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Abstract
The influx of deep learning (DL) techniques into the field of survival analysis in recent 
years has led to substantial methodological progress; for instance, learning from unstruc-
tured or high-dimensional data such as images, text or omics data. In this work, we con-
duct a comprehensive systematic review of DL-based methods for time-to-event analysis, 
characterizing them according to both survival- and DL-related attributes. In summary, 
the reviewed methods often address only a small subset of tasks relevant to time-to-event 
data—e.g., single-risk right-censored data—and neglect to incorporate more complex set-
tings. Our findings are summarized in an editable, open-source, interactive table: https:// 
survi val- org. github. io/ DL4Su rvival. As this research area is advancing rapidly, we encour-
age community contribution in order to keep this database up to date.

Keywords Survival analysis · Time-to-event analysis · Deep learning · Review

1 Introduction

Survival analysis (SA), or equivalently time-to-event analysis, comprises a set of tech-
niques enabling the unbiased estimation of the distribution of outcome variables that are 
partially censored, truncated, or both. Usually, the outcome is given by the time until the 
occurrence of an event such as death, system failure, or time to remission.

Non-parametric methods like the Kaplan–Meier estimator (Kaplan and Meier 1958) are 
baseline tools still used today, yet semi-parametric methods received the most attention 
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historically, in particular the Cox proportional hazards regression model (Cox 1972) and 
its extensions. Since the early 2000s, Machine Learning (ML) methods have been success-
fully adapted to survival tasks: e.g., Random Survival Forest (Ishwaran et  al. 2008) and 
boosting-based methods (Binder and Schumacher 2008). These methods often outperform 
traditional statistical models in terms of predictive power (Steele et al. 2018) (see Wang 
et al. (2019) and Sonabend (2021) for detailed discussions).

Neural networks (NNs) had already been applied to survival tasks in the 1990s (Faraggi 
and Simon 1995; Brown et al. 1997), but were shallow and restricted to the most standard 
survival settings. Most modern Deep Learning (DL) survival models have been developed 
only since the late 2010s, as indicated by the publication year of the methods we review; 
see Main Table (https:// survi val- org. github. io/ DL4Su rvival).

Despite the large number of DL-based survival methods proposed in recent years, to the 
best of our knowledge, there is no general systematic review of these methods. Schwarzer 
et al. (2000) summarize misuses in early applications of NNs to clinical data. Lee and Lim 
(2019) and Deepa and Gunavathi (2022) do not explicitly focus on DL-based survival 
methods, do not address any survival-related specifics of DL, and are restricted to use cases 
involving genomics data and cancer survival prediction, respectively. The glioma-focused 
survey by Wijethilake (2021) as well as the benchmarking study by Zhang et  al. (2022) 
consider only few NN-based methods and thus do not provide a general overview of DL 
methods for time-to-event data either.

Motivated by the above, in this paper we provide a comprehensive review of currently 
available DL-based survival methods, addressing theoretical dimensions, such as model 
class and NN architecture, as well as data-related aspects, such as outcome types and fea-
ture-related aspects (see Sect. 3 for definitions). Table 1 gives an overview of the dimen-
sions we consider.

This paper is structured as follows. Section  2 introduces SA notation and concepts 
(Sect. 2.1), common data-related aspects of survival tasks (Sect. 2.2), as well as estima-
tion of survival models (Sect. 2.3). Section 3 outlines the review methodology (Sect. 3.1), 
explains general NN architecture choices in SA (Sect.  3.2), and eventually provides a 
detailed, comprehensive overview of all methods reviewed, covering estimation and net-
work architecture (Sect. 3.3), and supported survival tasks in terms of outcome types and 
feature-related aspects (Sect.  3.4); findings are summarized in the Main Table. Finally, 
Sect. 4 concludes, discusses limitations, and provides an outlook.

2  Theoretical concepts and data‑related aspects

In this section, we first introduce quantities that are targets of estimation in SA and charac-
terize the distribution of a random variable T > 0 . Later, we describe censoring and trunca-
tion, which need to be accounted for in order to estimate these quantities (see Sect. 2.2).

2.1  Targets of estimation

Initially, assume that T is continuous. Let fT (t) and FT (t) ∶= P(T ≤ t) be its density and 
cumulative distribution function, respectively. Then, the survival function of T is defined as

i.e., the probability of surviving beyond t. The hazard rate,

ST (t) ∶= P(T > t) = 1 − FT (t),

https://survival-org.github.io/DL4Survival
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is the instantaneous risk of the event occurring given it has not yet occurred at time t. 
Finally, the cumulative hazard, defined as

is often used as an intermediate step when calculating the survival probability.
In the above, T was assumed to be continuous. However, sometimes the time scale is 

discrete by nature (e.g., grade level at the time of school dropout) or a continuous time 
scale is discretized into intervals. With discrete event times, the discrete hazard

is the probability of the event occurring in the time interval t conditional upon the individ-
ual still being alive at the beginning of t (cf. Tutz et al. (2016) for details). This gives rise to 
the discrete-time survival probability ST (t) ∶= P(T > t) =

∏t

j=1
(1 − hT (j)) . Some discrete 

time methods on the other hand directly estimate the probability mass function (PMF), i.e. 
P(T = t) , rather than estimating the discrete hazard (2).

2.2  Data‑related aspects

We now discuss different data-related aspects of time-to-event data, in terms of both out-
comes and features, that are frequently encountered in real-world survival tasks. We refer to 
them as outcome types (Sect. 2.2.1) and feature-related aspects (Sect. 2.2.2), respectively.

In Sect. 3.4, we provide detailed information regarding which of the reviewed methods 
can handle these data-related aspects.

2.2.1  Outcome types

Throughout this work, we consider a sample of size n and refer to a single i ∈ {1,… , n} 
as individual or subject. Let Ti > 0 be the non-negative random variable representing 
the time until the event of interest for subject i occurs. We want to estimate the distri-
bution of Ti given the p-dimensional feature vector xi . However, Ti often cannot be fully 
observed because the time-to-event is right-, left- or interval-censored. Let CL

i
 and CR

i
 be 

the left- and right-censoring times, and let Li and Ri be the endpoints of the censoring inter-
val for subject i, respectively. For an interval-censored observation, we have Ti ∈ (Li,Ri] 
as we only know that the event occurs within the interval, but not the exact time. Right-
censoring Ti ∈ (Li = CR

i
,∞] and left-censoring Ti ∈ (Li = 0,Ri = CL

i
] are special cases of 

interval-censoring.
Time-to-event data can also be subject to truncation. In SA, truncation implies that sub-

jects are either not part of the dataset at all or not part of the risk set for a specific event at 
certain time points. Formally, let TL

i
 and TR

i
 be the left- and right-truncation times, respec-

tively. Left-truncation occurs when TR
i
= ∞ , then subjects with Ti < TL

i
 never enter the 

study. Similarly, observations are right-truncated when TL
i
= 0 and Ti > TR

i
.

Survival tasks are not restricted to single-risk scenarios. In case of competing risks, 
each individual can experience only one of at least two distinct, mutually exclusive events, 

(1)hT (t) ∶= lim
Δt→0

1

Δt
P(t ≤ T < t + Δt|T ≥ t) =

fT (t)

ST (t)
,

HT (t) ∶= ∫
t

0

hT (u)du = − log(ST (t)),

(2)hT (t) ∶= P(T = t|T ≥ t), t = 1, 2,…
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e.g., death in hospital versus hospital discharge. More generally, in a multi-state setting 
multiple (transient and terminal) events (states) are possible, as well as certain (recurring) 
transitions between them, e.g., transitions between different stages of an illness with death 
as terminal event. We denote transitions by k ∈ {1,… ,K} and episodes by e = 1,… ,E . 
A final outcome type we consider is recurrent events. Often, we record a single outcome 
(censoring or event) for each individual. However, when conditions such as epilepsy or 
sports injuries are being modeled, subjects may experience the same event type repeatedly.

Table  2 provides an overview and examples of the outcome types discussed in this 
section.

2.2.2  Feature‑related aspects

Time-varying features (TVFs) such as weight or lifestyle factors change over time, whereas 
others such as sex are time-constant. Similarly, time-varying effects (TVEs) are feature 
effects on the outcome (e.g., on the hazard rate) that vary over time. Both TVFs and TVEs 
constitute deviations from the proportional hazards (PH) assumption (see Sect. 2.3).

Another important feature-related aspect is the dimensionality of data input. Due to the 
prominence of SA in the life sciences, features derived from high-dimensional data—omics 
data in particular—are sometimes employed to predict and explain survival times. In order 
for a method to learn from a high-dimensional feature space, the model architecture needs 
to be adapted, usually with appropriate penalization or feature selection techniques (see, 
e.g., Wu 2019).

