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Abstract

This paper proposes a novel nature-inspired swarm-based optimization algorithm
called elk herd optimizer (EHO). It is inspired by the breeding process of the elk herd.
Elks have two main breeding seasons: rutting and calving. In the rutting season, the elk
herd splits into different families of various sizes. This division is based on fighting
for dominance between bulls, where the stronger bull can form a family with large
numbers of harems. In the calving season, each family breeds new calves from its bull
and harems. This inspiration is set in an optimization context where the optimization
loop consists of three operators: rutting season, calving season, and selection season.
During the selection season, all families are merged, including bulls, harems, and
calves. The fittest elk herd will be selected for use in the upcoming rutting and calving
seasons. In simple words, EHO divides the population into a set of groups, each with
one leader and several followers in the rutting season. The number of followers is
determined based on the fitness value of its leader group. Each group will generate
new solutions based on its leader and followers in the calving season. The members
of all groups including leaders, followers, and new solutions are combined and the
fittest population is selected in the selection season. The performance of EHO is
assessed using 29 benchmark optimization problems utilized in the CEC-2017 special
sessions on real-parameter optimization and four traditional real-world engineering
design problems. The comparative results were conducted against ten well-established
metaheuristic algorithms and showed that the proposed EHO yielded the best results
for almost all the benchmark functions used. Statistical testing using Friedman’s test
post-hocked by Holm’s test function confirms the superiority of the proposed EHO
when compared to other methods. In a nutshell, EHO is an efficient nature-inspired
swarm-based optimization algorithm that can be used to tackle several optimization
problems.
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1 Introduction

The need for optimal solutions gains substantial attention from vast research communities
to deal with their real-world optimization problems. Optimization is an iterative
improvement process normally concerned with finding the best configurations for the
optimization problem with sometimes multimodal, non-convex, non-differentiable,
constrained search space (Chong and Zak 2013). Indeed, the types of search spaces vary
according to their variable domains, such as binary, discrete, continuous, permutation,
and structured. To deal with any search space type, special operations are required. The
real-world optimization problems are widely studied in different research fields such as
engineering (Pereira et al. 2022; Mei and Wang 2021), scheduling (Abdalkareem et al.
2021; Arunarani et al. 2019), computer vision (Nakane et al. 2020), feature selection (Braik
et al. 2023c, 2024), image processing (Braik 2022, 2023), modeling of industrial systems
(Braik et al. 2023d, b), games (Cai et al. 2016), and many others.

Nowadays, the popularity of metaheuristic (MH) optimization algorithms has exponentially
increased due to their tangible impact on tackling optimization problems. The MH algorithm
is a general optimization framework initiated with a set of random solutions. At each iteration,
the solutions are improved using intelligent operators controlled by carefully selected
parameters to explore different search space regions and exploit the accumulated knowledge
to find the optimal solution (Fausto et al. 2020; Braik et al. 2023a). There are common features
of MH algorithms, such as derivative-free, parameter-less, simple and adaptable, sound and
complete, evolution, and local optima avoidance (Blum and Roli 2003). Their evolution
feature is mainly inspired by the natural behavior of humans, animals, or any optimization
phenomenon (Sorensen 2015; Fausto et al. 2020). Therefore, they are known as nature-
inspired MH algorithms and categorized into swarm-based, evolutionary-based, physics or
chemistry-based, and social or human-based algorithms, as will be further discussed in Sect. 2.

In general, MH algorithms share a set of common phases and parameters (Alorf 2023;
Rajwar et al. 2023). Their success in finding the optimal solution is mainly related to their ability
to strike a suitable balance between wide-area exploration and narrow local-area exploitation
during the iterative loop. Exploration refers to the ability of the MH algorithm to navigate several
search space areas at the same time, while exploitation refers to the ability of the MH algorithm
to navigate each area using the accumulative knowledge deeply and find its local optima (Alorf
2023). Based on these two principles, the deviation between MH algorithms is based on their
ability to manage the balance between exploration and exploitation during the search. However,
the performance of each MH algorithm fluctuates and cannot behave steadily for all search
spaces of different optimization problems. This concurs with the no free lunch (NFL) theorem
for optimization (Wolpert and Macready 1997) where there is no single MH algorithm able to
excel all others for every optimization problem. Therefore, the optimization search communities
are still investigating every nature-inspired optimization phenomenon to find a suitable MH
for optimization problems. In general, the nature-inspired MH algorithms stemming from the
swarm of animals such as bats (Yang 2010b), wolves (Mirjalili et al. 2014), sharks (Braik et al.
2022a), rabbits (Wang et al. 2022), crows (Askarzadeh 2016), bees (Awadallah et al. 2020),
ants (Dorigo et al. 2006), Horses (MiarNaeimi et al. 2021), foxes (Potap and Wozniak 2021),
cats (Seyyedabbasi and Kiani 2023), egrets (Chen et al. 2022), tunicates (Kaur et al. 2020),
and Salps (Mirjalili et al. 2017) proves their viability to tackle a wide range of optimization
problems. They mainly emulate the animals’ optimization phenomenon when they mate, search
for food, attack prey or hunt, defend themselves, etc. In specific, the animals living as a herd are
normally structured into leaders and followers so that the leaders normally drive the followers to
the optimized situation. Although a large number of MH algorithms are inspired by the swarm
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of animals, there are still opportunities to investigate other animal optimization behaviors,
such as the breeding cycle of the elk herds. In this paper, a new MH algorithm inspired by the
breeding cycle of elk herds is proposed. The new swarm-based natural-inspired MH algorithm
is called Elk Herd Optimizer (EHO). The elk herds are normally divided into a small group
of males (or bulls) and a large group of females (caws or harems). Two breeding seasons are
defined for elk herds: rutting and calving. In the rutting season, the elk herd is divided into
different sub-herds (families) of various sizes. This division is based on fighting domination
challenges between bulls where the strongest bull will have a chance to have more harems in its
sub-herd. In calving season, the sub-herds breed new calves from the bull and harem. Finally,
in a selection season, the family members are again assembled, and the rutting season will
start over and over. Inspiration is mapped into the optimization context where the optimization
loop consists of three operators: rutting season, calving season, and selection season. During
the selection season all families (sub-population), including bulls (i.e., leader solutions of the
sub-populations), harems (i.e., follower solutions of the sub-populations), and calves (i.e., new
solutions of the sub-populations) are merged and the fittest elk herd (population) is selected in
the selection season to be used in the following rutting and calving seasons. The performance
of EHO is judged using a test suite of 29 benchmark optimization problems utilized in the
CEC-2017 special sessions on real-parameter optimization (Awad et al. 2016; Doush 2012).
Furthermore, four traditional real-world engineering design optimization problems are used
further to assess the performance of EHO on real-world optimization problems. Initially,
the parameters of EHO were studied to show their influence on EHO convergence behavior.
The comparative analysis against ten well-established MH algorithms reveals the significant
success of the optimization behavior of EHO. For further evaluation, statistical evidence using
Friedman’s test post-hocked by Holm’s test (Pereira et al. 2015; Awadallah et al. 2022) shows
the top rank of EHO in comparison to other methods.

The remaining parts of this paper are organized as follows: the other MH algorithms
proposed in the literature are categorized in Sect. 2. The inspirations and procedural steps
of the proposed EHO are thoroughly discussed in Sect. 3. The experimental results and
discussion of the EHO performance are given in Sect. 4. Finally, the paper ends up with a
conclusion and some possible future work, as shown in Sect. 5.

2 Related works

Meta-heuristic (MH) optimization algorithms rely on two phases in the optimization
process exploration and exploitation (Zitar et al. 2021; Makhadmeh et al. 2022; Alyasseri
et al. 2022). Exploration is the algorithm’s ability to scan the whole search space, thus
escaping from being stuck in local optima. In contrast, exploitation is the algorithm’s
ability to dig more deeply into promising search regions to improve the solution quality.
The performance of MH algorithms can be enhanced when it has a balance between
exploration and exploitation. There are four main types of metaheuristic algorithms
(Molina et al. 2020; Zhong et al. 2022). In this section, the categories of MH algorithms
and their popular and recent versions are introduced.

2.1 Swarm intelligence (Sl) algorithms

The first class of algorithms is SI algorithms which mimic the social behavior of
animals in groups (i.e., flocks or herds). This class of metaheuristic algorithms shares
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the collective information from the environment between all individuals to achieve
the goal of the swarm (e.g., finding food or hunting an animal). Kennedy and Eberhart
proposed Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995), which is
one of the widely used SI algorithms. The PSO imitates the swarm particles’ natural
behaviors by sharing and updating the local position to achieve the global best position.
Each particle represents a candidate solution, and it has a local position and velocity.
The particles follow the best solutions in their paths.

A large number of SI algorithms are proposed to solve optimization problems.
The following are the most popular and recent ones: Bat Algorithm (Yang and
Gandomi 2012), Flower Pollination Algorithm (Yang 2012), Krill Herd (Gandomi
and Alavi 2012), Butterfly Optimization Algorithm (Arora and Singh 2019), Harris
Hawks Optimization (Heidari et al. 2019), Seagull Optimization Algorithm (Dhiman
and Kumar 2019), Sea Lion Optimization Algorithm (Masadeh et al. 2019), Black
Widow Optimization Algorithm (Hayyolalam and Kazem 2020), Chimp Optimization
Algorithm (Khishe and Mosavi 2020), Marine Predator Algorithm (Faramarzi et al.
2020a), Slime Mould Algorithm (Li et al. 2020), Tunicate Swarm Algorithm (Kaur
et al. 2020), Chameleon Swarm Algorithm (Braik 2021), Red Fox Optimization (Potap
and WozZniak 2021), and Prairie dog optimization algorithm (Ezugwu et al. 2022).

