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Abstract
In recent years, deep reinforcement learning (DRL) models have been successfully utilised 
to solve various classification problems. However, these models have never been applied 
to customer credit scoring in peer-to-peer (P2P) lending. Moreover, the imbalanced class 
distribution in experience replay, which may affect the performance of DRL models, has 
rarely been considered. Therefore, this article proposes a novel DRL model, namely a deep 
Q-network based on a balanced stratified prioritized experience replay (DQN-BSPER) 
model, for customer credit scoring in P2P lending. Firstly, customer credit scoring is for-
mulated as a discrete-time finite-Markov decision process. Subsequently, a balanced strati-
fied prioritized experience replay technology is presented to optimize the loss function of 
the deep Q-network model. This technology can not only balance the numbers of minority 
and majority experience samples in the mini-batch by using stratified sampling technology 
but also select more important experience samples for replay based on the priority prin-
ciple. To verify the model performance, four evaluation measures are introduced for the 
empirical analysis of two real-world customer credit scoring datasets in P2P lending. The 
experimental results show that the DQN-BSPER model can outperform four benchmark 
DRL models and seven traditional benchmark classification models. In addition, the DQN-
BSPER model with a discount factor γ of 0.1 has excellent credit scoring performance.
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1  Introduction

In recent years, P2P lending companies are rapidly developing, mainly including Leading 
Club, Kiva and Zopa, etc. Further, P2P lending has gradually become an important channel 
for small loans and private financing. However, due to network virtualisation and imperfec-
tion monitoring, P2P lending entails greater credit risks than traditional bank lending (Du 
et al. 2020). Customer credit scoring (CCS) is an effective tool for assessing credit risk in 
P2P lending. Generally, CCS can be regarded as a binary classification problem in which 
customer credit is divided into two categories: ‘good’ and ‘bad’.

At present, there are three types of credit scoring methods: expert judgement, statistical 
analysis, and machine learning (Baesens et al. 2003; Dastile et al. 2020; Xia et al. 2020). 
Common expert judgement methods include 5C and 5P, which rely on expert experience to 
evaluate customer credit. Statistical analysis methods have been proposed to improve the 
efficiency of CCS, including linear discriminant analysis (LDA; Altman 1968) and logistic 
regression (LR; Hosmer et al. 2013) methods. Machine learning methods mainly include 
naive Bayes (NB; Rish 2001), decision tree (DT; Yeo and Grant 2018), k-nearest neighbour 
(KNN; Wauters and Vanhoucke 2017), support vector machine (SVM; Trafalis and Gilbert 
2006), and deep neural network (DNN; Gunnarsson et al. 2021). The experimental results 
of some studies have shown that machine learning methods often achieve better credit scor-
ing performance than statistical analysis methods (Blumenstock et  al. 2022; Dumitrescu 
et al. 2022; Lessmann et al. 2015; Petrides et al. 2020; Serrano-Cinca and Gutiérrez-Nieto 
2016).

With the deepening of research, it has been found that the class distribution of credit 
scoring datasets in P2P lending is often highly imbalanced; that is, the samples of custom-
ers with bad credit are much smaller than those with good credit, which may lead to poor 
classification accuracy in credit scoring for customers with bad credit (Crone and Finlay 
2012; Veganzones and Séverin 2018; Xiao et al. 2021). To solve this problem, resampling 
methods [random oversampling (ROS), random undersampling (RUS), etc.] are proposed 
to balance the class distribution of the training set before modelling (Marqués et al. 2013; 
Protopapadakis et al. 2019).

When using the traditional classification model for CCS in P2P lending, the assump-
tions utilised in the existing studies are that the samples in the dataset are independent and 
identically distributed (Borgonovo and Smith 2011; Lopez-Martin et al. 2020; Óskarsdót-
tir et al. 2019). However, for real-world credit scoring in P2P lending, a large number of 
samples are generated through the dynamic interaction between customers and financial 
institutions or platforms, which are not strictly independent and identically distributed. The 
developed deep reinforcement learning (DRL) model provides a new method of solving 
the above problems, it is a dynamic decision-making method based on the Markov deci-
sion process (MDP; Mnih et al. 2015). Thus far, DRL models have been successfully used 
in various fields, including management strategy optimisation (Liu et al. 2020; Schnaubelt 
2022; van Heeswijk 2022), energy management (Sun 2020), and autopilot technology 
(Wurman et al. 2022).

Among the various DRL models, the deep Q-network (DQN) model (Mnih et al. 2013) 
is the most commonly used. Therefore, some scholars have attempted to employ DQN 
models to solve classification problems (Chatterjee and Namin 2019; Ding et al. 2019; Li 
and Xu 2020; Martinez et al. 2020; Wang et al. 2022; Zhao et al. 2016). The core idea is 
firstly to formulate the classification problem as an MDP and then to use experience replay 
technology to build the mini-batch in the training set to optimize the loss function of the 
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DQN model dynamically. Finally, the optimized DQN model is applied to classify the sam-
ples in the test set. In particular, DQN models have gradually shown their advantages in 
binary classification (Lin et al. 2020; Lopez-Martin et al. 2020; Martinez et al. 2020). The 
most commonly used experience replay technology in DQN models is random experience 
replay (RER), which uses a random sampling method to select experience samples from 
the buffer to build the mini-batch. However, RER technology has difficulty converging 
DQN models in complex scenarios. Therefore, stratified experience replay (SER) technol-
ogy (Chen et al. 2018) and prioritized experience replay (PER) technology (Schaul et al. 
2015) have been developed to improve the convergence performance of DQN models.

The previous studies have significantly contributed to the application of DRL models in 
classification tasks. However, the methods employed have limitations. First, mini-batches 
have mainly been constructed based on RER, SER, or PER to optimize the loss functions 
of DQN models in the previous research. Although these experience replay technologies 
can improve the convergence performance of DQN models to some extent, balancing 
the numbers of minority and majority experience samples in the mini-batch is difficult, 
which may affect the classification performance of DQN models, especially in imbalanced 
classification. Second, when applying DQN models for classification, most scholars have 
designed the value of the discount factor according to common DRL environments (such 
as autopilot, robot control, and computer games), considering their effects on the credit 
scoring performance of DQN models. If an inappropriate discount factor value is designed, 
the DQN model performance may worsen. Third, the DQN-IRF model proposed by Lin 
et al. (2020) addresses classification tasks with imbalanced class distributions. However, 
this model is mainly applied to image and text classification. The features of these samples 
for classification are very different from those of samples for CCS, which can lead to the 
poor credit scoring performance of the DQN-IRF model.

To solve the above problems, we constructed a DQN based on the balanced stratified 
prioritized experience replay (DQN-BSPER) model. Firstly, we formulated CCS as a dis-
crete-time finite MDP according to the characteristics of credit scoring. Then, we devel-
oped balanced stratified prioritized experience replay (BSPER) technology to improve the 
experience replay process of DQN models to optimize the model loss function. To verify 
the model performance, we introduced four evaluation measures (EMs) for empirical anal-
ysis on two real-world CCS datasets in P2P lending with an imbalanced class distribution. 
Firstly, the effects of the discount factor and proportion of minority and majority experi-
ence samples in the stratified priority mini-batch on the CCS performance of the DQN-
BSPER model were analysed. Then, we compared and analysed the CCS performance of 
the DQN-BSPER model and four other benchmark DRL models, namely, a DQN, DQN 
based on stratified experience replay (DQN-SER), DQN based on prioritized experience 
replay (DQN-PER), and DQN-IRF, and further compared their convergence performance. 
Next, the CCS performance of the DQN-BSPER model was statistically compared with 
those of seven traditional benchmark classification models. Finally, the effects of the 
imbalanced class distribution on the CCS performance of the DQN-BSPER model were 
analysed.

The main contributions of this paper are as follows:

(1)	 we propose the BSPER technology to improve the experience replay process of the 
DQN model for CCS in P2P lending. The proposed BSPER technology can not only 
reduce the impact of the highly imbalanced class distribution on the DQN model 
performance by balancing the numbers of minority and majority samples in the mini-
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batch, but also select more important experience samples according to the temporal 
difference (TD) error to improve the convergence performance of the DQN model.

(2)	 The effects of the discount factor on the CCS performance of the DQN-BSPER model 
are analysed, compensating for the fact that previous scholars have often designed the 
discount factor according to common DRL environments (such as autopilot, robot 
control, and computer games), which may lead to poor CCS performance.

(3)	 It verifies that the proposed DQN-BSPER model exhibits excellent CCS performance 
in P2P lending, demonstrating that it could serve as a credit scoring tool in P2P lending 
for financial institutions.

The remainder of this paper is organised as follows. Section  2 provides a literature 
review. The details of the theoretical background are described in Sect. 3. Section 4 elabo-
rates the discrete-time finite MDP for CCS. Section 5 introduces the process of the DQN-
BSPER model in detail. The experimental design is elaborated in Sect. 6. Section 7 pre-
sents the experimental result. Finally, conclusions and future works are given in Sect. 8.

2 � Literature review

2.1 � Customer credit scoring

In actual CCS, banks or financial institutions determine whether to grant loans to custom-
ers based on customer credit. Even if customers have different credit grades, the final result 
is still ‘granting’ or ‘not granting’. Therefore, CCS can be regarded as a binary classifica-
tion problem.

Currently CCS models stemming from operations research and artificial intelligence 
have also become popular, include LR (Hosmer et al. 2013), NB (Rish 2001), DT (Yeo and 
Grant 2018), KNN (Wauters and Vanhoucke 2017), SVM (Trafalis and Gilbert 2006), and 
DNN (Gunnarsson et al. 2021) models. For instance, Lessmann et al. (2015) compared the 
41 classification models performance on eight CCS data sets and validated that the DNN 
model achieved excellent performance. Fernandes and Artes (2016) introduced a measure 
of the local default risk based on the application of ordinary kriging to logistic credit scor-
ing models. These models achieved better performance on the Brazilian dataset. Li et al. 
(2020) proposed a recursive Bayes estimator to improve the precision of credit scoring by 
incorporating the dynamic interaction topology of customers. The experimental results 
showed that, under the proposed framework, the designed estimator achieved a higher pre-
cision than any efficient estimator. Xiao et al. (2021) compared DNN, LDA, LR, DT, and 
SVM models performance. The experimental results on seven CCS datasets showed that 
the LR model provided the best performance. Wang et al. (2022) proposed an innovative 
DQN model for CCS and compared the performance of the proposed DQN model with 
those of eight other classification models. The experimental results obtained using five 
CCS datasets showed that the proposed model performed significantly better than the other 
eight traditional classification models.

In recent years, P2P lending has developed rapidly with the rise of the Internet, and 
scholars have begun to focus on customer credit scores in P2P lending. For instance, Guo 
et  al. (2016) designed an instance-based credit scoring model that can assess the return 
and risk of loans. To verify the proposed model, the authors conducted extensive experi-
ments on two actual CCS datasets in P2P lending. The experimental results showed that 
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this model could effectively improve investment performance. Wang et al. (2021) proposed 
a misclassification cost matrix for P2P credit grading, using a set of equations and mod-
els to calculate costs. The results obtained on the Lending Club dataset showed that cost-
sensitive classifiers could significantly reduce the total cost. Bastani et al. (2019) proposed 
a two-stage scoring method based on credit and profit. The first stage identifies the NPLs. 
The second stage predicts profitability based on the internal rate of return. In both stages, 
wide and deep learning were used to build the prediction models. The results obtained 
using the Lending Club dataset showed that the proposed model outperformed the existing 
credit scoring and profit scoring methods.