Multimodality is the final feature-related aspect we consider. In the life sciences, 
in particular, we are oftentimes not restricted to structured tabular data (e.g., clinical 
patient data), but also have access to unstructured data, such as images (e.g., CT scans) 

Table 2  Overview of different outcome types

Outcome type Example

Right-censoring Clinical trials: exact event times are unobserved for some individuals because of 
dropout

Left-censoring Age at which children learn a certain task: some children already know the task at the 
beginning of the study, but it is unknown at which age they learned it

Interval-censoring Medical study with a periodic follow-up: exact event times are unknown, only the 
interval between two follow-ups is known

Right-truncation Transfusion-induced AIDS onset study (Klein and Moeschberger 1997): only patients 
developing AIDS from transfusion before the registry sampling date are included, 
while patients with onset after that date are right-truncated

Left-truncation Coumarin abortion study (Meister and Schaefer 2008): only women conscious of their 
pregnancy are included; women who had a spontaneous abortion before their preg-
nancy is recognized never enter the study

Competing risks Study on dialysis mortality (Noordzij 2013): the event of interest, death on dialysis, is 
precluded by the competing event kidney transplantation

Multi-state Study on kidney failure: for all patients, transitions between the states healthy, dialysis, 
kidney transplantation and death are possible, sometimes even bidirectionally (e.g., 
between dialysis and kidney transplantation)

Recurrent event Incidence of pneumonia in young children (Ramjith et al. 2021): the occurrence of 
multiple, recurrent pneumonia episodes is possible, with episodes within a child’s 
history not being independent
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or text data (e.g., written doctor’s notes); that is, the feature set is multimodal and spe-
cial techniques are required to extract information from it.

2.3  Estimation

Here we summarize estimation in the SA context, focusing on the methods most fre-
quently used among the DL-based approaches included in this review.

In SA we want to estimate the distribution of event times based on observed data, 
represented by tuples

with yentry
i,k,e

 and yexit
i,k,e

 defining entry and exit times of subject i = 1,… , n into the risk set 
for transition k ∈ {1,… ,K} in episode e = 1,…E , respectively, and �i,k,e ∈ {0, 1} being 
the indicator for whether the respective transition has been actually observed (rather than 
censored). Finally xi,k,e represents the p-dimensional feature vector (for simplicity we omit 
that xi,k,e could additionally vary over time between the entry and exit times for transition 
k in episode e). Often this notation can be simplified. For example, when all subjects enter 
the risk set at time point 0 and there is no truncation or interval-censoring, yentry

i,k,e
 is omitted. 

When we only consider one single event type, we can drop index k. If there are no recur-
rent transitions, we can additionally drop e, yielding the more common notation (yi, �i, xi).

Parametric survival models, such as the Accelerated Failure Time (AFT) model 
(Kalbfleisch and Prentice 2011), assume event times to follow a certain statistical dis-
tribution characterized by a set of parameters. Based on the distribution-specific like-
lihood, parametric survival models then estimate these distributional parameters as a 
function of features x . We can write the density for an event at time t as

where g1(), g2(),… are real-valued functions associating features x with the distributional 
parameters �(x) via parameters �1, �2,… . That is, all distributional parameters (e.g., both 
shape and scale of a Weibull distribution) can be estimated as a function of x . Estimation 
proceeds by maximizing the likelihood given the observed data

where Li are the individual likelihood contributions, depending on the observed outcome 
type, and O , C , L are the sets of observed event times, right-censored, and left-censored 
observations, respectively. Likelihood contributions for other outcome types can be con-
structed similarly (e.g., Klein and Moeschberger 1997, Ch. 3.5).

Other methods exploit the relationships f (t) = h(t)S(t) and S(t) = exp
(
− ∫ t

0
h(u)du

)
 , 

such that the likelihood can always be expressed in terms of only the hazard rate (1), 
and right-censoring and left-truncation are dealt with by adjusting the so-called risk set

(
y
entry

i,k,e
, yexit

i,k,e
, �i,k,e, xi,k,e

)
,

(3)f (t|�), t ≥ 0,

(4)� = �(x) = (�1(x), �2(x),…) = (g1(x, �1), g2(x, �2),…),

(5)L(�) =

n∏
i=1

Li(�) =
∏
o∈O

f (yo) ×
∏
c∈C

S(yc) ×
∏
l∈L

(1 − S(yl)) ×⋯ ,
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Most prominently, the Cox PH regression (Cox 1972) models the hazard rate at time t, 
conditional on features x , as the product of a non-parametrically estimated baseline hazard 
h0(t) and the exponentiated log-risk � = g(x, �):

Feature effects are multiplicative with respect to the hazard rate independently of time, 
yielding proportionality of hazards.

Parameters are estimated by optimizing the log-partial-likelihood

where t(m) is the mth ordered event ( m ∈ {1,… ,M} ), R(t(m)) denotes the risk set at that 
time point, and x(m) is the feature vector of the individual experiencing the event at t(m).

Piecewise Exponential Models (PEMs) also parametrize the hazard rate as in (6). How-
ever, by partitioning the time axis into J intervals and assuming piecewise constant hazards 
within each interval, the baseline hazard is parametrized and estimated alongside the feature-
related coefficients. Friedman (1982) showed that the likelihood of this model is proportional 
to a Poisson likelihood, which implies that, after appropriate data transformation, any method 
capable of minimizing a negative Poisson log-likelihood can also be used for various sur-
vival tasks (Bender et al. 2021). Despite partitioning the follow-up into intervals, PEM-based 
approaches are methods for continuous time-to-event data as they take the full information 
about event times into account.

Discrete-time survival methods, such as discrete hazard methods (Tutz et  al. 2016) or 
Multi-Task Logistic Regression (MTLR; Yu et al. 2011), consider the time-to-event data to 
be a succession of binary outcomes. To do so, the time axis is first partitioned into intervals, 
with T = t implying the event occurred in interval (at−1, at] . Binary event indicators yit are 
then defined for each time interval t and used as outcomes. For individual i, the discrete hazard 
hi(t|xi) in interval t is then

where the real-valued function g() represents feature effects and �() maps this quantity onto 
[0, 1] to yield the conditional event probability P(yit = 1|T ≥ t, xi) . Analogously to PEM-
based approaches, any ML algorithm that is applicable to binary outcomes can be used for 
discrete-time survival modeling after data transformation. The logit model, for instance, 
uses a logistic response function to model the probability of the event taking place in t [i.e., 
the discrete hazard (2)], conditional on at−1 < t and feature values x . Alternatively, some 
discrete-time methods directly estimate the probability of an event at specified time points 
P(yit = 1|T = t, xi) using a softmax output layer.

R(t) =
{(

y
entry

i
, yexit

i
, 𝛿i, xi

)
∶ y

entry

i
< t ≤ yexit

i

}
.

(6)h(t|x) = h0(t) exp(� = g(x, �)).

(7)Pl(�) =

M�
m=1

⎛⎜⎜⎝
g(x(m), �) − log

�
j∈R(t(m))

exp
�
g(xj, �)

�⎞⎟⎟⎠
,

(8)hi(t|xi) = �(g(x, �)) = P(yit = 1|T ≥ t, xi),
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3  Deep learning in survival analysis

Early DL-based survival techniques date back to the mid-1990s (Liestbl et al. 1994; Far-
aggi and Simon 1995; Brown et al. 1997) and are usually NN-based extensions of classical 
statistical survival methods discussed in Sect. 2.3. While in the Cox model the log-risk (6) 
is traditionally given by g(x, �) = x

⊤� , the model by Faraggi and Simon (1995) replaces 
the linear predictor by a shallow feed-forward neural network (FFNN). Liestbl et al. (1994) 
propose implementing the PEM as an NN, yet without any hidden layers. The PEANN 
model by Fornili et al. (2013) parametrizes the piecewise constant hazards by a shallow 
FFNN. PLANN (Biganzoli et al. 1998) is an NN-based extension of the discrete-time logit 
model, parametrizing the discrete hazard by an FFNN.

Many DL-based methods for SA have been developed in recent years. They usually 
build upon one of the aforementioned statistical survival approaches, while harnessing 
advantages of NNs. Furthermore, recent advances in multimodal learning and interpret-
ability have made DL-based survival methods even more attractive for many common sur-
vival tasks.

3.1  Inclusion and exclusion criteria

For this review, we designed a two-step literature screening process. In the first step (inclu-
sion criteria), we searched Web of Science for the topic

with December 31, 2022 as cutoff date. These inclusion criteria resulted in a total of 211 
articles. In the second step (exclusion criteria), we excluded all articles not satisfying all of 
the following four conditions: 

(a) Development of a new DL-based method beyond the mere application of an already 
existing method to new data or contexts.