2.2 Evolutionary algorithms (EA)

The second class of algorithms is EA which simulates the survival of the fittest concept
that adapted from the biological evolution in nature. The most popular EA is Genetic
Algorithm (GA) which was developed by Holland (Holland 1992). It is inspired by the
Darwinian theory of evolution. GA produces better solutions (offspring) by mating the
fittest parents using the crossover concept. This concept is applied in nature to help in
maintaining the diversity in ecosystems. Additionally, the mutation concept is used to
add new characteristics from the parents to the offspring. Storn and Price proposed
another EA that was largely utilized by researchers which is Differential evolution
(DE) (Storn and Price 1997). Other EA algorithms have been recently proposed and
they provide good performance when solving optimization problems such as Barnacles
Mating Optimizer (Sulaiman et al. 2020), Genetic Programming (GP) (Koza and
Koza 1992), Evolution strategies (ES) (Beyer and Schwefel 2002), Probability-based
incremental learning (PBIL) (Baluja 1994), and Biogeography-based optimization
(Simon 2008).

2.3 Physics or chemistry-based algorithms

The third class of algorithms are physics or chemistry-based algorithms that imitate a
physical or chemistry phenomenon. The interaction of the algorithm search agents is
modeled using the rules of the physics process or the rules of chemistry interaction.
Van Laarhoven and Aarts (1987) proposed one of the popular algorithms that
borrow the physics thermodynamics law when a material is applied to heating and
then slowly cooled down to make the size of its crystals larger. Gravitational Search
Algorithm (Rashedi et al. 2009) is another well-known algorithm that models Newton’s
gravitational laws by having the searcher agents as a collection of masses that interact
with each other using Newton’s gravity law and the laws of motion to find an optimal
point. Various Physics or chemistry-based algorithms are proposed such as Charged
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System Search (Kaveh and Talatahari 2010), Chemical Reaction Optimization
(Lam and Li 2012), Ray Optimization (Kaveh and Khayatazad 2012), Henry Gas
Solubility Optimization (Hashim et al. 2019), Billiards-Inspired Optimization (Kaveh
et al. 2020b), Equilibrium Optimizer (Faramarzi et al. 2020b), Plasma Generation
Optimization (Kaveh et al. 2020a), Simulated annealing (Kirkpatrick et al. 1983), Solar
System Algorithm (Zitouni et al. 2020), Vortex Search algorithm (Dogan and Olmez
2015), and chaotic Henry gas solubility optimization (Y1ldiz et al. 2022).

2.4 Social or human-based algorithms

The final class of optimization is social or human-based algorithms that simulate social
or human behaviors. For example, Brain Storm Optimization (Shi 2011) is inspired by the
human brainstorming process. The algorithm uses two operations the convergent operation
to group individuals in the search space and the divergent operation to make the individual
depart the search space. Another human-based algorithm is the Teaching-Learning-Based
Optimization (Rao et al. 2011) which imitates the effect of the influence of a teacher
on learners. The algorithm has two phases: learning from the teacher and learning by
interacting with other learners. Recently, many researchers have proposed social or human-
based algorithms such as Harmony Search (Geem et al. 2001), Heap-Based Optimizer
(Askari et al. 2020a), Interactive Autodidactic School (Jahangiri et al. 2020), Lévy Flight
Distribution (Houssein et al. 2020), Most Valuable Player Algorithm (Bouchekara 2020),
Nomadic People Optimizer (Salih and Alsewari 2020), Political Optimizer (Askari et al.
2020b), Arithmetic Optimization Algorithm (Abualigah et al. 2021), Stock exchange
trading optimization (Emami 2022), Ali Baba and the forty thieves (Braik et al. 2022b),
Football game inspired algorithm (Fadakar and Ebrahimi 2016), Ebola optimization search
algorithm (Oyelade et al. 2022), Group teaching optimization algorithm (Zhang and Jin
2020), and Coronavirus herd immunity optimizer (MA et al. 2021).

3 Elk Herd Optimizer (EHO)

The breeding process of elk herds can be thought of as an optimization process. The elks
are bred generation after generation to have a stronger herd that can face the challenges
in the surrounding environment. In this section, the breeding process is mapped to
optimization concepts. Firstly, the inspiration for EHO is discussed. Thereafter, the general
optimization procedure of EHO and the mathematical model are illustrated.

3.1 EHO Inspiration

The elk, also called wapiti, belongs to the deer family and is the largest deer species
after the Moose deer. Elks live in the forests and forests edge of Central East Asia and
North America, where they usually prefer the warm weather prone to cold. Elks are non-
predators, and they feed bark, leaves, plants, and grasses. Accordingly, elks are considered
at the low level of the food chain hierarchy. Despite that, elks are muscular animals that can
jump, swim, and run short distances with speeds up to 50 km/h, particularly when they feel
threatened. Furthermore, elks have strong hearing and smelling senses.

Therefore, elk herds are weak compared to the upper levels in the hierarchy; therefore,
they live in large herd families with 200 or more elk to protect themselves. The herd
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Fig. 1 Elk start bugling
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(a) The bulls start fighting by pushing (b) The bulls using antlers locking strategy

Fig.2 Elks rutting season

contains males, females, and young elks. Females in the herd, also known as cows, make
up most of the herd, whereas males or bulls are few in the herd due to their hostile nature
to each other for herd domination and protection. Young elks or calves usually follow older
bulls and cow groups.

Within the herd, elks use different sound articulations for communication and warning
others of dangers. The bulls use a distinct sound articulation called bugling that mainly
advertises the male’s fitness and starts the mating season to attract mates. The bugle sound
is also used to announce the bull’s position in the large herd. Cows produce a grunting
sound to alert other elks in the herd of danger and also call and find their calves, while
calves make a sharp squealing sound when they attack (Geist 1993).

The mating season or breeding season, which usually runs from September to October,
is divided into the rutting and calving seasons. In the rutting season, elk became extremely
aggressive against any animal, even other bulls in the same herd. A bull starts the sea-
son by attracting cows and inviting other bulls for a fighting challenge for herd domina-
tion by raising the head and making the mating bugle articulation, as shown in Figure 1.
Subsequently, other bulls will respond to the challenge by bugling together, indicating that
the fighting challenge has started. Once the fighting starts, elks start shoving and pushing,
usually in pairs, using their antlers. Normally, the elks use the antlers locking strategy to
exhaust the power of the rival elks in the battle to impose their domination, as shown in
Figure 2. When the weaker bull feels the danger and death threat from the stronger bull, the
weaker bull will stop fighting by trotting away (Geist 1991). Usually, these fights end with
damage happening to the antlers.

After the fighting challenge between all elks is finished, the stronger bulls will gather
more cows and make a group of cows, called harems, containing more than 20 cows. The
weaker bull will gather a lower number of cows in their group of harems with no more
than five cows. Each group of harems is led and protected by only one bull, as shown in
Figure 3.

In the calving season, the mating between cows and bulls will begin to make the cows
pregnant and reproduce new calves, where the cows mate only with their bulls. When
pregnant cows become ready to give birth, they will leave the herd to find a proper area
for delivery birth. These areas are usually covered with brush and trees for protection and
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Fig. 3 Elks herd families

to hide from predators. Afterwards, cows will breed calves that could be cows or bulls and
end the breeding season. After three to four months from the end of the calving season, the
new calves became young cows and bulls with stronger antlers that normally grew an inch
every day. A new breeding season starts by gathering all elks, including the father’s bull
and its cows’ harems and young calves. The goal is to find and select the stronger bull in
the herd and start the domination challenge again (Shively et al. 2005; Geist 1993).

Subsequently, the mating between cows and bulls will begin to reproduce new calves
and start the calving season, where the cows mate only with their bulls (Geist 1991).

3.2 The mathematical model of EHO

In this section, the Elk Herd optimizer (EHO) is mathematically modeled in the
optimization context. Initially, the elk herd population is divided into a set of families based
on the number of bulls. In the rutting season, each family is led by its bull elk, where the
number of its cows or harems is determined depending on the bull’s strength. The strength
of the bull is determined through fighting domination challenges. In the calving season,
each family then generates calves with the same number of family members. Finally, in
the selected season, the members of all families are merged, and the best members will be
invited to the rutting season again. This process is repeated to ensure that the generated elk
herd is capable of dealing with the challenges in the surrounding environment.

In the mathematical model of the EHO, six procedural steps are proposed to bridge
the breeding cycle of elk herds into the optimization framework. These steps will be thor-
oughly discussed. The flowchart of the EHO is given in Figure 4, while the pseudo-code is
provided in Algorithm 2.
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Step 1: Initialize Parameters of EHO and optimization problem.

In order to embed the problem-specific knowledge into the EHO, two main components
shall be provided: the objective function to evaluate the solution and the solution
representation clarifying the search space type. In general, the simple forms of
optimization problems with continuous search space where each decision variable has
a specific value range. The general form of the objective function can be formulated as
in Eq. (1).

minf(x) x € (b, ub] (1)

where f(x) is the objective function used to measure the fitness of each elk or solution
x = (x;,%,, ..., x,). The variable x; in each elk refers to one attribute of such elk indexed
by i where x; € [Ib;,ub;] in which [b; is the lower bound, and ub; is the upper bound
for the attribute x;. n is the total number of attributes in each elk solution or solution
dimensionality.

