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Abstract
This paper proposes a novel nature-inspired swarm-based optimization algorithm 
called elk herd optimizer (EHO). It is inspired by the breeding process of the elk herd. 
Elks have two main breeding seasons: rutting and calving. In the rutting season, the elk 
herd splits into different families of various sizes. This division is based on fighting 
for dominance between bulls, where the stronger bull can form a family with large 
numbers of harems. In the calving season, each family breeds new calves from its bull 
and harems. This inspiration is set in an optimization context where the optimization 
loop consists of three operators: rutting season, calving season, and selection season. 
During the selection season, all families are merged, including bulls, harems, and 
calves. The fittest elk herd will be selected for use in the upcoming rutting and calving 
seasons. In simple words, EHO divides the population into a set of groups, each with 
one leader and several followers in the rutting season. The number of followers is 
determined based on the fitness value of its leader group. Each group will generate 
new solutions based on its leader and followers in the calving season. The members 
of all groups including leaders, followers, and new solutions are combined and the 
fittest population is selected in the selection season. The performance of EHO is 
assessed using 29 benchmark optimization problems utilized in the CEC-2017 special 
sessions on real-parameter optimization and four traditional real-world engineering 
design problems. The comparative results were conducted against ten well-established 
metaheuristic algorithms and showed that the proposed EHO yielded the best results 
for almost all the benchmark functions used. Statistical testing using Friedman’s test 
post-hocked by Holm’s test function confirms the superiority of the proposed EHO 
when compared to other methods. In a nutshell, EHO is an efficient nature-inspired 
swarm-based optimization algorithm that can be used to tackle several optimization 
problems.
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1  Introduction

The need for optimal solutions gains substantial attention from vast research communities 
to deal with their real-world optimization problems. Optimization is an iterative 
improvement process normally concerned with finding the best configurations for the 
optimization problem with sometimes multimodal, non-convex, non-differentiable, 
constrained search space (Chong and Zak 2013). Indeed, the types of search spaces vary 
according to their variable domains, such as binary, discrete, continuous, permutation, 
and structured. To deal with any search space type, special operations are required. The 
real-world optimization problems are widely studied in different research fields such as 
engineering (Pereira et  al. 2022; Mei and Wang 2021), scheduling (Abdalkareem et  al. 
2021; Arunarani et al. 2019), computer vision (Nakane et al. 2020), feature selection (Braik 
et al. 2023c, 2024), image processing (Braik 2022, 2023), modeling of industrial systems 
(Braik et al. 2023d, b), games (Cai et al. 2016), and many others.

Nowadays, the popularity of metaheuristic (MH) optimization algorithms has exponentially 
increased due to their tangible impact on tackling optimization problems. The MH algorithm 
is a general optimization framework initiated with a set of random solutions. At each iteration, 
the solutions are improved using intelligent operators controlled by carefully selected 
parameters to explore different search space regions and exploit the accumulated knowledge 
to find the optimal solution (Fausto et al. 2020; Braik et al. 2023a). There are common features 
of MH algorithms, such as derivative-free, parameter-less, simple and adaptable, sound and 
complete, evolution, and local optima avoidance (Blum and Roli 2003). Their evolution 
feature is mainly inspired by the natural behavior of humans, animals, or any optimization 
phenomenon (Sörensen 2015; Fausto et  al. 2020). Therefore, they are known as nature-
inspired MH algorithms and categorized into swarm-based, evolutionary-based, physics or 
chemistry-based, and social or human-based algorithms, as will be further discussed in Sect. 2.

In general, MH algorithms share a set of common phases and parameters (Alorf 2023; 
Rajwar et al. 2023). Their success in finding the optimal solution is mainly related to their ability 
to strike a suitable balance between wide-area exploration and narrow local-area exploitation 
during the iterative loop. Exploration refers to the ability of the MH algorithm to navigate several 
search space areas at the same time, while exploitation refers to the ability of the MH algorithm 
to navigate each area using the accumulative knowledge deeply and find its local optima (Alorf 
2023). Based on these two principles, the deviation between MH algorithms is based on their 
ability to manage the balance between exploration and exploitation during the search. However, 
the performance of each MH algorithm fluctuates and cannot behave steadily for all search 
spaces of different optimization problems. This concurs with the no free lunch (NFL) theorem 
for optimization (Wolpert and Macready 1997) where there is no single MH algorithm able to 
excel all others for every optimization problem. Therefore, the optimization search communities 
are still investigating every nature-inspired optimization phenomenon to find a suitable MH 
for optimization problems. In general, the nature-inspired MH algorithms stemming from the 
swarm of animals such as bats (Yang 2010b), wolves (Mirjalili et al. 2014), sharks (Braik et al. 
2022a), rabbits (Wang et al. 2022), crows (Askarzadeh 2016), bees (Awadallah et al. 2020), 
ants (Dorigo et al. 2006), Horses (MiarNaeimi et al. 2021), foxes (Połap and Woźniak 2021), 
cats (Seyyedabbasi and Kiani 2023), egrets (Chen et  al. 2022), tunicates (Kaur et  al. 2020), 
and Salps (Mirjalili et al. 2017) proves their viability to tackle a wide range of optimization 
problems. They mainly emulate the animals’ optimization phenomenon when they mate, search 
for food, attack prey or hunt, defend themselves, etc. In specific, the animals living as a herd are 
normally structured into leaders and followers so that the leaders normally drive the followers to 
the optimized situation. Although a large number of MH algorithms are inspired by the swarm 
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of animals, there are still opportunities to investigate other animal optimization behaviors, 
such as the breeding cycle of the elk herds. In this paper, a new MH algorithm inspired by the 
breeding cycle of elk herds is proposed. The new swarm-based natural-inspired MH algorithm 
is called Elk Herd Optimizer (EHO). The elk herds are normally divided into a small group 
of males (or bulls) and a large group of females (caws or harems). Two breeding seasons are 
defined for elk herds: rutting and calving. In the rutting season, the elk herd is divided into 
different sub-herds (families) of various sizes. This division is based on fighting domination 
challenges between bulls where the strongest bull will have a chance to have more harems in its 
sub-herd. In calving season, the sub-herds breed new calves from the bull and harem. Finally, 
in a selection season, the family members are again assembled, and the rutting season will 
start over and over. Inspiration is mapped into the optimization context where the optimization 
loop consists of three operators: rutting season, calving season, and selection season. During 
the selection season all families (sub-population), including bulls (i.e., leader solutions of the 
sub-populations), harems (i.e., follower solutions of the sub-populations), and calves (i.e., new 
solutions of the sub-populations) are merged and the fittest elk herd (population) is selected in 
the selection season to be used in the following rutting and calving seasons. The performance 
of EHO is judged using a test suite of 29 benchmark optimization problems utilized in the 
CEC-2017 special sessions on real-parameter optimization (Awad et al. 2016; Doush 2012). 
Furthermore, four traditional real-world engineering design optimization problems are used 
further to assess the performance of EHO on real-world optimization problems. Initially, 
the parameters of EHO were studied to show their influence on EHO convergence behavior. 
The comparative analysis against ten well-established MH algorithms reveals the significant 
success of the optimization behavior of EHO. For further evaluation, statistical evidence using 
Friedman’s test post-hocked by Holm’s test (Pereira et al. 2015; Awadallah et al. 2022) shows 
the top rank of EHO in comparison to other methods.

The remaining parts of this paper are organized as follows: the other MH algorithms 
proposed in the literature are categorized in Sect. 2. The inspirations and procedural steps 
of the proposed EHO are thoroughly discussed in Sect.  3. The experimental results and 
discussion of the EHO performance are given in Sect. 4. Finally, the paper ends up with a 
conclusion and some possible future work, as shown in Sect. 5.

2 � Related works

Meta-heuristic (MH) optimization algorithms rely on two phases in the optimization 
process exploration and exploitation (Zitar et al. 2021; Makhadmeh et al. 2022; Alyasseri 
et  al. 2022). Exploration is the algorithm’s ability to scan the whole search space, thus 
escaping from being stuck in local optima. In contrast, exploitation is the algorithm’s 
ability to dig more deeply into promising search regions to improve the solution quality. 
The performance of MH algorithms can be enhanced when it has a balance between 
exploration and exploitation. There are four main types of metaheuristic algorithms 
(Molina et al. 2020; Zhong et al. 2022). In this section, the categories of MH algorithms 
and their popular and recent versions are introduced.

2.1 � Swarm intelligence (SI) algorithms

The first class of algorithms is SI algorithms which mimic the social behavior of 
animals in groups (i.e., flocks or herds). This class of metaheuristic algorithms shares 



	 M. A. Al‑Betar et al.

1 3

48  Page 4 of 60

the collective information from the environment between all individuals to achieve 
the goal of the swarm (e.g., finding food or hunting an animal). Kennedy and Eberhart 
proposed Particle Swarm Optimization (PSO) (Kennedy and Eberhart 1995), which is 
one of the widely used SI algorithms. The PSO imitates the swarm particles’ natural 
behaviors by sharing and updating the local position to achieve the global best position. 
Each particle represents a candidate solution, and it has a local position and velocity. 
The particles follow the best solutions in their paths.

