 4.48E+02 2.88E+02 6.55E+02 3.55E+02 8.52E+02 8.13E+02 2.57E+02
Best 8.84E+01 2.79E+02 3.43E+02 1.85E+02 1.26E+02 4.79E+02 4.64E+02 2.91E+01
STD 9.73E+01 1.53E+02 1.73E+02 4.45E+02 2.31E+02 2.26E+02 2.54E+02 2.93E+02
Rank 1 5 2 6 4 8 7 3

8 Worst 4.92E+00 6.55E+00 5.65E+00 6.11E+00 6.85E+00 6.66E+00 6.64E+00 6.63E+00
Average 4.10E+00 5.62E+00 4.96E+00 5.71E+00 5.49E+00 5.88E+00 6.11E+00 5.87E+00
Best 2.55E+00 4.66E+00 4.39E+00 5.13E+00 2.92E+00 5.35E+00 5.65E+00 4.61E+00
STD 9.24E−01 7.41E−01 6.37E−01 4.76E−01 1.76E+00 4.642-01 4.24E−01 8.13E−01
Rank 1 4 2 5 3 7 8 6

9 Worst 2.47E+00 2.45E+00 2.44E+00 2.86E+00 7.16E+00 4.55E+02 6.42E+00 2.43E+00
Average 2.46E+00 2.41E+00 2.42E+00 2.62E+00 4.95E+00 2.05E+02 5.43E+00 2.36E+00
Best 2.45E+00 2.36E+00 2.38E+00 2.43E+00 3.33E+00 4.54E+01 4.06E+00 2.35E+00
STD 7.39E−07 3.17E−02 3.41E−02 1.76E−01 1.52E+00 1.55E+02 9.59E−01 1.09E−02
Rank 4 2 3 5 6 8 7 1
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The outcomes of the CEC2019 function testing indicate that on average the proposed 
ERSA demonstrates the most admirable performance. It is also apparent that this is not 
the case across all test functions. Nevertheless, this is to be expected, as per the NFL 
theorem of optimization no single algorithm is equally effective across all applications. 
Therefore, experimentation is required to determine algorithms best suited to a given 
problem.

Further analysis and observations help us understand the strengths and weaknesses of 
the introduced algorithms in comparison to contemporary methods. Interestingly, in certain 
functions such as F9, while the algorithm did not display the best performance, it neverthe-
less, attained the best STD score indicating that, while the introduced algorithm isn’t the 
optimal solution by a small margin, it is the most robust and reliable option. This observa-
tion is somewhat mirrored for function F4, where despite attaining a good score for both 
the best and average run, the algorithm does not demonstrate the highest reliability, further 
emphasizing the importance of extensive experimentation and the NFL theorem.

A more direct improvement can be observed in F2, where despite attaining identical 
scores for best, average, and worst runs between the RSA and introduced ERSA, the intro-
duced algorithm attained a significant improvement in robustness as demonstrated by a 
decrease in the STD. In F10, both algorithms performed slightly less favorably than the 
ABC algorithm, with the original RSA performing slightly better in the works run, while 
the introduced ERSA attained better performance in the best run, evening out average 
performance. For test function F3, most metaheuristics performed similarly well. In most 
other cases the introduced algorithms achieved a performance increase compared to the 
original as well as also outperformed competing metaheuristics in these cases.

Finally, metaheuristic ranking has been done according to average performance scores, 
with the best-performing algorithms receiving the lower ranks, while less optimal algo-
rithms received progressively higher rankings. It can be observed that the proposed algo-
rithm attained the best ranking in the majority of cases, closely followed by the original 
RSA algorithm. Average rankings across all functions are also shown, where the intro-
duced ERSA algorithm attained an average rank of 1.5, followed closely by the original 
RSA which attained an average rank of 2.4. Based on these rankings it can be determined 
that the introduced ERSA performed admirably well in comparison with contemporary 
algorithms, while also improving on the admirable performance maintained by the RSA. 
It is also worth noting that all evaluations and algorithms have been independently imple-
mented and tested. Furthermore, the attained results are in line with previous works (Abua-
ligah et al. 2022) that have similarly evaluated the original RSA algorithm against several 
state-of-the-art algorithms.

Table 2  (continued)

Function Measure ERSA RSA PSO ABC FA HHO WOA ChOA

10 Worst 2.06E+01 2.04E+01 2.07E+01 2.01E+01 2.07E+01 2.08E+01 2.05E+01 2.05E+01
Average 2.03E+01 2.03E+01 2.04E+01 2.00E+01 2.06E+01 2.07E+01 2.03E+01 2.04E+01
Best 2.01E+01 2.02E+01 2.01E+01 2.00E+01 2.05E+01 2.06E+01 2.02E+01 2.04E+01
STD 3.45E−01 1.36E−01 1.85E−01 3.97E−02 4.72E−02 6.64E−02 1.09E−01 5.43E−02
Rank 2 2 3 1 4 5 2 3

Mean rank 1.5 2.4 3.4 3.9 4.3 5.7 4.6 3.5
Final Ranking 1 2 3 5 6 8 7 4
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Finally, to visualize the performance of evaluated methods, convergence speed graphs 
for arbitrarily chosen instances depicted for the mean run are shown in Fig. 2. In cases of 
F2, F4, and F8 benchmarks, the ERSA manages to converge relatively fast, however, for 
the F10 test, the proposed method exhibits relatively stable, but not the best performance.

5  Utilized datasets and basic experimental setup

5.1  Overview of wind generation datasets

As already noted in Introduction, to evaluate the performance of LSTM models for multi-
variate time-series forecasting, two datasets were employed. In this part of the manuscript, 
a brief description of both datasets is provided. For easier following, the first dataset is 
labeled as “wind dataset”, while the second is titled as “wind farm dataset”.

5.1.1  Wind dataset

The hourly energy demand generation and weather dataset, available online1 has been com-
piled from two primary sources. The first source covered electrical generation and con-
sumption data for Spain. This data has been provided by the ENTSOE public portal for 
Transmission Service Operator (TSO) data. The provided data covers several sources of 

Fig. 2  Convergence speed graphs for some arbitrarily CEC2019 functions

1 https:// www. kaggle. com/ datas ets/ nicho lasjh ana/ energy- consu mption- gener ation- prices- and- weath er? 
select= energy_ datas et. csv.

https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather?select=energy_dataset.csv
https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather?select=energy_dataset.csv
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power such as biomass, geothermal, wind, solar as well as fossil power. The second source 
includes relevant meteorological data for Valencia Spain. The information for this segment 
of the dataset has been provided by the Weather API available online.2 It covers hourly 
resolution data for temperature, pressure, humidity, wind speed, wind direction as well as 
rainfall.

The compiled dataset covers a total of 4 years worth of weather, load, and generation 
data for Spain with an hourly resolution, for the years 2015–2018. The available infor-
mation makes this compiled data an excellent contender for forecasting power generation 
based on available meteorological data. For this research, the onshore power generation 
data has been used as the target variable while the available weather data has been used as 
inputs.

However, since this is a relatively large dataset, only the period from January 1, 2018 
to December 31, 2018, was taken for simulations and it consists of 8759 observations. The 
dataset training-validation-testing split demonstrated on the target feature can be seen in 
Fig. 3

5.1.2  Wind farm dataset

Formerly a competition dataset the GEFCom2012 challenge (Hong et al. 2014) for a time 
was available on Kaggle,3 the wind dataset has been repurposed for use in wind energy 
generation forecasting. It was originally introduced with the aim of improving forecasting 
practices and their utility across industries and serves to bridge the connection between 
academic research and industry practice. The dataset continues its legacy in this work 
where it is utilized to assess the proposed models’ performance when tackling the complex 
task of windpower generation forecasting.

The datasets contained encompass weather and generation data for 7 anonymized wind 
farms in mainland China. The data concerning the power generation of the farms have been 
normalized to ensure anonymity. Windfarm data is accompanied by 24 h forecasts of rel-
evant wind meteorological data created every 12  h. Wind speed and wind direction are 
provided alongside zonal and meridional wind components for each wind farm (Fig. 4).

Fig. 3  Wind dataset split shown on target feature

3 https:// www. kaggle. com/ compe titio ns/ global- energy- forec asting- compe tition- 2012- load- forec asting/ data.

2  https:// openw eathe rmap. org/ api.

https://www.kaggle.com/competitions/global-energy-forecasting-competition-2012-load-forecasting/data
https://openweathermap.org/api
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For experimental purposes the relevant meteorological data has been trimmed into 
12 h predictions in every forecast, to create an hourly resolution. This was then com-
bined with the available normalized real-world wind generation data for each respective 
wind farm on an hourly basis. The original dataset covered four and a half years’ worth 
of hourly resolution data, with the final half years’ worth of data reserved for testing. 
However, the final half year’s worth of data has not been made available.