The EHO is designed with only one parameter, which is the bull rate B,, which
determines the rate of initial bulls in the elk herd. The other two standard parameters are
the elk herd size or the population size (EHS) and the maximum number of iterations
(M _Itr).

Step 2: Generate the initial elk herd

Step 1

Initialize EHO &
Problem Parameters

Step 2 *

Generate the initial elk herd

Step 3 %
— > Rutting season

Step 4 *

Calving season

Step 5 *

Selection season @

No Yes

Return the best solution

Fig.4 Flowchart of the elk herd optimizer
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The elk herd (EH) is initially generated, which is a population of the elk solutions,
including bulls and harems. The EH is a matrix of size n X EHS as formulated in Eq.

2).

xl xl e xl
JE R
EH=| ! ™2 mo| (2)
foS foS o xEHS
n

In the continuous domain, each solution X can be generated  as
le: =1b;+ (ub; - 1b;) xU(0,1), Vi=1,2,...,n. The fitness value for each elk solution
is calculated using Eq. (2). Finally, the elks in EH are sorted in ascending order based
on their fitness values, such as f(x') < f(x!) < ... < f(xFHS),
Step 3: Rutting season
In rutting season, the EHO is modeled to create the families based on the bull rate (B,).
Initially, the total number of families is calculated as B = |B, X EHS|. Then the bulls
are selected from EH based on their fitness values, where the elks of numbing B with
the best fitness values at the top of EH are considered as bulls (See Eq. (3)). This is to
reflect the fighting domination challenges where the strongest elks are considered, and
they will be assigned with more harems.

B=arg, min /&) ©
The bulls in the B set then are fighting together to create families. To assign the harems
to each bull in B, the roulette-wheel selection is used where the harems are assigned
to their bulls based on their fitness values with proportion to the total fitness values. In
technical terms, firstly, each bull & in B will be assigned with a selection probability p;
based on its absolute fitness value f(x’) divided by the summation of absolute fitness
values of all bulls as computed in Eq.(4).

__f )
pIENIED)

Secondly, the harems will be distributed to the bulls based on their selection probability
p; as given in the Algorithm 1. In the Algorithm, the vector H = (hy, hy, ..., k),
k = EHS — Breflects the harems, each of which is assigned by the bull index determined
based on roulette-wheel selection.

For example, if the elk herd size is ten (EHS = 10), and the bull rate is 30%, then
B =3, which reflects the number of families. The B = (x',x2,x%). The rest of elks
(i.e., (x*,...,x'9) can be pointed as harems where they can be distributed based on
the roulette-wheel selection, and the resulting assignment can be H = (1,2,1,3,1,2,3)
where the first bull has three harems, the second bull has two harems, and the third bull
has two harems.

Step 4: Calving season

“4)

J

In calving season, the calve (xi:(t + 1)) of each family are reproduced based on the attrib-
utes mostly extracted from their father bull (x"7) and mother harem(xf(t)).

In case the calf (x;(7 + 1)) has the same index i as its bull father in the family, the calf is
reproduced as shown in Eq. (5).
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A+ 1) = X0+ a - (@) = X(0) )

where a is a random value within the range of [0, 1] that determines the rate of
the inherited attributes from the randomly selected elk in the herd x*(f) where
ke (1,2,...,EHS). Please note that a higher value of « results in a greater likelihood of
random elements participating in the new calf, which, in turn, enhances diversification.
In case the calf has the same index as its mother, then it x;(z + 1) takes the attributes of
its mother harem ¥’ and father bull x” (See Figure 5) as formulated in Eq. (6).

X+ 1) = 20 + B0 (1) = X(0) + y G (e) = X(0) (©6)

where x’l:(t + 1) is the attribute i of the calf j at iteration ¢ + 1 which will be stored in
EH’. The hj is the bull of the harem j, and r is the index of a random bull in the current
bull set such that » € B. In nature, in a few cases, the mother harem can also be mated
with other bulls, if it is not defended well by its bull. y and f are random values in the
range of [0, 2] that randomly determine the portions of the attributes inherited from pre-
viously generated calves.

It is worth mentioning from Equation 6 that the coefficients f and y may represent
significant parameters in the proposed EHO, given their resemblance to the ‘social’
and ‘cognitive’ models in the PSO (Kennedy 1997). Experiments have demonstrated
the importance of both ‘social’ and ‘cognitive’ coefficients for PSO’s success, and
numerous other researchers have adopted this configuration in their works as reported in
the literature (Braik 2021; Braik et al. 2022c¢). It should also be realized that, for some
optimization problems, ad hoc random values for # and y in the interval [0, 2] instead
of fixed values might result in improved performance. This could be because random
values for § and y in the specified range can be promising in achieving a respectable
level of performance for EHO. This indicates that f and y can balance the global and
local search abilities of EHO.

Step 5: Selection season
The bulls, calves, and harems of all families have merged. In technical terms, the EH
that stored the bulls and harem solutions and EH’ that stored the calves solutions are
merged into one matrix EH The elks in the EH,,,,, will be sorted in ascending order

temp* temp

based on their fitness values. Finally, the top elks of the numbering EHS in EH

temp
A Currunt cow
A Father Bull
Random cow A
A Calf
/v'—f‘ -~ A Currunt cow
- a A Father Bull
X} (1)=x](1) /‘/ A Calf
1
1
: %
\
\_»
A Tl A
a) Calves with its mother harems index b) Calves with its bull index

Fig.5 Calves reproduction
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will be kept to the next generation where they will replace the elks in EH, such that
EH = EHiemp, j=(1,...,EHS). In evolution strategy, this type of selection is called
u + A-selection where p is the parent population and A is the offspring population (Eiben
et al. 2003).

Step 6: Termination criteria

Steps 3, 4, and 5 will be repeated until the termination criterion is met. Usually, the
termination criteria can be the maximum number of iterations. This can be the
maximum number of ideal iterations, the maximum computational time, or the optimal
solution reachability.

Algorithm 1 The pseudo-code of Roulette-wheel selection

= A

o1 f(zF)
2 for k-B 11 to EHS do
3 Set §=0,j=0.

4:  Generate r € [0, 1].
5 while (S <r) do
6 j=i+1

7 S=S5+ Pj

8 end while

9: Hy=j
10: end for

Algorithm 2 The pseudo-code of EHO

LRSI who

28:
29:
30:

: Initialize the parameters of the EHO (tmaz, EHS, Br).
: Generate initial elk herd (EH) of size n x EHS.
: Calculate the fitness of each elk f(z?), where i=(1, 2, ..., EHS).

t=1

: while (it < tmaz) do

Sort the elks in EH.
Select the Bulls B, where |B| = |[EHS x B|.
{Rutting season}
Distribute harems to their Bulls and create H=(hp41,...,hgng) using roulette wheel selection in Algorithm 1.
{Calving Season}
for i = 1 to B do
for j in bull family ¢ do
if j index is a bull then
Select a random k € (1,...,FHS)
Select a random « € [0,1]
al(t+1) =zl (t) + o (b (1) — 2 (t))
else
Select a random r, where r € B.
for k=1 to dim do
Generate 7 € [-2,2])
e+ 1) = 21 () + (|27 (1) = 2 O + (2] (1) - 2] (1))
end for
end if
end for
end for
{Selection Season}
Perform p + A-selection Marge bulls, harems, and calves of the current and new generations and select the top EHS
elks for the next generation.
t=1t+1
end while
Return the best elk from EH
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3.3 Numerical example

In order to provide a better understanding of the behavior of the EHO when navigating
the search space of the optimization problems, the Shifted and Rotated Bent Cigar
function is used. This test function is taken from CEC 2017 (Awad et al. 2016). The
parameter settings of the EHO include EHS =10, n=10, B, =30%, t,,, =500,
ub=100, and /b=-100. Table 1 reports the resulting elk herd (EH) in iterations 1, 10,
100, and 500. As can be noticed, in iteration 1, the initial elk herd is distributed over
three families. The resulting calves have been substantially improved in comparison
with their parents as shown at the second iteration. The fitness values of these solutions
are divergent because these solutions are generated randomly. In the tenth iteration,
the size of improvement is reduced, but in general, the fitness values of the calves
are better than the fitness values of their parents. In iteration 100, the 10 solutions
have become close to each other. In iteration 500, the size of improvement became
narrower, and the elk distribution over the families tended to be random. This is
because no superior bull can dominate the elk in EH.

The convergence behavior of the ten solutions is shown in Figure 6. Clearly, the
exploration behavior of EHO is at its highest level in the initial course of runs. The
elk solutions almost converge to the same region when iteration 20 is reached. This is
to show that the EHO can quickly converge to the optimal region, especially when the
problem search space is not large.

4 Experiment results and discussion

This section presents the computational outcomes of the proposed EHO on standard
test benchmark optimization problems. A set of two statistical measures is first utilized
to explain the level of effectiveness of the proposed EHO and to show its effectiveness
in comparison with other MH algorithms. Second, convergence curves are obtained to
demonstrate how well the proposed EHO optimizes a certain collection of benchmark
functions. To evaluate the accuracy and suitability levels of EHO in optimizing a
collective group of real-world challenges, a set of four traditional engineering design
problems is tackled. By contrasting the findings of EHO with those of other cutting-
edge MH algorithms in the literature, the efficacy of EHO is examined, evaluated, and
highlighted.