A large number of SI algorithms are proposed to solve optimization problems. 
The following are the most popular and recent ones: Bat Algorithm (Yang and 
Gandomi 2012), Flower Pollination Algorithm (Yang 2012), Krill Herd (Gandomi 
and Alavi 2012), Butterfly Optimization Algorithm (Arora and Singh 2019), Harris 
Hawks Optimization (Heidari et  al. 2019), Seagull Optimization Algorithm (Dhiman 
and Kumar 2019), Sea Lion Optimization Algorithm (Masadeh et  al. 2019), Black 
Widow Optimization Algorithm (Hayyolalam and Kazem 2020), Chimp Optimization 
Algorithm (Khishe and Mosavi 2020), Marine Predator Algorithm (Faramarzi et  al. 
2020a), Slime Mould Algorithm (Li et  al. 2020), Tunicate Swarm Algorithm (Kaur 
et al. 2020), Chameleon Swarm Algorithm (Braik 2021), Red Fox Optimization (Połap 
and Woźniak 2021), and Prairie dog optimization algorithm (Ezugwu et al. 2022).

2.2 � Evolutionary algorithms (EA)

The second class of algorithms is EA which simulates the survival of the fittest concept 
that adapted from the biological evolution in nature. The most popular EA is Genetic 
Algorithm (GA) which was developed by Holland (Holland 1992). It is inspired by the 
Darwinian theory of evolution. GA produces better solutions (offspring) by mating the 
fittest parents using the crossover concept. This concept is applied in nature to help in 
maintaining the diversity in ecosystems. Additionally, the mutation concept is used to 
add new characteristics from the parents to the offspring. Storn and Price proposed 
another EA that was largely utilized by researchers which is Differential evolution 
(DE) (Storn and Price 1997). Other EA algorithms have been recently proposed and 
they provide good performance when solving optimization problems such as Barnacles 
Mating Optimizer (Sulaiman et  al. 2020), Genetic Programming (GP) (Koza and 
Koza 1992), Evolution strategies (ES) (Beyer and Schwefel 2002), Probability-based 
incremental learning (PBIL) (Baluja 1994), and Biogeography-based optimization 
(Simon 2008).

2.3 � Physics or chemistry‑based algorithms

The third class of algorithms are physics or chemistry-based algorithms that imitate a 
physical or chemistry phenomenon. The interaction of the algorithm search agents is 
modeled using the rules of the physics process or the rules of chemistry interaction. 
Van  Laarhoven and Aarts (1987) proposed one of the popular algorithms that 
borrow the physics thermodynamics law when a material is applied to heating and 
then slowly cooled down to make the size of its crystals larger. Gravitational Search 
Algorithm (Rashedi et al. 2009) is another well-known algorithm that models Newton’s 
gravitational laws by having the searcher agents as a collection of masses that interact 
with each other using Newton’s gravity law and the laws of motion to find an optimal 
point. Various Physics or chemistry-based algorithms are proposed such as Charged 
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System Search (Kaveh and Talatahari 2010), Chemical Reaction Optimization 
(Lam and Li 2012), Ray Optimization (Kaveh and Khayatazad 2012), Henry Gas 
Solubility Optimization (Hashim et  al. 2019), Billiards-Inspired Optimization (Kaveh 
et  al. 2020b), Equilibrium Optimizer (Faramarzi et  al. 2020b), Plasma Generation 
Optimization (Kaveh et al. 2020a), Simulated annealing (Kirkpatrick et al. 1983), Solar 
System Algorithm (Zitouni et  al. 2020), Vortex Search algorithm (Doğan and Ölmez 
2015), and chaotic Henry gas solubility optimization (Yıldız et al. 2022).

2.4 � Social or human‑based algorithms

The final class of optimization is social or human-based algorithms that simulate social 
or human behaviors. For example, Brain Storm Optimization (Shi 2011) is inspired by the 
human brainstorming process. The algorithm uses two operations the convergent operation 
to group individuals in the search space and the divergent operation to make the individual 
depart the search space. Another human-based algorithm is the Teaching-Learning-Based 
Optimization (Rao et  al. 2011) which imitates the effect of the influence of a teacher 
on learners. The algorithm has two phases: learning from the teacher and learning by 
interacting with other learners. Recently, many researchers have proposed social or human-
based algorithms such as Harmony Search (Geem et  al. 2001), Heap-Based Optimizer 
(Askari et al. 2020a), Interactive Autodidactic School (Jahangiri et al. 2020), Lévy Flight 
Distribution (Houssein et al. 2020), Most Valuable Player Algorithm (Bouchekara 2020), 
Nomadic People Optimizer (Salih and Alsewari 2020), Political Optimizer (Askari et al. 
2020b), Arithmetic Optimization Algorithm (Abualigah et  al. 2021), Stock exchange 
trading optimization (Emami 2022), Ali Baba and the forty thieves (Braik et al. 2022b), 
Football game inspired algorithm (Fadakar and Ebrahimi 2016), Ebola optimization search 
algorithm (Oyelade et  al. 2022), Group teaching optimization algorithm (Zhang and Jin 
2020), and Coronavirus herd immunity optimizer (MA et al. 2021).

3 � Elk Herd Optimizer (EHO)

The breeding process of elk herds can be thought of as an optimization process. The elks 
are bred generation after generation to have a stronger herd that can face the challenges 
in the surrounding environment. In this section, the breeding process is mapped to 
optimization concepts. Firstly, the inspiration for EHO is discussed. Thereafter, the general 
optimization procedure of EHO and the mathematical model are illustrated.

3.1 � EHO Inspiration

The elk, also called wapiti, belongs to the deer family and is the largest deer species 
after the Moose deer. Elks live in the forests and forests edge of Central East Asia and 
North America, where they usually prefer the warm weather prone to cold. Elks are non-
predators, and they feed bark, leaves, plants, and grasses. Accordingly, elks are considered 
at the low level of the food chain hierarchy. Despite that, elks are muscular animals that can 
jump, swim, and run short distances with speeds up to 50 km/h, particularly when they feel 
threatened. Furthermore, elks have strong hearing and smelling senses.

Therefore, elk herds are weak compared to the upper levels in the hierarchy; therefore, 
they live in large herd families with 200 or more elk to protect themselves. The herd 



	 M. A. Al‑Betar et al.

1 3

48  Page 6 of 60

contains males, females, and young elks. Females in the herd, also known as cows, make 
up most of the herd, whereas males or bulls are few in the herd due to their hostile nature 
to each other for herd domination and protection. Young elks or calves usually follow older 
bulls and cow groups.

Within the herd, elks use different sound articulations for communication and warning 
others of dangers. The bulls use a distinct sound articulation called bugling that mainly 
advertises the male’s fitness and starts the mating season to attract mates. The bugle sound 
is also used to announce the bull’s position in the large herd. Cows produce a grunting 
sound to alert other elks in the herd of danger and also call and find their calves, while 
calves make a sharp squealing sound when they attack (Geist 1993).

The mating season or breeding season, which usually runs from September to October, 
is divided into the rutting and calving seasons. In the rutting season, elk became extremely 
aggressive against any animal, even other bulls in the same herd. A bull starts the sea-
son by attracting cows and inviting other bulls for a fighting challenge for herd domina-
tion by raising the head and making the mating bugle articulation, as shown in Figure 1. 
Subsequently, other bulls will respond to the challenge by bugling together, indicating that 
the fighting challenge has started. Once the fighting starts, elks start shoving and pushing, 
usually in pairs, using their antlers. Normally, the elks use the antlers locking strategy to 
exhaust the power of the rival elks in the battle to impose their domination, as shown in 
Figure 2. When the weaker bull feels the danger and death threat from the stronger bull, the 
weaker bull will stop fighting by trotting away (Geist 1991). Usually, these fights end with 
damage happening to the antlers.

After the fighting challenge between all elks is finished, the stronger bulls will gather 
more cows and make a group of cows, called harems, containing more than 20 cows. The 
weaker bull will gather a lower number of cows in their group of harems with no more 
than five cows. Each group of harems is led and protected by only one bull, as shown in 
Figure 3.

In the calving season, the mating between cows and bulls will begin to make the cows 
pregnant and reproduce new calves, where the cows mate only with their bulls. When 
pregnant cows become ready to give birth, they will leave the herd to find a proper area 
for delivery birth. These areas are usually covered with brush and trees for protection and 

Fig. 1   Elk start bugling

Fig. 2   Elks rutting season
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to hide from predators. Afterwards, cows will breed calves that could be cows or bulls and 
end the breeding season. After three to four months from the end of the calving season, the 
new calves became young cows and bulls with stronger antlers that normally grew an inch 
every day. A new breeding season starts by gathering all elks, including the father’s bull 
and its cows’ harems and young calves. The goal is to find and select the stronger bull in 
the herd and start the domination challenge again (Shively et al. 2005; Geist 1993).

Subsequently, the mating between cows and bulls will begin to reproduce new calves 
and start the calving season, where the cows mate only with their bulls (Geist 1991).

3.2 � The mathematical model of EHO

In this section, the Elk Herd optimizer (EHO) is mathematically modeled in the 
optimization context. Initially, the elk herd population is divided into a set of families based 
on the number of bulls. In the rutting season, each family is led by its bull elk, where the 
number of its cows or harems is determined depending on the bull’s strength. The strength 
of the bull is determined through fighting domination challenges. In the calving season, 
each family then generates calves with the same number of family members. Finally, in 
the selected season, the members of all families are merged, and the best members will be 
invited to the rutting season again. This process is repeated to ensure that the generated elk 
herd is capable of dealing with the challenges in the surrounding environment.

In the mathematical model of the EHO, six procedural steps are proposed to bridge 
the breeding cycle of elk herds into the optimization framework. These steps will be thor-
oughly discussed. The flowchart of the EHO is given in Figure 4, while the pseudo-code is 
provided in Algorithm 2.