Due to the huge amount of observations available in this dataset, as well as missing 
values in the later parts of the data, during experimentation a reduced portion of the 
available data needed to be used. The huge amount of data makes training and evaluat-
ing models very resource intensive. Therefore, the experimental dataset used in simula-
tions covers 2 years’ worth of data (from January 1, 2009 to December 31, 2010) for a 
single anonymized wind farm. The final portion of the utilized dataset contains a total 
of 13176 instances for wind farm 2. The dataset training-validation-testing split demon-
strated on the target feature can be seen in Fig. 3.

5.2  Decomposition

The initial stage of experimentation involves applying decomposition techniques to the 
available data input features. This is done so as to divide the complex input feature sig-
nals into a series of simpler sub-signals, that could later be used for forecasting. This 
process does, however, increase the number of features a network needs to handle.

The two techniques tested in this work include VMD  (Dragomiretskiy and Zosso 
2013) and EMD (Huang et al. 1998). The VMD has been carried out with the k value 
of three, resulting in a total of four signals. Three signals represent attained modes, 
while the fourth is the residual values that were not encompassed by a mode. All VMD 
modes and residuals for the wind and wind farm datasets are shown in Figs.  5 and 6 
respectively.

Similarly, the EMD technique number of IMF’s was limited to a maximum of four. It is 
important to note that, once a new IMF cannot be extracted via decomposition EMD ter-
minates the process early, resulting in fewer respective components. In addition to the IMF 
components, an additional residual component is added that consists of signals that could 
not be assigned to an IMF. This results in a maximum of 5 sub-signals per input feature. 
All EMD IMF’s and residuals for the wind and wind farm datasets are shown in Figs. 7 and 
8 respectively.

Fig. 4  Wind farm dataset split shown on target feature
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Fig. 5  Wind dataset input feature VMD modes and residuals
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Fig. 6  Wind farm dataset input feature VMD modes and residuals
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Fig. 7  Wind dataset input feature EMD IMF’s and residuals
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Fig. 8  Wind farm dataset input feature EMD IMF’s and residuals
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5.3  Experimental setup

The experimental process involves two stages. Initially, the available data for both data-
sets were subjected to decomposition. Following this process, the signal components 
and residual signals were fed into LSTM models tasked with forecasting. Each model 
was given six points of input data and challenged with making forecasts three steps 
ahead. A flowchart of the described process is shown in Fig. 9.

Several state-of-the-art metaheuristics were challenged to optimize the parameters of 
prediction models in order to improve performance. The evaluated models include the 
introduced ERSA as well as the original RSA. Additionally, several well-known optimi-
zation algorithms were included in the comparative analysis including PSO (Kennedy 
and Eberhart 1995), ABC (Karaboga and Basturk 2008), FA (Yang 2009), HHO (Hei-
dari et al. 2019), WOA (Mirjalili and Lewis 2016), ChOA (Khishe and Mosavi 2020). 
The evaluated optimization algorithms were assigned a population size of five agents 
and allowed eight iterations to improve solutions. Additionally, to account for intrinsic 

Fig. 9  Flowchart of the forecasting process
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randomness associated with metaheuristic algorithms results were evaluated through 30 
independent executions to help attain objective evaluations.

All tested algorithms were tasked with selecting LSTM hyperparameters. The parameter 
subset selected for optimization was selected due to the high impact on model performance. 
Optimized parameters and their possible ranges are as follows: the neuron count in the layers 
determined from range [100,  300], the learning rate range [0.0001,  0,  01], training epochs 
[300, 600], dropout rate [0.05, 0.2], the total number of network layers between [1, 2] and the 
number of neurons in the second network layer [100, 300]. The parameters and their respec-
tive constraints are highlighted in Table 3 Finally, early stopping has been implemented in 
order to help prevent model over-fitting. The threshold for early stopping has been empirically 
determined as epochs

3
 . Meaning that if a model should not improve for epochs

3
 model training is 

terminated early. An added benefit of this approach is the reduction in wasted computation 
resources. The utilized ranges where determined empirically to give the best outcomes consid-
ering the computational costs of optimization and performance outcomes.

Experiments where carried out using the Python programming languages. Additionally, 
standard ML and AI libraries where utilized including Keras, TensorFlow, Scikit-learn. The 
vizuals where generated using Seaborn and Matplotlib libraries. To facilitate experimentation 
a machine with an Intel i9 11900K CPU, 128BB of ram memory and a RTX4070 GPU was 
employed.

6  Achieved results, comparative analysis, and discussion

In this segment the experimental outcomes on two observed datasets are delivered, namely 
wind and wind farms. First, the results without decomposition are shown, followed by 
the results with VMD and EMD employed. Last but not least, this section also provides a 
SHAP analysis of the best-performing model on each of the two observed datasets. In all 
tables that contain experimental results, the best outcomes in every regarded category are 
marked in bold text.

6.1  Wind dataset experimental results

The following demonstrated the outcomes on the wind dataset, without decomposition. 
Table 4 shows the overall metrics in terms of the best, worst, mean, and median values, 
accompanied by the standard deviance and variance values over 30 separate runs of each 
regarded algorithm. LSTM-ERSA model accomplished the supreme results in terms of the 

Table 3  The LSTM 
hyperparamaters included in the 
optimization and their respective 
constraints

Parameter name Lower constraint Upper constraint

Learning rate 0.0001 0,01
Training epochs 300 600
Dropout rate 0.05 0.2
Network layers 1 2
Neurons in layer 1 100 300
Network in layer 2 100 300
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best and median values. The second-best result was scored by the LSTM-ABC method, 
while LSTM-WOA attained the third-best score. Otherwise, LSTM-ChOA achieved the 
best results for the worst and median metrics. Finally, LSTM-HHO established the best 
standard deviation and variance scores, suggesting that it provided the steadiest results 
across the runs.

Table 5 brings forward the detailed metrics of every prediction step regarding the best 
run of each algorithm. The prefix L is used to denote that LSMT is used. It can be noted 
that the suggested LSTM-ERSA attained supreme results for two-step, three-samples for-
ward, and overall results, in terms of the objective—MSE, but also for other important 
indicators, namely R2 , MAE (except for two-samples forward) and RMSE. The best scores 
for one sample forward were achieved by the LSTM-ABC approach. Looking at the over-
all results, the second-best algorithm was LSTM-ABC, in front of the LSTM-WOA and 
LSTM-ChOA methods. The observed LSTM-ERSA attained the best overall MSE value of 
0.006592, in front of LSTM-ABC with an MSE value of 0.006605.

Table 4  Wind dataset overall metrics for best, worst, mean, and median run without decomposition

Method Best Worst Mean Median Std Var

LSTM-ERSA 0.006592 0.006653 0.006616 0.006636 2.30E−05 5.30E−10
LSTM-RSA 0.006611 0.006643 0.006631 0.006635 1.27E−05 1.61E−10
LSTM-PSO 0.006631 0.006672 0.006646 0.006634 1.83E−05 3.36E−10
LSTM-ABC 0.006605 0.006638 0.006627 0.006631 1.24E−05 1.54E−10
LSTM-FA 0.006628 0.006698 0.006649 0.006639 2.53E−05 6.38E−10
LSTM-HHO 0.006632 0.006651 0.006644 0.006648 7.00E−06 4.90E−11
LSTM-WOA 0.006607 0.006655 0.006633 0.006638 1.82E−05 3.30E−10
LSTM-ChOA 0.006609 0.006626 0.006619 0.006625 7.32E−06 5.36E−11

Table 5  Wind dataset detailed metrics for each prediction step of the best run without decomposition

Error 
indica-
tor

L-ERSA L-RSA L-PSO L-ABC L-FA L-HHO L-WOA L-ChOA

One R2 0.845391 0.845365 0.844410 0.845795 0.843997 0.844825 0.845621 0.845740
Sample MAE 0.051652 0.051778 0.051980 0.051555 0.051913 0.051905 0.051622 0.051469
Forward MSE 0.006537 0.006539 0.006579 0.006520 0.006596 0.006561 0.006528 0.006523
Forecasts RMSE 0.080855 0.080861 0.081110 0.080749 0.081218 0.081002 0.080794 0.080763
Two R2 0.845174 0.844677 0.844587 0.844842 0.844313 0.844381 0.844986 0.844649
Samples MAE 0.052106 0.052294 0.052345 0.052263 0.052233 0.052475 0.052025 0.052158
Forward MSE 0.006547 0.006568 0.006571 0.006561 0.006583 0.006580 0.006555 0.006569
Forecasts RMSE 0.080911 0.081041 0.081064 0.080998 0.081136 0.081118 0.080960 0.081048
Three R2 0.841770 0.840932 0.840548 0.840750 0.841407 0.840229 0.840642 0.840716
Samples MAE 0.053340 0.053716 0.053675 0.053775 0.053446 0.053942 0.053581 0.053602
Forward MSE 0.006690 0.006725 0.006741 0.006733 0.006705 0.006755 0.006737 0.006734
Forecasts RMSE 0.081795 0.082011 0.082110 0.082058 0.081888 0.082192 0.082085 0.082067
Overall R2 0.844111 0.843657 0.843181 0.843795 0.843238 0.843144 0.843749 0.843701
Forecast MAE 0.052365 0.052596 0.052666 0.052530 0.052530 0.052773 0.052409 0.052409
Outcomes MSE 0.006591 0.006610 0.006630 0.006604 0.006627 0.006631 0.006606 0.006608