4.1 Description of the benchmark test functions

The performance of the proposed EHO was examined on a test suite of 29 benchmark
optimization problems utilized in the CEC-2017 special sessions on real-parameter
optimization. This test group consists of 30 test functions, of which there are 29 stable
test functions and unstable test one. These test functions contain hybrid and composite
functions. These functions are caught by rotating, shifting, expanding, and hybridizing
uni-modal and multi-modal problems, comprising exceedingly difficult testbeds. These test
functions mimic the complexity of a genuine search space with several local optimums and
a variety of function forms in various regions. These test cases were created to evaluate the
reliability of local optimum avoidance in addition to investigating the exploration ability
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of optimization methods. A skilled optimization algorithm is broadly known to avert local
optimal solutions and quickly reach the global optimum. Due to the difficulty of the test
set’s challenges and the added difficulty they give to the evaluation of EHO’s performance,
it was chosen to explore the reliability and performance degrees of EHO. More information
regarding the CEC-2017 benchmark test problems can be located in (Awad et al. 2016).
The proposed EHO algorithm was also assessed on a test set of four traditional real-
world engineering design optimization problems in order to add more challenge to the
performance of EHO on real-world optimization tasks.

4.2 Experimental setup

To corroborate a thorough assessment of the proposed EHO, its outcomes are set side by
side with nine of the most esteemed optimization algorithms in the literature when tested on
the aforementioned benchmark test groups. The rival comparable MH algorithms are: Salp
Swarm Algorithm (SSA) (Mirjalili et al. 2017), Sine Cosine Algorithm (SCA) (Mirjalili
2016), Rat Swarm Optimizer (RSO) (Dhiman et al. 2021), Moth-Flame Optimizer (MFO)
(Mirjalili 2015), Horse herd Optimization Algorithm (HOA) (MiarNaeimi et al. 2021),
Capuchin Search Algorithm (Braik et al. 2021), Ali Baba and the Forty Thieves (AFT)
(Braik et al. 2022b), Crow Search Algorithm (CSA) (Askarzadeh 2016), Bat Algorithm
(BA) (Yang and Gandomi 2012), and Particle swarm optimization (PSO) (Kennedy and
Eberhart 1995), Ant Colony Optimization (ACO) Dorigo et al. (1996), and Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) Hansen and Ostermeier (1997). Table 2
displays the control parameters and settings for the proposed EHO algorithm and other
rival MH algorithms.

The parameter settings of the competing optimization algorithms are mentioned in
Table 2, except CSA which uses the recommended settings (Askarzadeh 2016). EHO uses
a similar initialization process to other comparative optimization methods. This is done
in order to compare EHO and those rival algorithms fairly. According to information in
the literature, there are 100 search agents (i.e., EHS = 100), and the maximum number
of iterations used is equal to 10000 X n for each method. The bull rate (B,) for EHO is
determined based on the initial population composition, which is experimentally
determined to fall into one of the following ratios: 10:90, 20:80, or 30:70. In our
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Table 2 Parameter setting of the proposed EHO algorithm and other MH competitors

Algorithm Parameter Value

All algorithms Population size 100
Number of iterations 10000x D

SSA Control parameter (c;) 0.5

SCA Number of elites 2

RSO Control parameter (R) [1,5]
Constant parameter (C) [0, 2]

MFO Logarithmic spiral 0.75
Convergence constant [-1,-2]

HOA hg, h, 0.9,0.5
Sgs Sy 0.2,0.1
d,dg d, 0.5,0.2,0.1
T Tys By 0.1, 0.05,0.3

CapSA Velocity control constants 1
Inertia parameter 0.7
Balance and elasticity factors 0.7,9

AFT a, & 1.0,2.0
Po By 0.1,2.0

CSA flight length (f]) 2.0
Awareness probability(AP) 0.1

BA Pulse rate (r;) 0.5
Loudness(A;) 0.5
Frequency (Q)) [0.0, 2]

PSO Inertia Weight (w) 1
Personal Learning Coefficient (c,) 1.5
Global Learning Coefficient (c,) 2.0

ACO Pheromone update constant = 20, initial pheromone value = 100

1E-06, exploration constant = 1, local and global pheromone
decay rates = 0.5 and 0.9, respectively, and visibility and
pheromone sensitivities = 5 and 1, respectively.

CMA-ES Ay 4+ 3in(n), A/2
c, 4
n+4
Ceov 2
¢ (+V/2)
c, 4/(n+4)
d, '+1

experiment, the 20:80 ratio is adopted, which indicates that 20% of the population consists
of bulls, while the remaining 80% forms the harem.

Each optimization algorithm in Table 2 was assessed using thirty separate runs for each
test optimization problem. Each algorithm has a maximum number of iterations as its stop
condition. One may point out that while all algorithms are compared with identical floating
point precision, the variations in the results are caused by the efficiency of the competing
methods. Over the aforementioned number of independent runs, the best, mean, worst, and
standard deviation (Stdv), are calculated and utilized as performance assessment indicators
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for the accuracy and stability of the rival algorithms. These statistical assessment metrics
were calculated in this study for each method and each test function as the top four best
solutions. While the standard deviation results analysis attempts to reveal the steady
performance of the algorithms during the separate runs, the mean measure was employed
to assess the algorithms’ accuracy. The top outcomes for all test functions are emboldened
in all tables to afford them more preeminence out of others. The performance of EHO
in comparison to various optimization algorithms in CEC-2017 and engineering design
benchmark optimization tasks is presented and discussed in the next subsections.

4.3 Performance of EHO on CEC-2017 test functions with problem size of 10
variables

In this section, the performance of the proposed EHO was evaluated and compared to other
comparative methods using CEC-2017 test functions with a problem size of 10 variables.
The results of all competitors were summarized in terms of the best solution, mean of the
results, the worst solution, and standard deviation in Table 3. It should be noted that the
lower results reflect better performance, while the lower mean of results was highlighted
using bold fonts. The results of this table highlight the superiority of the proposed EHO,
where the EHO, SSA, and CapSA ranked first as each one obtained the best mean of the
results in 10 test functions. The CSA was ranked second by achieving the best mean of the
results in 7 test functions, while the AFT came in third rank by getting the best results in 6
test functions. In addition, the BA and PSO were placed fourth with each obtaining the best
results in 3 test functions, while the remaining four competitors were not able to achieve
the best results for any of the test functions.

Reading the results demonstrated in Table 3 it can be seen that the EHO performs better
than the other comparative algorithms in simple multimodal functions (C17-F4 to C17-F8,
and C17-F10). While the EHO obtained the best mean of results in 5 out of 6 test functions.
In addition, the EHO outperforms the other comparative algorithms in 2 out of 3 unimodal
functions (C17-F1 to C17-F3). The performance of the EHO was very convincing by
obtaining the best mean of results in three out of 10 in the hybrid function (C17-F11 to
C17-F20). It should be noted that the CapSA algorithm performs better than the EHO and
all other comparative algorithms in 5 of the hybrid functions. This leads to the conclusion
that the EHO has the second-best performance compared to others in the hybrid functions.
Finally, the results of the EHO were acceptable and very competitive with other methods in
the 10 composition functions (C17-F21 to C17-F30).

The standard deviation (Stdv) results reflect the stability of the solution method, the
lower Stdv values mean better stability. Reading the Stdv results recorded in Table 3, it
can be seen that the EHO is more stable than the other comparative methods. Especially on
C17-F2, C17-F3, C17-F4, C17-F6, C17-F8, C17-F11, and C17-23. The performance of the
EHO is more robust when compared against other comparative algorithms in the remaining
test functions.

Similarly, Friedman’s statistical test was used to prove the effectiveness of the proposed
EHO against other comparative methods. This is illustrated in Table 4, which demonstrates
the average rankings of all competitors according to the mean of the results summarized in
Table 3. It is worth mentioning that the lower average rankings reflect better performance,
while the significance level a is equal to 0.05. H; is the null hypothesis which assumes that
all competitors have the same performance, while H, is the alternative hypothesis which
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Table 4 Friedman’s statistical

test of EHO and other Algorithm Rank
2017 with 10 vargbles n torms EHO 465517
of mean results using Friedman’s SSA 3.51724
test SCA 7.00000
RSO 11.24137
MFO 9.13793
HOA 8.72413
CapSA 3.98275
AFT 4.13793
CSA 3.79310
BA 8.81034
PSO 6.24137
ACO 12.55172
CMA-ES 7.20689

assumes that there is a significant difference between the performance of the competitors.
From Table 4, it can be seen that SSA was ranked first by getting the lowest average rank-
ing equal to 3.38, while the CSA comes in second rank. The CapSA was placed third,
while the AFT was ranked Fourth. The proposed EHO was placed in the fifth position,
while the remaining six algorithms come in the next ranking positions. The p-value calcu-
lated using Friedman’s test is 1.276E—10, and this value is less than the significance level
(a=0.05). This leads to reject the H, and accept the H,.