Fig. 3   Elks herd families
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Step 1: Initialize Parameters of EHO and optimization problem.
In order to embed the problem-specific knowledge into the EHO, two main components 
shall be provided: the objective function to evaluate the solution and the solution 
representation clarifying the search space type. In general, the simple forms of 
optimization problems with continuous search space where each decision variable has 
a specific value range. The general form of the objective function can be formulated as 
in Eq. (1). 

 where f (x) is the objective function used to measure the fitness of each elk or solution 
x = (x1, x2,… , xn) . The variable xi in each elk refers to one attribute of such elk indexed 
by i where xi ∈ [lbi, ubi] in which lbi is the lower bound, and ubi is the upper bound 
for the attribute xi . n is the total number of attributes in each elk solution or solution 
dimensionality.
The EHO is designed with only one parameter, which is the bull rate Br , which 
determines the rate of initial bulls in the elk herd. The other two standard parameters are 
the elk herd size or the population size (EHS) and the maximum number of iterations 
( M_Itr).
Step 2: Generate the initial elk herd

(1)min
x

f (x) x ∈ [lb, ub]

Fig. 4   Flowchart of the elk herd optimizer
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The elk herd ( EH ) is initially generated, which is a population of the elk solutions, 
including bulls and harems. The EH is a matrix of size n × EHS as formulated in Eq. 
(2). 

In the continuous domain, each solution x
j can be generated as 

x
j

i
= lbi + (ubi − lbi) × U(0, 1) ,    ∀i = 1, 2,… , n . The fitness value for each elk solution 

is calculated using Eq. (2). Finally, the elks in EH are sorted in ascending order based 
on their fitness values, such as f (x1) ≤ f (x1) ≤ … ≤ f (xEHS).
Step 3: Rutting season
In rutting season, the EHO is modeled to create the families based on the bull rate ( Br ). 
Initially, the total number of families is calculated as B = |Br × EHS| . Then the bulls 
are selected from EH based on their fitness values, where the elks of numbing B with 
the best fitness values at the top of EH are considered as bulls (See Eq. (3)). This is to 
reflect the fighting domination challenges where the strongest elks are considered, and 
they will be assigned with more harems. 

 The bulls in the B set then are fighting together to create families. To assign the harems 
to each bull in B , the roulette-wheel selection is used where the harems are assigned 
to their bulls based on their fitness values with proportion to the total fitness values. In 
technical terms, firstly, each bull xj in B will be assigned with a selection probability pj 
based on its absolute fitness value f (xi) divided by the summation of absolute fitness 
values of all bulls as computed in Eq.(4). 

 Secondly, the harems will be distributed to the bulls based on their selection probability 
pj as given in the Algorithm  1. In the Algorithm, the vector H = (h1, h2,… , hk) , 
k = EHS − B reflects the harems, each of which is assigned by the bull index determined 
based on roulette-wheel selection.
For example, if the elk herd size is ten ( EHS = 10 ), and the bull rate is 30%, then 
B = 3 , which reflects the number of families. The B = (x1, x2, x3) . The rest of elks 
(i.e., ( x4,… , x10) ) can be pointed as harems where they can be distributed based on 
the roulette-wheel selection, and the resulting assignment can be H = (1, 2, 1, 3, 1, 2, 3) 
where the first bull has three harems, the second bull has two harems, and the third bull 
has two harems.
Step 4: Calving season
In calving season, the calve ( xj

i
(t + 1) ) of each family are reproduced based on the attrib-

utes mostly extracted from their father bull ( xhj ) and mother harem(xj
i
(t)).

In case the calf ( xi(t + 1) ) has the same index i as its bull father in the family, the calf is 
reproduced as shown in Eq. (5). 

(2)EH =

⎡
⎢⎢⎢⎣

x1
1

x1
2

⋯ x1
n

x2
1

x2
2

⋯ x2
n

⋮ ⋮ ⋯ ⋮

xEHS
1

xEHS
2

⋯ xEHS
n

⎤
⎥⎥⎥⎦
.

(3)B = arg min
j∈(1,2,…,B)

f (xj)

(4)pj =
f (xj)∑B

k=1
f (xk)
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 where � is a random value within the range of [0,  1] that determines the rate of 
the inherited attributes from the randomly selected elk in the herd xk(t) where 
k ∈ (1, 2,… ,EHS) . Please note that a higher value of � results in a greater likelihood of 
random elements participating in the new calf, which, in turn, enhances diversification.
In case the calf has the same index as its mother, then it xi(t + 1) takes the attributes of 
its mother harem xj and father bull xhj (See Figure 5) as formulated in Eq. (6). 

 where xj
i
(t + 1) is the attribute i of the calf j at iteration t + 1 which will be stored in 

EH’ . The hj is the bull of the harem j, and r is the index of a random bull in the current 
bull set such that r ∈ B . In nature, in a few cases, the mother harem can also be mated 
with other bulls, if it is not defended well by its bull. � and � are random values in the 
range of [0, 2] that randomly determine the portions of the attributes inherited from pre-
viously generated calves.
It is worth mentioning from Equation  6 that the coefficients � and � may represent 
significant parameters in the proposed EHO, given their resemblance to the ‘social’ 
and ‘cognitive’ models in the PSO (Kennedy 1997). Experiments have demonstrated 
the importance of both ‘social’ and ‘cognitive’ coefficients for PSO’s success, and 
numerous other researchers have adopted this configuration in their works as reported in 
the literature (Braik 2021; Braik et al. 2022c). It should also be realized that, for some 
optimization problems, ad hoc random values for � and � in the interval [0, 2] instead 
of fixed values might result in improved performance. This could be because random 
values for � and � in the specified range can be promising in achieving a respectable 
level of performance for EHO. This indicates that � and � can balance the global and 
local search abilities of EHO.
Step 5: Selection season
The bulls, calves, and harems of all families have merged. In technical terms, the EH 
that stored the bulls and harem solutions and EH′ that stored the calves solutions are 
merged into one matrix EHtemp . The elks in the EHtemp will be sorted in ascending order 
based on their fitness values. Finally, the top elks of the numbering EHS in EHtemp 

(5)x
j

i
(t + 1) = x

j

i
(t) + � ⋅ (xk

i
(t) − x

j

i
(t))

(6)x
j

i
(t + 1) = x

j

i
(t) + �(x

hj

i
(t) − x

j

i
(t)) + �(xr

i
(t) − x

j

i
(t))

Fig. 5   Calves reproduction
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will be kept to the next generation where they will replace the elks in EH , such that 
EH

j = EH
j

temp, j = (1,… ,EHS) . In evolution strategy, this type of selection is called 
� + �-selection where � is the parent population and � is the offspring population (Eiben 
et al. 2003).
Step 6: Termination criteria
Steps 3, 4, and 5 will be repeated until the termination criterion is met. Usually, the 
termination criteria can be the maximum number of iterations. This can be the 
maximum number of ideal iterations, the maximum computational time, or the optimal 
solution reachability.

Algorithm 1   The pseudo-code of Roulette-wheel selection 

Algorithm 2   The pseudo-code of EHO
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3.3 � Numerical example

In order to provide a better understanding of the behavior of the EHO when navigating 
the search space of the optimization problems, the Shifted and Rotated Bent Cigar 
function is used. This test function is taken from CEC 2017 (Awad et al. 2016). The 
parameter settings of the EHO include EHS = 10 , n = 10 , Br = 30% , tmax = 500 , 
ub=100, and lb=-100. Table 1 reports the resulting elk herd ( EH ) in iterations 1, 10, 
100, and 500. As can be noticed, in iteration 1, the initial elk herd is distributed over 
three families. The resulting calves have been substantially improved in comparison 
with their parents as shown at the second iteration. The fitness values of these solutions 
are divergent because these solutions are generated randomly. In the tenth iteration, 
the size of improvement is reduced, but in general, the fitness values of the calves 
are better than the fitness values of their parents. In iteration 100, the 10 solutions 
have become close to each other. In iteration 500, the size of improvement became 
narrower, and the elk distribution over the families tended to be random. This is 
because no superior bull can dominate the elk in EH.

The convergence behavior of the ten solutions is shown in Figure  6. Clearly, the 
exploration behavior of EHO is at its highest level in the initial course of runs. The 
elk solutions almost converge to the same region when iteration 20 is reached. This is 
to show that the EHO can quickly converge to the optimal region, especially when the 
problem search space is not large.

4 � Experiment results and discussion

This section presents the computational outcomes of the proposed EHO on standard 
test benchmark optimization problems. A set of two statistical measures is first utilized 
to explain the level of effectiveness of the proposed EHO and to show its effectiveness 
in comparison with other MH algorithms. Second, convergence curves are obtained to 
demonstrate how well the proposed EHO optimizes a certain collection of benchmark 
functions. To evaluate the accuracy and suitability levels of EHO in optimizing a 
collective group of real-world challenges, a set of four traditional engineering design 
problems is tackled. By contrasting the findings of EHO with those of other cutting-
edge MH algorithms in the literature, the efficacy of EHO is examined, evaluated, and 
highlighted.

4.1 � Description of the benchmark test functions

The performance of the proposed EHO was examined on a test suite of 29 benchmark 
optimization problems utilized in the CEC-2017 special sessions on real-parameter 
optimization. This test group consists of 30 test functions, of which there are 29 stable 
test functions and unstable test one. These test functions contain hybrid and composite 
functions. These functions are caught by rotating, shifting, expanding, and hybridizing 
uni-modal and multi-modal problems, comprising exceedingly difficult testbeds. These test 
functions mimic the complexity of a genuine search space with several local optimums and 
a variety of function forms in various regions. These test cases were created to evaluate the 
reliability of local optimum avoidance in addition to investigating the exploration ability 
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of optimization methods. A skilled optimization algorithm is broadly known to avert local 
optimal solutions and quickly reach the global optimum. Due to the difficulty of the test 
set’s challenges and the added difficulty they give to the evaluation of EHO’s performance, 
it was chosen to explore the reliability and performance degrees of EHO. More information 
regarding the CEC-2017 benchmark test problems can be located in (Awad et al. 2016). 
The proposed EHO algorithm was also assessed on a test set of four traditional real-
world engineering design optimization problems in order to add more challenge to the 
performance of EHO on real-world optimization tasks.