RMSE 0.081187 0.081305 0.081429 0.081269 0.081414 0.081439 0.081281 0.081294
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Table 6  Parameters selected by metaheuristics for best-performing wind prediction models without decom-
position

Method Neurons layer 1 Learning rate Epochs Dropout Layers Neurons layer 2

LSTM-ERSA 140 0.000894 517 0.108587 2 170
LSTM-RSA 100 0.003232 318 0.091040 2 150
LSTM-PSO 100 0.002880 300 0.050317 2 200
LSTM-ABC 167 0.001091 547 0.081649 2 188
LSTM-FA 100 0.010000 300 0.200000 1 118
LSTM-HHO 184 0.002868 346 0.175802 2 158
LSTM-WOA 131 0.001016 600 0.055888 2 129
LSTM-ChOA 100 0.003440 592 0.183099 1 177

Fig. 10  Wind dataset objective function and R2 distribution plots for each metaheuristic without decompo-
sition

Fig. 11  Wind dataset objective function and R2 convergence plots for each metaheuristic without decompo-
sition

The best set of LSTM parameters produced by the top-performing run of each 
metaheuristic is shown in Table  6. The proposed LSTM-ERSA established the LSTM 
structure as follows: 140 neurons in the first layer, a learning rate of 0.000894, 517 epochs, 
a dropout value of 0.108587, and 170 neurons in the second layer.

Aiming to provide better insight into the results, visualizations are provided in Figs. 10, 
11, and 12. Figure 10 shows the violin plots for the objective function (MSE), accompanied 
by the box plot of the R2 indicator, for all 30 runs. After that, the convergence diagrams of 
the objective function and R2 for the best run of each algorithm are given in Fig. 11. It can 
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be noted that at the beginning, RSA and WOA metaheuristics are converging faster, but are 
overrun by the proposed ERSA in the final rounds of execution. Lastly, the Kernel Density 
Estimation (KDE) diagram and swarm plot are shown in Fig. 12. KDE diagram is used to 
show the probability density function and can indicate whether or not the results are com-
ing from the normal distribution. The swarm plot shows the diversity of the solutions dur-
ing the final round of the best-performing run of each algorithm.

6.1.1  Wind dataset with VMD

This section presents the experimental outcomes on the wind dataset when VMD has been 
applied. Table 7 shows the overall metrics in terms of the best, worst, mean, and median 
values, accompanied by the standard deviance and variance values over 30 separate runs 
of each regarded algorithm. VMD-LSTM-ERSA model accomplished the supreme results 
in terms of the best, mean, and median values. The second-best result was scored by the 
VMD-LSTM-ChOA method, while VMD-LSTM-RSA attained the third-best score. Oth-
erwise, VMD-LSTM-HHO achieved the best result for the worst metric. Finally, VMD-
LSTM-HHO also established the best standard deviation and variance scores, suggesting 
that it provided the steadiest results over 30 independent runs.

Table 8 brings forward the detailed metrics of every prediction step regarding the best 
run of each algorithm. The prefix VL is used to denote that VMD-LSMT is used. It can 
be noted that the suggested VMD-LSTM-ERSA attained superior results for one-step and 
overall results, in terms of the objective—MSE, but also for other important indicators, 
namely R2 , MAE, and RMSE. The best scores for the two-samples forward were achieved 
by the VMD-LSTM-WOA approach, while VMD-LSTM-HHO attained the best outcomes 
for three-samples forward predictions. Looking at the overall results, the second-best 

Fig. 12  Wind dataset objective swarm and KDE plots for each metaheuristic without decomposition

Table 7  Wind dataset overall metrics for best, worst, mean, and median run using VMD

Method Best Worst Mean Median Std Var

VMD-LSTM-ERSA 0.001704 0.001841 0.001750 0.001733 5.16E−05 2.66E−09
VMD-LSTM-RSA 0.001729 0.001817 0.001784 0.001800 3.23E−05 1.05E−09
VMD-LSTM-PSO 0.001759 0.001879 0.001813 0.001809 4.39E−05 1.93E−09
VMD-LSTM-ABC 0.001779 0.001866 0.001809 0.001792 3.79E−05 1.44E−09
VMD-LSTM-FA 0.001730 0.001814 0.001756 0.001743 3.21E−05 1.03E−09
VMD-LSTM-HHO 0.001758 0.001811 0.001771 0.001761 2.19E−05 4.80E−10
VMD-LSTM-WOA 0.001762 0.001820 0.001784 0.001765 2.69E−05 7.25E−10
VMD-LSTM-ChOA 0.001726 0.001824 0.001766 0.001743 3.68E−05 1.35E−09



 M. Pavlov-Kagadejev et al.

1 3

45 Page 32 of 57

Ta
bl

e 
8 

 W
in

d 
da

ta
se

t d
et

ai
le

d 
m

et
ric

s f
or

 e
ac

h 
pr

ed
ic

tio
n 

ste
p 

of
 th

e 
be

st 
ru

n 
us

in
g 

V
M

D

Er
ro

r i
nd

ic
at

or
V

L-
ER

SA
V

L-
R

SA
V

L-
PS

O
V

L-
A

B
C

V
L-

FA
V

L-
H

H
O

V
L-

W
O

A
V

L-
C

hO
A

O
ne

R
2

0.
94
19
16

0.
94

00
73

0.
93

70
82

0.
93

88
10

0.
93

95
88

0.
93

64
26

0.
93

51
98

0.
93

88
41

Sa
m

pl
e

M
A

E
0.
03
20
73

0.
03

26
04

0.
03

33
09

0.
03

27
66

0.
03

27
44

0.
03

37
08

0.
03

36
20

0.
03

28
59

Fo
rw

ar
d

M
SE

0.
00
24
56

0.
00

25
34

0.
00

26
60

0.
00

25
87

0.
00

25
54

0.
00

26
88

0.
00

27
40

0.
00

25
86

Fo
re

ca
sts

R
M

SE
0.
04
95
58

0.
05

03
38

0.
05

15
79

0.
05

08
66

0.
05

05
41

0.
05

18
47

0.
05

23
46

0.
05

08
53

Tw
o

R
2

0.
96

38
63

0.
96

54
51

0.
96

58
05

0.
96

28
87

0.
96

41
36

0.
96

44
82

0.
96
59
07

0.
96

43
85

Sa
m

pl
es

M
A

E
0.

02
39

49
0.

02
35

85
0.

02
34

10
0.

02
44

47
0.

02
40

82
0.

02
39

29
0.
02
32
59

0.
02

38
29

Fo
rw

ar
d

M
SE

0.
00

15
28

0.
00

14
61

0.
00

14
46

0.
00

15
69

0.
00

15
16

0.
00

15
02

0.
00
14
42

0.
00

15
06

Fo
re

ca
sts

R
M

SE
0.

03
90

90
0.

03
82

21
0.

03
80

25
0.

03
96

14
0.

03
89

42
0.

03
87

53
0.
03
79
68

0.
03

88
06

Th
re

e
R

2
0.

97
33

13
0.

97
18

10
0.

97
23

30
0.

97
21

00
0.

97
35

17
0.
97
43
96

0.
97

38
80

0.
97

42
80

Sa
m

pl
es

M
A

E
0.

02
08

05
0.

02
18

06
0.

02
13

57
0.

02
15

92
0.

02
08

39
0.
02
01
61

0.
02

06
53

0.
02

03
45

Fo
rw

ar
d

M
SE

0.
00

11
27

0.
00

11
91

0.
00

11
69

0.
00

11
79

0.
00

11
19

0.
00
10
82

0.
00

11
03

0.
00

10
86

Fo
re

ca
sts

R
M

SE
0.

03
35

90
0.

03
45

23
0.

03
42

03
0.

03
43

46
0.