Additionally, Holm’s test as a post-hoc procedure is used to confirm the differences
between the performance of the controlled algorithm and the other comparative algorithms.
It should be noted that the SSA is the controlled algorithm, this is due to the fact that
the SSA was ranked first using Friedman’s test. From Table 5, it can be seen that there is
a significant difference between the SSA and EIGHT of the competitors (i.e., RSO, BA,
MFO, HOA, SCA, CMA-ES, ACO, and PSO). On the other hand, there is no significant
difference between the SSA and the remaining comparative algorithms (i.e., CSA, AFT,
CapSA, and EHO). This proves the effectiveness of the proposed EHO as an alternative
algorithm in the optimization domain.

4.4 Performance of EHO on CEC-2017 test functions with problem size of 30
variables

The performance of the proposed EHO was evaluated and compared to other comparative
methods using CEC-2017 test functions with a problem size of 30. This is to evaluate
the proposed algorithm using more complex optimization problems based on higher
dimensionality. Table 6 shows the results of the EHO and other comparative algorithms
in terms of the best solution, the mean, the worst solution, and the standard deviation.
It should be noted that lower results mean better performance. Interestingly, it can be
illustrated that the EHO was ranked first by obtaining the best mean of the results in 12 out
of 29 test functions, while the CapSA ranked second by getting the best results in 10 test
functions. The SSA was ranked third by achieving the best results in 7 datasets, while the
AFT, CAS, and BA came in the next rankings positions by getting the best mean of results
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Table 5 Holm’s results between

the control method (SSA) and Algorithm  a/Rank  p-value Hypothesis
other comparative methods 13 a0 883369 1.012E-18 000416  Reject
algorithms on CEC 2017 test 11 RSO 755246  4270E-14 0.00454  Reject
functions with 10 variables 10 MFO 5.49576  3.890E—-08  0.00500 Reject
9 BA 5.17546  2.273E-07 0.00555 Reject
8 HOA 5.09117 3.558E-07 0.00625 Reject
7 CMA-ES  3.60765 3.089E-04 0.00714 Reject
6 SCA 3.40535 6.607E-04 0.00833 Reject
5 PSO 2.66359 0.00773 0.01000 Reject
4 EHO 1.11264  0.26586 0.01250 Not reject
3 AFT 0.60689  0.54392 0.01666 Not reject
2 CapSA 0.45517  0.64898 0.02500 Not reject
1 CSA 0.26973  0.78736 0.05000 Not reject

in the 4, 3, and 2 test functions, respectively. The PSO and HOA are ranked seventh as each
getting the best results in one test function. However, the SCA, RSO, and MFO are not able
to achieve the best results for any of the test functions.

Reading the results presented in Table 6 more in-depth, we find that the performance
of the EHO is better than the other competitors in simple multimodal functions (C17-F4
to C17-F8, and C17-F10), where the EHO has obtained the best mean of the results in
C17-F5 to C17-F8. Furthermore, the EHO performs better than the other comparative
algorithms in composition functions (C17-F21 to C17-F30) by getting the best mean of the
results in 5 out of 10 test functions. However, the results of the EHO were very competitive
with others in the 10 composition functions (C17-F21 to C17-F30) and unimodal functions
(C17-F1 to C17-F3).

To prove the effectiveness of the proposed EHO, Friedman’s statistical test was used
to rank all competitors according to the mean of the results summarized in Table 6. The
average rankings of all competitors were illustrated in Table 7, while the lower rankings
mean better performance. It can be seen that CapSA obtained the first rank, while the SSA
was placed in the second rank. The proposed EHO was ranked third, while the remaining
seven algorithms came in the next ranking positions. The p-value calculated using
Friedman’s test is equal to 1.265E—10, and this value is bigger than the significance level
(a=0.05). This leads us to reject the H, and accept the H,,.

Thereafter, Holm’s procedure was used to confirm the outcomes of Friedman’s test. The
CMA-ES is the controlled algorithm because it obtained the best average rankings using
Friedman’s test. From Table 8, it can be demonstrated that there is a significant difference
between the CMA-ES and nine of the other comparative algorithms (i.e., RSO, SCA,
MFO, HOA, ACO, AFT, PSO, CSA, and BA). On the other hand, no significant differences
between the controlled algorithm (CMA-ES) and the remaining algorithms (i.e., CapSA,
SSA, and EHO). Clearly, no significant difference between the CMA-ES and the proposed
EHO. This certainly confirms the efficiency of the proposed EHO as a powerful algorithm
in the optimization domain.
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Table 7 Friedman’s statistical
test of EHO and other
comparative algorithms on CEC

2017 with 30 variables in terms EHO 3.81034

Algorithm Rank

of mean results using Friedman’s ~ SSA 4.44827
test SCA 9.79310
RSO 11.62068
MFO 9.51724
HOA 9.48275
CapSA 4.70689
AFT 5.84482
CSA 5.48275
BA 8.27586
PSO 5.60344
ACO 9.24137
CMA-ES 3.17241
-tr}?:I;iﬁg%?;;;;??g;ﬁf}gg?n Rank Algorithm a/Rank  p-value Hypothesis
and other comparative methods 15 Rso 826051 145E—16 000416  Reject
algorithms on CEC 2017 test 11 SCA 6.47354 9.57E—-11 0.00454 Reject
functions with 30 variables 10 MFO 6.20381 5.51E—10 0.00500 Reject
9 HOA 6.17009 6.82E—10 0.00555 Reject
8 ACO 5.93408 2.95E-09 0.00625 Reject
7 BA 4.99002 6.03E-07 0.00714 Reject
6 AFT 2.61301 0.00897 0.00833 Reject
5 PSO 2.37700 0.01745 0.01000 Reject
4 CSA 2.25899  0.02388 0.01250 Reject
3 CapSA 1.50037 0.13351 0.01666 Not reject
2 SSA 1.24750 0.21221 0.02500 Not reject
1 EHO 0.62375 0.53278 0.05000 Not reject

4.5 Performance of EHO on CEC-2017 test functions with problem size of 50
variables

In this section, the effectiveness and robustness of the proposed EHO are compared against
other competitors using large-scale CEC-2017 test functions with a problem size of 50.
Table 9 demonstrates the results of all competitors in terms of the best solution, the mean,
the worst solution, and the standard deviation. The lower values of the mean results are
better, and the best mean of the results is highlighted using bold fonts. Reading the results
recorded in Table 9, it can be seen the superiority of the proposed EHO, which came
similar to the results of the competitors when tested on the same functions with a problem
size of 10. However, the EHO, SSA, and CapSA ranked first with each obtaining the best
mean of the results in 10 out of 29 test functions. The AFT and CSA obtained the second
rank with each getting the best mean of results in three test functions. The PSO was placed
third by getting the best results for the C17-F3 and C17-F7 test functions, while the BA
obtained the best mean of results on the C17-F2 test function. Finally, the remaining four
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comparative algorithms are not able to achieve the best mean of results for any of the test
functions.

Furthermore, Table 9 shows that the proposed HEO performs better results when
compared against other comparative algorithms in the 10 composition functions (C17-F21
to C17-F30). The proposed algorithm obtains the best results for C17-F21, C17-F23, C17-
F24, C17-F29, and C17-F30. Furthermore, the performance of the proposed EHO is better
than the other comparative methods in the 6 simple multimodal functions (C17-F4 to C17-
F8, and C17-F10) by getting the best results for C17-F5, C17-F7, and C17-F8. However,
the results of the EHO are very competitive with other competitors in the composition
functions (C17-F21 to C17-F30) and unimodal functions (C17-F1 to C17-F3).

Friedman’s statistical test is used to prove the superiority of the proposed EHO by
calculating the average ranking of the EHO against other competitors based on the mean
of the results given in Table 9. The average rankings of all competitors are plotted in
Table 10. The lower rankings reflect better performance. From Table 10, it can be observed
that the CMA-ES was ranked first, while SSA was placed in the second rank. The proposed
EHO achieved the third ranking, while PSO got the fourth-ranking. The nine remaining
algorithms came in the next ranking positions. The p-value calculated using Friedman’s
test is 9.588E—11, and this value is less than the significance level (@=0.05). This leads us
to reject the null hypothesis H,, and accept the alternative hypothesis H,.

Later on, Holm’s procedure was utilized to confirm the difference between the behavior
of the controlled algorithm and other comparative algorithms. It should be noted that the
CapSA is the controlled algorithm according to the results of Friedman’s test. Table 11
reported the results of Holm’s procedure. Clearly, there is a significant difference between
CMA-ES and nine of the other methods (i.e., RSO, SCA, MFO, ACO, HOA, AFT, CSA,
PSO, and BA). On the other hand, no significant difference between the behavior of the
CapSA and the remaining methods (i.e., CapSA, EHO, and SSA). Finally, we can conclude
that the performance of the proposed EHO is similar to some of the comparative algorithms
and better than others. This proves the efficiency of the proposed EHO as a new alternative
technique in the optimization domain.

4.6 EHO Convergence analysis

This section study and analyze the convergence behavior of the proposed EHO compared
against some of the other comparative algorithms using the CEC-2017 test functions. The
distribution of the results for these competitors during the search process is visualized in
Figure 7. Also, the convergence curves of some competitors towards the optimal solution
are plotted in Figure 8. It should be noted that seven of the test functions with three
different problem dimensions (i.e., dim=10, dim=30, and dim=>50) are considered in these
figures to study the test functions with different search space complexities. This includes
C17-F1 as unimodal; C17-F5 and C17-F10 as multimodal; C17-F15 and C17-F20 as
hybrid functions; and C17-F22 and C17-F30 as composition functions.