4.2 � Experimental setup

To corroborate a thorough assessment of the proposed EHO, its outcomes are set side by 
side with nine of the most esteemed optimization algorithms in the literature when tested on 
the aforementioned benchmark test groups. The rival comparable MH algorithms are: Salp 
Swarm Algorithm (SSA) (Mirjalili et al. 2017), Sine Cosine Algorithm (SCA) (Mirjalili 
2016), Rat Swarm Optimizer (RSO) (Dhiman et al. 2021), Moth-Flame Optimizer (MFO) 
(Mirjalili 2015), Horse herd Optimization Algorithm (HOA) (MiarNaeimi et  al. 2021), 
Capuchin Search Algorithm (Braik et  al. 2021), Ali Baba and the Forty Thieves (AFT) 
(Braik et  al. 2022b), Crow Search Algorithm (CSA) (Askarzadeh 2016), Bat Algorithm 
(BA) (Yang and Gandomi 2012), and Particle swarm optimization (PSO) (Kennedy and 
Eberhart 1995), Ant Colony Optimization (ACO) Dorigo et  al. (1996), and Covariance 
Matrix Adaptation Evolution Strategy (CMA-ES) Hansen and Ostermeier (1997). Table 2 
displays the control parameters and settings for the proposed EHO algorithm and other 
rival MH algorithms.

The parameter settings of the competing optimization algorithms are mentioned in 
Table 2, except CSA which uses the recommended settings (Askarzadeh 2016). EHO uses 
a similar initialization process to other comparative optimization methods. This is done 
in order to compare EHO and those rival algorithms fairly. According to information in 
the literature, there are 100 search agents (i.e., EHS = 100), and the maximum number 
of iterations used is equal to 10000 × n for each method. The bull rate ( Br ) for EHO is 
determined based on the initial population composition, which is experimentally 
determined to fall into one of the following ratios: 10:90, 20:80, or 30:70. In our 

Fig. 6   Example
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experiment, the 20:80 ratio is adopted, which indicates that 20% of the population consists 
of bulls, while the remaining 80% forms the harem.

Each optimization algorithm in Table 2 was assessed using thirty separate runs for each 
test optimization problem. Each algorithm has a maximum number of iterations as its stop 
condition. One may point out that while all algorithms are compared with identical floating 
point precision, the variations in the results are caused by the efficiency of the competing 
methods. Over the aforementioned number of independent runs, the best, mean, worst, and 
standard deviation (Stdv), are calculated and utilized as performance assessment indicators 

Table 2   Parameter setting of the proposed EHO algorithm and other MH competitors

Algorithm Parameter Value

All algorithms Population size 100
Number of iterations 10000× D

SSA Control parameter ( c
1
) 0.5

SCA Number of elites 2
RSO Control parameter (R) [1, 5]

Constant parameter (C) [0, 2]
MFO Logarithmic spiral 0.75

Convergence constant [− 1, − 2]
HOA h� , h� 0.9, 0.5

s� , s� 0.2, 0.1
d� , d� , d� 0.5, 0.2, 0.1
r� , r� , i� 0.1, 0.05, 0.3

CapSA Velocity control constants 1
Inertia parameter 0.7
Balance and elasticity factors 0.7, 9

AFT �
0
 , �

1
1.0, 2.0

�
0
 , �

1
0.1, 2.0

CSA flight length (fl) 2.0
Awareness probability(AP) 0.1

BA Pulse rate ( ri) 0.5
Loudness(Ai) 0.5
Frequency ( Qi) [0.0, 2]

PSO Inertia Weight (w) 1
Personal Learning Coefficient ( c

1
) 1.5

Global Learning Coefficient ( c
1
) 2.0

ACO Pheromone update constant = 20, initial pheromone value = 
1E-06, exploration constant = 1, local and global pheromone 
decay rates = 0.5 and 0.9, respectively, and visibility and 
pheromone sensitivities = 5 and 1, respectively.

100

CMA-ES � , � 4 + 3ln(n) , �∕2
cc

4

n+4

ccov
2

(n+
√
2)2

c� 4∕(n + 4)

d� c−1
�

+ 1
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for the accuracy and stability of the rival algorithms. These statistical assessment metrics 
were calculated in this study for each method and each test function as the top four best 
solutions. While the standard deviation results analysis attempts to reveal the steady 
performance of the algorithms during the separate runs, the mean measure was employed 
to assess the algorithms’ accuracy. The top outcomes for all test functions are emboldened 
in all tables to afford them more preeminence out of others. The performance of EHO 
in comparison to various optimization algorithms in CEC-2017 and engineering design 
benchmark optimization tasks is presented and discussed in the next subsections.

4.3 � Performance of EHO on CEC‑2017 test functions with problem size of 10 
variables

In this section, the performance of the proposed EHO was evaluated and compared to other 
comparative methods using CEC-2017 test functions with a problem size of 10 variables. 
The results of all competitors were summarized in terms of the best solution, mean of the 
results, the worst solution, and standard deviation in Table 3. It should be noted that the 
lower results reflect better performance, while the lower mean of results was highlighted 
using bold fonts. The results of this table highlight the superiority of the proposed EHO, 
where the EHO, SSA, and CapSA ranked first as each one obtained the best mean of the 
results in 10 test functions. The CSA was ranked second by achieving the best mean of the 
results in 7 test functions, while the AFT came in third rank by getting the best results in 6 
test functions. In addition, the BA and PSO were placed fourth with each obtaining the best 
results in 3 test functions, while the remaining four competitors were not able to achieve 
the best results for any of the test functions.

Reading the results demonstrated in Table 3 it can be seen that the EHO performs better 
than the other comparative algorithms in simple multimodal functions (C17-F4 to C17-F8, 
and C17-F10). While the EHO obtained the best mean of results in 5 out of 6 test functions. 
In addition, the EHO outperforms the other comparative algorithms in 2 out of 3 unimodal 
functions (C17-F1 to C17-F3). The performance of the EHO was very convincing by 
obtaining the best mean of results in three out of 10 in the hybrid function (C17-F11 to 
C17-F20). It should be noted that the CapSA algorithm performs better than the EHO and 
all other comparative algorithms in 5 of the hybrid functions. This leads to the conclusion 
that the EHO has the second-best performance compared to others in the hybrid functions. 
Finally, the results of the EHO were acceptable and very competitive with other methods in 
the 10 composition functions (C17-F21 to C17-F30).

The standard deviation (Stdv) results reflect the stability of the solution method, the 
lower Stdv values mean better stability. Reading the Stdv results recorded in Table 3, it 
can be seen that the EHO is more stable than the other comparative methods. Especially on 
C17-F2, C17-F3, C17-F4, C17-F6, C17-F8, C17-F11, and C17-23. The performance of the 
EHO is more robust when compared against other comparative algorithms in the remaining 
test functions.

Similarly, Friedman’s statistical test was used to prove the effectiveness of the proposed 
EHO against other comparative methods. This is illustrated in Table 4, which demonstrates 
the average rankings of all competitors according to the mean of the results summarized in 
Table 3. It is worth mentioning that the lower average rankings reflect better performance, 
while the significance level � is equal to 0.05. H0 is the null hypothesis which assumes that 
all competitors have the same performance, while H1 is the alternative hypothesis which 
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assumes that there is a significant difference between the performance of the competitors. 
From Table 4, it can be seen that SSA was ranked first by getting the lowest average rank-
ing equal to 3.38, while the CSA comes in second rank. The CapSA was placed third, 
while the AFT was ranked Fourth. The proposed EHO was placed in the fifth position, 
while the remaining six algorithms come in the next ranking positions. The p-value calcu-
lated using Friedman’s test is 1.276E−10, and this value is less than the significance level 
( �=0.05). This leads to reject the H0 and accept the H1.

Additionally, Holm’s test as a post-hoc procedure is used to confirm the differences 
between the performance of the controlled algorithm and the other comparative algorithms. 
It should be noted that the SSA is the controlled algorithm, this is due to the fact that 
the SSA was ranked first using Friedman’s test. From Table 5, it can be seen that there is 
a significant difference between the SSA and EIGHT of the competitors (i.e., RSO, BA, 
MFO, HOA, SCA, CMA-ES, ACO, and PSO). On the other hand, there is no significant 
difference between the SSA and the remaining comparative algorithms (i.e., CSA, AFT, 
CapSA, and EHO). This proves the effectiveness of the proposed EHO as an alternative 
algorithm in the optimization domain.