In summary, in real-world credit scoring, especially in P2P lending, data are generated 
in the dynamic interaction between customers and financial institutions, which means that 
a sequence correlation may exist between the samples, which can affect the CCS perfor-
mance of the traditional classification model. The DQN-BSPER model proposed in this 
paper is a sequential decision model and verifies whether there is a sequence correlation 
between samples in the CCS datasets in P2P lending.

2.2 � Deep reinforcement learning for classification problems

DRL has been widely used in various real-world fields (Moor et al. 2022; Fan et al. 2020; 
Liu et al. 2020; Patel et al. 2019; Silver et al. 2018), and the most popular model is the 
DQN model (Mnih et  al. 2013, 2015). Over the years, increasingly many scholars have 
begun using the DQN model for supervised classification. For instance, Zhao et al. (2016) 
proposed a DQN model for image classification and experimentally proved that the pro-
posed model was highly competitive on the vehicle classification datasets. Lin et al. (2020) 
proposed a DQN based on an improved reward function (DQN-IRF) model. The model 
provides more rewards to minority experience samples to make the classification strategy 
more inclined toward the minority, which effectively improves the classification perfor-
mance of the model when applied to image and text datasets.

In binary classification, the DQN model have shown excellent performance. For 
instance, Lopez-Martin et  al. (2020) used four DRL models for intrusion detection and 
verified that their performance were better than traditional classification models. Ding 
et al. (2019) constructed a DQN model with RER technology to identify machinery run-
ning faults and achieved 100% recognition accuracy. Lim et al. (2021) used a DQN model 
with RER technology to intelligently predict the hidden relationships in criminal network. 
The experimental results showed that the proposed model performance was superior to RF 
and SVM. Lin et al. (2020) proposed a DQN model with RER technology for classifica-
tion task through making the results inclined toward the minority class, and then verify 
that the improved DQN model was significantly superior to the DNN model on the image 
and text datasets. In addition, Chen et al. (2018) introduced stratified sampling technology 
into the experience replay process of the DQN model to improve its convergence perfor-
mance. Schaul et al. (2015) introduced the degree of importance (referred to as priority) 
into the experience replay process and developed PER technology. This technology firstly 
determines the priority of each experience sample according to the TD error. Subsequently, 
it selects important experience samples to construct the mini-batch based on the priority 
to optimize the loss function. They proved that the improved process is very effective in 
improving convergence for DRL models.
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In summary, previous scholars have mainly constructed mini-batches based on RER, 
SER, or PER for DQN models. It is difficult to balance the numbers of minority and major-
ity experience samples in the mini-batch, which may affect the DQN model performance in 
imbalanced classification. Our proposed BSPER technique fully considers the class-imbal-
anced characteristics of the CCS datasets in P2P lending and improves the convergence 
performance of DQN.

3 � Theoretical background

3.1 � Notations

For convenience and clarity, the main mathematical notations and definitions used in this 
article are presented in “Appendix 1”.

3.2 � Reinforcement learning and Q‑learning

Reinforcement learning (RL) is a subclass of machine learning that aims to optimize the 
action strategy of the agent continuously to maximise the expected cumulative reward 
in the process of interaction with the environment, that is, to maximise the Q-function 
(Sutton and Barto 1998). In previous studies, RL tasks have usually been formulated as 
MDPs (Cai et  al. 2020; Zhang et  al. 2021), and their basic elements can be expressed 
as a tuple (S,A,P,R, �) , where S indicates the state space, A indicates the action space, 
P ∶ S × A × S → [0, 1] indicates the state transition probability, R ∶ S × A → ℝ indicates 
the reward function, and � ∈ [0, 1] indicates the discount factor that balances the impor-
tance of future rewards and current rewards. In particular, during the tth ( t ∈ [0, T] ) time 
step, the agent first performs an action at ∈ A under the environment state st ∈ S . Then, 
the reward rt is generated by environment and feeds it back to the agent. Finally, the envi-
ronment is transferred to the next state st+1 according to probability P . The cumulative 
reward from st to sT can be expressed as Rt =

∑T

i=t
� i−tri . In addition, the expected cumula-

tive reward (usually represented by the Q-function) corresponding to the state–action pair (
st, at

)
 is expressed as Q

�
st, at

�
= E[

∑T

i=t
� i−tri] (Chen et al. 2018), and the optimal strat-

egy �∗ represents the strategy that can maximise the Q-function. According to the Bellman 
equation (Gosavi 2009), the Q-function can be transformed into the following form:

where max
at+1∈A

Q
(
st+1, at+1

)
 represents the maximum Q-value that the agent can obtain when 

the state is st+1.
Q-learning is a widely used model-free RL algorithm based on asynchronous dynamic 

programming that can quickly find the optimal strategy for the MDP (Watkins and Dayan 
1992). The core idea is to find the optimal strategy �∗ that can maximise the Q-value using 
the Bellman equation (Gosavi 2009) to iterate the Q-table continuously. The general steps 
of Q-learning can be summarised as follows:

(1)Q
(
st, at

)
= E

[
rt + � max

at+1∈A
Q
(
st+1, at+1

)]
,



Deep reinforcement learning based on balanced stratified…

1 3

Page 7 of 33  93

Step 1: Initialise the Q-values of all state-action pairs in the Q-table.
Step 2: According to the Q-table, the agent executes action at in state st.
Step 3: When the state-action pair is 

(
st, at

)
 , the agent obtains reward rt according to the 

reward function. Simultaneously, the next state st+1 is generated from environment, then 
iteratively updates the Q-value using the Bellman equation (Gosavi 2009):

where � represents the learning rate.
Step 4: Repeat Steps 2 and 3 until none of the Q-values in the Q-table change. Then, 

the strategy corresponding to the Q-table is the optimal strategy �∗ (Sutton and Barto 
1998).

3.3 � Deep Q‑network

Q-learning algorithms have been successfully applied in many fields of real word, but 
they are primarily suitable for tasks with small state spaces. In the real world, the state 
spaces of tasks are typically large, and the number of states can even reach tens of mil-
lions. To solve this problem, Mnih et  al. (2015) combined a DNN with Q-learning to 
develop a DQN model, which approximately expresses the Q-function by automatically 
extracting features from the state space. Specifically, experience samples are continu-
ously obtained first according to the greedy strategy, and they are stored in a fixed-size 
replay memory buffer to form an experience sample set. In particular, the experience 
sample at the tth time step is represented as et = (st, at, rt, st+1) , and the experience sam-
ple set is represented as Et = {e1, e2,… , et} . Then, k experience samples are randomly 
selected from Et to form a mini-batch using RER technology. Finally, a DNN is used to 
fit the Q-function, so the network corresponding to the Q-function is called the Q-net-
work, and its general expression is Q(s, a;�) , whereas the loss function of L(�C

t
) can be 

expressed as

where yi = ri + � max
ai+1∈A

Q
(
si+1, ai+1;�

T
t

)
 indicates the target Q-function; �T

t
 indicates the 

parameters of the target Q-network; Q
(
si, ai;�

C
t

)
 indicates the current Q-function; �C

t
 indi-

cates the parameters of the current Q-network. The gradient descent algorithm was used to 
update the parameters of the Q-network:

(2)Q
(
st, at

)
← Q

(
st, at

)
+ �

[
rt + � max

at+1∈A
Q
(
st+1, at+1

)
− Q

(
st, at

)]
,

(3)L(�C
t
) =

1

k

k∑
i=1

(
yi − Q

(
si, ai;�

C
t

))2
,

(4)
∇L

(
�C
t

)

∇�Ct
=

2

k

k∑
i=1

(
yi − Q

(
si, ai;�

C
t

))∇L(Q(si, ai;�Ct
))

∇�Ct
,

(5)�C
t+1

= �C
t
− �

∇L
(
�C
t

)

∇�Ct
,
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where � indicates the learning rate of the Q-network. After training, we can obtain the 
optimal strategy �∗ = argmax

a∈A

Q∗(s, a;�) , which can maximise the Q-function. In addition, 

iterative updating technology is used to reduce the correlation between the current Q-net-
work and target Q-network. In other words, the parameter of the current Q-network �C

t
 is 

assigned to the parameter of the target Q-network �T
t
 after a certain number of steps for 

improving the convergence stability of the Q-network (Lopez-Martin et  al. 2020; Mnih 
et al. 2015). For the detailed algorithm, see the literature (Mnih et al. 2015).

3.4 � Experience replay

In most DRL frameworks, the agent constantly receives new experience samples to update 
the parameters of the DQN model incrementally. The simplest update method uses only one 
experience sample in each time step to update the model parameters. However, the biggest 
drawback of this method is that the rare experiences that may be useful in the future will 
be quickly forgotten, resulting in low sampling efficiency. Experience replay can effectively 
solve this issue (Luo et al. 2018). In other words, experience samples are firstly stored in 
a fixed-size replay memory buffer; then, each time the parameters of the DQN model are 
updated, a fixed number of experience samples are sampled from the replay memory buffer 
to construct a mini-batch; and finally, the gradient descent algorithm is used to train and 
optimize the model.

Obviously, a complete experience replay process consists of storing and sampling the 
experience samples. Therefore, the selection of experience samples from the replay mem-
ory buffer is important in improving the DQN model performance. In particular, when an 
experience sample is stored in replay memory buffer D , a new index label i ∈ {1, 2,… , d} 
is assigned to the experience. The priority of the ith experience sample is represented as 
P(ei) . The entire replay memory buffer can be regarded as a combination of experience 
samples and priority 

{
ei,P(ei)

}
 . The key to selecting the experience samples is to deter-

mine P(ei) for each experience sample. The most commonly used experience replay tech-
nology in the DQN model is RER, and the priority of each experience sample is the same, 
that is, P

(
ei
)
=

1

d
 . This technology uses a random sampling method to select experience 

samples from the buffer to construct the mini-batch, which ignores the experience samples 
that play an important role in the parameter updating of the DQN model. Consequently, the 
DQN model may converge slowly in complex tasks. To solve this problem, Schaul et al. 
(2015) proposed PER technology. The core steps of this technology can be summarised as 
follows. Firstly, the TD error of the experience sample in the replay memory buffer can be 
calculated as follows:

The priority of each experience sample is then determined according to the TD error; 
that is, the selected probability of the experience sample can be expressed as

Finally, k experience samples are selected from the replay memory buffer according to 
the probability P

(
ei
)
 to construct a mini-batch. The higher the TD error, the higher the 

priority of the experience sample. Thus, a sample with a higher TD error is selected with 

(6)�i =
|||yi − Q

(
si, ai;�

C
t

)|||, i = 1, 2, ..., d.

(7)P
�
ei
�
=

�i∑d

1
�i
.
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a higher probability, which effectively improves the convergence performance of the DQN 
model (Schaul et al. 2015).

Furthermore, Chen et al. (2018) developed an SER by introducing stratified sampling 
technology into the experience replay for the DQN model. The core idea of this technology 
is to use a stratified sampling method to select different classes of experience samples from 
the replay memory buffer to construct a mini-batch. The experimental results demonstrate 
that this technology can dramatically improve the classification performance of the DQN 
model.