Figure 7 demonstrates the notched boxplots used to plot the distribution of the results
for the proposed EHO against the other competitors on seven test functions with different
problem dimensionality. The x-axis represents the algorithm, while the y-axis represents
the objective function values. It should be noted that the comparative methods on each test
function were running 30 times. In the plots, the small gap between the best results, the
median, and the worst results reflects the stability of the algorithm. From Figure 7, it can
be clearly seen that no gap between the results of the proposed EHO on C17-F1, C17-F15,
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Table 10 Friedman’s statistical

test of EHO and other Algorithm Rank
017 with 50 variables i trms. O 482758
of mean results using Friedman’s SSA 4.12068
test SCA 10.17241
RSO 11.65517
MFO 9.75862
HOA 9.06896
CapSA 4.32758
AFT 5.94827
CSA 5.77586
BA 8.50000
PSO 5.39655
ACO 9.20689
CMA-ES 2.24137

Table 11 Holm’s results between
the control method (CMA-ES)

and other comparative methods 1, = pgy 920457 343E-20 000416  Reject
based on the mean results of all

Rank Algorithm o/Rank  p-value Hypothesis

algorithms on CEC 2017 test 11 SCA 7.75476  8.85E—15 0.00454 Reject
functions with 50 variables 10 MFO 7.35017 1.97E-13  0.00500 Reject
9 ACO 6.81070 9.71E—12  0.00555 Reject
8 HOA 6.67584 2.45E-11 0.00625 Reject
7 BA 6.11952  9.38E—-10 0.00714 Reject
6 AFT 3.62451 2.89E-04 0.00833 Reject
5 CSA 3.45592  5.48E-04 0.01000 Reject
4 PSO 3.08504 0.00203 0.01250 Reject
3 EHO 2.52872  0.01144 0.01666 Not reject
2 CapSA 2.03984 0.04136 0.02500 Not reject
1 SSA 1.83754  0.06612 0.05000 Not reject

C17-F25, and C17-F30. In other words, the proposed EHO was able to achieve almost the
same results at all times of the experiment. In addition, the gap in the results of the EHO
widens as the dimension of the problem increases, as shown in the plot of C17-F20. The
behavior of the proposed EHO seems stable as shown in the plot of C17-F5, and thus leads
to achieving the best results. The behavior of the proposed EHO seems similar to other
competitors on C17-F10, but unfortunately, the results of some other competitors are better
than the proposed EHO. Finally, it can be observed that the performance of the proposed
EHO appears to be stable regardless of the dimensions of the problem compared to other
competitors in most of the cases studied, and this proves the efficiency of the proposed
EHO.

Similarly, the convergence behavior of the proposed EHO compared against the other
comparative methods is shown in Figure 8. The x-axis represents the iterations, while the
y-axis represents the objective function values. The best solution obtained by running each
algorithm on each test function 30 times was plotted in this figure. The preferable opti-
mization algorithm is the one that presents rapid convergence at the early stages of the
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Fig.7 Boxplots of the objective function results achieved by the proposed EHO and some other compara- p
tive algorithms. Boxplots of the objective function results achieved by the proposed EHO and other com-
parative algorithms.

search process, and the improvements continue till the last stages of the search process.
In other words, the optimization algorithm is able to make the right balance between the
exploration and exploitation abilities during the search process and thus achieve satisfac-
tory results. Reading Figure 8 one more time, it can be seen that the convergence curves
of all algorithms on all test functions are stabilized before 2000 iterations. However, the
convergence curve of the proposed EHO was better than the other comparative algorithms
on C17-F5 and C17-F20. In addition, the convergence curve of the proposed EHO was
similar to some of the other comparative algorithms in the remaining test functions studied
in Figure 8. The curve of the RSO algorithm was the worst compared to other comparative
algorithms, due to the fact the RSO has shortcomings in exploration ability and thus gets
stuck in local optima.

4.7 Performance of EHO on engineering problems

The performance of EHO in tackling real-world problems, particularly constrained
optimization problems, is divulged by its validity on popular traditional engineering design
problems. Here, EHO is utilized to address four well-researched engineering designs: the
welded beam design problem, the pressure vessel design problem, the tension/compression
spring design problem, and the speed reducer design problem. These problems have a
relatively wide range of constraints that need to employ a constraint-handling strategy to
optimize them.

4.7.1 Constraint handling

To deal with the constraints of the aforementioned engineering design problems, EHO was
adapted with a simple method of dealing with constraints called static penalty handling
method (Yang 2010a). This is applied to have a fair comparison between EHO and the
comparative methods used in this work. The penalty function of this method can be
presented as shown below:

(D =f@ x| b max0, QY + Y o Ua[ )
i=1 j=1

where o; and /; are two positive penalty constants, Ui(@) and #,(z) are constraint functions,
and {(z) implements the objective function. The values of y and y were set to 2 and 1,
respectively.

This constraint method stands out for its ease of use and minimal computational cost.
It is quite useful to tackle design problems with dominating infeasible areas since it does
not require knowledge from infeasible solution information. This method determines the
static penalty function’s penalty value for each solution, which can help the search agents
of optimization algorithms find the right solution faster. It is important to note that the
search agents and iterations used to solve each of the engineering problems below were the
same as those used to solve the preceding test mathematical functions.
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Fig.8 The convergence characteristic curves of the proposed EHO and some other comparative algorithms p
for C17-F1, C17-F5, C17-F10, C17-F15, C17-F20, C17-F25, and C17-F13. The convergence characteristic
curves of the proposed EHO and other comparative algorithms for C17-F1, C17-F5, C17-F10, C17-F15,
C17-F20, C17-F25, and C17-F13

The parameters that EHO uses are presented above. The literature has a number of meta-
heuristic optimization techniques that have previously been used to address these design
optimization problems. As demonstrated below, the outcomes of EHO are contrasted with
those of other promising meta-heuristic algorithms.

4.7.2 Welded beam design problem

The design of this problem is a cantilever beam welded at one end and subjected to a spot
load at the other end. The goal of this problem is to design a welded beam for the construc-
tion shown in Figure 9 (Wang et al. 2014) to arrive at the lowest fabrication cost.

The welded beam structure comprises a beam, A, and a welding required to join the
beam, A, to the member, B. The following restrictions apply to this problem: shear stress
(), bending stress (0), buckling load (P,), and an end deflection of the beam (). In
order to solve this optimization problem, there is a necessity to track down the possi-
ble combination of the following structural parameters of the welded beam design: the
thickness of the weld (%), the length of the clamped bar (I), the height of the bar (¢) and
the thickness of the bar (b).

The following vector may be used to represent these parameters: X = [x,, X,, X3, %],
where x|, x,,x; and x, represent A, [, t and b, respectively. The cost function for this opti-
mization problem has the following mathematical formula:

Consider X = [x,x,x3x,4] = [hith]

Minimize f(X) = 1.1047 lexz + 0.04811x3x,(14.0 + x5)

Subject to the following restrictions,

g1 =71 —7,, <0

8 =0() = 0,4, <0

g =x,—x, <0

2, = 11047122 + 0.0481 Lx;x,(14.0 + x,) = 5.0 < 0
gs(¥)=0.125-x, <0

86 =6(R) =6, <0

§X=P-P,(® =<0

Some more elements of this design problem can identified as follows:
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Fig.9 A welded beam structure’s
design (Wang et al. 2014)
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where P = 6000/b, 6,,, =0.25inch, L=14in, G=12 % 10° psi, E =30 10° psi,
O pax = 30000 psi, 6,,,, = 13600psi.

The ranges of the parameters h, [, t and b were chosen to be correspondingly
0.1<x<2,01<x,<10,0.1 <x3 <10,and0.1 <x, <2, respectively.

Table 12 compares the EHO’s best solutions to those produced by other comparative
optimization algorithms.

The findings presented in Table 12 point out that the proposed EHO achieves the best
design for the welded beam structure by locating the optimal cost of around 1.724852,
which is the least cost among all the algorithms considered. Table 13 compares the
statistical performance of EHO and other optimization methods after 30 separate runs
with respect to the best, worst, average, and standard deviation results.

The outcomes of Table 13 point out that EHO outperforms other algorithms with
the lowest average values in comparison to other rival algorithms. The outcomes of
this table also speak that EHO once more behaves much better in terms of standard
deviation values as well as determining the lower scores for worst and best solutions in
comparison to others. This demonstrates EHO’s level of reliability and competence in
handling such design problems.

4.7.3 Pressure Vessel Design Problem
This problem is one of the often used benchmark tests for a structural design that uses

both continuous and discrete variables (Kannan and Kramer 1994). The objective of
this problem is to lower the overall cost of materials, construction, and welding of the
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Table 12 Optimization results of the welded beam design problem arrived at by EHO and other
optimization methods

Algorithm Optimal values for variables Optimum cost
h 1 t b
EHO 0.205730 3.470489 9.036624 0.205730 1.724852
SSA 0.204956 3.487209 9.036625 0.205730 1.725906
SCA 0.198852 3.606937 9.135106 0.205405 1.746999
RSO 0.178952 4.365615 9.105266 0.206433 1.815225
MFO 0.205730 3.470489 9.036624 0.205730 1.724852
HOA 0.261132 3.185937 7.846510 0.286110 2.096170
CapSA 0.205730 3.470489 9.036624 0.205730 1.724852
AFT 0.205730 3.470489 9.036624 0.205730 1.724852
CSA 0.205730 3.470489 9.036624 0.205730 1.724852
BA 0.210588 3.207379 9.503676 0.210662 1.814532
PSO 0.205730 3.470489 9.036624 0.205730 1.724852
e e N b e Wow
ﬁ;gilq;fgb‘};ghe welded beam gy 1724852 1724852 1724852 0.0
SSA 1.725906 1.813710 2.159448 0.095777
SCA 1.746999 1.835647 1.911215 0.033400
RSO 1.815225 2.971296 4714110 0.833561
MFO 1.724852 1.726652 1.777797 0.009661
HOA 2.096170 2.412682 2.621591 0.125491
CapSA 1.724852 1.724852 1.724852 0.0
AFT 1.724852 1.724852 1.724852 0.0
CSA 1.724852 1.724852 1.724852 0.0
BA 1.814532 2.376425 3.044044 0.345930
PSO 1.724852 1.725017 1.729395 0.000828

cylindrical pressure vessel with hemispherical heads on both ends, as illustrated in

Figure 10.