4.4 � Performance of EHO on CEC‑2017 test functions with problem size of 30 
variables

The performance of the proposed EHO was evaluated and compared to other comparative 
methods using CEC-2017 test functions with a problem size of 30. This is to evaluate 
the proposed algorithm using more complex optimization problems based on higher 
dimensionality. Table 6 shows the results of the EHO and other comparative algorithms 
in terms of the best solution, the mean, the worst solution, and the standard deviation. 
It should be noted that lower results mean better performance. Interestingly, it can be 
illustrated that the EHO was ranked first by obtaining the best mean of the results in 12 out 
of 29 test functions, while the CapSA ranked second by getting the best results in 10 test 
functions. The SSA was ranked third by achieving the best results in 7 datasets, while the 
AFT, CAS, and BA came in the next rankings positions by getting the best mean of results 

Table 4   Friedman’s statistical 
test of EHO and other 
comparative algorithms on CEC 
2017 with 10 variables in terms 
of mean results using Friedman’s 
test

Algorithm Rank

EHO 4.65517
SSA 3.51724
SCA 7.00000
RSO 11.24137
MFO 9.13793
HOA 8.72413
CapSA 3.98275
AFT 4.13793
CSA 3.79310
BA 8.81034
PSO 6.24137
ACO 12.55172
CMA-ES 7.20689
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in the 4, 3, and 2 test functions, respectively. The PSO and HOA are ranked seventh as each 
getting the best results in one test function. However, the SCA, RSO, and MFO are not able 
to achieve the best results for any of the test functions.

Reading the results presented in Table 6 more in-depth, we find that the performance 
of the EHO is better than the other competitors in simple multimodal functions (C17-F4 
to C17-F8, and C17-F10), where the EHO has obtained the best mean of the results in 
C17-F5 to C17-F8. Furthermore, the EHO performs better than the other comparative 
algorithms in composition functions (C17-F21 to C17-F30) by getting the best mean of the 
results in 5 out of 10 test functions. However, the results of the EHO were very competitive 
with others in the 10 composition functions (C17-F21 to C17-F30) and unimodal functions 
(C17-F1 to C17-F3).

To prove the effectiveness of the proposed EHO, Friedman’s statistical test was used 
to rank all competitors according to the mean of the results summarized in Table 6. The 
average rankings of all competitors were illustrated in Table 7, while the lower rankings 
mean better performance. It can be seen that CapSA obtained the first rank, while the SSA 
was placed in the second rank. The proposed EHO was ranked third, while the remaining 
seven algorithms came in the next ranking positions. The p-value calculated using 
Friedman’s test is equal to 1.265E−10, and this value is bigger than the significance level 
( �=0.05). This leads us to reject the H1 and accept the H0.

Thereafter, Holm’s procedure was used to confirm the outcomes of Friedman’s test. The 
CMA-ES is the controlled algorithm because it obtained the best average rankings using 
Friedman’s test. From Table 8, it can be demonstrated that there is a significant difference 
between the CMA-ES and nine of the other comparative algorithms (i.e., RSO, SCA, 
MFO, HOA, ACO, AFT, PSO, CSA, and BA). On the other hand, no significant differences 
between the controlled algorithm (CMA-ES) and the remaining algorithms (i.e., CapSA, 
SSA, and EHO). Clearly, no significant difference between the CMA-ES and the proposed 
EHO. This certainly confirms the efficiency of the proposed EHO as a powerful algorithm 
in the optimization domain.

Table 5   Holm’s results between 
the control method (SSA) and 
other comparative methods 
based on the mean results of all 
algorithms on CEC 2017 test 
functions with 10 variables

Algorithm �/Rank p-value Hypothesis

12 ACO 8.83369 1.012E−18 0.00416 Reject
11 RSO 7.55246 4.270E−14 0.00454 Reject
10 MFO 5.49576 3.890E−08 0.00500 Reject
9 BA 5.17546 2.273E−07 0.00555 Reject
8 HOA 5.09117 3.558E−07 0.00625 Reject
7 CMA-ES 3.60765 3.089E−04 0.00714 Reject
6 SCA 3.40535 6.607E−04 0.00833 Reject
5 PSO 2.66359 0.00773 0.01000 Reject
4 EHO 1.11264 0.26586 0.01250 Not reject
3 AFT 0.60689 0.54392 0.01666 Not reject
2 CapSA 0.45517 0.64898 0.02500 Not reject
1 CSA 0.26973 0.78736 0.05000 Not reject
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4.5 � Performance of EHO on CEC‑2017 test functions with problem size of 50 
variables

In this section, the effectiveness and robustness of the proposed EHO are compared against 
other competitors using large-scale CEC-2017 test functions with a problem size of 50. 
Table 9 demonstrates the results of all competitors in terms of the best solution, the mean, 
the worst solution, and the standard deviation. The lower values of the mean results are 
better, and the best mean of the results is highlighted using bold fonts. Reading the results 
recorded in Table  9, it can be seen the superiority of the proposed EHO, which came 
similar to the results of the competitors when tested on the same functions with a problem 
size of 10. However, the EHO, SSA, and CapSA ranked first with each obtaining the best 
mean of the results in 10 out of 29 test functions. The AFT and CSA obtained the second 
rank with each getting the best mean of results in three test functions. The PSO was placed 
third by getting the best results for the C17-F3 and C17-F7 test functions, while the BA 
obtained the best mean of results on the C17-F2 test function. Finally, the remaining four 

Table 7   Friedman’s statistical 
test of EHO and other 
comparative algorithms on CEC 
2017 with 30 variables in terms 
of mean results using Friedman’s 
test

Algorithm Rank

EHO 3.81034
SSA 4.44827
SCA 9.79310
RSO 11.62068
MFO 9.51724
HOA 9.48275
CapSA 4.70689
AFT 5.84482
CSA 5.48275
BA 8.27586
PSO 5.60344
ACO 9.24137
CMA-ES 3.17241

Table 8   Holm’s results between 
the control method (CMA-ES) 
and other comparative methods 
based on the mean results of all 
algorithms on CEC 2017 test 
functions with 30 variables

Rank Algorithm �/Rank p-value Hypothesis

12 RSO 8.26051 1.45E−16 0.00416 Reject
11 SCA 6.47354 9.57E−11 0.00454 Reject
10 MFO 6.20381 5.51E−10 0.00500 Reject
9 HOA 6.17009 6.82E−10 0.00555 Reject
8 ACO 5.93408 2.95E−09 0.00625 Reject
7 BA 4.99002 6.03E−07 0.00714 Reject
6 AFT 2.61301 0.00897 0.00833 Reject
5 PSO 2.37700 0.01745 0.01000 Reject
4 CSA 2.25899 0.02388 0.01250 Reject
3 CapSA 1.50037 0.13351 0.01666 Not reject
2 SSA 1.24750 0.21221 0.02500 Not reject
1 EHO 0.62375 0.53278 0.05000 Not reject
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comparative algorithms are not able to achieve the best mean of results for any of the test 
functions.

Furthermore, Table  9 shows that the proposed HEO performs better results when 
compared against other comparative algorithms in the 10 composition functions (C17-F21 
to C17-F30). The proposed algorithm obtains the best results for C17-F21, C17-F23, C17-
F24, C17-F29, and C17-F30. Furthermore, the performance of the proposed EHO is better 
than the other comparative methods in the 6 simple multimodal functions (C17-F4 to C17-
F8, and C17-F10) by getting the best results for C17-F5, C17-F7, and C17-F8. However, 
the results of the EHO are very competitive with other competitors in the composition 
functions (C17-F21 to C17-F30) and unimodal functions (C17-F1 to C17-F3).

Friedman’s statistical test is used to prove the superiority of the proposed EHO by 
calculating the average ranking of the EHO against other competitors based on the mean 
of the results given in Table  9. The average rankings of all competitors are plotted in 
Table 10. The lower rankings reflect better performance. From Table 10, it can be observed 
that the CMA-ES was ranked first, while SSA was placed in the second rank. The proposed 
EHO achieved the third ranking, while PSO got the fourth-ranking. The nine remaining 
algorithms came in the next ranking positions. The p-value calculated using Friedman’s 
test is 9.588E−11, and this value is less than the significance level ( �=0.05). This leads us 
to reject the null hypothesis H0 and accept the alternative hypothesis H1.

Later on, Holm’s procedure was utilized to confirm the difference between the behavior 
of the controlled algorithm and other comparative algorithms. It should be noted that the 
CapSA is the controlled algorithm according to the results of Friedman’s test. Table  11 
reported the results of Holm’s procedure. Clearly, there is a significant difference between 
CMA-ES and nine of the other methods (i.e., RSO, SCA, MFO, ACO, HOA, AFT, CSA, 
PSO, and BA). On the other hand, no significant difference between the behavior of the 
CapSA and the remaining methods (i.e., CapSA, EHO, and SSA). Finally, we can conclude 
that the performance of the proposed EHO is similar to some of the comparative algorithms 
and better than others. This proves the efficiency of the proposed EHO as a new alternative 
technique in the optimization domain.

4.6 � EHO Convergence analysis

This section study and analyze the convergence behavior of the proposed EHO compared 
against some of the other comparative algorithms using the CEC-2017 test functions. The 
distribution of the results for these competitors during the search process is visualized in 
Figure 7. Also, the convergence curves of some competitors towards the optimal solution 
are plotted in Figure  8. It should be noted that seven of the test functions with three 
different problem dimensions (i.e., dim=10, dim=30, and dim=50) are considered in these 
figures to study the test functions with different search space complexities. This includes 
C17-F1 as unimodal; C17-F5 and C17-F10 as multimodal; C17-F15 and C17-F20 as 
hybrid functions; and C17-F22 and C17-F30 as composition functions.