4 � Formulating customer credit scoring in P2P lending as discrete‑time 
finite MDP

In the real world, CCS in P2P lending is a interactive process similar to the RL pro-
cess. The number of environmental states is limited within a certain time step, and the 
time step is discrete. Therefore, we formulated CCS in P2P lending as a discrete-time 
finite MDP (CSDFMDP). Firstly, a limited number of customers enter the environment. 
The agent then identifies the environmental state and performs a credit scoring action 
according to the state. Next, the environment generates rewards based on the reward 
function and feeds them back to the agent. Finally, the agent optimizes the action strat-
egy based on the feedback reward. This process is repeated until there are no more 
customers in the environment. The ultimate objective of the agent is to classify the 
customer samples as accurately as possible. More importantly, the agent can obtain dif-
ferent rewards when classifying the customer samples correctly or incorrectly. There-
fore, the agent can optimize the credit scoring action by maximising the Q-function.

To describe the CSDFMDP more clearly, we use Dtrain = {
(
xt, yt

)
}
1≤t≤T

 to rep-
resent the CCS training set, where T  indicates the number of customer samples, 
xt =

(
x1
t
, x2

t
,… , x

g

t

)
 indicates the tth customer sample, g indicates the number of fea-

tures, and yt ∈ {0, 1} indicates the class label of xt . The basic elements related to CSD-
FMDP can be described as follows:

(1)	 Environment. In the real world, one of the most critical factors affecting the P2P 
CCS environment is the customer, which was the main object of our study. Then, 
we simplified the CSDFMDP environment to include only the customer.

(2)	 Environment state space. The environment state space can be expressed as 
S =

{
s1, s2,… , sT

}
 , where the environment state at the tth time step is defined as 

st =
(
s1
t
, s2

t
,… , s

g

t

)
 . In particular, s1 indicates the initial environment state correspond-

ing to x1 in the training set, and sT indicates the terminal environment state correspond-
ing to xT in the training set.

(3)	 Agent. The agent represents a substitute for the bank loan approver, which classifies 
customer credit according to the environmental state.

(4)	 Action space. The action space is represented as A = {0, 1} , where 0 and 1 indicates 
that the agent classifies the customer as having good credit and bad credit respectively. 
Then, at the tth time step, the credit scoring action performed by the agent according 
to state st is expressed as at ∈ A.

(5)	 Reward. At the tth time step, the feedback reward from the environment is rt , that is, 
if the agent classifies the customer credit correctly, then the environment feeds back a 
positive reward to the agent according to the reward function; otherwise, the environ-
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ment feeds back a negative reward. Referring to the literature (Chatterjee and Namin 
2019; Lopez-Martin et al. 2020), we set the reward function for CCS as follows:

where R
(
at, yt

)
 indicates that if the credit scoring action of the agent at is the same as 

the class label of customer credit yt , then the feedback reward from the environment is 
rt = 1 ; otherwise, it is rt = −1.

(6)	 State transition probabilities. According to the literature (So and Thomas 2011), the 
state transition probability of the CSDFMDP is as follows:

where p
(
st+1|st, at

)
 indicates the probability of the environment transferring to state 

st+1 when the state–action pair is 
(
st, at

)
 . In particular, the order of the customer sam-

ples was fixed; therefore, the state transition probability was deterministic, that is, 
p
(
st+1|st, at

)
= 1.

(7)	 Strategy. In the CSDFMDP, the classification strategy �
(
at|st

)
 indicates the prob-

ability of performing credit scoring action at by the agent under environment state st , 
so the optimal credit scoring action according to the greedy strategy can be expressed 
as follows:

where the greedy strategy means that the agent only selects the action that maximises 
Q
(
st, at

)
 in environment state st.

Specifically, the process of the agent from st to sT is as follows.
Step 1: When the CCS environment state is st , the agent performs a credit scoring 

action based on greedy policy at.
Step 2: According to the reward function R

(
at, yt

)
 , the environment feeds back a 

reward to the agent; that is, if the credit scoring action of agent at is the same as real 
class label yt , then the feedback reward from the environment is rt = 1 ; otherwise, it is 
rt = −1.

Step 3: According to the state–action pair (st, at) , the environment is transferred to 
the next state, st+1.

Step 4: Repeat Steps 1–3 until the environment reaches the terminal state, sT.
The cumulative reward obtained by the agent from st to sT is Rt =

∑T

i=t
� i−tri . The 

Q-function corresponding to the state-action pair can be expressed as 
(
st, at

)
= E

[
rt + � max

at+1∈A
Q
(
st+1, at+1

)]
 , where � ∈ [0, 1] indicates the discount factor. In par-

ticular, � = 0 indicates that only the current credit scoring result is considered, � = 1 indi-
cates that the future and current credit scoring results both have the equal importance.

(8)R
(
at, yt

)
=

{
1, at = yt,

−1, at ≠ yt,

(9)p
(
st+1|st, at

)
= p

(
st+1|st, at, st−1, at−1,… , s1, a1

)
,

(10)�∗
(
at|st

)
=

{
1, if at = argmax

at∈A

Q
(
st, at

)
,

0, else,
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5 � Proposed DQN based on balanced stratified prioritized experience 
replay for customer credit scoring in P2P lending

This section proposes the DQN-BSPER model for CCS in P2P lending. We firstly com-
bined SER and PER to develop the BSPER technology and then designed the DQN-BSPER 
model; that is, we used the BSPER technology to improve the experience replay process of 
the DQN model to optimize its loss function. This section introduces the BSPER technol-
ogy in detail and describes the process of using the DQN-BSPER model for CCS.

5.1 � Balanced stratified prioritized experience replay

The most commonly used experience replay technology in the DQN model is RER, which 
randomly selects experience samples from the buffer to construct a mini-batch. The main 
advantage of this method is that it is easy to implement. However, the mini-batch constructed 
by RER technology has an imbalanced class distribution in CCS, and it is difficult to select 
experience samples that play important roles in updating the loss function parameters, which 
may affect the CCS performance of the DQN model. SER can reduce the effects of the imbal-
anced class distribution on the DQN model performance by adjusting the numbers of minority 
and majority experience samples in the mini-batch (Chen et al. 2018). However, it is difficult 
to select experience samples that play important roles in updating the loss function param-
eters. To avoid the shortcomings of the SER, PER provides a concept that can select more 
important experience samples to improve the convergence performance of the DQN model 
(Schaul et al. 2015), but the class distribution of the constructed mini-batch is still imbalanced. 
It can be observed that SER and PER are complementary in the experience replay process. 
Therefore, we combined SER and PER to develop the BSPER technology.

To express the sampling process of the BSPER technology more clearly, we provide def-
initions of the majority and minority experience samples. If the current state of an experi-
ence sample is a minority sample (a positive class sample), then the sample is the minority 
experience sample, which is represented as Emin , and the tth minority experience sample is 
represented as emin

t
= (smin

t
, amin

t
, rmin

t
, smin

t+1
) . If the current state of an experience sample is a 

majority class sample (a negative class sample), then let the sample be the majority experience 
sample, which is represented as Emaj , and let the tth majority experience sample be indicated 
as emajt = (s

maj

t , a
maj

t , r
maj

t , s
maj

t+1
) , Emin ∩ E

maj = ∅ . The core steps of the SPER technology can 
be described as follows.

Step 1: Store the experience samples in the minority and majority experience replay buff-
ers Dmin and Dmaj , respectively, according to the form of SumTree (Schaul et al. 2015), and 
obtain the replay memory sets of the minority and majority experience samples 
E
min
replay

=
{
emin
i

}
1≤i≤d1

⊂ E
min and Emaj

replay
=
{
e
maj

j

}
1≤j≤d2

⊂ E
maj.

Step 2: Calculate the TD errors of the experience samples in Emin
replay

 and Emaj

replay
 , denoted as 

�min
i

 and �maj
j

 , respectively, which can be expressed as follows:

(11)�min
i

=
|||y

min
i

− Q
(
smin
i

, amin
i

;�C
)|||, i = 1, 2,… , d1,

(12)�
maj

j
=
||||y

maj

j
− Q

(
s
maj

j
, a

maj

j
;�C

)||||, j = 1, 2,… , d2,



	 Y. Wang et al.

1 3

93  Page 12 of 33

where ymin
i

= rmin
i

+ � ⋅max
a���
i+1

∈A
Q
(
smin
i+1

, amin
i+1

;�T
)
 and ymaj

j
= r

maj

j
+ � ⋅max

a
���

j+1
∈A

Q
(
s
maj

j+1
, a

maj

j+1
;�T

)
 

indicate the target Q-functions in the minority and majority experience samples, respectively; 
Q
(
smin
i

, amin
i

;�C
)
 and Q

(
s
maj

j
, a

maj

j
;�C

)
 indicate the current Q-functions in the minority and 

majority experience samples, respectively; �T and �C indicate the parameters of the target 
Q-network and current Q-network, respectively; and d1 and d2 indicate the numbers of minor-
ity and majority experience samples in Emin

replay
 and Emaj

replay
 , respectively.

Step 3: Calculate the probabilities of minority and majority experience samples selected 
from Emin

replay
 and Emaj

replay
 according to the TD error, which are represented as P

(
emin
i

)
 and 

P
(
e
maj

j

)
 , respectively:

Step 4: Select k1 and k2 ( k1 = k2 ) minority and majority experience samples from Emin
replay

 

and Emaj

replay
 according to P

(
emin
i

)
 and P

(
e
maj

j

)
 , respectively, to construct the stratified prior-

itized mini-batch.

5.2 � Procedure of the DQN‑BSPER model

This section describes the introduction of the BSPER technology into the DQN model to 
construct the DQN-BSPER model. Figure 1 shows the Q-network structure of the DQN-
BSPER model. The input layer of the network is the environmental state (the features of 

(13)P
�
emin
i

�
=

�min
i∑d1

1
�min
i

,

(14)P
�
e
maj

j

�
=

�
maj

j∑d2
j
�
maj

j

Fig. 1   The Q-network structure of the DQN-BSPER model
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the customer sample) st =
(
s1
t
, s2

t
,… , s

g

t

)
 , where the number of nodes in the input layer 

is the feature number of environment state g , and the output layer is set to two Q-values. 
According to the Q-value, the customer class label is mapped using a one-hot method, and 
the nodes in each layer are connected in a fully connected manner.

The core idea of the DQN-BSPER model for CCS is as follows. Firstly, in the train-
ing set, the BSPER technology is used to construct the stratified prioritized mini-batch to 
optimize the loss function, and then the gradient descent algorithm is used to update the 
Q-network parameters continuously to optimize the classification strategy of the agent in 
CCS. Finally, in the test set, the trained DQN-BSPER model was used to evaluate customer 
credit. The detailed modelling steps of the proposed model can be summarised as follows 
(the modelling process is shown in “Appendix 2”).

Step 1: Initialise the parameters of the current Q-network �C
t

 , parameters of the target 
Q-network �T

t
 , target network update frequency Z , time step t , maximum time step T  , epi-

sode c , maximum episode C , size of mini-batch k , number of minority experience samples 
in mini-batch k1 , and number of majority experience samples in mini-batch k2.

Step 2: Randomly sort the customer samples in the training set and input them into 
the CCS environment. Each environmental state corresponds to a customer sample; that is, 
st ← xt.