The four optimization design variables for this problem are as follows: inner radius
(R), length of the cylindrical section of the vessel without glancing at the head (L), the
thickness of the shell (T,) and head (T,). These variables can be drafted in a vector as
follows: X = [x;, x5, X3, X, ], Where x;, x,, x5 and x, stand for T, T, R and L, respectively.
The variables L and R are continuous variables, while T, and T are integer values that
are multiples of 0.0625 inch. The following is the mathematical formula for this design

problem:

Consider X = [x,x,x3x4] = [T, T,RL]
Minimize the function: f(X) = 0.6224x,x3x, + 1.7781x2x§ + 3.1661x%x4 + 19.84)6%)63
This optimization problem is subject to four constraints as described below,

@ Springer



48 Page 48 of 60 M. A. Al-Betar et al.

Fig. 10 An illustration of the L

cross-section of the pressure ves- l¢ N

sel design problem (Kannan and _+_ ! ! _+_

Kramer 1994) Th T.
R R

8@ = —x, +0.0193x; <0
8, (®) = —x, + 0.00954x; <0

8:(X) = —zx

Xy — gﬂxg + 1296000 < 0

g4X)=x,—-240<0

where 0 <x1 <99, 0<x,<99, 10<x;<200 and 10 <x, <200.

The problem of pressure vessel design is one of the most popular optimization
problems that researchers have utilized in various considerations to verify the
effectiveness of their evolved optimization algorithms. Table 14 displays a comparison
of the optimum outcomes attained by EHO and other optimization algorithms for the
pressure vessel design problem.

As per the optimization cost findings of the pressure vessel design problem in Table 14,
EHO was capable of identifying the best design with the lowest possible cost, where it
reported the lowest cost of 5885.332774. A comparison of the statistical outcomes between
EHO and other rival optimization methods for the pressure vessel design problem over 30
separate runs is presented in Table 15.

It may be observed from Table 15 that EHO outperforms other competing algorithms
and provides competitive results in terms of Ave and Std values. This demonstrates how
effective and reliable the proposed EHO is in solving this design optimization problem.

4.7.4 Tension/compression spring design problem

Another well-known benchmark problem is the design of a tension/compression spring
with a schematic diagram given in Figure 11.

The reduction of the weight of a tension/compression spring design is the aim of this
optimization problem. There are certain constraints on this problem, such as shear stress,
surge frequency, and minimum deflection. The diameter of the wire (d), the diameter of
the mean coil (D), and the number of active coils (N) are the parameters in this design
problem.

The parameters for this problem were implemented by a vector as X = [xy,x,,X;],
where x|, x, and x; stand for the parameters d, D, and N, respectively. As stated before, the
purpose of this problem is to reduce the weight of the objective f{(x), which is subject to the
aforementioned constraints and limits on outside diameter and on design variables. This
optimization problem’s mathematical formula is as follows:

Consider X = [x;x,x;] = [dDN]
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Table 14 Optimization results of the pressure vessel design problem arrived at by EHO and other
optimization methods

Algorithm Optimal values for variables Optimum cost
T, T, R L
EHO 12.450698 6.154387 40.319619 200.0 5885.332774
SSA 13.130667 6.490493 42.521569 171.463029 5962.017388
SCA 12.619034 6.948016 40.545459 200.0 6144.202715
RSO 15.846077 8.795875 50.877054 92.249393 6699.832328
MFO 12.450698 6.154387 40.319619 200.0 5885.332774
HOA 12.826083 10.299615 40.338953 200.0 6809.055218
CapSA 12.450698 6.154387 40.319619 200.0 5885.332775
AFT 12.450698 6.154387 40.319619 200.0 5885.332774
CSA 12.450698 6.154387 40.319619 200.0 5885.332774
BA 12.489505 6.224319 40.436822 198.378908 5899.935729
PSO 13.050863 6.451048 42.263157 174.606198 5952.590524

Table 15 Statistical findings of EHO and other optimization techniques for the pressure vessel design
problem

Algorithm Best Ave Worst Std

EHO 5885.332774 5927.971008 6157.044368 63.561135
SSA 5962.017388 6301.618875 7022.753584 284.376653
SCA 6144.202715 6509.839344 7304.124699 275.806688
RSO 6699.832328 12764.362314 30114.771357 5902.220141
MFO 5885.332774 6249.813837 7319.000702 476.859095
HOA 6809.055218 7441274848 7982.363774 326.659771
CapSA 5885.332775 5885.332779 5885.332798 0.000005
AFT 5885.332774 5885.332777 5885.332822 0.000010
CSA 5885.332774 5885.332774 5885.332774 0.0

BA 5899.935729 8954.754011 26356.550284 5278.001829
PSO 5952.590524 6313.608248 6876.143547 226.234030

‘ /P\ ’f{}\ /i;;’:—_‘;:\ 3

ff' % /\\

Fig. 11 An illustration of the schematic structural diagram of a tension/compression spring (Coello 2000)

Minimize the objective function: f(X) = (x3 + 2)x,x7
This problem is subject to the constraints given next:
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Table 16 Optimization results of

. - . Algorithm  Optimum variables Optimum cost
the tension/compression spring
design problem arrived at by d D N
EHO and other optimization
methods EHO 0.051746  0.358097  11.208557  0.012665
SSA 0.051000  0.340340  12.319017  0.012676
SCA 0.051000  0.339954 12371233  0.012707
RSO 0.051000  0.339873  12.452098  0.012776
MFO 0.051007  0.340541 12304432  0.012674
HOA 0.054712  0.431616  8.033498 0.012963
CapSA 0.051689 0356716  11.289055  0.012665
AFT 0.051695  0.356866  11.280263  0.012665
CSA 0.051689  0.356718  11.288966  0.012665
BA 0.051000  0.337573  12.633033  0.012848
PSO 0.051000  0.340366  12.316182  0.012674
B=1- 20
i) =1————"—"5=
71785x
2
@) = 4x2 — XX, 1 .
2 - — 1=
12566(x,x) —x})  5108x]
. 140.45x,
g =1-——"21<0
x2X3
> X1 + Xy
X) = -1<0
84(%) 15

where 0.05 < x; <£2.0,0.25 <x, <13and2 < x; < 15.0.

Numerous meta-heuristic techniques were extensively used to address the tension/
compression spring design problem. Table 16 compares the objective cost and design
variable values for the proposed EHO and other competing algorithms for the tension/
compression spring design problem.

The outcomes shown in Table 16 clearly demonstrate that EHO is able to identify
the best solution, 0.012665, when compared to the costs determined by other methods
for this design problem. Table 17 presents a summary of the statistical findings of this
design problem produced by EHO and other rival methods.

The findings in Table 17 show that EHO outperforms other optimization techniques
by offering better outcomes in terms of best, average, worst, and standard deviation.
This confirms that EHO can be trusted to solve this design problem. In comparison to
other algorithms like SSA, SCA, and RSO, the statistical findings demonstrate that EHO
had extremely competitive statistical outcomes even with fewer iterations. In a nutshell,
the general performance of the proposed EHO in optimizing the above three engineering
problems attests to the reliability and efficiency of EHO to solve other complex real-
world applications.
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Table 17 Statistical findings

of EHO and other optimization Algorithm Best Ave Worst Std
if’oi}r‘l‘;‘r‘;‘sl:oi";f; ‘gegzls‘l’;‘; EHO 0012665  0.012804  0.014093  0.000359
problem SSA 0012676 0012726  0.013009  0.000080
SCA 0012707 0346189 0013064  0.067186
RSO 0012776  —.998472  — 463146  0.369645
MFO 0012674 0012698 0013368  0.000127
HOA 0012963 0013555 0014310  0.000329
CapSA 0012665 0012665 0012665 0.0
AFT 0012665 0012665 0012666 0.0
CSA 0012665 0012665 0012665 0.0
BA 0012848 0013756 0017879  0.627909
PSO 0012674 0013322 0015055  0.000651

S 1080 o s o )

z

]l N )il ,

dl ........ 1I ...... N A B,

Nalnfale il il it

Fig. 12 An illustration of a speed reducer’s structural design (Gandomi and Yang 2011)

I

4.7.5 Speed reducer design problem

The speed reducer design, with the structure presented in Figure 12, is another classical
real-world engineering design problem frequently employed as a benchmark case for evalu-
ating various optimization algorithms. This is a challenging benchmark problem as it is
associated with seven variables that are required to model the problem (Gandomi and Yang
2011).