03
34

62
0.
03
29
02

0.
03

32
32

0.
03

29
76

O
ve

ra
ll

R
2

0.
95
96
96

0.
95

91
11

0.
95

84
05

0.
95

79
31

0.
95

90
80

0.
95

84
34

0.
95

83
28

0.
95

91
68

Fo
re

ca
sts

M
A

E
0.
02
56
08

0.
02

59
98

0.
02

60
25

0.
02

62
68

0.
02

58
88

0.
02

59
32

0.
02

58
43

0.
02

56
77

O
ut

co
m

es
M

SE
0.
00
17
03

0.
00

17
28

0.
00

17
58

0.
00

17
78

0.
00

17
29

0.
00

17
57

0.
00

17
61

0.
00

17
25

R
M

SE
0.
04
12
80

0.
04

15
79

0.
04

19
36

0.
04

21
75

0.
04

15
95

0.
04

19
22

0.
04

19
75

0.
04

15
50



Optimizing long‑short‑term memory models via metaheuristics…

1 3

Page 33 of 57 45

algorithm was VMD-LSTM-ChOA, in front of the VMD-LSTM-RSA method. The 
observed VMD-LSTM-ERSA attained the best overall MSE value of 0.001704, in front of 
VMD-LSTM-ChOA with an MSE value of 0.001726.

The best set of LSTM parameters produced by the top-performing run of each 
metaheuristic is shown in Table  9. The proposed VMD-LSTM-ERSA established the 
LSTM structure as follows: 100 neurons in the first layer, a learning rate of 0.010000, 563 
epochs, a dropout value of 0.200000, and 100 neurons in the second layer.

Aiming to provide better insight into the results, visualizations are provided in Figs. 13, 
14, and  15. Figure  13 depicts the violin plots for the objective function (MSE), accom-
panied by the box plot of the R2 indicator, for all 30 runs. After that, the convergence 
diagrams of the objective function and R2 for the best run of each algorithm are given 
in Fig. 14. It can be noted that in this case, the proposed ERSA exhibits the fastest con-
vergence from the beginning to the end. Lastly, the KDE diagram and swarm plot for the 
objective function is shown in Fig. 15. The swarm plot shows the diversity of the solutions 
during the final round of the best-performing run of each algorithm, and it can be noted 
that all the solutions of the proposed ERSA are in close proximity to the optimum in this 
case.

Table 9  Parameters selected by metaheuristics for best-performing wind prediction models using VMD

Method Neurons layer 1 Learning rate Epochs Dropout Layers Neurons layer 2

VMD-LSTM-ERSA 100 0.010000 563 0.200000 2 100
VMD-LSTM-RSA 100 0.010000 600 0.073598 2 104
VMD-LSTM-PSO 139 0.007558 600 0.050000 2 138
VMD-LSTM-ABC 174 0.006837 509 0.164527 2 139
VMD-LSTM-FA 143 0.010000 600 0.098000 2 130
VMD-LSTM-HHO 171 0.008113 572 0.200000 2 162
VMD-LSTM-WOA 200 0.005682 600 0.055617 2 200
VMD-LSTM-ChOA 100 0.008296 600 0.050000 2 146

Fig. 13  Wind dataset objective function and R2 distribution plots for each metaheuristic with VMD
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6.1.2  Wind dataset with EMD

This section presents the experimental outcomes on the wind dataset when EMD has been 
applied. Table 10 shows the overall metrics in terms of the best, worst, mean, and median 
values, accompanied by the standard deviance and variance values over 30 separate runs 
of each regarded algorithm. The EMD-LSTM-ERSA model accomplished superior results 
in terms of the best, mean, and median scores. The second-best result was attained by the 
EMD-LSTM-PSO method, while EMD-LSTM-FA obtained the third-best score. Oth-
erwise, EMD-LSTM-PSO achieved the best result for the worst metric. Finally, EMD-
LSTM-RSA established the best standard deviation and variance scores, suggesting that it 
provided the steadiest results over 30 independent runs in this scenario.

Table 11 brings forward the detailed metrics of every prediction step regarding the best 
run of each algorithm. The prefix EL is used to denote that EMD-LSMT is used. In this 
scenario, it can be noted that the suggested EMD-LSTM-ERSA attained supreme out-
comes for all metrics: one-step, two-step, three-samples forward and overall results, in 

Fig. 14  Wind dataset objective function and R2 convergence plots for each metaheuristic with VMD

Fig. 15  Wind dataset objective swarm and KDE plots for each metaheuristic with VMD

Table 10  Wind dataset overall metrics for best, worst, mean, and median run using EMD

Method Best Worst Mean Median Std Var

EMD-LSTM-ERSA 0.004831 0.005199 0.005015 0.005015 1.84E−04 3.39E−08
EMD-LSTM-RSA 0.005139 0.005183 0.005156 0.005139 2.15E−05 4.64E−10
EMD-LSTM-PSO 0.004994 0.005081 0.005032 0.004994 4.28E−05 1.83E−09
EMD-LSTM-ABC 0.005179 0.005537 0.005358 0.005358 1.79E−04 3.20E−08
EMD-LSTM-FA 0.005065 0.005198 0.005136 0.005198 6.62E−05 4.39E−09
EMD-LSTM-HHO 0.005123 0.005229 0.005179 0.005229 5.31E−05 2.82E−09
EMD-LSTM-WOA 0.005130 0.005184 0.005155 0.005130 2.66E−05 7.06E−10
EMD-LSTM-ChOA 0.005126 0.005173 0.005149 0.005149 2.35E−05 5.52E−10
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terms of the objective—MSE, and all other important indicators, namely R2 , MAE and 
RMSE. Looking at the overall results, the second-best algorithm was EMD-LSTM-PSO, 
in front of the EMD-LSTM-FA method. The proposed EMD-LSTM-ERSA attained the 
best overall MSE value of 0.004831, in front of EMD-LSTM-PSO which achieved an MSE 
value of 0.004994.

The best set of LSTM parameters produced by the top-performing run of each 
metaheuristic for the scenario with EMD employed is shown in Table 12. The proposed 
EMD-LSTM-ERSA established the LSTM structure as follows: 108 neurons in the first 
layer, a learning rate of 0.007837, 600 epochs, a dropout value of 0.050000, and 151 neu-
rons in the second layer.

Aiming to provide better insight into the results, visualizations are provided in Figs. 16, 
17, and  18. Figure  16 depicts the violin plots for the objective function (MSE), accom-
panied by the box plot of the R2 indicator, for all 30 runs. After that, the convergence 

Table 11  Wind dataset detailed metrics for each prediction step of the best run using EMD

Error 
indica-
tor

EL-ERSA EL-RSA EL-PSO EL-ABC EL-FA EL-HHO EL-WOA EL-ChOA

One R2 0.882618 0.874563 0.876980 0.877066 0.875932 0.870262 0.872794 0.875291
Sample MAE 0.046090 0.048054 0.047590 0.047374 0.047323 0.048471 0.048793 0.048225
Forward MSE 0.004963 0.005304 0.005202 0.005198 0.005246 0.005486 0.005379 0.005273
Forecasts RMSE 0.070451 0.072828 0.072123 0.072098 0.072430 0.074066 0.073340 0.072617
Two R2 0.886238 0.876369 0.883291 0.871967 0.882816 0.884023 0.882208 0.879532
Samples MAE 0.045484 0.047946 0.046415 0.048618 0.045821 0.045980 0.046948 0.047558
Forward MSE 0.004810 0.005228 0.004935 0.005414 0.004955 0.004904 0.004981 0.005094
Forecasts RMSE 0.069356 0.072302 0.070249 0.073578 0.070392 0.070028 0.070574 0.071371
Three R2 0.888399 0.884489 0.885392 0.883520 0.881879 0.882265 0.881007 0.881513
Samples MAE 0.045805 0.046869 0.046693 0.046724 0.046394 0.047158 0.047604 0.047710
Forward MSE 0.004718 0.004883 0.004845 0.004924 0.004994 0.004977 0.005030 0.005009
Forecasts RMSE 0.068693 0.069886 0.069612 0.070189 0.070671 0.070556 0.070931 0.070780
Overall R2 0.885751 0.878473 0.881887 0.877517 0.880208 0.878849 0.878669 0.878778
Forecasts MAE 0.045792 0.047622 0.046899 0.047571 0.046512 0.047202 0.047781 0.047830
Out-

comes
MSE 0.004830 0.005138 0.004993 0.005178 0.005064 0.005122 0.005129 0.005125
RMSE 0.069503 0.071683 0.070669 0.071964 0.071169 0.071572 0.071625 0.071593

Table 12  Parameters selected by metaheuristics for the respective best-performing wind prediction models 
using EMD

Method Neurons layer 1 Learning rate Epochs Dropout Layers Neurons layer 2

EMD-LSTM-ERSA 108 0.007837 600 0.050000 2 151
EMD-LSTM-RSA 200 0.010000 600 0.119344 2 100
EMD-LSTM-PSO 121 0.008541 600 0.173318 2 164
EMD-LSTM-ABC 165 0.007747 600 0.119184 2 133
EMD-LSTM-FA 155 0.010000 600 0.200000 2 101
EMD-LSTM-HHO 106 0.006599 570 0.062141 2 112
EMD-LSTM-WOA 100 0.010000 600 0.184404 2 118
EMD-LSTM-ChOA 136 0.004410 549 0.114572 2 104



 M. Pavlov-Kagadejev et al.

1 3

45 Page 36 of 57

diagrams of the objective function and R2 for the best run of each algorithm are given in 
Fig. 17. It can be noted that in this case, the proposed ERSA exhibits the fastest speed of 
convergence from the beginning to the end. Lastly, the KDE diagram and swarm plot for 
the objective function is shown in Fig. 18. The swarm plot shows the diversity of the solu-
tions during the final round of the best-performing run of each algorithm.