Figure 7 demonstrates the notched boxplots used to plot the distribution of the results 
for the proposed EHO against the other competitors on seven test functions with different 
problem dimensionality. The x-axis represents the algorithm, while the y-axis represents 
the objective function values. It should be noted that the comparative methods on each test 
function were running 30 times. In the plots, the small gap between the best results, the 
median, and the worst results reflects the stability of the algorithm. From Figure 7, it can 
be clearly seen that no gap between the results of the proposed EHO on C17-F1, C17-F15, 
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C17-F25, and C17-F30. In other words, the proposed EHO was able to achieve almost the 
same results at all times of the experiment. In addition, the gap in the results of the EHO 
widens as the dimension of the problem increases, as shown in the plot of C17-F20. The 
behavior of the proposed EHO seems stable as shown in the plot of C17-F5, and thus leads 
to achieving the best results. The behavior of the proposed EHO seems similar to other 
competitors on C17-F10, but unfortunately, the results of some other competitors are better 
than the proposed EHO. Finally, it can be observed that the performance of the proposed 
EHO appears to be stable regardless of the dimensions of the problem compared to other 
competitors in most of the cases studied, and this proves the efficiency of the proposed 
EHO.

Similarly, the convergence behavior of the proposed EHO compared against the other 
comparative methods is shown in Figure 8. The x-axis represents the iterations, while the 
y-axis represents the objective function values. The best solution obtained by running each 
algorithm on each test function 30 times was plotted in this figure. The preferable opti-
mization algorithm is the one that presents rapid convergence at the early stages of the 

Table 10   Friedman’s statistical 
test of EHO and other 
comparative algorithms on CEC 
2017 with 50 variables in terms 
of mean results using Friedman’s 
test

Algorithm Rank

EHO 4.82758
SSA 4.12068
SCA 10.17241
RSO 11.65517
MFO 9.75862
HOA 9.06896
CapSA 4.32758
AFT 5.94827
CSA 5.77586
BA 8.50000
PSO 5.39655
ACO 9.20689
CMA-ES 2.24137

Table 11   Holm’s results between 
the control method (CMA-ES) 
and other comparative methods 
based on the mean results of all 
algorithms on CEC 2017 test 
functions with 50 variables

Rank Algorithm �/Rank p-value Hypothesis

12 RSO 9.20457 3.43E−20 0.00416 Reject
11 SCA 7.75476 8.85E−15 0.00454 Reject
10 MFO 7.35017 1.97E−13 0.00500 Reject
9 ACO 6.81070 9.71E−12 0.00555 Reject
8 HOA 6.67584 2.45E−11 0.00625 Reject
7 BA 6.11952 9.38E−10 0.00714 Reject
6 AFT 3.62451 2.89E−04 0.00833 Reject
5 CSA 3.45592 5.48E−04 0.01000 Reject
4 PSO 3.08504 0.00203 0.01250 Reject
3 EHO 2.52872 0.01144 0.01666 Not reject
2 CapSA 2.03984 0.04136 0.02500 Not reject
1 SSA 1.83754 0.06612 0.05000 Not reject
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search process, and the improvements continue till the last stages of the search process. 
In other words, the optimization algorithm is able to make the right balance between the 
exploration and exploitation abilities during the search process and thus achieve satisfac-
tory results. Reading Figure 8 one more time, it can be seen that the convergence curves 
of all algorithms on all test functions are stabilized before 2000 iterations. However, the 
convergence curve of the proposed EHO was better than the other comparative algorithms 
on C17-F5 and C17-F20. In addition, the convergence curve of the proposed EHO was 
similar to some of the other comparative algorithms in the remaining test functions studied 
in Figure 8. The curve of the RSO algorithm was the worst compared to other comparative 
algorithms, due to the fact the RSO has shortcomings in exploration ability and thus gets 
stuck in local optima.

4.7 � Performance of EHO on engineering problems

The performance of EHO in tackling real-world problems, particularly constrained 
optimization problems, is divulged by its validity on popular traditional engineering design 
problems. Here, EHO is utilized to address four well-researched engineering designs: the 
welded beam design problem, the pressure vessel design problem, the tension/compression 
spring design problem, and the speed reducer design problem. These problems have a 
relatively wide range of constraints that need to employ a constraint-handling strategy to 
optimize them.

4.7.1 � Constraint handling

To deal with the constraints of the aforementioned engineering design problems, EHO was 
adapted with a simple method of dealing with constraints called static penalty handling 
method (Yang 2010a). This is applied to have a fair comparison between EHO and the 
comparative methods used in this work. The penalty function of this method can be 
presented as shown below:

where oj and li are two positive penalty constants, Uj(z) and ti(z) are constraint functions, 
and � (z) implements the objective function. The values of � and � were set to 2 and 1, 
respectively.

This constraint method stands out for its ease of use and minimal computational cost. 
It is quite useful to tackle design problems with dominating infeasible areas since it does 
not require knowledge from infeasible solution information. This method determines the 
static penalty function’s penalty value for each solution, which can help the search agents 
of optimization algorithms find the right solution faster. It is important to note that the 
search agents and iterations used to solve each of the engineering problems below were the 
same as those used to solve the preceding test mathematical functions.

(7)� (z) = f (z) ±

[
m∑
i=1

li ⋅ max(0, ti(z))
� +

n∑
j=1

oj
|||Uj(z)

|||
�

]

Fig. 7   Boxplots of the objective function results achieved by the proposed EHO and some other compara-
tive algorithms. Boxplots of the objective function results achieved by the proposed EHO and other com-
parative algorithms.

▸
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The parameters that EHO uses are presented above. The literature has a number of meta-
heuristic optimization techniques that have previously been used to address these design 
optimization problems. As demonstrated below, the outcomes of EHO are contrasted with 
those of other promising meta-heuristic algorithms.

4.7.2 � Welded beam design problem

The design of this problem is a cantilever beam welded at one end and subjected to a spot 
load at the other end. The goal of this problem is to design a welded beam for the construc-
tion shown in Figure 9 (Wang et al. 2014) to arrive at the lowest fabrication cost.

The welded beam structure comprises a beam, A, and a welding required to join the 
beam, A, to the member, B. The following restrictions apply to this problem: shear stress 
( � ), bending stress ( � ), buckling load ( Pc ), and an end deflection of the beam ( � ). In 
order to solve this optimization problem, there is a necessity to track down the possi-
ble combination of the following structural parameters of the welded beam design: the 
thickness of the weld (h), the length of the clamped bar (l), the height of the bar (t) and 
the thickness of the bar (b).

The following vector may be used to represent these parameters: x⃗ = [x1, x2, x3, x4] , 
where x1, x2, x3 and x4 represent h, l, t and b, respectively. The cost function for this opti-
mization problem has the following mathematical formula:

Consider x⃗ = [x1x2x3x4] = [hltb]

Minimize   f (x⃗) = 1.10471x2
1
x2 + 0.04811x3x4(14.0 + x2)

Subject to the following restrictions,

Some more elements of this design problem can identified as follows:

g1(x⃗) = 𝜏(x⃗) − 𝜏max ≤ 0

g2(x⃗) = 𝜎(x⃗) − 𝜎max ≤ 0

g3(x⃗) = x1 − x4 ≤ 0

g4(x⃗) = 1.10471x2
1
+ 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0

g5(x⃗) = 0.125 − x1 ≤ 0

g6(x⃗) = 𝛿(x⃗) − 𝛿max ≤ 0

g7(x⃗) = P − Pc(x⃗) ≤ 0

Fig. 8   The convergence characteristic curves of the proposed EHO and some other comparative algorithms 
for C17-F1, C17-F5, C17-F10, C17-F15, C17-F20, C17-F25, and C17-F13. The convergence characteristic 
curves of the proposed EHO and other comparative algorithms for C17-F1, C17-F5, C17-F10, C17-F15, 
C17-F20, C17-F25, and C17-F13

▸
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where P = 6000lb , �max = 0.25inch, L = 14in, G = 12 ∗ 106 psi, E = 30 ∗ 106 psi, 
�max = 30000 psi, �max = 13600psi.

The ranges of the parameters h, l, t and b were chosen to be correspondingly 
0.1 ≤ x1 ≤ 2 , 0.1 ≤ x2 ≤ 10 , 0.1 ≤ x3 ≤ 10 , and 0.1 ≤ x4 ≤ 2 , respectively.

Table 12 compares the EHO’s best solutions to those produced by other comparative 
optimization algorithms.

The findings presented in Table 12 point out that the proposed EHO achieves the best 
design for the welded beam structure by locating the optimal cost of around 1.724852, 
which is the least cost among all the algorithms considered. Table  13 compares the 
statistical performance of EHO and other optimization methods after 30 separate runs 
with respect to the best, worst, average, and standard deviation results.

The outcomes of Table  13 point out that EHO outperforms other algorithms with 
the lowest average values in comparison to other rival algorithms. The outcomes of 
this table also speak that EHO once more behaves much better in terms of standard 
deviation values as well as determining the lower scores for worst and best solutions in 
comparison to others. This demonstrates EHO’s level of reliability and competence in 
handling such design problems.

4.7.3 � Pressure Vessel Design Problem

This problem is one of the often used benchmark tests for a structural design that uses 
both continuous and discrete variables (Kannan and Kramer 1994). The objective of 
this problem is to lower the overall cost of materials, construction, and welding of the 
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Fig. 9   A welded beam structure’s 
design (Wang et al. 2014)
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cylindrical pressure vessel with hemispherical heads on both ends, as illustrated in 
Figure 10.