Step 3: The agent obtains environment state st and performs credit scoring actions at 
according to the ε-greedy strategy:

where the ε-greedy strategy adds randomness to the greedy strategy. That is, the agent 
selects the action that maximises Q

(
st, at;�

C
t

)
 based on the probability 1 − � under environ-

ment state st ; otherwise, an action is randomly selected based on the probability � . Then, 
reward rt is obtained according to the reward function R

(
at, yt

)
 (see Eq. (8)), and the envi-

ronment is transferred to the next state st+1.
Step 4: According to Step 3, the agent continuously obtains the experience sample 

et =
(
st, at, rt, st+1

)
 , and obtains Emin

replay
 and Emaj

replay
 by using the BSPER technology.

Step 5: If |||E
min
replay

||| ≤ k1 or |||E
maj

replay

||| ≤ k2 , then go to Step 3 and let t ← t + 1 ; otherwise, use 
the BSPER technology to construct the stratified prioritized mini-batch. Then, the correspond-
ing loss function of Q-network at the t-th time step LSTS

(
�C
t

)
 can be expressed as follows:

(15)�
(
at|st

)
=

{
1 − �, if at = argmax

at∈A

Q
(
st, at; �

C
t

)
,

�, else,

(16)

LSTS
(
�C
t

)
=

1

k1

k1∑
i=1

(
ymin
i

− Q
(
smin
i

, amin
i

;�C
t

))2
+

1

k2

k2∑
j

(
y
maj

j
− Q

(
s
maj

j
, a

maj

j
;�C

t

))2

,

(17)ymin
i

=

{
rmin
i

, ift = T

rmin
i

+ � ⋅ max
a���
i+1

∈A
Q
(
smin
i+1

, amin
i+1

;�T
t

)
, ift ≠ T i = 1, 2,… , k1

(18)y
maj

j
=

⎧⎪⎨⎪⎩

r
maj

j
, ift = T

r
maj

j
+ � ⋅max

a
���

j+1
∈A

Q
�
s
maj

j+1
, a

maj

j+1
;�T

t

�
, ift ≠ T j = 1, 2,… , k2
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where ymin
i

 and ymaj
j

 indicate the target Q-functions in the minority and majority experience 
samples, respectively; Q

(
smin
i

, amin
i

;�C
t

)
 and Q

(
s
maj

j
, a

maj

j
;�C

t

)
 indicate the current Q-func-

tions in the minority and majority experience samples, respectively; �T
t
 and �C

t
 indicate the 

parameters of the target and current Q-networks, respectively; k1 and k2 ( k1 + k2 = k ) indi-
cate the numbers of minority and majority experience samples selected from Emin

replay
 and 

E
maj

replay
 , respectively; and � is the discount factor.

Step 6: Use the Adam optimization algorithm to update the parameters of the current 
Q-network (Schaul et al. 2015):

where ∇LSTS(�
C
t )

∇�Ct
 indicates the gradient of LSTS

(
�C
t

)
 at the tth time step; mt and dt indicate the 

first- and second-order moments of ∇LSTS(�
C
t )

∇�Ct
 , respectively; �1 and �2 indicate the exponen-

tial decay rates of the first- and second-order moments, respectively; m̂t and d̂t indicate the 
deviation correction values of mt and dt , respectively; Eq. (24) indicates that the parameters 
of the Q-network �C

t
 are updated by combining Eqs. (22) and (23); � indicates the learning 

rate of the current Q-network; and � indicates a constant value to prevent 
√

d̂t + � from 
generating the 0 value. Then, for each Z time step, the parameters of the current Q-network 
�C
t

 are assigned to the parameters of the target Q-network �T
t
 ; that is, let �T

Z|t ← �C
Z|t.

Step 7: If t ≤ T , then proceed to Step 3 and let t ← t + 1 ; otherwise, proceed to Step 8.

∇LSTS
(
�C
t

)

∇�Ct
=

2

k1

∑k1

i=1

(
ymin
i

− Q
(
smin
i

, amin
i

; �C
t

))∇LSTS
(
Q
(
smin
i

, amin
i

; �C
t

))

∇�Ct

(19)+
2

k2

∑k2

j=1

(
y
maj

j
− Q

(
s
maj

j
, a

maj

j
; �C

t

))∇LSTS
(
Q
(
s
maj

j
, a

maj

j
; �C

t

))

∇�Ct
,

(20)mt ← �1mt +
(
1 − �1

)∇LSTS
(
�C
t

)

∇�Ct
,

(21)dt ← �2dt +
(
1 − �2

)(∇LSTS
(
�C
t

)

∇�Ct

)2

,

(22)m̂t ←
mt

1 − � t
1

,

(23)d̂t ←
dt

1 − � t
2

,

(24)
�C
t
← �C

t
−

�√
d̂t + �

m̂t,
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Step 8: If c ≤ C , then go to Step 2 and let c ← c + 1 ; otherwise, stop training, output the 
trained current Q-network, and use it to conduct CCS according to the greedy strategy in 
the test set.

The current Q-network obtained through the above steps is a parameterised optimal 
Q-function; therefore, the strategy corresponding to the network is also the optimal classi-
fication strategy. The pseudo-codes of the CCS environment simulation and DQN-BSPER 
model are shown in “Appendix 3”.

6 � Experimental design

This section introduces the experimental design. Firstly, two CCS datasets in P2P lend-
ing and preprocessing are described, the detailed experimental process and main parameter 
settings of the models are discussed in detail, and four EMs are introduced to evaluate the 
performance of the models.

6.1 � Data set description and preprocessing

To analyse the CCS performance of the DQN-BSPER model, we selected two CCS datasets 
in P2P lending (IFCD and Leading Club). The IFCD dataset was obtained from an Internet 
financial company in China. The original dataset contained 1110 features. The Leading Club 
dataset was acquired from the first quarter data of Lending Club, which is a P2P lending plat-
form in the United States in 2016, and the original dataset contained 110 features. According 
to the regulations of the Basel Banking Regulatory Association, we labelled customers whose 
loans were overdue for more than 90 days as having bad credit and others as having good 
credit.

The two CCS datasets in P2P lending contained redundant features and missing values, 
which were processed as follows. First, we deleted some meaningless features through obser-
vation, such as loan number, zip code, and customer ID. Then, the features with missing rates 
of more than 30% were eliminated. Finally, the recursive feature elimination method Wrap-
per was used to eliminate the features with the minimum absolute weights continuously. The 
basic information about the two CCS datasets in P2P lending after preprocessing is shown 
in Table 1, including the dataset name (the abbreviation in parentheses), number of features, 
number of customer samples, number of customer samples with good credit, number of cus-
tomer samples with bad credit, and imbalanced ratio (IR), which is defined as the proportion 
of the number of the majority samples (customers with good credit) relative to the number of 
minority samples (customers with bad credit). Obviously, the greater the IR , the higher the 
class distribution imbalance. As shown in Table 1, the two CCS datasets are imbalanced.

Table 1   The basic information of two CCS data sets in P2P lending after preprocessing

Data sets Features Samples Good credit Bad credit IR

IFCD (IF) 50 23,319 21,583 1736 12.43
Leading Club (LE) 90 133,887 109,888 23,999 4.58
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6.2 � Experimental procedure and parameter settings

In this study, we performed fivefold cross validation in each dataset to obtain the calculation 
results for the models. Firstly, each dataset was divided equally into five subsets at random. 
In each experiment, one subset was used as the test set, Dtest , and the remaining subsets were 
used as the training set, Dtrain . Then, the DQN-BSPER model and other models were trained 
in Dtrain . Finally, the trained models were used to classify the samples in Dtest . This process 
was repeated five times to ensure that each subset was used once. The entire process con-
stitutes fivefold cross validation. To obtain more stable and reliable experimental results, we 
repeated the fivefold cross validation 10 times and took the average value as the final calcula-
tion result. In addition, we recorded the network loss each time the model traversed the train-
ing set in the process of fivefold cross validation and averaged the training network loss at the 
end of training. All experiments in this study were run on Python 3.6, in a Windows 10 × 64 
bit system equipped with an Intel (R) Core (TM) i9 processor.

We mainly referred to previous studies (Lin et al. 2020; Liu et al. 2020; Mnih et al. 2015) to 
set the parameters of the DRL models. “Appendix 4” shows the main parameter settings of the 
DQN-BSPER and other DRL models. In particular, the size of the replay memory buffers of 
the DQN-BSPER and DQN-SER models Dmin and Dmaj was 500. In addition, the current and 
target Q-networks of the DQN-BSPER model had the same structure. To ensure the fairness 
of the experiment, we adjusted the discount factors of the DQN, DQN-SER, DQN-PER, and 
DQN-IRF models many times and determined their optimal values. Specifically, the optimal 
discount factor of the DQN-SER model was 0.1, and the optimal discount factor of the DQN, 
DQN-PER, and DQN-IRF models was 0.3. In all experiments, the network parameters of the 
five DRL models were equal. In addition, we used the grid search and fivefold cross valida-
tion (Gunnarsson et al. 2021) to ensure the excellent performance of the other classification 
models.

6.3 � Evaluation measures

The confusion matrix method can intuitively evaluate classification models performance 
(Batista et al. 2004). Table 2 shows the confusion matrix of CCS, from which many different 
EMs can be obtained.

(25)True positive rate (TPR) =
TP

TP + FN
,

(26)True negative rate (TNR) =
TN

TN + FP
,

Table 2   The confusion matrix of CCS

Predicted positive Predicted negative Total

Actual positive (bad 
credit customer)

TP FN TP + FN

Actual negative (good 
credit customer)

FP TN FP + TN

Total TP + FP FN + TN TP + FN + FP + TN
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However, there are some contradictions between these EMs, so some new comprehensive 
measures have been proposed, such as F1 (Tang et al. 2008) and AUC​ (Bradley 1997). F1 is a 
combination of precision and recall:

where recall = TPR and � is the relative coefficient of recall to precision. In this study, we 
design � = 1.

In this research, we used the approximate representation of the AUC​ for the binary classifi-
cation problem (Loyola-González et al. 2016):

Therefore, we used four TPR, ACC​, F1, and AUC​ in this study. The larger the values of 
them, the better the performance of the CCS model.

7 � Experimental results and analysis

We empirically analysed the CCS performance of the DQN-BSPER model using two real-
world P2P lending CCS datasets. Firstly, we assessed the effects of parameters � and k1∕k2 
on the CCS performance of the DQN-BSPER model. Subsequently, the CCS performance 
of DQN-BSPER and the four benchmark DRL models DQN (Mnih et al. 2013), DQN-SER 
(Chen et al. 2018), DQN-PER (Schaul et al. 2015), and DQN-IRF (Lin et al. 2020) were 
statistically compared, and their convergence performance was compared. Next, the CCS 
performance of the DQN-BSPER model and seven traditional benchmark classification 
models was statistically compared. Finally, the impact of the imbalanced class distribution 
on the CCS performance of the DQN-BSPER model was analysed.

7.1 � Parameter sensitivity analysis

To analyse the effects of the discount factor � and the proportion of minority and majority 
experience samples in the stratified prioritized mini-batch k1∕k2 on the CCS performance of 
the DQN-BSPER model, we set 11 different types of� ; that is, we let� = {0, 0.1, 0.2,… , 1} . 
A large difference between k1 and k2 may significantly affect the DQN-BSPER model per-
formance. Therefore, we set 11 different values ofk1∕k2 : { 6∕1, 5∕1, 4∕1,… , 1∕6} . Owing 

(27)False positive rate (FPR) =
FP

TN + FP
,

(28)Precision =
TP

TP + FP
,

(29)Accuracy =
TP + TN

TP + FP + TN + FN
.