The weight to be reduced in this design problem is subject to four constraints described
as follows: bending stress of the gear teeth, surface stress, transverse shaft deflections, and
stresses in the shafts (Mezura-Montes and Coello 2005).

These are the seven design variables used in this problem: b, m, z, [}, l,, d, and d,.
These variables are, in order, specified as follows: face width, the module of teeth, number
of teeth in the pinion, length of the first shaft between bearings, length of the second shaft
between bearings, first shaft diameter, and second shaft diameter. These variables are
denoted by the vector X = [x;x,X3X,Xs5Xsx;] for solving this optimization problem. This
is an example of a mixed-integer programming problem. The third variable, the pinion’s
number of teeth (z), only takes integer values. All other variables (apart from x;) are
therefore continuous. This problem’s mathematical formulation is as follows:
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Consider X= [x; X, X3 X, X, X3 X,1 = [bm z 1,1, d, dy]
FG) = 0.7854x,x3(3.3333x] + 14.9334x; — 43.0934)

Minimize - 1.508x,(x} +x3) + 7.4777(x} + x3) + 0.7854(x4x% + x5x3)
Subject to the following constraints,

. 27
g x) = >~ 1<0
X1X5X3
L. 3975
&X) =—75-1<0
X1 X5%5
. ].9)6‘31
§®)=—7—-1<0
XpXeX3
o 1.93x
84 =—7—-1<0
XpX7X3
745 2 +16.9 x 10°]'/2
os(® = [(745(x4/%,%3)) <o
110x;
745 2 +157.5 x 10°]'/2
2@ = [(745(xs5 /x,%x3)) = 1<0
85x3
o _ X2X3
=23 _1<0
87(%) 20 hS
X
g)=—-1<0
X
@G=—L _1<0
X)=———
8 = o, T T
L 15xg+1.9
8100 = -1<0
Xy
. Llx+19
gnx) = A <0
Xs

where the scope of the 7 design variables b,m,z,[;,l,,d, and d, were presented
as 26<x <36, 07<x,<08 17<x3<28, 73<x,<83, 73<x;<83,
29 <x,<39and 5.0 <x, <5.5, respectively.

A comparison of the best solutions found by EHO and other comparative optimization
techniques for the speed reducer design problem is shown in Table 18.

As presented in Table 18, the proposed EHO is superior to other optimization
methods by getting the minimum cost for the speed reducer design problem of
approximately 2994.471066. A summary of the statistical results of EHO and the
other ten optimization algorithms for the speed reducer design problem is displayed in
Table 19.

As per the findings in Table 19, EHO and PSO achieve the best optimal solutions among
other competing optimizers. This makes it clear that EHO offers better outcomes in terms of
best, average, worst, and standard deviation than other comparative algorithms.

In contrast to other well-known optimization algorithms, the proposed EHO has
demonstrated its effectiveness and reliability in tackling four real-world engineering design
problems. In terms of both the best cost outcomes and the standard deviation values, this
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Table 18 Optimization results of the speed reducer design problem arrived at by EHO and other
optimization methods

Algorithm Optimum variables Optimum cost
b m z [ I, d, d,
EHO 35 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
SSA 3.500007 0.7 17 7.466124 7.874452 3.355203 5.286710 3000.743626
SCA 3.556508 0.7 17 7.3 7.876181 3.371898 5.310165 3040.757565
RSO 3.594892 0.701727 19.020862 8.170429 8.069855 3.442269 5.427427 3550.987175
MFO 35 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
HOA 3.6 0.719534 19.31277  7.902659 7.837592 3.384164 5.365908 3654.010525
CapSA 35 0.7 17 7.300000 7.715320 3.350215 5.286654 2994.471066
AFT 35 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
CSA 35 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
BA 3.500016 0.7 17 7.322222 8.098574 3.354054 5.287585 3004.660185
PSO 35 0.7 17 73 7.715320 3.350215 5.286654 2994.471066

Table 19 Statistical findings of EHO and other optimization techniques for the speed reducer design
problem

Algorithm Best Ave Worst Std

EHO 2994.471066 2994.471066 2994.471066 0.0

SSA 3000.743626 3029.748014 3082.549617 21.996845
SCA 3040.757565 3087.875229 3122.388908 22.548891
RSO 3550.987175 4848.869342 8867.431730 5463.178241
MFO 2994.471066 2994.471066 2994.471066 0.0

HOA 3654.010525 6022.475663 6963.424538 7406.699779
CapSA 2994.471066 2994.471066 2994.471067 0.0

AFT 2994.471066 2994.471066 2994.471074 0.000001
CSA 2994.471066 2996.878120 3033.748486 7.739427
BA 3004.660185 3161.599891 5265.691189 567.688135
PSO 2994.471066 2994.471066 2994.471066 0.0

approach performs better than several well-known optimization techniques like SSA
and SCA. As a result, one may draw the conclusion that EHO is a suitable optimization
technique and that it has a lot of potential for solving real-world contemporary problems. In
conclusion, the overall effectiveness of the proposed meta-heuristic algorithm in solving the
aforementioned four classical engineering problems belies its credibility and constancy, and
it is undoubtedly a good candidate to address a variety of complicated real-world situations.
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5 Conclusion and future work

This paper introduces the Elk Herd Optimizer (EHO), a novel swarm-based optimization
algorithm inspired by the elk herd breeding cycle, aimed at solving a wide range of
optimization problems. EHO encompasses a structured optimization loop comprising three
key phases: rutting season, calving season, and selection season. These phases emulate the
natural behavior of elk herds and facilitate the generation of improved solutions iteratively.
During the rutting season, EHO divides the population into groups, each led by a dominant
elk and accompanied by followers. The number of followers is determined based on the
leader’s fitness, ensuring the emergence of stronger groups. In the calving season, these
groups collaborate to find new solutions, simulating the reproduction process among
elks. Offspring inherit traits from their parents, with occasional random traits from other
elks, fostering diversity. The selection season merges all elk families, including leaders,
followers, and offspring, and employs a p + A-survivor selection scheme to choose the
fittest individuals.

EHO’s efficacy is rigorously evaluated on 29 benchmark test functions, with problem
sizes of 10, 30, and 50 variables, as well as on four real-world engineering design
optimization problems: welded beam design, pressure vessel design, tension/compression
spring design, and speed reducer design. Comparative analysis against nine state-of-the-
art optimization algorithms, including SSA, SCA, RSO, MFO, HOA, CapSA, AFT, ACO,
CSA, CMA-ES, and BA, reveals EHO’s superior performance. Statistical tests, such as the
Friedman test and Holm post-hoc test, validate EHO’s dominance.

The results demonstrate that EHO consistently outperforms competitors across
various problem types, including unimodal, simple multimodal, and hybrid benchmark
functions. Furthermore, its competitive performance on composite benchmark functions
highlights its versatility. When applied to engineering design problems, EHO consistently
achieves superior outcomes, showcasing its effectiveness in real-world applications. This
substantiates EHO’s ability to strike a balance between exploration and exploitation,
making it a potent optimization tool. However, it’s important to acknowledge certain
limitations. EHO’s performance on constrained optimization problems is promising
but requires further investigation, particularly when handling intricate constraints in
real-world applications. Additionally, while EHO shows strong potential, its scalability
and adaptability to very high-dimensional problems may warrant further exploration.
Nevertheless, the overall findings underscore EHO’s value as a reliable and efficient
optimization algorithm for a wide range of practical scenarios.

As a novel nature-inspired swarm-based optimization algorithm, EHO has promising
opportunities for future development. Some of these possible future directions can be
summarized as follows:

Modified versions of EHO: Due to the different search space types of various
optimization problems such as discrete, continuous, binary, structured, etc. In the initial
version of EHO, the operations are designed to tackle an optimization problem with
a continuous domain. In the future, these operations should be modified to cope with
problem search space requirements.

Multi-objective version of EHO: There are several optimization problems with multi-
objective functions. The need for a new version of EHO is essential to deal with Pareto
concepts of multi-objective optimization.
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Real-world optimization application: Since the majority of the real-world optimization
problems are either NP-hard or NP-complete. These types of optimization problems are
mostly constrained, non-linear, non-convex, and combinatorics. Therefore, a new ver-
sion of EHO is required to connect the problem search space with the EHO operations
tightly, such as hybrid versions.

Parameter-free EHO: The optimization research communities nowadays tend to build
simple and easy-to-use MH algorithms due to the fact that the optimal solution can be
utilized anywhere, and naive users can use it without proper knowledge. Therefore,
it is highly recommended in the next study of EHO to find a proper parameter tuning
mechanism to build a parameter-free EHO where the number of families, B, can be set
automatically based on the population size.

Bull and harem selections of EHO: In EHO, the rutting season is set to select the bulls
and assign the remaining elks as harems to the bulls’ families based on their fitness
value using roulette-wheel selection. Indeed, the viability of different alternative
mechanisms can be investigated in the future such as using clustering algorithms or
using rank-based/ exponential-based selection mechanisms instead of roulette-wheel
selection to avoid its shortcomings.

Survivor Selection of EHO: In most previous MH swarm-based methods, the whole
parent population will be replaced by the offspring population in the next generation.
To be more realistic and to cope with the natural phenomenon, the EHO has adopted
the (1 + A) survivor selection mechanism. Therefore, other survivor selection methods
can be further investigated such as elitism, round-robin tournament, (¢, 4)-selection, etc.
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