6.1.3  Comparison with other models on the Wind dataset

To demonstrate the comparative performance improvements of the coupling optimizers 
with decomposition’s techniques in the introduced methodology the best outcomes of 

Fig. 16  Wind dataset objective function and R2 distribution plots for each metaheuristic with EMD

Fig. 17  Wind dataset objective function and R2 convergence plots for each metaheuristic with EMD

Fig. 18  Wind dataset objective swarm and KDE plots for each metaheuristic with EMD



Optimizing long‑short‑term memory models via metaheuristics…

1 3

Page 37 of 57 45

each approach have been compared to several contemporary prediction models. The out-
comes of the objective (MSE) and indicator R 2 factions is shown in Table 13.

As demonstrated in Table 13, outcome attained by applying VMD followed by LSTM 
networks optimized via introduced metaheuristics demonstrate notable improvements com-
pared to their approaches applied to the same task.

6.2  Wind farm dataset experimental results

This section presents the results of the wind farm dataset, without decomposition. Table 14 
shows the overall metrics in terms of the best, worst, mean, and median values, accompa-
nied by the standard deviance and variance values over 30 separate runs of each regarded 
algorithm. LSTM-ERSA model accomplished the supreme results in terms of the best, 
worst, and mean values. The second-best result was scored by the LSTM-HHO method, 
while LSTM-ABC attained the third-best score. Otherwise, LSTM-ABC achieved the best 
results for the median metric. Last but not least, LSTM-RSA established the best standard 
deviation and variance scores, suggesting that it provided the steadiest results across the 
runs.

Table 15 brings forward the detailed metrics of every prediction step regarding the best run 
of each algorithm. The prefix L is used to denote that LSMT is used. It can be noted that the 
suggested LSTM-ERSA attained supreme results for two samples forward and overall results, 

Table 13  Comparison of the best 
performing methods with other 
contemporary prediction models 
applying to the wind dataset

Method MSE R2

SVM 0.007283 0.814233
Random forest 0.007303 0.772332
XGBoost 0.007126 0.807384
KELM 0.007200 0.801634
AdaBoost 0.007203 0.802330
ANN (3 layers) 0.007190 0.791192
RNN (3 layers) 0.007199 0.805466
LSTM 0.007233 0.824233
LSTM-ERSA 0.006591 0.844111
VMD-LSTM-ERSA 0.001703 0.0959696
EMD-LSTM-ERSA 0.004830 0.885751

Table 14  Wind farm dataset overall metrics for best, worst, mean, and median run without decomposition

Method Best Worst Mean Median Std Var

LSTM-ERSA 0.020566 0.020809 0.020724 0.020803 9.69E−05 9.38E−09
LSTM-RSA 0.020829 0.020884 0.020864 0.020872 1.88E−05 3.54E−10
LSTM-PSO 0.020754 0.020847 0.020809 0.020821 3.43E−05 1.18E−09
LSTM-ABC 0.020673 0.020857 0.020745 0.020722 6.59E−05 4.34E−09
LSTM-FA 0.020747 0.021040 0.020911 0.020983 1.10E−04 1.22E−08
LSTM-HHO 0.020608 0.020925 0.020807 0.020869 1.23E−04 1.52E−08
LSTM-WOA 0.020730 0.020881 0.020807 0.020826 5.68E−05 3.23E−09
LSTM-ChOA 0.020699 0.020947 0.020775 0.020727 8.98E−05 8.07E−09
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in terms of the objective—MSE, but also for other important indicators, namely R2 and RMSE 
(except MAE). The best scores for one-samples forward were achieved by the LSTM-HHO 
approach, while the best outcomes for three-samples forward were attained by LSTM-ChOA. 
Looking at the overall results, the second-best algorithm was LSTM-HHO, in front of LSTM-
ABC and LSTM-ChOA methods. The observed LSTM-ERSA attained the best overall MSE 
value of 0.020566, in front of LSTM-HHO with an MSE value of 0.020608.

The best set of LSTM parameters produced by the top-performing run of each 
metaheuristic for this scenario is shown in Table 16. The proposed LSTM-ERSA estab-
lished the LSTM structure as follows: 180 neurons in the first layer, a learning rate of 
0.005919, 439 epochs, a dropout value of 0.165101, and 200 neurons in the second layer 
for this particular scenario.

Aiming to provide better insight into the results, visualizations are provided 
in Figs.  19, 20, and 21. Figure  19 shows the violin plots for the objective function 

Table 15  Wind farm dataset detailed metrics for each prediction step of the best run without decomposition

Error 
indica-
tor

L-ERSA L-RSA L-PSO L-ABC L-FA L-HHO L-WOA L-ChOA

One R2 0.771359 0.768250 0.770386 0.769249 0.769645 0.775001 0.769093 0.767537
Sample MAE 0.102667 0.102964 0.102777 0.102829 0.102680 0.102882 0.102924 0.102791
Forward MSE 0.022502 0.022808 0.022597 0.022709 0.022670 0.022143 0.022724 0.022878
Forecasts RMSE 0.150005 0.151022 0.150324 0.150696 0.150566 0.148806 0.150746 0.151254
Two R2 0.799068 0.796724 0.796229 0.797961 0.796895 0.796674 0.797062 0.796279
Sample MAE 0.100233 0.099696 0.100523 0.099993 0.100032 0.101472 0.100125 0.099405
Forward MSE 0.019775 0.020005 0.020054 0.019884 0.019988 0.020010 0.019972 0.020049
Forecasts RMSE 0.140622 0.141440 0.141612 0.141009 0.141381 0.141457 0.141322 0.141595
Three R2 0.802662 0.800087 0.800731 0.802615 0.801019 0.800123 0.801910 0.805205
Sample MAE 0.103533 0.103045 0.103602 0.102485 0.102978 0.104569 0.103026 0.100661
Forward MSE 0.019420 0.019673 0.019610 0.019424 0.019581 0.019670 0.019494 0.019170
Forecasts RMSE 0.139357 0.140263 0.140038 0.139374 0.139936 0.140251 0.139623 0.138457
Overall R2 0.791029 0.788353 0.789115 0.789941 0.789186 0.790598 0.789354 0.789673
Forecast MAE 0.102144 0.101901 0.102300 0.101768 0.101896 0.102974 0.102024 0.100951
Outcomes MSE 0.020565 0.020828 0.020753 0.020672 0.020746 0.020607 0.020729 0.020698

RMSE 0.143406 0.144321 0.144061 0.143779 0.144037 0.143554 0.143980 0.143871

Table 16  Parameters selected by metaheuristics for best-performing wind farm prediction models without 
decomposition

Method Neurons layer 1 Learning rate Epochs Dropout Layers Neurons layer 2

LSTM-ERSA 180 0.005919 439 0.165101 2 200
LSTM-RSA 137 0.010000 553 0.200000 2 156
LSTM-PSO 200 0.005864 480 0.196612 2 176
LSTM-ABC 117 0.007639 527 0.099844 2 142
LSTM-FA 186 0.010000 578 0.200000 2 151
LSTM-HHO 176 0.006243 485 0.108088 2 150
LSTM-WOA 197 0.006295 543 0.198430 2 186
LSTM-ChOA 100 0.010000 473 0.050467 2 134
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(MSE), accompanied by the box plot of the R2 indicator, for all 30 runs. After that, 
the convergence diagrams of the objective function and R2 for the best run of each 
algorithm are given in Fig. 20. It can be noted that at the beginning, HHO exhibited a 
bit faster convergence at one point, however, it was overrun by the proposed ERSA in 
the final rounds of execution. Finally, the KDE diagram and swarm plot are shown in 
Fig. 21. KDE diagram is used to show the probability density function and can indicate 
whether or not the outcomes originate from the normal distribution. The swarm plot 
shows the diversity of the solutions during the final round of the best-performing run 
of each algorithm.