(b) Evaluation of performance results on at least one non-private benchmark dataset.
(c) Performance evaluation using metrics designed for time-to-event data, such as C-index 

or Integrated Brier Score.
(d) Focus on estimation and prediction in the context of time-to-event data and learning 

all model parameters within the NN architecture in an end-to-end fashion.

Criteria (a), (b), and (c) aim to ensure that the paper in question develops a new method 
rather than applying a known method to new data or in a new context. Criterion (b) 
complements (a) as the predictive utility is often illustrated via benchmark experiments 
when new methods are proposed. Additionally, criterion (b) introduces an open science 
aspect and ensures that at least one empirical comparison could be replicated in theory. 
Criterion (c) ensures that benchmark analyses focus on methods modeling time-to-event 



Deep learning for survival analysis: a review  

1 3

Page 9 of 34 65

data, as some papers that passed the initial screening eventually ignored the time-to-
event nature of the data. Finally, criterion (d) aims to exclude two-step approaches 
where DL is used solely for feature extraction, with survival modeling performed using 
non-DL approaches with the extracted features outside of the NN. Our criteria are moti-
vated by the scope of this work—to review methods that can be used for specific time-
to-event problems and to provide details on estimation-, architecture- and data-related 
aspects of the respective methods.

Subsequently, we combined the selected articles with additional papers that had oth-
erwise come to our attention and fulfilled the above criteria, yielding a total of 61 arti-
cles—and thus, 61 distinct methods. The inclusion, exclusion, and screening process is 
visualized in the PRISMA diagram in Fig. 1.

The following naming scheme is used in the remainder of the paper to reference indi-
vidual methods/papers: the method name as specified in the publication, if provided and 
unique; if the method name is not unique, we append a suffix (the first three letters of 
the first author’s last name followed by the year of publication) with an underscore; if 
no method name is provided, we use this suffix as a name. All methods are summarized 
in our Main Table (https:// survi val- org. github. io/ DL4Su rvival).

We now aim to provide a summary of the 61 methods based on a broad range of both 
theoretical (estimation and architecture) as well as practical model characteristics (out-
come types and feature-related aspects).

Fig. 1  PRISMA diagram for literature screening of deep learning-based survival methods

https://survival-org.github.io/DL4Survival
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3.2  Architectural choices

FFNNs were the earliest type of NN architecture (Ivakhnenko et  al. 1967; Rosenblatt 
1967). Within an FFNN, information passes from the input nodes through a user-spec-
ified number of hidden layers until the output nodes. Information only flows forward as 
there are no cyclical patterns or loops. The main property of FFNNs is stated through 
the universal approximation theorem (Hornik et al. 1989), meaning that NNs are capa-
ble of approximating a very general class of functions. Practically, this allows FFNN to 
discover non-linear feature effects and complex interaction structures. In SA, FFNNs 
naturally allow for a more flexible estimation of, e.g., (semi-)parametric hazard rates, as 
well as for the incorporation of TVEs and TVFs (in theory); for instance, the hazard rate 
in (6) can be estimated more flexibly by parametrizing g(x) through an NN. At the same 
time, the FFNN architecture contains multiple limitations: for example, learning from 
multimodal data input—in particular, image data—is not possible. FFNNs constitute the 
main architecture of most early DL-based survival methods and still serve as a baseline 
building-block within most advanced architectures.

Convolutional neural networks (CNNs) were introduced in the late 1980s (LeCun 
1989) and are most successfully employed in computer vision. In time-to-event analysis, 
CNNs are usually applied to unstructured data, especially images. Often, CNN-based 
methods use large pre-trained CNNs with many parameters, such as ResNet18 (He et al. 
2016), and then fine-tune them on case-specific data. This transfer learning approach 
enables the application of large CNNs to smaller datasets.

Recurrent neural networks (RNNs), also invented in the 1980s (Rumelhart et  al. 
1986), distinguish themselves from FFNNs and CNNs by being able to memorize parts 
of the input through a short-term memory and are thus applicable to sequential data. In 
SA, RNNs are hence useful when TVFs are present or to take temporal information into 
account in general.

The autoencoder (AE; Ballard 1987) is another common NN architecture, learning 
how to reduce the dimensionality of input data and subsequently reconstructing the data 
from the learned latent representation; extensions include stacked AEs (SAEs; Vincent 
2010) and variational AEs (VAEs; Kingma and Welling 2013). General Adversarial 
Networks (GANs; Goodfellow et al. 2014) consist of a generator that produces synthetic 
data of gradually improving quality as well as a discriminator that learns how to distin-
guish between true data input and generator-produced data points. Transformers (Vas-
wani et  al. 2017) use an attention mechanism to learn a representation of context in 
sequential (e.g., language) data and can subsequently produce output (sequences) from 
it. Normalizing flows (NFs; Rezende and Mohamed 2015) constitute a family of genera-
tive models which employ differentiable and invertible mappings to obtain complex dis-
tributions from a simple initial probability distribution for which sampling and density 
evaluation is easy. Neural Ordinary Differential Equations (nODEs; Chen et  al. 2018) 
use NNs to parametrize the derivative of the hidden state, thus moving beyond the 
standard specification of a discrete sequence of hidden layers. Fuzzy neural networks 
(Lee and Lee 1975) use fuzzy numbers as inputs and weights within the NN. Diffusion 
models (Sohl-Dickstein et  al. 2015) employ a Markov chain to gradually add random 
noise to the input data and subsequently learn to undo this diffusion, learning to gener-
ate new data from noise.

Many adoptions of NNs for SA emphasize the replacement of the predictors in 
(4), (6), or (8) through a (deep) NN. The (DL-based) survival models can be further 
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extended to also include interactions, non-linear effects, stratification, time-varying 
effects, and even unstructured components d(z) , yielding the generalized predictor

where f (x, t) denotes potentially non-linear, time-varying effects of tabular features x as 
well as their interactions. dg(zg) denotes embeddings learned in the deep part(s) of the 
model from unstructured data sources zg , g ∈ {1,… ,G} , such as images or text. That is, 
the predictor g(x) from (7) can be generalized to be g(x, z, t) . Using an appropriate transfor-
mation function � predictor (9) can be transformed to e.g. the hazard function or cumula-
tive incidence function, depending on the target of estimation.

Architectural choice is also closely related to parametrization. The PMF of discrete-time 
methods can be modeled via a softmax layer producing discrete survival probabilities at 
each (pre-defined) time point, as done in Lee et al. (2018). RNN architectures are particu-
larly suitable for taking into account temporal information and sharing parameters across 
time, e.g., in order to estimate quantities like the hazard rate or survival probability at time 
t using information from time points t̃ < t (e.g., Giunchiglia et al. 2018). Some less fre-
quently encountered architectures, for example GANs, incentivize the development of cus-
tom losses (Chapfuwa et al. 2018). More recent work shows that (surrogate) loss functions 
can be created based on scoring rules, such as a smooth C-index loss function (Huang et al. 
2018) or Survival-CRPS (Avati et  al. 2020), for parameter estimation without requiring 
traditional inner loss functions like the negative log-likelihood.

It is furthermore possible to directly integrate some time-to-event data modalities into 
the architecture of deep survival models. For example, shared and cause-specific subnet-
works for cause- or transition-specific hazards in competing risks and multi-state modeling 
analysis via soft- or hard-sharing of parameters (Ruder 2017) have been adopted by many 
DL-based survival methods when modeling transitions between different states (cf. Fig. 2).

Additionally, many methods have shown how to integrate multimodal data, by using a 
separate subnetwork for each modality. For instance, one may use a CNN-based subnet-
work for image data while tabular data is modeled with an FFNN. The different modalities 
can be fused together in different ways in the network head. If interaction between different 
modalities is desired, vector representations of the data are concatenated and fed through 
another joint FFNN. Otherwise, separate scalars are learned and added onto each other. We 
illustrate two common architectures that tackle competing risks and multiple data modali-
ties—and can also be combined—in Figs. 2 and 3.

3.3  Estimation and network architecture

We now review all 61 DL-based survival methods based on theoretical and technical 
aspects. In Sect.  3.3.1, we aim to categorize the methods in terms of estimation-related 
concepts—model class, loss functions, and parametrization—and how these concepts cor-
relate. In Sect. 3.3.2, we address the NN architecture choices of all methods reviewed.