The four optimization design variables for this problem are as follows: inner radius 
(R), length of the cylindrical section of the vessel without glancing at the head (L), the 
thickness of the shell (Ts ) and head (Th ). These variables can be drafted in a vector as 
follows: x⃗ = [x1, x2, x3, x4] , where x1, x2, x3 and x4 stand for T s , T h , R and L, respectively. 
The variables L and R are continuous variables, while T h and T s are integer values that 
are multiples of 0.0625 inch. The following is the mathematical formula for this design 
problem:

Consider x⃗ = [x1x2x3x4] = [TsThRL]

Minimize the function: f (x⃗) = 0.6224x1x3x4 + 1.7781x2x
2
3
+ 3.1661x2

1
x4 + 19.84x2

1
x3

This optimization problem is subject to four constraints as described below,

Table 12   Optimization results of the welded beam design problem arrived at by EHO and other 
optimization methods

Algorithm Optimal values for variables Optimum cost

h l t b

EHO 0.205730 3.470489 9.036624 0.205730 1.724852
SSA 0.204956 3.487209 9.036625 0.205730 1.725906
SCA 0.198852 3.606937 9.135106 0.205405 1.746999
RSO 0.178952 4.365615 9.105266 0.206433 1.815225
MFO 0.205730 3.470489 9.036624 0.205730 1.724852
HOA 0.261132 3.185937 7.846510 0.286110 2.096170
CapSA 0.205730 3.470489 9.036624 0.205730 1.724852
AFT 0.205730 3.470489 9.036624 0.205730 1.724852
CSA 0.205730 3.470489 9.036624 0.205730 1.724852
BA 0.210588 3.207379 9.503676 0.210662 1.814532
PSO 0.205730 3.470489 9.036624 0.205730 1.724852

Table 13   Statistical findings 
of EHO and other optimization 
techniques for the welded beam 
design problem

Algorithm Best Ave Worst Std

EHO 1.724852 1.724852 1.724852 0.0
SSA 1.725906 1.813710 2.159448 0.095777
SCA 1.746999 1.835647 1.911215 0.033400
RSO 1.815225 2.971296 4.714110 0.833561
MFO 1.724852 1.726652 1.777797 0.009661
HOA 2.096170 2.412682 2.621591 0.125491
CapSA 1.724852 1.724852 1.724852 0.0
AFT 1.724852 1.724852 1.724852 0.0
CSA 1.724852 1.724852 1.724852 0.0
BA 1.814532 2.376425 3.044044 0.345930
PSO 1.724852 1.725017 1.729395 0.000828
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where 0 ≤ x1 ≤ 99 ,     0 ≤ x2 ≤ 99 ,    10 ≤ x3 ≤ 200     and    10 ≤ x4 ≤ 200.
The problem of pressure vessel design is one of the most popular optimization 

problems that researchers have utilized in various considerations to verify the 
effectiveness of their evolved optimization algorithms. Table 14 displays a comparison 
of the optimum outcomes attained by EHO and other optimization algorithms for the 
pressure vessel design problem.

As per the optimization cost findings of the pressure vessel design problem in Table 14, 
EHO was capable of identifying the best design with the lowest possible cost, where it 
reported the lowest cost of 5885.332774. A comparison of the statistical outcomes between 
EHO and other rival optimization methods for the pressure vessel design problem over 30 
separate runs is presented in Table 15.

It may be observed from Table 15 that EHO outperforms other competing algorithms 
and provides competitive results in terms of Ave and Std values. This demonstrates how 
effective and reliable the proposed EHO is in solving this design optimization problem.

4.7.4 � Tension/compression spring design problem

Another well-known benchmark problem is the design of a tension/compression spring 
with a schematic diagram given in Figure 11.

The reduction of the weight of a tension/compression spring design is the aim of this 
optimization problem. There are certain constraints on this problem, such as shear stress, 
surge frequency, and minimum deflection. The diameter of the wire (d), the diameter of 
the mean coil (D), and the number of active coils (N) are the parameters in this design 
problem.

The parameters for this problem were implemented by a vector as x⃗ = [x1, x2, x3] , 
where x1, x2 and x3 stand for the parameters d, D, and N, respectively. As stated before, the 
purpose of this problem is to reduce the weight of the objective f(x), which is subject to the 
aforementioned constraints and limits on outside diameter and on design variables. This 
optimization problem’s mathematical formula is as follows:

Consider x⃗ = [x1x2x3] = [dDN]

g1(x⃗) = −x1 + 0.0193x3 ≤ 0

g2(x⃗) = −x2 + 0.00954x3 ≤ 0

g3(x⃗) = −𝜋x2
3
x4 −

4

3
𝜋x3

3
+ 1296000 ≤ 0

g4(x⃗) = x4 − 240 ≤ 0

Fig. 10   An illustration of the 
cross-section of the pressure ves-
sel design problem (Kannan and 
Kramer 1994)
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Minimize the objective function: f (x⃗) = (x3 + 2)x2x
2
1

This problem is subject to the constraints given next:

Table 14   Optimization results of the pressure vessel design problem arrived at by EHO and other 
optimization methods

Algorithm Optimal values for variables Optimum cost

Ts Th R L

EHO 12.450698 6.154387 40.319619 200.0 5885.332774
SSA 13.130667 6.490493 42.521569 171.463029 5962.017388
SCA 12.619034 6.948016 40.545459 200.0 6144.202715
RSO 15.846077 8.795875 50.877054 92.249393 6699.832328
MFO 12.450698 6.154387 40.319619 200.0 5885.332774
HOA 12.826083 10.299615 40.338953 200.0 6809.055218
CapSA 12.450698 6.154387 40.319619 200.0 5885.332775
AFT 12.450698 6.154387 40.319619 200.0 5885.332774
CSA 12.450698 6.154387 40.319619 200.0 5885.332774
BA 12.489505 6.224319 40.436822 198.378908 5899.935729
PSO 13.050863 6.451048 42.263157 174.606198 5952.590524

Table 15   Statistical findings of EHO and other optimization techniques for the pressure vessel design 
problem

Algorithm Best Ave Worst Std

EHO 5885.332774 5927.971008 6157.044368 63.561135
SSA 5962.017388 6301.618875 7022.753584 284.376653
SCA 6144.202715 6509.839344 7304.124699 275.806688
RSO 6699.832328 12764.362314 30114.771357 5902.220141
MFO 5885.332774 6249.813837 7319.000702 476.859095
HOA 6809.055218 7441.274848 7982.363774 326.659771
CapSA 5885.332775 5885.332779 5885.332798 0.000005
AFT 5885.332774 5885.332777 5885.332822 0.000010
CSA 5885.332774 5885.332774 5885.332774 0.0
BA 5899.935729 8954.754011 26356.550284 5278.001829
PSO 5952.590524 6313.608248 6876.143547 226.234030

Fig. 11   An illustration of the schematic structural diagram of a tension/compression spring (Coello 2000)
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where 0.05 ≤ x1 ≤ 2.0 , 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15.0.
Numerous meta-heuristic techniques were extensively used to address the tension/

compression spring design problem. Table 16 compares the objective cost and design 
variable values for the proposed EHO and other competing algorithms for the tension/
compression spring design problem.

The outcomes shown in Table  16 clearly demonstrate that EHO is able to identify 
the best solution, 0.012665, when compared to the costs determined by other methods 
for this design problem. Table 17 presents a summary of the statistical findings of this 
design problem produced by EHO and other rival methods.

The findings in Table 17 show that EHO outperforms other optimization techniques 
by offering better outcomes in terms of best, average, worst, and standard deviation. 
This confirms that EHO can be trusted to solve this design problem. In comparison to 
other algorithms like SSA, SCA, and RSO, the statistical findings demonstrate that EHO 
had extremely competitive statistical outcomes even with fewer iterations. In a nutshell, 
the general performance of the proposed EHO in optimizing the above three engineering 
problems attests to the reliability and efficiency of EHO to solve other complex real-
world applications.

g1(x⃗) = 1 −
x3
2
x3

71785x4
1

≤ 0

g2(x⃗) =
4x2

2
− x1x2

12566(x2x
3
1
− x4

1
)
+

1

5108x2
1

− 1 ≤ 0

g3(x⃗) = 1 −
140.45x1

x2
2
x3

≤ 0

g4(x⃗) =
x1 + x2

1.5
− 1 ≤ 0

Table 16   Optimization results of 
the tension/compression spring 
design problem arrived at by 
EHO and other optimization 
methods

Algorithm Optimum variables Optimum cost

d D N

EHO 0.051746 0.358097 11.208557 0.012665
SSA 0.051000 0.340340 12.319017 0.012676
SCA 0.051000 0.339954 12.371233 0.012707
RSO 0.051000 0.339873 12.452098 0.012776
MFO 0.051007 0.340541 12.304432 0.012674
HOA 0.054712 0.431616 8.033498 0.012963
CapSA 0.051689 0.356716 11.289055 0.012665
AFT 0.051695 0.356866 11.280263 0.012665
CSA 0.051689 0.356718 11.288966 0.012665
BA 0.051000 0.337573 12.633033 0.012848
PSO 0.051000 0.340366 12.316182 0.012674
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4.7.5 � Speed reducer design problem

The speed reducer design, with the structure presented in Figure 12, is another classical 
real-world engineering design problem frequently employed as a benchmark case for evalu-
ating various optimization algorithms. This is a challenging benchmark problem as it is 
associated with seven variables that are required to model the problem (Gandomi and Yang 
2011).

The weight to be reduced in this design problem is subject to four constraints described 
as follows: bending stress of the gear teeth, surface stress, transverse shaft deflections, and 
stresses in the shafts (Mezura-Montes and Coello 2005).