6.2.1  Wind farm dataset with VMD

This section presents the results on the wind farm dataset, with employed VMD. 
Table 17 shows the overall metrics in terms of the best, worst, mean, and median val-
ues, accompanied by the standard deviance and variance values over 30 separate runs 
of each regarded algorithm. VMD-LSTM-ERSA model accomplished the supreme 
results in terms of the best, worst, mean, and median values. The second-best result 
was scored by the VMD-LSTM-FA method, while VMD-LSTM-PSO attained the 
third-best score. VMD-LSTM-ERSA also achieved the best results for the standard 
deviation. Last but not least, LSTM-WOA established the best variance score.

Fig. 19  Wind farm dataset objective function and R2 distribution plots for each metaheuristic without 
decomposition

Fig. 20  Wind farm dataset objective function and R2 convergence plots for each metaheuristic without 
decomposition
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Table  18 brings forward the detailed metrics of every prediction step regarding 
the best run of each algorithm. The prefix VL is used to denote that VMD-LSMT is 
used. It can be noted that the suggested VMD-LSTM-ERSA attained the best scores 
for overall results, in terms of the objective—MSE, but also for other important indi-
cators, namely R2 and RMSE (except MAE). The best scores for one sample forward 
were achieved by the VMD-LSTM-HHO approach, the best results for two-samples 
forward were obtained by the VMD-LSTM-RSA, while the best outcomes for three-
samples forward were attained by VMD-LSTM-FA. Looking at the overall results, the 
second-best algorithm was VMD-LSTM-FA, in front of VMD-LSTM-PSO. The pro-
posed VMD-LSTM-ERSA attained the best overall MSE value of 0.006702, in front of 
VMD-LSTM-FA with an MSE value of 0.006747.

The best set of LSTM parameters produced by the top-performing run of each 
metaheuristic for this scenario is shown in Table  19. The proposed LSTM-ERSA 
established the LSTM structure as follows: 142 neurons in the first layer, a learning 
rate of 0.009502, 600 epochs, a dropout value of 0.151008, and 127 neurons in the sec-
ond layer for this particular scenario.

Aiming to provide better insight into the results, visualizations are provided in 
Figs. 22, 23, and 24. Figure 22 shows the violin plots for the objective function (MSE), 
accompanied by the box plot of the R2 indicator, for all 30 runs. After that, the con-
vergence diagrams of the objective function and R2 for the best run of each algorithm 
are given in Fig. 23. It can be noted that at the beginning, FA exhibited slightly faster 
convergence, however, it was overrun by the proposed ERSA in the final rounds of exe-
cution. Finally, the KDE diagram and swarm plot are shown in Fig. 24. KDE diagram 
is used to show the probability density function and can indicate whether or not the 

Fig. 21  Wind farm dataset objective swarm and KDE plots for each metaheuristic without decomposition

Table 17  Wind farm dataset overall metrics for best, worst, mean, and median run using VMD

Method Best Worst Mean Median Std Var

VMD-LSTM-ERSA 0.006702 0.006969 0.006802 0.006781 8.53E−05 7.96E−09
VMD-LSTM-RSA 0.006849 0.007406 0.007135 0.007072 2.24E−04 5.00E−08
VMD-LSTM-PSO 0.006845 0.007311 0.007140 0.007176 1.60E−04 2.56E−08
VMD-LSTM-ABC 0.006899 0.007219 0.007021 0.006956 1.33E−04 1.76E−08
VMD-LSTM-FA 0.006747 0.007083 0.006867 0.006806 1.35E−04 1.81E−08
VMD-LSTM-HHO 0.006911 0.007258 0.007046 0.006917 1.61E−04 2.59E−08
VMD-LSTM-WOA 0.006898 0.007104 0.007027 0.007057 8.60E−05 7.40E−09
VMD-LSTM-ChOA 0.006873 0.007132 0.006947 0.006881 9.95E−05 9.90E−09
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Table 19  Parameters selected by metaheuristics for best-performing wind farm prediction models using 
VMD

Method Neurons layer 1 Learning rate Epochs Dropout Layers Neurons layer 2

VMD-LSTM-ERSA 142 0.009502 600 0.151008 2 127
VMD-LSTM-RSA 140 0.006202 520 0.155388 2 155
VMD-LSTM-PSO 130 0.010000 600 0.200000 2 200
VMD-LSTM-ABC 123 0.008691 529 0.085940 2 152
VMD-LSTM-FA 100 0.010000 600 0.200000 2 100
VMD-LSTM-HHO 200 0.009344 476 0.155241 2 100
VMD-LSTM-WOA 100 0.009352 481 0.094570 2 128
VMD-LSTM-ChOA 144 0.007816 391 0.138489 2 126

Fig. 22  Wind farm dataset objective function and R2 distribution plots for each metaheuristic with VMD

Fig. 23  Wind farm dataset objective function and R2 convergence plots for each metaheuristic with VMD

Fig. 24  Wind farm dataset objective swarm and KDE plots for each metaheuristic with VMD
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results are coming from the normal distribution. The swarm plot shows the diversity 
of the solutions during the last iteration of the best-performing run of each algorithm.

6.2.2  Wind farm dataset with EMD

This section presents the results on the wind farm dataset, with employed EMD. Table 20 
shows the overall metrics in terms of the best, worst, mean, and median values, accompa-
nied by the standard deviance and variance values over 30 separate runs of each regarded 
algorithm. EMD-LSTM-ERSA model accomplished the supreme results in terms of the 
best and mean values. The second-best result was scored by the EMD-LSTM-RSA method, 
while EMD-LSTM-PSO attained the third-best score. Otherwise, EMD-LSTM-FA 
obtained the best result for the worst metric, and also for standard deviation and variance. 
Finally, the best median value was achieved by the EMD-LSTM-RSA method.

Table 20  Wind farm dataset overall metrics for best, worst, mean, and median run using EMD

Method Best Worst Mean Median Std Var

EMD-LSTM-ERSA 0.020351 0.020556 0.020460 0.020556 1.02E−04 1.05E−08
EMD-LSTM-RSA 0.020470 0.020556 0.020513 0.020513 4.31E−05 1.86E−09
EMD-LSTM-PSO 0.020491 0.020674 0.020589 0.020674 9.17E−05 8.41E−09
EMD-LSTM-ABC 0.020828 0.021115 0.020971 0.020971 1.44E−04 2.07E−08
EMD-LSTM-FA 0.020512 0.020549 0.020531 0.020531 1.84E−05 3.37E−10
EMD-LSTM-HHO 0.020842 0.020887 0.020860 0.020842 2.17E−05 4.72E−10
EMD-LSTM-WOA 0.020617 0.020666 0.020640 0.020617 2.41E−05 5.78E−10
EMD-LSTM-ChOA 0.020509 0.020935 0.020722 0.020722 2.13E−04 4.53E−08

Table 21  Wind farm dataset detailed metrics for each prediction step of the best run using EMD

Error 
indica-
tor

EL-ERSA EL-RSA EL-PSO EL-ABC EL-FA EL-HHO EL-WOA EL-ChOA

One R2 0.770306 0.770573 0.770635 0.766354 0.770850 0.766029 0.769614 0.767667
Sample MAE 0.102287 0.102416 0.102454 0.103185 0.102444 0.103351 0.102323 0.102841
Forward MSE 0.022605 0.022579 0.022573 0.022994 0.022552 0.023026 0.022673 0.022865
Forecasts RMSE 0.150350 0.150263 0.150242 0.151638 0.150172 0.151743 0.150576 0.151211
Two R2 0.799361 0.798019 0.797192 0.793547 0.796900 0.793721 0.796892 0.797148
Samples MAE 0.098350 0.098588 0.099168 0.099906 0.098911 0.099839 0.098928 0.099220
Forward MSE 0.019746 0.019878 0.019959 0.020318 0.019988 0.020301 0.019989 0.019964
Forecasts RMSE 0.140520 0.140989 0.141277 0.142541 0.141379 0.142481 0.141381 0.141292
Three R2 0.809964 0.807416 0.807551 0.805203 0.806968 0.804903 0.805001 0.809996
Samples MAE 0.099985 0.099553 0.099394 0.100817 0.099914 0.100610 0.100618 0.099235
Forward MSE 0.018701 0.018952 0.018939 0.019170 0.018996 0.019199 0.019190 0.018698
Forecasts RMSE 0.136755 0.137669 0.137620 0.138457 0.137828 0.138564 0.138529 0.136743
Overall R2 0.793210 0.792002 0.791792 0.788367 0.791572 0.788217 0.790502 0.791603
Forecast MAE 0.100207 0.100185 0.100338 0.101302 0.100422 0.101266 0.100622 0.100431
Out-

comes
MSE 0.020350 0.020469 0.020490 0.020827 0.020511 0.020841 0.020616 0.020508
RMSE 0.142656 0.143072 0.143144 0.144317 0.143220 0.144368 0.143587 0.143209
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Fig. 25  Wind farm dataset objective function and R2 distribution plots for each metaheuristic with EMD