3.3.1  Estimation

We classify DL-based survival methods in terms of three concepts related to model esti-
mation. First, the model class (cf. Fig.  4) describes which type of statistical survival 
technique forms the basis of the DL method—usually one of the approaches introduced 
in Sect. 3.3.1. Second, the loss function is often a direct consequence of the model class 

(9)� = g(x, z, t) = f (x, t) + �1d1(z1) +⋯ + �GdG(zG),
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(i.e., its negative log-likelihood). However, as is common in DL, some methods employ 
multiple losses for improved performance or multi-task learning. For instance, some 
DL-based survival methods compute a ranking loss, in addition to a standard survival 
loss, for improvement of the C-index performance measure. The final loss is usually 
computed as the (weighted) average of all losses applied. Third, the parametrization 
determines which model component is being parametrized by an NN. The standard 
model parametrization is usually implied by the model class.

Almost all modern DL-based survival methods are optimized with gradient-based 
methods, featuring tractable loss functions yet with many parameters to be optimized. 
Optimizing the loss function in a batch-wise manner, which is the common approach 
in DL, is not always feasible, though. This holds for Cox-based methods because the 
partial loss (7) depends on the complete risk set. Recently, Kvamme and Borgan (2019) 
showed that Cox-based methods can be optimized with stochastic gradient descent 
methods (i.e., batch-wise) if the batch size is sufficiently large to non-parametrically 

Fig. 2  Schematic neural architecture for competing risks in survival analysis using shared and cause-spe-
cific subnetworks. �() transforms the model output (e.g., hazard rate) to the final outcome [e.g., cumulative 
incidence functions (CIFs)]
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approximate the risk set. Before that, deep Cox-based methods were optimized with full 
gradient descent, making them less attractive for computationally expensive tasks.

We now give a detailed description of the above estimation-related concepts as well as 
their interrelation for all methods reviewed.

3.3.1.1 Cox‑based methods Out of the 61 methods included in this review, 26 methods are 
Cox-based; that is, these methods are essentially DL-based modifications and extensions 
of the Cox regression model. This is underlined by the fact that all of them parametrize the 
hazard rate—more precisely, the log-risk function g(x) in (6)—by an NN and minimize the 
(sometimes slightly modified) Cox loss, i.e., the (negative logarithm of the) partial likeli-
hood of the Cox model.

DeepSurv by Katzman (2018) extends Faraggi and Simon (1995) by using a deep FFNN 
as well as different non-linear hidden layer activation functions. The model by Faraggi and 
Simon (1995) is a simple special case of DeepSurv, with a single hidden layer with logistic 

Fig. 3  Schematic neural architecture for multimodal data input in survival analysis using separate subnet-
works for all modalities. Their outputs are reshaped and concatenated to align dimensions. �() transforms 
the model output to the final outcome. The X-ray scan is obtained from Irvin et al. (2019)



 S. Wiegrebe et al.

1 3

65 Page 14 of 34

activation and identity output activation. Note that the PH assumption induced by the Cox 
PH regression model is maintained in DeepSurv, as g(x) remains time-constant despite 
being parametrized by a (deep) NN. DeepSurv uses stochastic gradient descent (SGD) for 
optimization. To do so, DeepSurv uses a restricted risk set including only individuals in 
the current batch since the Cox loss originally sums over the entire risk set, which would 
impede batching. Cox-Time (Kvamme et al. 2019) is a more flexible extension of DeepSurv 
where a time-dependent predictor allows estimation of TVEs, i.e. h(t|x) = h0(t) exp(g(x, t)) . 
However, this increased flexibility would render the batching strategy as applied by Deep-
Surv (and most other PH-restricted Cox-based methods) computationally expensive. There-
fore, the Cox-Time loss function is modified to approximate the risk set by a sufficiently 
large subset of all individuals at risk, which enables mini-batching and thus scalability to 
large datasets. NN-DeepSurv (Tong and Zhao 2022) is another extension of DeepSurv, 
employing a nuclear norm for imputation of missing features.

More than half of all Cox-based methods (14) focus on the applicability to high-dimen-
sional data, usually omics data. MCAP (Chai et al. 2022) and VAECox (Kim et al. 2020) 
both use multiple losses, the latter one within a transfer learning approach. Cox-nnet 
(Ching et  al. 2018), Cox-PASNet (Hao et  al. 2018) and its multimodal extension PAGE-
Net (Hao et  al. 2019), GDP (Xie 2019), DNNSurv_Sun2020 (Sun et  al. 2020), Qiu2020 
(Qiu et al. 2020), DeepOmix (Zhao 2021), and CNT (Fan et al. 2022) use simple FFNNs 
and only a single Cox loss, thus being very similar to DeepSurv and Cox-Time. SALMON 

Fig. 4  Absolute frequencies of model classes among all 61 methods reviewed
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(Huang 2019) and CNN-Cox (Yin et al. 2022) distinguish themselves through their archi-
tecture (see Sect. 3.3.2), Haa2019 (Haarburger et al. 2019) and ConcatAE/CrossAE (Tong 
et al. 2020) through additionally being multimodal (see below).

Eight Cox-based methods focus on unstructured or multimodal input (see also 
Sect. 3.4.2). WideAndDeep (Pölsterl et al. 2020) combines a linear predictor of tabular fea-
tures (wide part) with a 1D embedding d(z) learned from a point cloud, which is a latent 
representation learned from 3D shapes (deep part); subsequently both parts are fused by 
linearly aggregating the learned weights as in (9). The model uses the DeepSurv loss and 
thus preserves the PH assumption. Haa2019 employs a pre-trained CNN of type ResNet18 
for subsequent fine-tuning on CT scans, using a Cox loss. Both DeepConvSurv (Zhu et al. 
2016) and CapSurv (Tang et al. 2019) can learn from image data—yet without incorporat-
ing structured (tabular) data—by using CNN and CapsNet architectures (see Sect. 3.3.2), 
respectively. DeepConvSurv uses a single Cox loss, while CapSurv additionally employs 
the CapsNet margin and reconstruction losses. Both ConcatAE/CrossAE and PAGE-Net 
can process high-dimensional data as well as multimodal data; ConcatAE/CrossAE use 
classification and reconstruction losses in addition to the Cox loss to do so, while PAGE-
Net introduces biologically interpretable pathology, genome-, and a demography-specific 
layers. Xie2021 (Xie and Yu 2021) can learn from unstructured data for cure rate classifi-
cation. DAFT (Wolf et al. 2022) employs CNNs and a single Cox loss to learn from both 
structured and unstructured data.

SurvNet (Wang et al. 2021) and DCM (Nagpal et al. 2021c) do not accommodate any of 
the additional outcome types or feature-related aspects defined above (see also Sect. 3.4), 
yet they use multiple losses. In addition to a Cox regression module, SurvNet employs an 
input construction module and a survival classification module (with corresponding losses) 
for handling missing values and high- versus low-risk profile classification, respectively. 
DCM employs an approximate Monte Carlo Expectation Maximization (EM) algorithm 
for the estimation of a mixture of Cox models, the total loss also including an Evidence 
Lower Bound (ELBO) component. ELMCoxBAR (Wang and Li 2019) and San2020 (San-
saengtham et al. 2020) are standard Cox-based methods in terms of estimation, their archi-
tectures being extensions of FFNNs (see Sect. 3.3.2).

3.3.1.2 Discrete‑time methods Another 19 methods can be categorized as discrete-time 
approaches. They consider time to be discrete and usually employ classification techniques, 
with the outcome being binary event indicators for each discrete time point or interval. The 
standard loss function of discrete-time DL-based survival methods is the negative log-like-
lihood (NLL), while typically the discrete hazard (2) is parametrized by an NN—just like in 
the early PLANN model. However, as compared to the Cox-based methods which are rather 
homogeneous methodologically, discrete-time methods are much more heterogeneous in 
terms of loss functions and architecture.

DeepHit (Lee et al. 2018) is a discrete-time DL-based survival method. It aims to learn 
first-hitting times directly by not making any assumptions about the underlying stochas-
tic process and parametrizing the discrete PMF directly. DeepHit combines two loss func-
tions: first, the log-likelihood derived from the joint distribution of first hitting time and 
the corresponding event, adjusted for right-censoring and taking into account competing 
risks; and second, a combination of ranking losses. Dynamic-DeepHit (Lee et al. 2019), an 
RNN-based extension of DeepHit which can handle longitudinal input data and thus TVFs, 
additionally employs a so-called prediction loss for the auxiliary task of step-ahead predic-
tion of TVFs. The transformer-based TransformerJM (Lin and Luo 2022) also parametrizes 
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the PMF, focusing on modeling survival data and longitudinal data jointly and training on a 
combination of NLL- and MSE-based losses.

RNN-SURV (Giunchiglia et al. 2018) uses both features and time as inputs, and outputs 
the survival probability at each discrete time point, employing RNN architecture to use 
information from previous time points to inform prediction of subsequent time points; the 
model combines the estimated survival probabilities to a risk score via a weighted sum and 
employs both an NLL loss (based on the survival probabilities) and a C-index-based (rank-
ing) loss (based on the risk score) for model training.