(30)F1 =
(1 + �2) × recall × precision

�2 × recall + precision
,

(31)AUC =
TPR + TNR

2
.
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to the lack of prior experience, we temporarily set k1∕k2 = 1 when analysing the effects of 
the discount factor on the DQN-BSPER model performance.

Figure 2 depicts the average values of the EMs of the DQN-BSPER model under 11 val-
ues of � (the average value of each EM is the average value of the classification results of 
the model on two CCS datasets in P2P lending). “Appendix 5” shows the CCS performance 
of the DQN-BSPER model under the 11 discount factors. The bold values indicate the 
best CCS performance in each column, the numbers in parentheses indicate the rankings of 
the DQN-BSPER model with different discount factors, and the last column indicates the 
average ranking value of the DQN-BSPER model performance with each discount factor. 
The smaller the ranking value, the better the model performance. As shown in Fig. 2, with 
respect to TPR, the CCS performance of the DQN-BSPER model shows a gradual upward 
trend with increasing � . According to ACC​, F1, and AUC​, the DQN-BSPER model perfor-
mance shows a gradual downward trend with increasing � . To determine the most appropri-
ate discount factor, we ranked the DQN-BSPER model performance under different dis-
count factors. As can be seen in “Appendix 5”, the DQN-BSPER model has the smallest 
ranking value when � = 0.1 . The DQN-BSPER model has the largest ranking value when 
� = 0.8.

Figure 3 presents the average values of the EMs of the DQN-BSPER model under 
11 values of k1∕k2 . Furthermore, we ranked the CCS performance of the DQN-BSPER 

Fig. 2   The average values of 
EMs of the DQN-BSPER model 
under 11 values of �
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model under different k1∕k2 values, and the results are shown in “Appendix  6”. As 
depicted in Fig. 3, with respect to TPR, the DQN-BSPER model performance shows a 
gradual downward trend with increasing k1∕k2 . With respect to ACC​, the DQN-BSPER 
model performance shows a gradual upward trend with increasing k1∕k2 . With respect 
to F1 and AUC​, the DQN-BSPER model performance firstly shows an upward trend and 
then a downward trend. As shown in “Appendix  6”, the DQN-BSPER model has the 
smallest ranking value when k1∕k2 = 1.

It can be seen from the experimental results that the CCS performance of the DQN-
BSPER model is the best when � = 0.1 and k1∕k2 = 1 . Interestingly, with increasing 
� , the TPR gradually increases, whereas ACC​, F1, and AUC​ gradually decrease. This 
observation shows that the greater � , the more majority samples will be wrongly divided 
into the minority by the DQN-BSPER model, resulting in poor overall performance of 
the model. When � = 0.1 , the DQN-BSPER model performance is the best, which also 
demonstrates that there is a weak sequence correlation between the samples in the CCS 
dataset, whereas identifying the correlation may make the DQN-BSPER model more 
robust (Lei et al. 2020). In addition, setting k1∕k2 too high or too low leads to poor CCS 
performance of the DQN-BSPER model. When k1∕k2 = 1 , the DQN-BSPER model has 
the highest F1 and ACC​ values, which verifies that balancing the class distribution of 
different experience samples in the stratified prioritized mini-batch can improve the 
CCS performance of the DQN-BSPER model the most effectively.

7.2 � Credit scoring performance comparison of DQN‑BSPER and four other 
benchmark DRL models

This section compares the CCS performance of DQN-BSPER and the other four bench-
mark DRL models, DQN, DQN-SER, DQN-PER, and DQN-IRF, on the IF and LE data-
sets according to four EMs. Table 3 presents the CCS performance of DQN-BSPER and 
the other four benchmark DRL models on the IF and LE datasets. The bold font indicates 
the model with the best CCS performance in each column, and the numbers in parentheses 
indicate the model performance rankings. The last column indicates the average ranking of 
the performance of each model.

Table  3 demonstrates that the DQN-BSPER model has the smallest average rank-
ing, indicating that the model has the best CCS performance. To analyse whether there 
are statistically significant differences in CCS performance among DQN-BSPER and the 
other four benchmark DRL models, we used the nonparametric Wilcoxon rank sum test 

Table 3   The CCS performance of DQN-BSPER and four other benchmark DRL models on the IF and LE 
datasets

The bold indicates the best ranked model in each column

Model IF dataset LE dataset Aver-
age 
rankTPR ACC​ F1 AUC​ TPR ACC​ F1 AUC​

DQN-
BSPER

0.7464(1) 0.6296(1) 0.2260(1) 0.6779(1) 0.9838(1) 0.9888(2) 0.9690(1) 0.9857(1) 1.13

DQN 0.0191(4) 0.6284(2) 0.0289(4) 0.5070(4) 0.9585(4) 0.9819(5) 0.9673(5) 0.9827(3) 3.88
DQN-SER 0.6887(2) 0.6202(4) 0.2211(2) 0.6680(2) 0.9829(2) 0.9852(3) 0.9683(2) 0.9836(2) 2.38
DQN-PER 0.0422(3) 0.6241(3) 0.0782(3) 0.5182(3) 0.9635(3) 0.9821(4) 0.9677(3) 0.9809(4) 3.25
DQN-IRF 0.0163(5) 0.6107(5) 0.0247(5) 0.5036(5) 0.9499(5) 0.9908(1) 0.9674(4) 0.9748(5) 4.36



	 Y. Wang et al.

1 3

93  Page 20 of 33

(Wilcoxon 1992). The null hypothesis is that the two comparative models have the same 
CCS performance. In this paper, we set the significance level � = 0.05 . Then, at the 95% 
confidence level, when the statistical amount is 8 ( = 2 × 4 ), the critical value (CV) is 3. 
The Wilcoxon rank sum test results of DQN-BSPER and four other benchmark models are 
provided in Table 4. In Table 4, if T = Min(R+, R−) ≤ 3, the null hypothesis is rejected. In 
particular, if T = R− and T ≤ 3, it means that the former performance is statistically signifi-
cantly better than the latter. If T = R+ and T ≤ 3, then the opposite is true.

The test results in Table 4 indicate that when comparing the DQN-BSPER model with 
the DQN, DQN-SER, DQN-PER, and DQN-IRF models, R+ is less than the CV; in other 
words, at the 95% confidence level, the CCS performance of the DQN-BSPER model 
is statistically significantly better than those of the other four benchmark models. More 
importantly, the CCS performances of the DQN-SER and DQN-PER models are better 
than that of the DQN model, whereas the DQN-BSPER model is superior to the DQN-
SER and DQN-PER models. Thus, although the CCS performance of the DQN model can 
be improved by using SER or PER technology alone, the effect of improvement is very 
limited, whereas the combination of SER and PER technologies can further improve the 
performance of the DQN model. In addition, for the IF dataset, the CCS performance of 
the DQN-IRF model is very poor. This poor performance may occur because the DQN-IRF 

Table 4   Wilcoxon rank sum test results for DQN-BSPER and four other benchmark DRL models on the IF 
and LE datasets

R+ indicates the sum of the rankings of all cases in which the performance of the former is better than that 
of the latter when comparing two models; R− indicates the sum of the rankings of all cases in which the 
performance of the former is worse than that of the latter

Comparison T = Min(R+, R−) CV p-value Hypothesis

DQN-BSPER vs. DQN Min(36, 0) = 0 3 0.012 Reject
DQN-BSPER vs. DQN-PER Min(36, 0) = 0 3 0.012 Reject
DQN-BSPER vs. DQN-SER Min(36, 0) = 0 3 0.012 Reject
DQN-BSPER vs. DQN-IRF Min(34, 2) = 2 3 0.025 Reject

Fig. 4   The average training losses of the Q-networks of DQN-BSPER and other four benchmark DRL mod-
els on two CCS training sets (the left figure shows the results on the IF data set and the right figure shows 
the results on the LE dataset)
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model (Lin et  al. 2020) is mainly applied to classification tasks with unstructured data 
(image and text data), whereas the CCS data are structured, which may lead to the failure 
of the reward function, affecting the CCS performance of the DQN-IRF model.

7.3 � Convergence performance comparison of DQN‑BSPER and four other 
benchmark DRL models

To analyse the effects of the SPER technology on the convergence performance of the 
DQN model, this section compares the convergence performances of the DQN-BSPER, 
DQN, DQN-SER, DQN-PER, and DQN-IRF models according to four EMs on the IF and 
LE datasets. Figure 4 shows the average training loss of the Q-networks of DQN-BSPER 
and the other four benchmark DRL models on two CCS training sets.

Figure 4a shows the average training losses of the Q-networks of the five DQN models 
on the IF dataset. The average training loss of the Q-network of the DQN-BSPER model 
reaches a stable value when episode = 1, indicating that the DQN-BSPER model converges 
when episode = 1, and the value fluctuates slightly as the number of episodes increases. The 
average training loss of the Q-network of the DQN model is very large when episode = 1; 
then, the value decreases rapidly and reaches the local minimum when episode = 4, but the 
value fluctuates strongly as the number of episodes increases. The average training loss of 
the Q-network of the DQN-SER model is larger than those of the other models, and the 
fluctuation is also very strong. The average training losses of the Q-networks of DQN-
PER and DQN-IRF models reach stable values when episode = 3; that is, the DQN-PER 
and DQN-IRF models reach a convergence state when episode = 3. Figure 4b shows the 
average training losses of the Q-networks of the five DQN models on the LE dataset. The 
average training loss of the Q-network of the DQN-BSPER model reaches a stable value 
when episode = 1, indicating that the DQN-BSPER model converges when episode = 1, and 
the value fluctuates slightly as the number of episodes increases. The average training loss 
of the Q-network of the DQN model is very large when episode = 1 and reaches the local 
minimum when episode = 9, but the value still fluctuates strongly as the number of epi-
sodes increases. The average training loss of the Q-network of the DQN-SER model also 
fluctuates significantly. The average training losses of the Q-networks of the DQN-PER 
and DQN-IRF models reach stable values when episode = 6 and episode = 3, respectively; 
that is, the DQN-PER and DQN-IRF models reach a convergence state when episode = 6 
and episode = 3, respectively, and their average training losses of the Q-network are rela-
tively small.