Fig. 26  Wind farm dataset objective function and R2 convergence plots for each metaheuristic with EMD

Fig. 27  Wind farm dataset objective swarm and KDE plots for each metaheuristic with EMD

Table 22  Parameters selected by metaheuristics for best-performing wind farm prediction models using 
EMD

Method Neurons layer 1 Learning rate Epochs Dropout Layers Neurons layer 2

EMD-LSTM-ERSA 100 0.010000 600 0.200000 3 100
EMD-LSTM-RSA 118 0.005365 600 0.121341 2 181
EMD-LSTM-PSO 100 0.004172 600 0.130481 2 100
EMD-LSTM-ABC 115 0.007103 553 0.153556 2 273
EMD-LSTM-FA 100 0.004116 600 0.126646 2 218
EMD-LSTM-HHO 132 0.003038 600 0.107516 2 259
EMD-LSTM-WOA 125 0.003430 600 0.126450 2 112
EMD-LSTM-ChOA 100 0.005069 600 0.161137 3 234
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Table 21 brings forward the detailed metrics of every prediction step regarding the best 
run of each algorithm. The prefix EL is used to denote that EMD-LSTM-LSMT is used. 
It can be noted that the suggested EMD-LSTM-ERSA attained the best scores for overall 
results, in terms of the objective—MSE, but also for other important indicators, namely 
R2 and RMSE (except MAE). Also, EMD-LSTM-ERSA attained the best results for the 
two-sample forward predictions, for all observed indicators. The best scores for one sample 
forward were achieved by the EMD-LSTM-FA approach, while the best outcomes for the 
three samples forward were attained by EMD-LSTM-ChOA. Looking at the overall results, 
the second-best algorithm was EMD-LSTM-RSA, in front of EMD-LSTM-PSO. The pro-
posed EMD-LSTM-ERSA attained the best overall MSE value of 0.020351, in front of 
EMD-LSTM-RSA with an MSE value of 0.020556.

The best set of LSTM parameters produced by the top-performing run of each 
metaheuristic for this scenario is shown in Table 22. The proposed LSTM-ERSA estab-
lished the LSTM structure as follows: 100 neurons in the initial layer, a learning rate of 
0.010000, 600 epochs, a dropout value of 0.200000, three layers, and 100 neurons in the 
second layer for this particular scenario with employed EMD.

Aiming to provide better insight into the results, visualizations are provided in Figs. 25, 
26, and 27. Figure 25 shows the violin plots for the objective function (MSE), accompanied 
by the box plot of the R2 indicator, for all 30 runs. After that, the convergence diagrams of 
the objective function and R2 for the best run of each algorithm are given in Fig. 26. It can 
be noted that at the beginning, ChOA, PSO, and RSA exhibited slightly faster convergence, 
however, all of them were overrun by the proposed ERSA in the final rounds of execution. 
Finally, the KDE diagram and swarm plot are shown in Fig. 27. KDE diagram is used to 
show the probability density function and can indicate whether or not the outcomes origi-
nate from a normal distribution. The swarm plot shows the diversity of the solutions during 
the last iteration of the best-performing run of each algorithm. In this scenario, it can be 
noted that all outcomes of the ERSA were grouped near the best solution at the end of the 
run.

6.2.3  Comparison with other models on the Wind farm dataset

To demonstrate the comparative performance improvements of the coupling optimizers 
with decomposition’s techniques in the introduced methodology the best outcomes of each 

Table 23  Comparison of the best 
performing methods with other 
contemporary prediction models 
applied to the wind farm dataset

Method MSE R2

SVM 0.029070 0.770072
Random forest 0.032550 0.822352
XGBoost 0.023833 0.789320
KELM 0.023340 0.779011
AdaBoost 0.022050 0.775031
ANN (3 layers) 0.027250 0.766072
RNN (3 layers) 0.024250 0.787320
LSTM 0.021339 0.783321
LSTM-ERSA 0.020565 0.791029
VMD-LSTM-ERSA 0.006701 0.931900
EMD-LSTM-ERSA 0.020350 0.793210
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approach have been compared to several contemporary prediction models (Table 23). The 
outcomes of the objective (MSE) and indicator R 2 factions is shown in Table 23.

As it can be observed in Table 23 the VMD demonstrated the best performance when 
applied alongside metaheuristics optimized LSTM models.

6.3  Validation: statistical tests

Modern computer research necessitates scientists to determine if the introduced 
improvements are statistically significant since experimental outcomes alone are usu-
ally inadequate to declare that one algorithm outperforms its competitors. This research 
manuscript tested eight methods, including the proposed ERSA metaheuristics, for tun-
ing LSTM networks on two wind power generation datasets. The comparison was con-
ducted among eight methods and 6 problem instances utilized for multi-problem analy-
sis as per Eftimov et al. (2016).

Literature recommendations by Eftimov et al. (2016), Derrac et al. (2011) suggest that 
statistical tests in such scenarios should involve creating a representative collection of out-
comes for each method involves creating a sample of outcomes by determining average 
objective values over several independent executions for each problem. Nevertheless, this 
methodology may not be ideal when dealing with outliers that originally form non-nor-
mal distribution, thus it may result in misleading conclusions. An open question remains 
regarding whether taking the mean objective function value to use in statistical tests is 
appropriate for comparison of stochastic methods, as per a literature survey cited by Efti-
mov et al. (2016). Nonetheless, despite these potential drawbacks, the classification error 
rate objective function was averaged over 30 independent runs in order to contrast 10 meth-
ods across 6 problem instances in this study.

The decision was made after performing the Shapiro–Wilk test (Shapiro and Francia 
1972) for single-problem analysis using the described procedure: a data sample was con-
structed for each algorithm and every problem by gathering the results of each run, and the 
corresponding p-values were computed for all method-problem combinations. The result-
ing p-values are presented in Table 24.

Table 24  Shapiro–Wilk test scores for the single-problem analysis

Problem ERSA RSA PSO ABC FA HHO WOA ChOA

Wind 0.024 0.026 0.017 0.021 0.029 0.035 0.031 0.039
Wind VMD 0.029 0.030 0.019 0.011 0.042 0.039 0.027 0.034
Wind EMD 0.014 0.022 0.028 0.018 0.033 0.035 0.039 0.036
Wind farm 0.016 0.024 0.027 0.018 0.023 0.028 0.029 0.033
Wind farm VMD 0.023 0.018 0.014 0.024 0.017 0.031 0.034 0.028
Wind farm EMD 0.021 0.015 0.023 0.019 0.031 0.033 0.031 0.022

Table 25  Shapiro–Wilk test scores for the multiple problem analysis

Method ERSA RSA PSO ABC FA HHO WOA ChOA

p-value 0.0084 0.0093 0.0061 0.0087 0.0074 0.0095 0.0132 0.0147
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Since the p-values in Table  24 are all below � = 0.05 and therefore not caused by 
chance, the null hypothesis can be rejected. Consequently, the data samples for all method-
problem combinations are not originating from the Gaussian distribution, meaning it is not 
acceptable to utilize the average objective value in further statistical tests. As a result, this 
study utilized the best values for further statistical analysis.

Next, the multi-problems multiple methods statistical analysis has been employed, using 
data samples made using the best objective function value higher than 30 individual runs 
for all individual algorithms on every problem instance. To ensure the valid use of para-
metric tests, we verified the following conditions: independence, normality, and homosce-
dasticity of the data, as described by LaTorre et al. (2021). Independence was confirmed 
because each run began with generating a collection of random solutions. To assess nor-
mality, the data samples were subjected to the Shapiro–Wilk test, and the subsequent 
results for each algorithm are presented in Table 25.

Despite conducting the Shapiro–Wilk test for all methods, the resulting p-values were 
significantly less than � = 0.05 , as indicated in Table 25. This suggests that the assumption 
of justified use for parametric tests was not met, and non-parametric tests were employed 
instead. The suggested ERSA method was set as the control algorithm in all conducted 
non-parametric tests.