Nnet-survival (Gensheimer and Narasimhan 2019) parametrizes the discrete hazard 
(8) by an NN, using an NLL loss as well as mini-batch SGD for rapid convergence and 
scalability to large datasets. Mini-batch SGD is easily applicable to discrete-time meth-
ods because the loss only depends on individuals in the current mini-batch. The specific 
architecture—in particular, the number of neurons per hidden layer and the connected-
ness of layers—determines whether TVEs can be modeled or whether the PH restriction 
is upheld. Another four methods—CNN-Survival (Zhang 2020), MultiSurv (Vale-Silva and 
Rohr 2021), SurvCNN (Kalakoti et  al. 2021), and Tho2022 (Thorsen-Meyer 2022)—use 
the same loss and parametrization as Nnet-survival. CNN-Survival uses a CNN along with 
transfer learning to learn from CT data (without incorporating tabular data). The multi-
modal MultiSurv first extracts feature representations for each data modality separately, 
then fuses them, and finally outputs predictions of conditional survival probabilities. Sur-
vCNN creates an image representation of multiple omics data types using CNNs and can 
combine this with clinical data for prediction. Tho2022 can embed data from multiple 
modalities, such as electronic health records, and feeds these embedded representations 
into an RNN which in turn produces survival predictions.

The competing-risk and recurrent-event method CRESA (Gupta et al. 2019) is an RNN-
based approach that parametrizes the discrete hazard and uses a loss based on recurrent 
cumulative incidence functions, which also contains a ranking component as in DeepHit. 
DRSA (Ren 2019) also employs an RNN and also parametrizes the discrete hazard, yet as 
compared to CRESA it uses multiple log-likelihood-based losses to predict the likelihood 
of uncensored events as well as survival rates for censored cases. Kam2021 (Kamran and 
Wiens 2021) uses the same network architecture as DRSA, but proposes a novel training 
scheme to directly estimate the survival probability: a combination of Rank Probability 
Score (RPS) loss, emphasizing calibration, and a kernel loss, emphasizing discrimination 
through penalization of wrongly ordered uncensored individuals. DCS (Fuhlert et al. 2022) 
extends the architecture from DRSA and then produces survival probability estimates by 
employing the same loss function from Kam2021, yet modifying the kernel loss compo-
nent by not only comparing uncensored-uncensored pairs.

N-MTLR (Fotso 2018) builds upon MTLR and parametrizes the corresponding logis-
tic regression parameters. DNNSurv_Zha2019 (Zhao and Feng 2019) first computes indi-
vidual-level pseudo (conditional) probabilities, defined as the difference between the esti-
mated survival function with and without individual i and computed on a regular grid of 
time points, thus reducing the survival task to a regression task, and consequently uses a 
standard regression loss. su-DeepBTS (Lee et al. 2020) discretizes the time axis but then 
uses a Cox loss for each time interval, summing up the losses across intervals. DeepComp 
(Li et  al. 2020) combines distinct losses for censored and uncensored observations with 
an additional penalty. SSMTL (Chi et al. 2021) transforms the survival task into a multi-
task setting with binary outcome for all time points (or multi-class in case of compet-
ing risks), then predicting survival probabilities for each of the time points. SSMTL also 
employs a custom loss made up of a classification loss for uncensored data, a so-called 
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semi-supervised loss for censored data, regularization losses (L1 and L2) as well as a rank-
ing loss in order to ensure monotonicity of predicted survival probabilities.

Hu2021 (Hu et  al. 2021), a transformer-based method, uses an entropy-based loss as 
well as a discordant-pair penalization loss, parametrizing the discrete hazard. SurvTRACE 
(Wang and Sun 2022), another transformer-based method, also parametrizes the discrete 
hazard, but additionally performs two auxiliary tasks on the survival data: classification 
and regression; accordingly, the final model loss is a combination of a PC-Hazard survival 
loss (see below), an entropy-based classification loss, as well as a Mean Squared Error 
(MSE)-based regression loss.

3.3.1.3 Parametric methods The two methods DeepWeiSurv (Bennis et  al. 2020) and 
DPWTE (Bennis et al. 2021)—the latter one building on the former—are Weibull-based 
deep survival methods. Neither of them addresses any of the outcome types or feature-
related aspects presented in Sect. 2.2. DeepWeiSurv parametrizes a mixture of Weibull mod-
els, as well as both Weibull distribution parameters (see (4) with �1, �2 the scale and shape 
parameters of the Weibull distribution), by an FFNN and uses an NLL-based loss function. 
DPWTE employs classification and regression subnetworks to learn an optimal mixture of 
Weibull distributions, using the same loss function as DeepWeiSurv with additional sparsity 
regularization with respect to the number of mixtures. Ava2020 (Avati et al. 2020) para-
metrizes the parameters of a log-normal distribution, while being flexible in terms of model 
architecture. The method introduces the Survival-CRPS loss, a survival adaptation of the 
Continuous Ranked Probability Score (CRPS). This loss results in well-calibrated survival 
probabilities and furthermore provides the flexibility to handle both right- and interval-
censored data. DSM (Nagpal et  al. 2021a) is a hierarchical generative model based on a 
finite mixture of parametric primitive distributions similar to the well-known approach by 
Ranganath et al. (2016), using a (mixture) likelihood-based loss as well as an additive loss 
based on ELBO for uncensored and censored observations; the choice of the parametric 
survival distribution—either Weibull or Log-Normal—is a hyperparameter and can thus 
be tuned. Its RNN-based extension RDSM (Nagpal et al. 2021b), is furthermore capable of 
handling TVFs.

3.3.1.4 PEM‑based methods Three methods rely on the PEM framework to develop a deep 
survival approach. PC-Hazard (Kvamme and Borgan 2021) addresses the right-censored 
single-risk survival task by parametrizing the hazard rate through an FFNN and using the 
standard likelihood-based PEM loss. Support for other outcome types or feature-related 
aspects, as introduced in Sects.  2.2.1 and 2.2.2, is not discussed. Similarly, DeepPAMM 
(Kopper et al. 2021, 2022) uses a penalized Poisson NLL as a loss function and also para-
metrizes the hazard rate by an NN. This method combines a Piecewise Exponential Addi-
tive Mixed Model (PAMM; Bender et al. 2018) with Semi-structured Deep Distributional 
Regression (Rügamer et  al. 2023), which embeds the structured predictor in an NN and 
further learns from other (unstructured) data types [see (9)].

Finally, IDNetwork (Cottin et al. 2022) implements an illness-death model, which uses 
a PEM-based approach to estimate probabilities for transitions between different states and 
utilizes FFNNs with shared and transition-specific subnetworks. IDNetwork then uses a 
penalized NLL loss based on the transition probabilities.

3.3.1.5 ODE‑based methods DeepCompete (Aastha et  al. 2021) consists of an FFNN 
shared across all risks as well as an FFNN and a neural ordinary differential equation (ODE) 
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block for each specific risk, using an NLL-based loss. survNODE (Groha et al. 2021) is 
based on a Markov process and aims to directly solve the Kolmogorov forward equations 
by using neural ODEs to achieve flexible multi-state survival modeling, with the transition 
rates parametrized by a nODE architecture (see Sects. 3.2 and 3.3.2).

3.3.1.6 Ranking‑based methods As can be seen in the section above, multiple discrete-
time methods (DeepHit, CRESA, DCS, Kam2021, RNN-Surv, SSCNN, and SSMTL) use 
ranking losses as auxiliary losses. Beyond that, there are two continuous-time methods—
RankDeepSurv and SSCNN—that are built upon ranking losses. Here, we refer to these con-
tinuous-time ranking loss-based methods simply as ranking-based methods. RankDeepSurv 
(Jing 2019) combines ranking losses with an extended MSE loss to augment the number of 
training samples, without advanced NN architecture or handling of non-standard survival 
data modalities. SSCNN (Agarwal et al. 2021b) is a multimodal method that reduces histo-
pathology images to whole slide feature maps and uses them, in addition to clinical features, 
as input of a Siamese Survival CNN; model training with a custom loss—a combination of a 
ranking loss with a loss to improve model convergence and pairwise differentiation between 
survival predictions—is built directly on the outputs of the Siamese NN.