The experimental results show that the Q-network of the DQN-BSPER model has the 
fastest convergence speed and that the average training loss of the Q-network is the most 
stable. Thus, the SPER technology can effectively improve the convergence performance 
of the DQN model; that is, it can not only accelerate the convergence speed of the Q-net-
work, but also make the Q-network more stable. In addition, the average training losses of 
the Q-networks of the DQN-PER and DQN-IRF models are very small, but the results in 
Sect. 7.2 show that their CCS performance is relatively poor, which indicates that over-fit-
ting may occur. Interestingly, the fluctuation in the average training losses of the DQN and 
DQN-SER models is stronger than that of the DQN-BSPER and DQN-PER models. The 
main reason may be that the DQN-BSPER and DQN-PER models consider the priority of 
the experience samples when building the mini-batch. Thus, PER technology can improve 
the stability of the DQN model more effectively than SER technology.
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7.4 � Credit scoring performance comparison of DQN‑BSPER and seven traditional 
classification models

This section compares the CCS performance of DQN-BSPER and seven traditional 
benchmark classification models on the IF and LE datasets. The results are presented in 
“Appendix 7”, in which the bold font indicates the classification model with the best CCS 
performance in each line, and the numbers in parentheses indicate the performance rank-
ings of the classification models. The last line indicates the average ranking of each clas-
sification model. To analyse whether there are statistically significant differences between 
DQN-BSPER and the seven traditional benchmark classification models, we used the non-
parametric statistical test method proposed by (Demšar 2006), namely, the Friedman test 
(Friedman 1940) and Iman–Davenport test (Iman and Davenport 1980). If there were sta-
tistically significant differences, we further used the Nemenyi post hoc test method to com-
pare the eight classification models. In addition, in order to achieve fair results, we used the 
resampling methods ROS and RUS to balance the class distribution of the two training sets 
to form four new training sets (the class distribution ratio of the balanced training set was 
1:1) during each training process. Each dataset corresponded to two new cases; that is, the 
IF dataset corresponded to IF (ROS) and IF (RUS), whereas the LE dataset corresponded 
to LE (ROS) and LE (RUS).

The results in “Appendix 7” show that the DQN-BSPER model has the smallest average 
ranking, indicating that it achieves the best CCS performance. We used the Friedman and 
Iman–Davenport tests to analyse further whether there were statistically significant differ-
ences between DQN-BSPER and the seven traditional benchmark classification models. 
The null hypothesis of the two test methods was that the CCS performance of the eight 
classification models were the same. We used the �2 distribution with 7 freedom degree 
and the F distribution with 7 and 161 ( = 7 × 23 ) freedom degree. Table  5 list the test 

Table 5   Friedman and Iman–
Davenport test results for DQN-
BSPER and seven traditional 
benchmark classification models

Test value Distribution value Hypothesis

Friedman 98.58 14.07 Reject
Iman–Davenport 32.66 2.07 Reject

Fig. 5   Nemenyi post hoc test results for DQN-BSPER and seven traditional benchmark classification mod-
els
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results. If the test value was greater than the distribution value, the null hypothesis was 
rejected. Therefore, according to results of Table  5, we rejected the null hypothesis and 
concluded that there were statistically significant differences among the eight classification 
models in the CCS performance at the 95% confidence level.

After the null hypothesis was rejected, we used the Nemenyi post hoc test. The judge-
ment rule of this test is that if the difference between the average values of any two classi-
fication models is greater than the critical difference (CD), then the null hypothesis that the 
two classification models performance is the same at the 95% confidence level is that there 
are significant differences in the CCS performance between the two classification models. 
When the number of classification models is 8 and the CV (Demšar 2006) is 3.03, the 
corresponding critical distance CD = 3.03

√
(8 ∗ 9)∕(6 ∗ 24) ≈ 2.14 . The test results are 

presented in Fig. 5. If there are segments connected between the two classification models, 
then there are no statistically significant differences. The results in Fig.  5 show that the 
CCS performance of the DQN-BSPER model is statistically significantly better than those 
of the other seven traditional benchmark classification models at the 95% confidence level.
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Fig. 6   The CCS performance of the DQN-BSPER model under 10 imbalance ratios for the a IF and b LE 
datasets

TPR ACC F1 AUC
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
an

ge

TPR ACC F1 AUC
0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

R
an

ge

(a)                                                                                                     (b)

Fig. 7   Boxplots of four EMs of the DQN-BSPER model for the a IF and b LE datasets
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7.5 � Impact of imbalanced class distribution on the customer credit scoring 
performance of the DQN‑BSPER model

To analyse the effects of imbalanced class distribution on the CCS performance of the DQN-
BSPER model, we set 10 imbalance ratios for the IF and LE datasets. Specifically, we firstly 
randomly sampled from the majority samples in the training set according to the multiple 
of the number of minority samples and then combined the sampled majority samples with 
all minority samples to form a new training set. According to this method, training sets with 
10 imbalance ratios (IR = {1, 2,… , 10}) were obtained, and the DQN-BSPER model per-
formance was analysed according to four EMs. Figure 6 shows the CCS performance of the 
DQN-BSPER model under 10 imbalanced ratios on the IF and LE datasets. Furthermore, we 
used boxplots to analyse the dispersion degrees of the four EM values, as shown in Fig. 7.

As can be seen from Fig. 6a, under 10 types of IR, the values of TPR, ACC​, and AUC​ of 
the DQN-BSPER model are higher than the F1 values. In Fig. 6b, under 10 types of IR, the 
values of TPR, ACC​, and AUC​ of the DQN-BSPER model are also higher than the F1 val-
ues. When IR = 1 , the four evaluation values of the DQN-BSPER model are relatively low. 
In Fig. 7a, the box corresponding to the TPR is the longest, whereas the ACC​, AUC​, and 
F1 boxes are relatively short. In Fig. 7b, the box for F1 is the shortest, whereas the TPR, 
ACC​, and AUC​ boxes are relatively long. It can be seen from the experimental results that 
for the IF and LE datasets, the boxes of the four EM values of the DQN-BSPER model are 
very narrow, which demonstrates that their dispersion degree is quite small. Thus, the fluc-
tuations in the TPR, ACC​, F1, and AUC​ values of the DQN-BSPER model are very weak 
under different imbalance ratios. This finding indicates that the imbalanced class distribu-
tion has a limited effect on the CCS performance of the DQN-BSPER model.

8 � Conclusions and future works

This paper proposed DRL based on a stratified prioritized experience replay model, that 
is, the DQN-BSPER model. The model optimizes the loss function by combining SER 
and PER to improve its CCS performance. Further, we introduced four EMs to conduct an 
empirical analysis of two real-world CCS datasets in P2P lending. In the parameter analy-
sis experiment, we found that the CCS performance of the DQN-BSPER model was the 
best when � = 0.1 and k1∕k2 = 1 . This result shows that there is a relatively weak sequence 
correlation between the CCS dataset samples. The balanced stratified prioritized mini-
batch is more conducive to improving the CCS performance of the DQN-BSPER model. In 
the second experiment, we found that the performance of the DQN-BSPER model was sta-
tistically significantly better than those of the DQN, DQN-SER, DQN-PER, and DQN-IRF 
models. By analysing the convergence performance of the DQN-BSPER model, we found 
that SPER technology could not only accelerate the convergence speed of the Q-network, 
but also improve the stability of the network. In addition, in the comparing experiment, we 
found that the DQN-BSPER model performance was statistically significantly better than 
those of the other seven traditional benchmark classification models. Interestingly, in the 
experiment in which the effects of the imbalanced class distribution on the DQN-BSPER 
model performance were investigated, we found that the effect of the imbalanced class dis-
tribution on the CCS performance of the DQN-BSPER model was very limited.

The following aspects will be considered in future work. First, we will introduce deci-
sion making methods (Kou et al. 2021a, b, 2021a; Kou et al. 2014; Wang et al. 2021) into 
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the reward function to improve DRL classification performance. Second, we will attempt 
to use a network structure identifying feature importance (Xiao et al. 2020) to improve the 
interpretability of the deep reinforcement learning model, which is of great significance for 
enterprise management. Finally, we will combine relationship network (Kou et al. 2021a, 
b) with DRL to develop a multi-agent classification system.

Appendices

Appendix 1: Notations and definitions

Notations Definitions

Dtrain The customer credit scoring training set
Dtest The customer credit scoring testing set
Dmin The minority sample set
Dmaj The majority sample set
xt The t  th customer sample
yt The class label of the tth customer sample
S The state space of the environment
A The action space of the agent
st The environment state at the tth time step
at The action of the agent at the tth time step
rt The reward obtained by the agent according to the reward function 

R at the tth time step
� The discount factor
Rt The cumulative reward obtained by the agent from time step t  to 

terminal step in each episode
et The experience sample at the tth time step
Et The experience sample set at the tth time step
E
min The minority experience sample set

E
maj The majority experience sample set

D The replay memory buffer for storing experience samples
Dmin The replay memory buffer for storing minority experience samples
Dmaj The replay memory buffer for storing majority experience samples

E
min
replay

The experience sample set stored in Dmin

E
maj

replay
The experience sample set stored in Dmaj

d
1 The number of experience samples in Emin

replay

d
2 The number of experience samples in Emaj

replay

emin
t

The minority experience sample at the tth time step

e
maj

t
The majority experience sample at the tth time step

�C
t

The parameters of the current Q-network at the tth time step
�T
t

The parameters of the target Q-network at the tth time step
k The size of the mini-batch
k
1 The number of experience samples sampled from Emin

replay

k
2 The number of experience samples sampled from Emaj

replay
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Notations Definitions

Z The updating frequency of the target Q-network
T The maximum time step
C The maximum episode
� The learning rate of the current Q-network
TP The number of positive samples predicted as positive
TN The number of negative samples predicted as negative
FP The number of negative samples predicted as positive
FN The number of positive samples predicted as negative

Appendix 2: The process of using the DQN‑BSPER model for customer credit scoring 
in P2P lending

.
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Appendix 3: The pseudo‑codes

Algorithm 1 shows the pseudo-code of CCS environment simulation.

Algorithm 2 shows the pseudo-code of the DQN-BSPER model for CCS in P2P lending.
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Appendix 4: The main parameters setting of DQN‑BSPER and other reinforcement 
learning models

DRL models Parameters setting

DQN-BSPER Initial exploration value = 0.1, final exploration value = 0.01, exploration attenua-
tion = 10,000, ||Dmin|| = ||Dmaj|| = 500 , C = 50 , Z = 500 , k = 128 , � = 0.00025 , �

1
= 0.9 , 

�
2
= 0.999 , � = 1e − 8 , hidden layers of the neural network = 3, number of neurons in the 

hidden layer = 50, activation function in hidden layers = ReLU
DQN-SER Initial exploration value = 0.1, final exploration value = 0.01, exploration attenua-

tion = 10,000, � = 0.1 , ||Dmin|| = ||Dmaj|| = 500 , C = 50 , Z = 500 , k = 128 , � = 0.00025 , 
�
1
= 0.9 , �

2
= 0.999 , � = 1e − 8 , hidden layers of the neural network = 3, number of 

neurons in the hidden layer = 50, activation function in hidden layers = ReLU
DQN, DQN-

PER, DQN-
IRF

Initial exploration value = 0.1, final exploration value = 0.01, exploration attenua-
tion = 10,000, � = 0.3 , |D| = 1000 , C = 50 , Z = 500 , k = 128 , � = 0.00025 , �

1
= 0.9 , 

�
2
= 0.999 , � = 1e − 8 , hidden layers of the neural network = 3, number of neurons in the 

hidden layer = 50, activation function in hidden layers = ReLU

Appendix 5: The CCS performance of the DQN‑BSPER model under 11 kinds 
of discount factors