As a result, the Friedman test (1937, 1940) was utilized with a two-way variance analy-
sis with ranking, to determine if the performance level of the proposed ERSA was signifi-
cantly superior to other contenders. The application of this type of test, accompanied by 
the Holm post-hoc procedure has been proposed by Derrac et al. (2011). The Friedman test 

Table 26  Friedman test scores

Methods ERSA RSA PSO ABC FA HHO WOA ChOA

Wind 1 5 7 2 6 8 3 4
Wind VMD 1 3 6 8 4 5 7 2
Wind EMD 1 7 2 8 3 4 6 5
Wind farm 1 8 7 3 6 2 5 4
Wind farm VMD 1 4 3 7 2 8 6 5
Wind farm EMD 1 2 3 7 5 8 6 4
Average ranking 1.00 4.83 4.67 5.83 4.33 5.83 5.50 4.00
Rank 1 5 4 7 3 8 6 2

Table 27  Friedman aligned test scores

Methods ERSA RSA PSO ABC FA HHO WOA ChOA

Wind 14 22 29 18 26 30 20 21
Wind VMD 12 16 28 34 17 27 31 15
Wind EMD 1 43 9 45 19 37 40 38
Wind farm 4 46 39 13 36 7 32 23
Wind farm VMD 3 25 24 42 6 44 41 33
Wind farm EMD 2 5 8 47 11 48 35 10
Average ranking 6.00 26.17 22.83 33.17 19.17 32.17 33.17 23.33
Rank 1 5 3 7 2 6 8 4
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scores are provided in Table 26, accompanied by the scores for the Friedman-aligned test, 
provided in Table 27.

The results presented in Table 26 indicate that the suggested ERSA method attained 
a superior level of performance compared to the rest of the methods in the comparative 
analysis, by scoring the average ranking value of 1.00. In these experiments, the second-
best result was obtained by the ChOA algorithm with an average ranking of 4.00, in 
front of FA in third place with an average ranking of 4.33. The basic implementation 
of the RSA attained an average ranking of 4.83, showing the obvious superiority of the 
suggested ERSA over the elementary version of the algorithm. Moreover, the Friedman 
statistics ( �2

r
= 17.22 ) is greater than �2 critical value, with seven degrees of freedom 

(14.07) with the level of significance � = 0.05 . As the Friedman p-value is 1.24 × 10−9 , it 
infers that the results significantly vary with the observed methods. Finally, it allows the 
rejection of the null hypothesis ( H0 ), and it confirms that the proposed ERSA method 
attained performance that was significantly statistically different from other contenders. 
It is possible to draw similar conclusions from the Friedman-aligned test scores, given 
in Table 27.

Last but not least, as discussed by Sheskin (2020), the Iman and Davenport’s test 
(1980) may provide more detailed results compared to the �2 , and this particular test 
was executed as well. The Iman and Davenport’s obtained score is 3.47, which is greater 
than the F-distribution’s critical value 2.28, allowing the conclusion that this particular 
test rejects H0 as well.

The non-parametric post-hoc Holm’s step-down procedure has been employed since 
both conducted tests reject the null hypothesis, with the findings reported in Table 28. 
This procedure sorts the regarded methods concerning their p values evaluated to 
�∕(k − i) , where k and i represent the degree of freedom ( k = 7 in this study) and the 

Table 28  Holm’s step-down procedure

Comparison p-values Ranking � = 0.05 � = 0.1 H1 H2

ERSA-ABC 0.000315783359126 0 0.007143 0.014286 1 1
ERSA-HHO 0.000315783359126 1 0.008333 0.016667 1 1
ERSA-WOA 0.000731358293341 2 0.010000 0.020000 1 1
ERSA-RSA 0.00335832275131 3 0.012500 0.025000 1 1
ERSA-PSO 0.004760945592049 4 0.016667 0.033333 1 1
ERSA-FA 0.00921106272705 5 0.025000 0.050000 1 1
ERSA-ChOA 0.016947426762345 6 0.050000 0.100000 1 1

Fig. 28  Wind dataset without decomposition best performing LSTM model feature impact determined 
thought SHAP analysis
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method’s number, after sorting in the ascending order (related to rank). This study uti-
lized � threshold values of 0.05 and 0.1. The results reported in Table 28 again clearly 
imply that the introduced ERSA method significantly statistically outscored all contend-
ers for both regarded significance levels 0.05 and 0.1.

6.4  Best model interpretation and SHAP analysis

This section brings forward the interpretation of the top-performing model on each of the 
two regarded datasets. In the previously discussed method, SHAP values were used to esti-
mate feature importance. These values compare the model’s predictions with and with-
out each feature, demonstrating the impact of the feature on the observed model’s output. 
Because the order of features can influence predictions, feature importance is calculated in 
every possible order to ensure fair feature comparisons (García and Aznarte 2020). This 
study developed separate models to assess wind energy generation, and the importance and 
impact of the features were evaluated for each model. Specifically, the analysis focused on 
how each predictor variable affected the predicted probability of observation.

6.4.1  Wind dataset SHAP analysis

Figure 28 shows the impacts of each feature for the LSTM-ERSA model on the wind data-
set, while Fig. 29 presents the impacts of the best-performing model with VMD, namely 
VMD-LSTM-ERSA. A closer look at the waterfall plots (left part of the figure) indicates 
that the most important feature in this scenario is temperature, followed by the generation 
of wind onshore, and pressure.

One interesting observation is that a significant shift in feature influence occurs follow-
ing the application of VMD. The top-performing model trained without decomposition 

Fig. 29  Wind dataset with VMD best performing LSTM model feature impact determined thought SHAP 
analysis
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places the highest value on it. However, following the application of VMD, the first three 
decomposed modes of onshore wind generation become the most significant features. This 
is likely due to the noise associated with onshore wind generation data. In the raw form, 
onshore wind generation is quite a complex and noisy data sequence, while the tempera-
ture is a smoother more predictable data sequence less prone to sudden shifts. Following 
decomposition, the onshore wind generation modes are made more reliable, predictable, 
and less noisy allowing these features to have a more significant contribution to the model, 
even higher relative to temperature. It is also interesting to note that the residual values for 
each mode, data components that could not be decomposed to a specific mode mostly con-
taining noise, have the lowest influence on model predictions.

6.4.2  Wind farm dataset SHAP analysis

In Fig. 30 the impact of each observed feature for the best-performing LSTM-ERSA model 
can be seen for the wind farm dataset. Following this Fig. 31 likewise demonstrates feature 

Fig. 30  Wind farm dataset without decomposition best performing LSTM model feature impact determined 
thought SHAP analysis

Fig. 31  Wind farm dataset with VMD best performing LSTM model feature impact determined thought 
SHAP analysis
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impacts following data decomposition using VMD with the VMD-LSTM-ERSA model. 
Further details can be observed in the accompanying waterfall diagrams on each figure.

The findings of the SHAP analysis indicate a strong influence of the wind power 
component, followed closely by wind speed. These findings are further reinforced by 
the analysis of models working with decomposed data. Wind power modes, followed by 
find speed modes show a significant influence. It can also be noted that the influence of 
residual components, consisting mostly of noise is very low for most features. Neverthe-
less, the wind power residual does show a decent influence on the prediction.

7  Conclusion

This study employed and tuned the LSTM ML model aimed at optimizing the predic-
tion of the power production that comes from renewable sources. In the beginning, an 
improved variant of the swarm intelligence RSA metaheuristics was proposed, that sur-
pass the known deficiencies of the initially introduced algorithm. Later, the introduced 
algorithm, named ERSA, was used to adjust the hyperparameters of the LSTM network 
for wind energy production problems.

The introduced methodology was assessed on two wind production datasets, and in 
three scenarios for each dataset - without decomposition, with VMD, and with EMD 
employed. The predictions were executed up to three samples forward, and the out-
comes were contrasted against those attained by competing metaheuristics applied in 
identical experimental setups. The obtained results clearly indicate the superiority of 
the proposed LSTM-ERSA model in all regarded scenarios. Statistical analysis was also 
employed, concluding that the results attained by the proposed method are statistically 
significant. Additionally, the influence of proper parameter selection is clearly dem-
onstrated. The performance of optimized networks is significantly improved. Finally, 
SHAP analysis was performed on the best-performing model on each dataset, aiming to 
assess the impact of the features on each model.

The conducted research has shown a great deal of potential for using hybrid ML mod-
els tuned by metaheuristics algorithms for wind power production prognosis. A crucial 
task such as the estimation of the expected production by the wind farm is important as 
the power grid has to be capable of balancing power production and consumption at all 
times. Future research regarding this important topic will explore developing even more 
accurate models optimized by various metaheuristics algorithms. Emerging decompo-
sition algorithms and their optimization will be explored. Additionally, the introduced 
modified metaheuristic will be applied to emerging challenges.
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