3.3.1.7 Other methods As for the remaining five methods, DASA (Nezhad et  al. 2019) 
is a framework introducing a novel sampling strategy based on DL and active learning. 
The GAN-based DATE (Chapfuwa et al. 2018) seeks to learn the event time distribution 
non-parametrically by using adversarial learning and a custom loss function made up of 
an uncensored-data component, a censored-data component, as well as a distortion loss 
component. Hua2018 (Huang et al. 2018) uses a CNN architecture and correlational layers 
for multimodal learning to produce person-specific risks, which are then directly fed into 
a smooth C-index loss function for model training. Aus2021 (Ausset et al. 2021) employs 
normalizing flows in order to estimate the density of time-to-event data and predict indi-
vidual survival curves via a transformation model, using an NLL-based loss augmented 
by an intermediary loss for regularization. Finally, rcICQRNN (Qin et al. 2022) is a deep 
survival method based on a quantile regression NN, parametrizing the quantile regression 
coefficients by means of an FFNN and using an inverse-probability-of-censoring weighted 
log-linear quantile regression loss.

3.3.2  Network architecture

Most DL-based survival methods in this review use FFNNs, often in combination with 
some other, more advanced architecture. Still, 20 methods—as well as all early DL-based 
methods such as the one by Faraggi and Simon (1995)—exclusively rely on FFNNs. Still, 
architectural choices among these FFNN-based methods differ. For instance, DeepHit uses 
a softmax outcome layer to produce survival probabilities for each discrete time point and, 
thus, to model the PMF.

Out of a total of 10 CNN-based methods in this review, eight are multimodal 
methods that can work with image data: DeepConvSurv, Hua2018, Haa2019, CNN-
Survival, PAGE-Net, SSCNN, Xie2021, and DAFT. For instance, Hua2018 employs 
CNN and FFNN subnetworks, along with correlational layers, in order to learn from 
both pathological images and molecular profiles. The CNN-based method SurvCNN 
is not multimodal per se, but transforms high-dimensional omics data into an image 
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representation in order to feed them into a CNN. CNN-Cox combines cascaded Wx 
(Shin 2019), an NN-based algorithm selecting features based on how well they distin-
guish between high- and low-risk groups, with a 1D CNN architecture applied to gene 
expression data. Note that the choice of architecture for CNN- and AE-based methods 
is usually motivated by the objective of extracting information from data input (e.g., 
from images via CNNs or from omics data via AEs with auxiliary losses), without 
being very relevant to the target of estimation. This is in contrast to, e.g., RNNs, where 
the architecture choice is driven by the learning objective.

Nine methods reviewed here use RNN architectures. Six of them—RNN-Surv, 
CRESA, DRSA, Kam2021, DCS, and Tho2022—use a Long Short-Term Memory 
(LSTM), while the remaining one, DeepComp, does not state the RNN architecture 
it employs. Out of these methods, RNN-Surv, DRSA, Kam2021, and DCS do not go 
beyond the setting of single-risk, right-censored tabular data. For example, RNN-Surv 
uses the RNN to carry forward information from previous time steps, employing a sig-
moid output layer activation. Tho2022 employs the RNN architecture for multimodal 
learning from text, medical history, and high-frequency data, while DeepComp uses 
it for competing risk modeling. CRESA models both recurrent events and competing 
risks by means of its RNN architecture. The final two RNN-based methods, Dynamic-
DeepHit and RDSM, are actually extensions of the simpler FFNN-based methods 
DeepHit and DSM, respectively, enabling the incorporation of TVFs.

Four methods—DASA, DCM, ConcatAE/CrossAE, and VAECox—use some form 
of AEs. Another four methods—Nnet-survival, Ava2020, MultiSurv, and Deep-
PAMM—do not require a specific architecture, which can instead be flexibly chosen 
based on application requirements; for instance, a CNN for handling image data (as 
in MultiSurv) or an RNN for incorporating TVFs (as in Ava2020). Three recent meth-
ods, Hu2021, SurvTRACE, and TransformerJM, use a transformer architecture, while 
another two novel methods, DeepCompete and survNode, use a nODE architecture.

Only a single method, DATE, uses a GAN architecture (along with a custom loss). 
ElmCoxBAR uses an Extreme Learning Machine (ELM) architecture, which is simi-
lar to an FFNN but does not require backpropagation for optimization. SALMON, 
San2020, DPWTE, and SurvNet all use FFNNs, but in a modified manner. SALMON 
adds so-called eigengene modules, using eigengene matrices of gene co-expres-
sion modules (Zhang and Huang 2014) instead of raw gene expression data as NN 
input. San2020 uses a Stacked Generalization Ensemble Neural Network (Wolpert 
1992), which takes a combination of DeepSurv sub-models and concatenates them 
for improved hazard prediction. DPWTE adds a Sparse Weibull Mixture (SWM) layer 
to learn the optimal number of Weibull distributions for the mixture model, through 
an element-wise multiplication of its weights by the previous layer’s output. SurvNet 
adds a context-gating mechanism, which is similar to the attention mechanism used in 
transformers, by adjusting log hazard ratios by survival probabilities from the survival 
classification module. WideAndDeep employs a PointNet (Qi et al. 2017) architecture 
to learn a latent representation of 3D shapes of the human brain while additionally 
learning from regular tabular data, subsequently fusing both parts. CapSurv modifies 
the CapsNet architecture (Sabour et  al. 2017), developed for image classification, by 
adding a Cox loss and thus making it amenable to SA tasks.

Figure 5 depicts the absolute frequencies of NN architectures among all 61 methods 
included in this review.
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3.4  Supported survival tasks

In this section, we discuss which methods can handle the data-related aspects introduced in 
Sect. 2.2. We start by considering outcome types and subsequently feature-related aspects. 
Finally, we summarize which methods offer (which kind of) interpretability of results.

3.4.1  Supported outcome types

Regarding censoring and truncation of event times, left-censoring and right-truncation are 
not explicitly addressed by any of the methods reviewed. Ava2020 is capable of handling 
interval-censored data thanks to the flexibility of the Survival-CRPS loss. survNode briefly 
addresses interval-censoring and left-truncation by stating how they would affect likeli-
hood computations. DSM mentions that the modeling framework is amenable to these two 
output modalities. In DeepPAMM left-truncation is accounted for in the data pre-process-
ing step.

Nine methods are designed to deal with competing risks; interestingly, none of 
these methods is Cox-based, and four of them are discrete-time. DeepHit, CRESA, and 
DeepComp all assume time to be discrete and employ cause-specific subnetworks, with 
DeepHit using FFNNs to generate a final distribution over all competing causes for each 

Fig. 5  Absolute frequencies of neural network architectures among all 61 methods reviewed
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individual; both CRESA and DeepComp use RNN architectures, yet while CRESA also 
generates a final distribution over all competing causes, DeepComp outputs cause-spe-
cific discrete hazards for each time interval. SSMTL, also discrete-time, uses an FFNN 
architecture, views competing risk SA as a multiclass problem, and creates a custom 
loss with separate components for non-censored and censored individuals, as well as 
a ranking component. DeepCompete is a continuous-time method that employs nODE 
blocks within each of its cause-specific subnetworks in order to output a cumulative haz-
ard function. DSM first learns a common representation of all competing risks by pass-
ing through a single FFNN. Based on this representation, and treating all other events 
as censoring, the event distribution for a single risk is then learned using cause-specific 
Maximum Likelihood Estimation (MLE); the ELBO loss is also adjusted to treat com-
peting events as censoring. Both survNode and IDNetwork are based on Markov pro-
cesses—illness-death process and Markov jump process, respectively—and thus natu-
rally handle competing risks and even the more general case of multi-state outcomes. 
Being PEM-based, DeepPAMM parametrizes the hazard rate, which is a transition rate 
by definition; DeepPAMM can further specify multiple transitions and therefore model 
competing risks as well as multi-state outcomes. Finally, two methods discuss handling 
of recurrent events: CRESA employs an RNN architecture with time steps representing 
recurrent events, while DeepPAMM uses random effects inspired by statistical mixed 
models. Figure 6 summarizes which outcome types beyond right-censoring the methods 
reviewed explicitly mention.

Fig. 6  Venn diagram illustrating which methods can handle the distinct survival outcome types
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3.4.2  Supported feature‑related aspects

One important feature-related aspect is time dependence, a deviation from the PH 
assumption imposed by traditional survival models such as Cox regression or Weibull 
AFT. Seven methods address TVFs: DeepHit’s and DSM’s RNN-based extensions 
Dynamic-DeepHit and RDSM, as well as CRESA, Ava2020 (by choosing an RNN archi-
tecture), survNode, DeepPAMM, and TransformerJM. The technical incorporation of 
TVFs is, for example, achieved by converting tabular time-varying feature input into 
long format (DeepPAMM) or by employing RNNs prior to each new feature measure-
ment (survNode).