IF dataset LE dataset Aver-
age 
rank� TPR ACC​ F1 AUC​ TPR ACC​ F1 AUC​

0 0.7176(11) 0.6196(2) 0.2192(4) 0.6646(7) 0.9817(8) 0.9886(2) 0.9686(3) 0.9859(2) 4.88
0.1 0.7464(8) 0.6296(1) 0.2260(1) 0.6779(1) 0.9838(4) 0.9888(1) 0.9690(1) 0.9857(3) 2.50
0.2 0.7291(10) 0.6106(3) 0.2179(6) 0.6651(6) 0.9798(11) 0.9871(5) 0.9645(5) 0.9842(5) 6.38
0.3 0.7378(9) 0.6071(4) 0.2184(5) 0.6672(5) 0.9827(6) 0.9881(3) 0.9689(2) 0.9856(4) 4.75
0.4 0.7752(6) 0.5786(7) 0.2149(7) 0.6690(3) 0.9846(3) 0.9872(4) 0.9651(4) 0.9862(1) 4.38
0.5 0.7637(7) 0.6009(5) 0.2217(3) 0.6758(2) 0.9838(5) 0.9841(6) 0.9568(6) 0.9840(6) 5.00
0.6 0.7810(4) 0.5621(8) 0.2098(8) 0.6627(8) 0.9802(10) 0.9733(8) 0.9294(8) 0.9760(9) 7.88
0.7 0.7781(5) 0.5938(6) 0.2219(2) 0.6686(4) 0.9879(2) 0.9712(9) 0.9248(9) 0.9677(11) 6.00
0.8 0.8012(2) 0.5421(9) 0.2066(9) 0.6612(9) 0.9821(7) 0.9653(11) 0.9102(11) 0.9718(10) 8.50
0.9 0.7954(3) 0.5316(10) 0.2018(10) 0.6529(11) 0.9885(1) 0.9681(10) 0.9175(10) 0.9761(8) 7.88
1 0.8271(1) 0.5095(11) 0.2006(11) 0.6556(10) 0.9806(9) 0.9765(7) 0.9374(7) 0.9781(9) 7.88

Appendix 6: The CCS performance of the DQN‑BSPER model under 11 kinds of k
1
∕k

2

IF dataset LE dataset Aver-
age 
rankk

1
∕k

2
TPR ACC​ F1 AUC​ TPR ACC​ F1 AUC​

6/1 0.9422(1) 0.1829(11) 0.1461(7) 0.5321(6.5) 0.9885(2) 0.9636(11) 0.9069(10) 0.9734(11) 7.44
5/1 0.9412(2) 0.2064(10) 0.1506(6) 0.5321(6.5) 0.9803(6) 0.9696(10) 0.9063(11) 0.9769(6) 7.19
4/1 0.8947(3) 0.2362(9) 0.1581(3) 0.5519(5) 0.9825(5) 0.9739(8) 0.9293(9) 0.9812(4) 5.75
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IF dataset LE dataset Aver-
age 
rankk

1
∕k

2
TPR ACC​ F1 AUC​ TPR ACC​ F1 AUC​

3/1 0.8674(4) 0.3998(8) 0.1557(4) 0.5608(4) 0.9896(1) 0.9780(7) 0.9416(7) 0.9825(3) 4.75
2/1 0.8096(5) 0.5477(7) 0.1547(5) 0.5827(2) 0.9841(3) 0.9829(6) 0.9644(5) 0.9828(2) 4.38
1 0.7464(6) 0.6296(6) 0.2260(1) 0.6779(1) 0.9838(4) 0.9888(4) 0.9690(1) 0.9857(1) 3.00
1/2 0.1830(7) 0.8276(5) 0.1928(2) 0.5694(3) 0.9702(8) 0.9883(5) 0.9617(6) 0.9783(5) 5.13
1/3 0.0208(11) 0.9271(4) 0.0395(11) 0.5092(10) 0.9786(7) 0.9730(9) 0.9299(8) 0.9752(8) 8.50
1/4 0.0519(8) 0.9294(3) 0.0874(8) 0.5205(8) 0.9601(9) 0.9908(3) 0.9678(2) 0.9747(9) 6.25
1/5 0.0403(9) 0.9315(1.5) 0.0711(9) 0.5163(9) 0.9554(10) 0.9911(2) 0.9653(3) 0.9734(10) 6.69
1/6 0.0317(10) 0.9315(1.5) 0.0576(10) 0.5079(11) 0.9544(11) 0.9913(1) 0.9649(4) 0.9768(7) 6.94

Appendix 7: The customer credit scoring performance of DQN‑BSPER and seven 
traditional benchmark classification models on the IF and LE datasets

DQN-
BSPER

DNN LDA LR NB DT KNN SVM

IF TPR 0.7464(1) 0.1826(4) 0.3129(2) 0.0367(8) 0.0754(6) 0.1113(5) 0.2084(3) 0.0742(7)

ACC​ 0.6296(5) 0.6213(6) 0.9229(3) 0.9256(2) 0.1012(7) 0.8717(4) 0.9287(1) 0.0752(8)

F1 0.2260(1) 0.0237(7) 0.0555(6) 0.0214(8) 0.1401(2) 0.1070(4) 0.0567(5) 0.1381(3)

AUC​ 0.6779(1) 0.5543(4) 0.6201(2) 0.5539(5) 0.5171(7) 0.5198(6) 0.5678(3) 0.5013(8)

IF (ROS) TPR 0.6672(1) 0.0822(6) 0.1009(5) 0.1011(4) 0.0753(8) 0.1489(2) 0.1095(3) 0.0757(7)

ACC​ 0.6343(3) 0.2365(6) 0.5921(4) 0.5883(5) 0.0985(8) 0.8446(1) 0.7719(2) 0.1200(7)

F1 0.2127(1) 0.1507(5) 0.1890(2) 0.1597(4) 0.1399(8) 0.1806(3) 0.1435(6) 0.1403(7)

AUC​ 0.6514(1) 0.5221(6) 0.5320(3) 0.5224(5) 0.5165(7) 0.5421(2) 0.5257(4) 0.5108(8)

IF (RUS) TPR 0.7418(1) 0.0900(7) 0.1106(3) 0.1096(4) 0.0994(5) 0.0981(6) 0.1110(2) 0.0750(8)

ACC​ 0.6243(1) 0.5270(6) 0.5883(4) 0.5917(3) 0.4795(7) 0.5699(5) 0.5919(2) 0.0985(8)

F1 0.2199(1) 0.1561(6) 0.1958(2) 0.1867(3) 0.1615(5) 0.1679(4) 0.1435(7) 0.1394(8)

AUC​ 0.6645(1) 0.5152(7) 0.5357(3) 0.5308(4) 0.5259(5) 0.5212(6) 0.5368(2) 0.5139(8)

LE TPR 0.9838(1) 0.9824(2) 0.9814(4) 0.9823(3) 0.9745(5) 0.9642(6) 0.9487(7) 0.1943(8)

ACC​ 0.9888(1) 0.9881(2) 0.9475(5) 0.9833(4) 0.9343(6) 0.9874(3) 0.9277(7) 0.2569(8)

F1 0.9690(1) 0.9658(2) 0.8287(5) 0.9513(4) 0.7803(6) 0.9650(3) 0.7578(7) 0.3253(8)

AUC​ 0.9857(1) 0.9810(3) 0.9692(5) 0.9815(2) 0.9517(6) 0.9783(4) 0.9368(7) 0.5966(8)

LE 
(ROS)

TPR 0.9827(1) 0.2322(7) 0.9783(3) 0.9825(2) 0.9691(4) 0.9648(5) 0.6091(6) 0.1972(8)

ACC​ 0.9883(1) 0.4075(7) 0.9765(4) 0.9881(2) 0.9339(5) 0.9870(3) 0.8721(6) 0.2703(8)

F1 0.9674(1) 0.3768(7) 0.9313(4) 0.9672(3) 0.7794(5) 0.9674(2) 0.6913(6) 0.3294(8)

AUC​ 0.9860(1) 0.6158(7) 0.9772(4) 0.9852(2) 0.9491(5) 0.9784(3) 0.7810(6) 0.5981(8)

LE 
(RUS)

TPR 0.9790(2) 0.3266(7) 0.9771(3) 0.9938(1) 0.9720(4) 0.8969(5) 0.6278(6) 0.1932(8)

ACC​ 0.9844(1) 0.6321(7) 0.9763(4) 0.9832(3) 0.9340(5) 0.9844(2) 0.8813(6) 0.2516(8)

F1 0.9575(2) 0.4912(7) 0.9307(4) 0.9632(1) 0.7796(5) 0.9342(3) 0.6913(6) 0.3238(8)

AUC​ 0.9823(1) 0.6615(7) 0.9766(3) 0.9818(2) 0.9504(4) 0.9456(5) 0.7939(6) 0.5962(8)
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DQN-
BSPER

DNN LDA LR NB DT KNN SVM

Average 
rank

1.33 5.63 3.63 3.50 5.63 3.83 4.83 7.63

Acknowledgements  The financial support from the National Natural Science Foundation of China 
(Grant No. 72171160), the Guangdong Province Philosophy and Social Science Planning Project (Grant 
No. GD23YGL24),  the Excellent Youth Foundation of Sichuan Province (Grant No. 2020JDJQ0021), the 
Tianfu Ten-Thousand Talents Program of Sichuan Province (Grant No. 0082204151153),  the Humanities 
and Social Science Youth Foundation of Ministry of Education of China (Grant No. 23YJCZH088),  the 
Sichuan Science and Technology Program (Grant No. 2023YFQ0018), the Scientific Research Starting Pro-
ject of SWPU (Grant No. 2021QHZ020) are gratefully acknowledged.

Author contributions  Yadong Wang: wrote the original draft, reviewed, formal analyzed, investigated, visu-
alizated, validated. Yanlin Jia: Investigated, supervized. Yuhang Tian: reviewed, edited, validated. Jin Xiao: 
reviewed, formal analyzed, Investigated, Fund.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J 
Finance 23(4):589–609

Baesens B, Van Gestel T, Viaene S, Stepanova M, Suykens J, Vanthienen J (2003) Benchmarking state-of-
the-art classification algorithms for credit scoring. J Oper Res Soc 54(6):627–635

Bastani K, Asgari E, Namavari H (2019) Wide and deep learning for peer-to-peer lending. Expert Syst Appl 
134:209–224

Batista GE, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine 
learning training data. ACM SIGKDD Explor Newsl 6(1):20–29

Blumenstock G, Lessmann S, Seow H-V (2022) Deep learning for survival and competing risk modelling. J 
Oper Res Soc 73(1):26–38

Borgonovo E, Smith CL (2011) A study of interactions in the risk assessment of complex engineering sys-
tems: an application to space PSA. Oper Res 59(6):1461–1476

Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine learning algo-
rithms. Pattern Recognit 30(7):1145–1159

Cai R, Li H, Wang S, Chen C, Kot A (2020) DRL-FAS: a novel framework based on deep reinforcement 
learning for face anti-spoofing. IEEE Trans Inf Forensics Secur 16:937–951

Chatterjee M, Namin A-S (2019) Detecting phishing websites through deep reinforcement learning. In: Pro-
ceedings of the IEEE 43rd annual computer software and applications conference, 2019. IEEE, pp 
227–232

Chen S-Y, Yu Y, Da Q, Tan J, Huang H-K, Tang H-H (2018) Stabilizing reinforcement learning in dynamic 
environment with application to online recommendation. In: Proceedings of the 24th ACM SIGKDD 
international conference on knowledge discovery and data mining, 2018. ACM, pp 1187–1196

http://creativecommons.org/licenses/by/4.0/


Deep reinforcement learning based on balanced stratified…

1 3

Page 31 of 33  93

Crone SF, Finlay S (2012) Instance sampling in credit scoring: an empirical study of sample size and bal-
ancing. Int J Forecast 28(1):224–238