These are the seven design variables used in this problem: b, m, z, l1 , l2 , d1 , and d2 . 
These variables are, in order, specified as follows: face width, the module of teeth, number 
of teeth in the pinion, length of the first shaft between bearings, length of the second shaft 
between bearings, first shaft diameter, and second shaft diameter. These variables are 
denoted by the vector x⃗ = [x1x2x3x4x5x6x7] for solving this optimization problem. This 
is an example of a mixed-integer programming problem. The third variable, the pinion’s 
number of teeth (z), only takes integer values. All other variables (apart from x3 ) are 
therefore continuous. This problem’s mathematical formulation is as follows:

Table 17   Statistical findings 
of EHO and other optimization 
techniques for the tension/
compression spring design 
problem

Algorithm Best Ave Worst Std

EHO 0.012665 0.012804 0.014093 0.000359
SSA 0.012676 0.012726 0.013009 0.000080
SCA 0.012707 0.346189 0.013064 0.067186
RSO 0.012776 − .998472 − .463146 0.369645
MFO 0.012674 0.012698 0.013368 0.000127
HOA 0.012963 0.013555 0.014310 0.000329
CapSA 0.012665 0.012665 0.012665 0.0
AFT 0.012665 0.012665 0.012666 0.0
CSA 0.012665 0.012665 0.012665 0.0
BA 0.012848 0.013756 0.017879 0.627909
PSO 0.012674 0.013322 0.015055 0.000651

Fig. 12   An illustration of a speed reducer’s structural design (Gandomi and Yang 2011)
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Consider x⃗ = [ x1 x2 x3 x4 x2 x3 x4 ] = [b m z l1 l2 d1 d2]

Minimize   
f (x⃗) = 0.7854x1x22(3.3333x

2
3 + 14.9334x3 − 43.0934)

− 1.508x1(x26 + x27) + 7.4777(x36 + x37) + 0.7854(x4x26 + x5x27)
Subject to the following constraints,

where the scope of the 7 design variables b,m, z, l1, l2, d1 and d2 were presented 
as 2.6 ≤ x1 ≤ 3.6 , 0.7 ≤ x2 ≤ 0.8 , 17 ≤ x3 ≤ 28 , 7.3 ≤ x4 ≤ 8.3 , 7.3 ≤ x5 ≤ 8.3 , 
2.9 ≤ x6 ≤ 3.9 and 5.0 ≤ x4 ≤ 5.5 , respectively.

A comparison of the best solutions found by EHO and other comparative optimization 
techniques for the speed reducer design problem is shown in Table 18.

As presented in Table  18, the proposed EHO is superior to other optimization 
methods by getting the minimum cost for the speed reducer design problem of 
approximately 2994.471066. A summary of the statistical results of EHO and the 
other ten optimization algorithms for the speed reducer design problem is displayed in 
Table 19.

As per the findings in Table 19, EHO and PSO achieve the best optimal solutions among 
other competing optimizers. This makes it clear that EHO offers better outcomes in terms of 
best, average, worst, and standard deviation than other comparative algorithms.

In contrast to other well-known optimization algorithms, the proposed EHO has 
demonstrated its effectiveness and reliability in tackling four real-world engineering design 
problems. In terms of both the best cost outcomes and the standard deviation values, this 
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approach performs better than several well-known optimization techniques like SSA 
and SCA. As a result, one may draw the conclusion that EHO is a suitable optimization 
technique and that it has a lot of potential for solving real-world contemporary problems. In 
conclusion, the overall effectiveness of the proposed meta-heuristic algorithm in solving the 
aforementioned four classical engineering problems belies its credibility and constancy, and 
it is undoubtedly a good candidate to address a variety of complicated real-world situations.

Table 18   Optimization results of the speed reducer design problem arrived at by EHO and other 
optimization methods

Algorithm Optimum variables Optimum cost

b m z l
1

l
2

d
1

d
2

EHO 3.5 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
SSA 3.500007 0.7 17 7.466124 7.874452 3.355203 5.286710 3000.743626
SCA 3.556508 0.7 17 7.3 7.876181 3.371898 5.310165 3040.757565
RSO 3.594892 0.701727 19.020862 8.170429 8.069855 3.442269 5.427427 3550.987175
MFO 3.5 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
HOA 3.6 0.719534 19.31277 7.902659 7.837592 3.384164 5.365908 3654.010525
CapSA 3.5 0.7 17 7.300000 7.715320 3.350215 5.286654 2994.471066
AFT 3.5 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
CSA 3.5 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066
BA 3.500016 0.7 17 7.322222 8.098574 3.354054 5.287585 3004.660185
PSO 3.5 0.7 17 7.3 7.715320 3.350215 5.286654 2994.471066

Table 19   Statistical findings of EHO and other optimization techniques for the speed reducer design 
problem

Algorithm Best Ave Worst Std

EHO 2994.471066 2994.471066 2994.471066 0.0
SSA 3000.743626 3029.748014 3082.549617 21.996845
SCA 3040.757565 3087.875229 3122.388908 22.548891
RSO 3550.987175 4848.869342 8867.431730 5463.178241
MFO 2994.471066 2994.471066 2994.471066 0.0
HOA 3654.010525 6022.475663 6963.424538 7406.699779
CapSA 2994.471066 2994.471066 2994.471067 0.0
AFT 2994.471066 2994.471066 2994.471074 0.000001
CSA 2994.471066 2996.878120 3033.748486 7.739427
BA 3004.660185 3161.599891 5265.691189 567.688135
PSO 2994.471066 2994.471066 2994.471066 0.0
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5 � Conclusion and future work

This paper introduces the Elk Herd Optimizer (EHO), a novel swarm-based optimization 
algorithm inspired by the elk herd breeding cycle, aimed at solving a wide range of 
optimization problems. EHO encompasses a structured optimization loop comprising three 
key phases: rutting season, calving season, and selection season. These phases emulate the 
natural behavior of elk herds and facilitate the generation of improved solutions iteratively. 
During the rutting season, EHO divides the population into groups, each led by a dominant 
elk and accompanied by followers. The number of followers is determined based on the 
leader’s fitness, ensuring the emergence of stronger groups. In the calving season, these 
groups collaborate to find new solutions, simulating the reproduction process among 
elks. Offspring inherit traits from their parents, with occasional random traits from other 
elks, fostering diversity. The selection season merges all elk families, including leaders, 
followers, and offspring, and employs a � + �-survivor selection scheme to choose the 
fittest individuals.

EHO’s efficacy is rigorously evaluated on 29 benchmark test functions, with problem 
sizes of 10, 30, and 50 variables, as well as on four real-world engineering design 
optimization problems: welded beam design, pressure vessel design, tension/compression 
spring design, and speed reducer design. Comparative analysis against nine state-of-the-
art optimization algorithms, including SSA, SCA, RSO, MFO, HOA, CapSA, AFT, ACO, 
CSA, CMA-ES, and BA, reveals EHO’s superior performance. Statistical tests, such as the 
Friedman test and Holm post-hoc test, validate EHO’s dominance.

The results demonstrate that EHO consistently outperforms competitors across 
various problem types, including unimodal, simple multimodal, and hybrid benchmark 
functions. Furthermore, its competitive performance on composite benchmark functions 
highlights its versatility. When applied to engineering design problems, EHO consistently 
achieves superior outcomes, showcasing its effectiveness in real-world applications. This 
substantiates EHO’s ability to strike a balance between exploration and exploitation, 
making it a potent optimization tool. However, it’s important to acknowledge certain 
limitations. EHO’s performance on constrained optimization problems is promising 
but requires further investigation, particularly when handling intricate constraints in 
real-world applications. Additionally, while EHO shows strong potential, its scalability 
and adaptability to very high-dimensional problems may warrant further exploration. 
Nevertheless, the overall findings underscore EHO’s value as a reliable and efficient 
optimization algorithm for a wide range of practical scenarios.

As a novel nature-inspired swarm-based optimization algorithm, EHO has promising 
opportunities for future development. Some of these possible future directions can be 
summarized as follows:

Modified versions of EHO: Due to the different search space types of various 
optimization problems such as discrete, continuous, binary, structured, etc. In the initial 
version of EHO, the operations are designed to tackle an optimization problem with 
a continuous domain. In the future, these operations should be modified to cope with 
problem search space requirements.
Multi-objective version of EHO: There are several optimization problems with multi-
objective functions. The need for a new version of EHO is essential to deal with Pareto 
concepts of multi-objective optimization.
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Real-world optimization application: Since the majority of the real-world optimization 
problems are either NP-hard or NP-complete. These types of optimization problems are 
mostly constrained, non-linear, non-convex, and combinatorics. Therefore, a new ver-
sion of EHO is required to connect the problem search space with the EHO operations 
tightly, such as hybrid versions.
Parameter-free EHO: The optimization research communities nowadays tend to build 
simple and easy-to-use MH algorithms due to the fact that the optimal solution can be 
utilized anywhere, and naive users can use it without proper knowledge. Therefore, 
it is highly recommended in the next study of EHO to find a proper parameter tuning 
mechanism to build a parameter-free EHO where the number of families, B, can be set 
automatically based on the population size.
Bull and harem selections of EHO: In EHO, the rutting season is set to select the bulls 
and assign the remaining elks as harems to the bulls’ families based on their fitness 
value using roulette-wheel selection. Indeed, the viability of different alternative 
mechanisms can be investigated in the future such as using clustering algorithms or 
using rank-based/ exponential-based selection mechanisms instead of roulette-wheel 
selection to avoid its shortcomings.
Survivor Selection of EHO: In most previous MH swarm-based methods, the whole 
parent population will be replaced by the offspring population in the next generation. 
To be more realistic and to cope with the natural phenomenon, the EHO has adopted 
the ( � + � ) survivor selection mechanism. Therefore, other survivor selection methods 
can be further investigated such as elitism, round-robin tournament, ( �, �)-selection, etc.
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