TVEs constitute another deviation from the PH assumption: Seven methods are capa-
ble of modeling effects that might not be constant over time, with four of them being 
time-discrete approaches. Nnet-survival and MultiSurv incorporate TVEs modeling by 
using a fully connected NN to connect the final hidden layer’s neurons with the output 
nodes, while RNN-Surv captures TVEs through its RNN architecture. Cox-Time accom-
modates TVEs by making the Cox-style relative risk—which it parametrizes by an 
NN—time-dependent and DeepPAMM can address TVEs through the interaction of the 
follow-up time (represented as a feature) with other features. DSM and SSMTL do not 
provide further detail about how TVEs are being estimated.

Another feature-related aspect is the integrability of high-dimensional (usually 
omics) data, which implies learning from a high-dimensional predictor space. While all 
DL-based methods are generally capable of handling high-dimensional feature inputs, 
here we focus on the 18 DL-based survival methods that are explicitly designed to 
work with high-dimensional data, usually by applying specialized regularization tech-
niques. 14 of these methods—Cox-nnet, Cox-PASNet and PAGE-Net, Haa2019, GDP, 
SALMON, ConcatAE/CrossAE, DNNSurv_Sun2020, Qiu2020, VAECox, DeepOmix, 
CNN-Cox, CNT, and MCAP—are (partially) Cox-based. As for the remaining four meth-
ods, CNN-Survival, MultiSurv, and SurvCNN are discrete-time methods, while rcIC-
QRNN is quantile regression-based.

Finally, a total of 16 methods can (hypothetically) extract information from unstruc-
tured or multimodal features. Eight of them are (partially) CNN-based, underlining the 
focus on processing mostly medical image data. DeepConvSurv, CapSurv, and CNN-
Survival (the last one employing transfer learning) exclusively work with imaging data 
without incorporating any tabular information, which is why these methods are not truly 
multimodal. Similarly, Nnet-survival, being flexible in terms of NN architecture, can 
learn from image data by choosing a CNN, yet again at the cost of discarding tabular 
data as only a single data modality can be handled. Hua2018 incorporates both image 
and molecular data yet without making any mention of tabular data. Haa2019 fine-tunes 
a pre-trained ResNet18, optionally concatenating it with radiomics features, and addi-
tionally leverages clinical data.

PAGE-Net employs a novel patch aggregation strategy to integrate unstructured 
Whole Slide Images (WSIs) and structured demographic and genomic data. SSCNN cre-
ates feature maps from WSIs and employs a Siamese CNN to learn from both these 
feature maps as well as clinical features. Liu and Kurc (2022) also use DL to extract 
features from WSIs in the context of survival analysis, however, not in an end-to-end 
approach within the network.

ConcatAE/CrossAE integrates information from multiple modalities, either through 
modality-specific autoencoders or cross-modality translation; the integration of tabular 
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data is, however, not explicitly mentioned. survNode can conceptually account for mul-
timodal features by encoding initial values with, e.g., CNN or NLP layers. The cure 
rate model Xie2021 only allows for (single-modality) unstructured data for determin-
ing the cure rate probability through a CNN. DAFT uses a ResNet CNN architecture 
as its backbone, feeding tabular data into it through a novel Dynamic Affine Feature 
Map Transform (DAFT) module, which in turn enables a bidirectional information flow 
between image and tabular data. Finally, Tho2022 employs an RNN architecture to cre-
ate an embedding for electronic patient record data (such as medical history and free 
text) and further fuses tabular clinical features into the model before generating survival 
predictions. WideAndDeep, using a Alzheimer’s Disease (AD) dataset, learns a latent 
representation of 3D shapes of the human brain while additionally learning from regu-
lar tabular data, subsequently fusing both parts. MultiSurv, a multimodal extension of 
Nnet-survival, and DeepPAMM both provide flexibility in terms of architecture choice 
so that, for example, image data could be incorporated by employing CNNs for the NN 
part; they also fuse information from the different data modalities.

Figure  7 illustrates which of the methods incorporate the different types of feature-
related aspects.

3.5  Interpretability

By construction, DL methods (as well as ML methods) are more complex than the sur-
vival models considered in Sect. 2.3 and thus usually do not provide the same degree of 

Fig. 7  Venn diagram illustrating which methods can handle the distinct survival feature-related aspects
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interpretability. At the same time, in fields such as the life sciences, results and model 
outputs must be interpretable to provide a solid basis for highly sensitive decision-
making (Vellido 2020). Here, we summarize which of the methods provide (inherently) 
interpretable results.

Cox-nnet, Cox-PASNet, PAGE-Net and DeepOmix provide some interpretability by 
assigning biological meaning to the nodes of their NNs. Cox-nnet obtains biologically 
relevant hidden nodes, as the most variable nodes can be viewed as surrogate features 
for discriminating patient survival and, in addition, these nodes correlate strongly with 
significantly enriched pathways. Cox-PASNet and PAGE-Net both possess genome-spe-
cific layers, which include a gene input layer, a pathway layer embedding prior pathway-
related knowledge for biological interpretation, and data integration layers. The two 
methods then rank the node values of features by the average absolute partial deriva-
tives (with respect to the data integration layers) for a pathway-based interpretation of 
genomic data: explicitly, pathway nodes each represent a biological pathway. PAGE-Net 
additionally possesses pathology-specific layers, which identify features relevant to SA 
from histopathological images via pre-trained CNNs; at the patient-level, these survival-
discriminatory features eventually represent a histopathological WSI. DeepOmix incor-
porates multi-omics data via a gene input layer and prior biological and pathway knowl-
edge via functional module layers (low-dimensional representations), guided by the idea 
that genes do not work in isolation but rather function as functional modules. With each 
node representing a non-linear function of the genes’ different attributes (e.g., muta-
tions), DeepOmix obtains biological interpretability because it captures the (non-linear) 
effects of biological pathways onto survival time.

By fusing the output of an NN for image data with the output of a Cox PH model 
for tabular data, WideAndDeep retains the interpretability of a standard Cox regres-
sion for structured features. Xie2021 also provides standard Cox model interpretability, 
because survival prediction is performed through non-deep Cox regression. DeepPAMM 
provides classical statistical interpretability of the structured effects by its architecture, 
with identifiability, if necessary, ensured through orthogonalization (Rügamer 2023). 
survNode introduces a latent variable extension providing aspects of feature interpret-
ability. The transformer-based SurvTrace method makes use of attention maps, com-
paring attention scores of different features across selected individuals to provide some 
interpretability of feature effects.

It is worth noting that post-hoc methods from the field of Interpretable Machine 
Learning and explainable AI, such as Permutation Feature Importance (Breiman 2001), 
Local Interpretable Model-agnostic Explanations (LIME Ribeiro et al. 2016), Shapley 
Additive exPlanations (SHAP Lundberg and Lee 2017), attention maps (Jetley et  al. 
2018), Layer-Wise Relevance Propagation (LRP Montavon et  al. 2019), and Neural 
Additive Models (NAMs Agarwal 2021a), are potentially applicable to DL-based sur-
vival methods. However, this is subject to current research and it is not always clear if 
and how such methods need to be adjusted to account for different types of censoring, 
truncation or other outcome types.

Several survival-specific adaptations of the abovementioned post-hoc interpretability 
methods have already been developed; for instance, SurvLIME (Kovalev et  al. 2020), 
SurvSHAP(t) (Krzyziński et  al. 2022), and SurvNAM (Utkin et  al. 2022) are based on 
LIME, SHAP, and NAMs, respectively. Cho et  al. (2023) use meta-learning and the 
DeepLIFT (Shrikumar et al. 2017) method to make the integration of multi-omics data 
in SA more interpretable.
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Among the papers reviewed here, SALMON explores feature importance of individual 
inputs, DNNSurv_Sun2020 employs LIME, Tho2022 uses SHAP, and SSMTL computes 
post-hoc feature importance and plots feature effects on cumulative incidence curves. 
Qiu2020 uses a risk propagation technique called SurvivalNet (Yousefi 2017), which is an 
explanation method specific to SA.

3.6  Model evaluation and comparison

Model evaluation is an important aspect of any machine learning pipeline, and SA in par-
ticular. Typical metrics in benchmark experiments of survival models are the C-index 
[usually Harrell’s et al. (1982) or Uno’s et al. (2007)] for assessing risk predictions, and 
the Brier/Graf score (Graf et al. 1999) for evaluation of distribution predictions, with the 
C-index being by far the most popular metric among the methods reviewed here. Typically 
underreported are the right-censored logloss (Avati et al. 2020) and calibration measures 
such as D-calibration (Haider et al. 2020). Recent work also suggests that most of the pre-
viously used evaluation measures in SA do not constitute proper scoring rules (Sonabend 
2022). Proper alternatives have been proposed recently (Rindt et al. 2022; Sonabend 2022), 
but have not been widely adopted yet.

Interpretation and comparison of the self-reported benchmark experiments in different 
articles is often not meaningful for various reasons: The datasets used, their pre-process-
ing, and handling of missing values is not the same. Even if the same data sets are used, the 
definition of resampling strategy, the exact definition of the respective evaluation metrics 
(e.g. different variants of C-Index, integration window of the integrated brier score, etc.) 
and their use [e.g. transformation of survival distribution predictions for measures of dis-
crimination (Sonabend et al. 2022)] are often not clearly specified or not identical. Further 
general issues that hinder direct interpretation or reported results are potential issues of 
selective reporting and researchers degrees of freedom (selection of data sets, choice of 
evaluation metrics, decisions about budget and hyperparameter space for tuning of the pro-
posed as well as competing algorithms, etc.) that have plagued applied sciences but have 
also been bemoaned in methodological research (e.g. Boulesteix et al. 2020; Nießl et al. 
2022).

For all these reasons, direct comparison of the performance of different methods 
reviewed in this article is not possible. This calls for future research to conduct neutral 
benchmark studies (Boulesteix et  al. 2013). Such an investigation has been for example 
conducted for some non-DL-based ML methods on omics data (Herrmann et  al. 2020). 
However, such studies are generally hard to conduct and require substantial effort, in par-
ticular for DL-based methods with high computational requirements, and because general 
purpose implementations of most of the methods reviewed here are not available and code 
repositories are missing for almost half of the methods (cf. Sect. 3.8).

3.7  Sample size requirements

Sample size considerations are an equally important topic that needs further research in the 
context of DL-based survival analysis.

In general, the sample size required for training a DL-based method crucially depends 
on the model architecture (such as the choice of network architecture and hyperparame-
ters or the use of transfer learning) as well as on the input data modalities (e.g., whether 
images or high-dimensional omics data are being used), and the assumed data generating 



 S. Wiegrebe et al.

1 3

65 Page 26 of 34

process. In addition, sample size calculations are very task-specific: Fang (2021) show that 
the required sample size for organ auto-segmentation critically depends on the organ to 
be segmented. Overall, sample size calculation in DL is still quite rare, being an active 
field of research itself (Shahinfar et al. 2020; Fang 2021). For instance, in ML-based medi-
cal imaging analysis, a systematic review of methodologies for sample size calculation by 
Balki (2019) identified only four such methods, highlighting the need for future work in 
this area.

This is particularly true for DL-based SA, as, to our knowledge, there is currently no 
research published on sample size calculation in this specific area. Generally, in SA, the 
power for detection of effects does not depend on the overall sample size but rather on the 
number of events (for a specific transition). As a consequence, censoring, truncation and 
other outcome-related specifics need to be taken into account. For example, effects on the 
development of a rare condition could be hard to detect if there is a competing event with 
high prevalence. Additionally taking into account imaging data will generally make the 
assumed data generating process and therefore sample size calculation more complex. As 
for more complex statistical models, simulation-based sample size calculation could be a 
way to go in the future (Snell 2021).

The papers reviewed in this work do not explicitly address sample size requirements. In 
our Main Table we included a column that indicates the minimum dataset size among all 
benchmarked datasets used for each method. However, this answers a different question 
about applicability. Most of the methods reviewed will be applicable to rather small data 
sets, however, their ability to learn anything and outperform simpler baseline models will 
usually decrease with diminishing sample size.

3.8  Reproducibility

Code and data accessibility foster open and reproducible research. The availability of code 
can indicate a method’s maturity and its general applicability to new use cases. However, 
the code of algorithms and benchmark experiments is not publicly accessible for 25 meth-
ods. Furthermore, the accompanying codes of 28 methods are one-shot implementations 
and have not yet been processed into easy-to-use packages. Data availability ensures that 
the reported results can be reproduced and are available for future benchmark experiments. 
The Main Table summarizes reproducibility aspects (in terms of code and data) for all 
methods.

For usability and reproducibility, new methods should ideally be packaged and also 
integrated within one of the general purpose suits for machine learning and benchmarking 
for survival analysis such as auton-survival (Nagpal et al. 2022), mlr3proba (Son-
abend et al. 2021), pycox (Kvamme et al. 2019), scikit-survival (Pölsterl 2020), 
or similar.

4  Conclusion

SA is concerned with modeling the time until an event of interest occurs while accounting 
for censoring, truncation, and other aspects of time-to-event data (cf. Sect. 2.2).

In this paper, we provide a structured, comprehensive review of DL-based survival 
methods, from a theoretical as well as practical perspective. In doing so, we aim to ena-
ble practitioners to quickly gauge the methods available for their specific use case as 
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well as to help researchers to identify the most promising areas for future research. The 
main results are summarized in an open-source, interactive, editable table (https:// survi 
val- org. github. io/ DL4Su rvival). All data, figures, and code scripts used in this work 
can be found in the corresponding repository (https:// github. com/ survi val- org/ DL4Su 
rvival).

We conclude that most methodologically innovative DL-based survival methods are 
survival-specific applications of novel methods developed in other areas of DL, such as 
computer vision or NLP. This usually yields a more flexible estimation of associations of 
(structured and unstructured) features with the outcome, rather than solving problems of 
time-to-event data not addressed by, e.g., statistical approaches. Outcome types beyond 
right-censoring and competing risks are rarely addressed, potentially due to a limited num-
ber of application cases.

Further, little attention has been paid to optimization (e.g., choice of optimizers, tuning 
of hyperparameters, or neural architecture search) among the methods reviewed here, as 
they usually focus on network architecture, data modalities, and specific use cases. Among 
those articles that did elaborate on optimization, the Adam optimizer (Kingma and Ba 
2014) appears to be the most common choice.

There are also some challenges specific to DL-based SA. In the parametric setting, 
many common log-likelihood-based losses for survival analysis are poorly conditioned. 
For example, modeling a Weibull distribution that assumes errors from an extreme value 
distribution (with standardized density f (t) = exp(−t) exp(− exp(−t)) ) may be particularly 
challenging when being optimized with gradient descent and low precision. Similarly, 
Avati et al. (2020) recommend the log-normal distribution since optimization of other dis-
tributions that are suitable for time-to-event data suffers from numerical instability, as their 
densities have forms of type (t�1)�2 (where �1 and �2 are parameters of interest) or contain 
the Gamma function. Their optimization will be particularly challenging, when all param-
eters of a distribution are learned depending on features [cf. (4)]. Batching is another issue 
specific to DL-based optimization. In semi-parametric models like the Cox model, batch-
ing might become problematic, as already discussed in Sect. 3.3.1. More generally, batch-
ing might need to be adapted, depending on the survival task. In recurrent events settings, 
for example, batching might need to be set up differently, depending on whether one wants 
to predict next recurrence for all subjects (given previous recurrences) or the entire process 
for a new subject. Finally, the lack of openly accessible, high-dimensional, potentially mul-
timodal datasets remains a major challenge to the development and training of novel DL-
based survival methods.

Missing values are rarely discussed within the methods we reviewed; indeed, most 
methods implicitly require missing values to be taken care of during data preprocessing. 
Explicit handling of missing values in the time-to-event setting is done only by MultiSurv 
and SurvNet.

In terms of their application, DL-based survival methods have been deployed in estimat-
ing patient survival based on medical images (usually CT scans of a particular anomaly) or 
(multi-)omics data—as evidenced by the large majority of multimodal or high-dimensional 
methods in this review. Moreover, some methods are explicitly motivated by a specific 
clinical use case: DASA by prostate cancer; Haa2019, su-DeepBTS, and SurvNet by lung 
cancer; SALMON, ConcatAE/CrossAE, and Liu2022 by breast cancer; and MCAP by ovar-
ian cancer. Other areas of application of DL-based survival methods include improved esti-
mation of prognostic indices (Bice 2020) and of recurrence after cancer surgery (Lee et al. 
2020). The choice of datasets used for benchmarking (see Main Table) provides further 
information about the application cases for each method.

https://survival-org.github.io/DL4Survival
https://survival-org.github.io/DL4Survival
https://github.com/survival-org/DL4Survival
https://github.com/survival-org/DL4Survival
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In summary, deep survival methodology has advanced substantially in recent years and 
will certainly continue to benefit from developments in ML/DL, with big methodological 
advances being likely to swap over. In particular, generative DL techniques like diffusion 
are promising candidates for adaptation to survival tasks. The rapid progress in this area 
of research is also why any overview work can never be fully exhaustive or up-to-date. 
Therefore, we actively encourage the research community to contribute to our open-source 
interactive table (https:// survi val- org. github. io/ DL4Su rvival).
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