Dastile X, Celik T, Potsane M (2020) Statistical and machine learning models in credit scoring: a systematic 
literature survey. Appl Soft Comput 91:106263

De Moor BJ, Gijsbrechts J, Boute RN (2022) Reward shaping to improve the performance of deep reinforce-
ment learning in perishable inventory management. Eur J Oper Res 301(2):535–545

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(Jan):1–30
Ding Y, Ma L, Ma J, Suo M, Tao L, Cheng Y, Lu C (2019) Intelligent fault diagnosis for rotating machinery 

using deep Q-network based health state classification: a deep reinforcement learning approach. Adv 
Eng Inform 42:100977

Du N, Li L, Lu T, Lu X (2020) Prosocial compliance in P2P lending: a natural field experiment. Manag Sci 
66(1):315–333

Dumitrescu E, Hue S, Hurlin C, Tokpavi S (2022) Machine learning for credit scoring: improving logistic 
regression with non-linear decision-tree effects. Eur J Oper Res 297(3):1178–1192

Fan C, Zeng L, Sun Y, Liu Y-Y (2020) Finding key players in complex networks through deep reinforcement 
learning. Nat Mach Intell 2(6):317–324

Fernandes GB, Artes R (2016) Spatial dependence in credit risk and its improvement in credit scoring. Eur 
J Oper Res 249(2):517–524

Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann 
Math Stat 11(1):86–92

Gosavi A (2009) Reinforcement learning: a tutorial survey and recent advances. INFORMS J Comput 
21(2):178–192

Gunnarsson BR, Vanden Broucke S, Baesens B, Óskarsdóttir M, Lemahieu W (2021) Deep learning for 
credit scoring: do or don’t? Eur J Oper Res 295(1):292–305

Guo Y, Zhou W, Luo C, Liu C, Xiong H (2016) Instance-based credit risk assessment for investment deci-
sions in P2P lending. Eur J Oper Res 249(2):417–426

Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, vol 398. Wiley, 
Hoboken

Iman RL, Davenport JM (1980) Approximations of the critical region of the Fbietkan statistic. Commun 
Stat Theory Methods 9(6):571–595

Kou G, Peng Y, Wang G (2014) Evaluation of clustering algorithms for financial risk analysis using 
MCDM methods. Inf Sci 275:1–12

Kou G, Olgu Akdeniz Ö, Dinçer H, Yüksel S (2021a) Fintech investments in European banks: a hybrid 
IT2 fuzzy multidimensional decision-making approach. Financ Innov 7(1):39

Kou G, Xu Y, Peng Y, Shen F, Chen Y, Chang K, Kou S (2021b) Bankruptcy prediction for SMEs using 
transactional data and two-stage multiobjective feature selection. Decis Support Syst 140:113429

Lei K, Zhang B, Li Y, Yang M, Shen Y (2020) Time-driven feature-aware jointly deep reinforcement 
learning for financial signal representation and algorithmic trading. Expert Syst Appl 140:112872

Lessmann S, Baesens B, Seow H-V, Thomas LC (2015) Benchmarking state-of-the-art classification 
algorithms for credit scoring: an update of research. Eur J Oper Res 247(1):124–136

Li H, Xu H (2020) Deep reinforcement learning for robust emotional classification in facial expression 
recognition. Knowl Based Syst 204:106172

Li Y, Wang X, Djehiche B, Hu X (2020) Credit scoring by incorporating dynamic networked informa-
tion. Eur J Oper Res 286(3):1103–1112

Lim M, Abdullah A, Jhanjhi N (2021) Performance optimization of criminal network hidden link predic-
tion model with deep reinforcement learning. J King Saud Univ Comput Inf Sci 33(10):1202–1210

Lin E, Chen Q, Qi X (2020) Deep reinforcement learning for imbalanced classification. Appl Intell 5:1–15
Liu Y, Chen Y, Jiang T (2020) Dynamic selective maintenance optimization for multi-state systems over 

a finite horizon: a deep reinforcement learning approach. Eur J Oper Res 283(1):166–181
Lopez-Martin M, Carro B, Sanchez-Esguevillas A (2020) Application of deep reinforcement learning to 

intrusion detection for supervised problems. Expert Syst Appl 141:112963
Loyola-González O, Martínez-Trinidad JF, Carrasco-Ochoa JA, García-Borroto M (2016) Study of the 

impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neu-
rocomputing 175:935–947

Luo B, Yang Y, Liu D (2018) Adaptive Q-Learning for data-based optimal output regulation with expe-
rience replay. IEEE Trans Cybern 48(12):3337–3348

Marqués AI, García V, Sánchez JS (2013) On the suitability of resampling techniques for the class 
imbalance problem in credit scoring. J Oper Res Soc 64(7):1060–1070

Martinez C, Ramasso E, Perrin G, Rombaut M (2020) Adaptive early classification of temporal 
sequences using deep reinforcement learning. Knowl Based Syst 190:105290



	 Y. Wang et al.

1 3

93  Page 32 of 33

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M (2013) Playing 
Atari with deep reinforcement learning. ArXiv preprint arXiv:​1312.​5602

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG et al (2015) Human-level control 
through deep reinforcement learning. Nature 518(7540):529–533

Óskarsdóttir M, Bravo C, Sarraute C, Vanthienen J, Baesens B (2019) The value of big data for credit 
scoring: enhancing financial inclusion using mobile phone data and social network analytics. Appl 
Soft Comput 74:26–39

Patel D, Hazan H, Saunders DJ, Siegelmann HT, Kozma R (2019) Improved robustness of reinforcement 
learning policies upon conversion to spiking neuronal network platforms applied to Atari Breakout 
game. Neural Netw 120:108–115

Petrides G, Moldovan D, Coenen L, Guns T, Verbeke W (2020) Cost-sensitive learning for profit-driven 
credit scoring. J Oper Res Soc 73(2):1–13

Protopapadakis E, Niklis D, Doumpos M, Doulamis A, Zopounidis C (2019) Sample selection algorithms 
for credit risk modelling through data mining techniques. Int J Data Min Model Manag 11(2):103–128

Rish I (2001) An empirical study of the naive Bayes classifier. Workshop Empir Methods Artif Intell 
3(22):41–46

Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay. ArXiv Preprint arXiv 
1511:05952

Schnaubelt M (2022) Deep reinforcement learning for the optimal placement of cryptocurrency limit 
orders. Eur J Oper Res 296(3):993–1006

Serrano-Cinca C, Gutiérrez-Nieto B (2016) The use of profit scoring as an alternative to credit scoring 
systems in peer-to-peer (P2P) lending. Decis Support Syst 89:113–122

Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A et  al (2018) A general reinforcement 
learning algorithm that masters chess, Shogi, and Go through self-play. Science 362(6419):1140–1144

So MM, Thomas LC (2011) Modelling the profitability of credit cards by Markov decision processes. 
Eur J Oper Res 212(1):123–130

Sun AY (2020) Optimal carbon storage reservoir management through deep reinforcement learning. Appl 
Energy 278:115660

Sutton R, Barto A (1998) Reinforcement learning: an introduction. MIT Press, Cambridge
Tang Y, Zhang Y-Q, Chawla NV, Krasser S (2008) SVMs modeling for highly imbalanced classification. 

IEEE Trans Syst Man Cybern B 39(1):281–288
Trafalis TB, Gilbert RC (2006) Robust classification and regression using support vector machines. Eur J 

Oper Res 173(3):893–909
van Heeswijk W (2022) Strategic bidding in freight transport using deep reinforcement learning. Ann Oper 

Res. https://​doi.​org/​10.​1007/​s10479-​022-​04572-z
Veganzones D, Séverin E (2018) An investigation of bankruptcy prediction in imbalanced datasets. Decis 

Support Syst 112:111–124
Wang H, Kou G, Peng Y (2021) Multi-class misclassification cost matrix for credit ratings in peer-to-peer 

lending. J Oper Res Soc 72(4):923–934
Wang Y, Jia Y, Tian Y, Xiao J (2022) Deep reinforcement learning with the confusion-matrix-based 

dynamic reward function for customer credit scoring. Expert Syst Appl 200:117013
Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292
Wauters M, Vanhoucke M (2017) A nearest neighbour extension to project duration forecasting with artifi-

cial intelligence. Eur J Oper Res 259(3):1097–1111
Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics. Springer, 

Berlin, pp 196–202
Wurman PR, Barrett S, Kawamoto K, MacGlashan J, Subramanian K, Walsh TJ et  al (2022) Outracing 

champion Gran Turismo drivers with deep reinforcement learning. Nature 602(7896):223–228
Xia Y, Zhao J, He L, Li Y, Niu M (2020) A novel tree-based dynamic heterogeneous ensemble method for 

credit scoring. Expert Syst Appl 159:113615
Xiao J, Zhou X, Zhong Y, Xie L, Gu X, Liu D (2020) Cost-sensitive semi-supervised selective ensemble 

model for customer credit scoring. Knowl Based Syst 189:105118
Xiao J, Wang Y, Chen J, Xie L, Huang J (2021) Impact of resampling methods and classification models on 

the imbalanced credit scoring problems. Inf Sci 569:508–526
Yeo B, Grant D (2018) Predicting service industry performance using decision tree analysis. Int J Inf Manag 

38(1):288–300
Zhang G, Hu W, Cao D, Liu W, Huang R, Huang Q et al (2021) Data-driven optimal energy management 

for a wind–solar–diesel-battery-reverse osmosis hybrid energy system using a deep reinforcement 
learning approach. Energy Convers Manag 227:113608

http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/s10479-022-04572-z


Deep reinforcement learning based on balanced stratified…

1 3

Page 33 of 33  93

Zhao D, Chen Y, Lv L (2016) Deep reinforcement learning with visual attention for vehicle classification. 
IEEE Trans Cogn Dev Syst 9(4):356–367

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Deep reinforcement learning based on balanced stratified prioritized experience replay for customer credit scoring in peer-to-peer lending
	Abstract
	1 Introduction
	2 Literature review
	2.1 Customer credit scoring
	2.2 Deep reinforcement learning for classification problems

	3 Theoretical background
	3.1 Notations
	3.2 Reinforcement learning and Q-learning
	3.3 Deep Q-network
	3.4 Experience replay

	4 Formulating customer credit scoring in P2P lending as discrete-time finite MDP
	5 Proposed DQN based on balanced stratified prioritized experience replay for customer credit scoring in P2P lending
	5.1 Balanced stratified prioritized experience replay
	5.2 Procedure of the DQN-BSPER model

	6 Experimental design
	6.1 Data set description and preprocessing
	6.2 Experimental procedure and parameter settings
	6.3 Evaluation measures

	7 Experimental results and analysis
	7.1 Parameter sensitivity analysis
	7.2 Credit scoring performance comparison of DQN-BSPER and four other benchmark DRL models
	7.3 Convergence performance comparison of DQN-BSPER and four other benchmark DRL models
	7.4 Credit scoring performance comparison of DQN-BSPER and seven traditional classification models
	7.5 Impact of imbalanced class distribution on the customer credit scoring performance of the DQN-BSPER model

	8 Conclusions and future works
	Appendices
	Appendix 1: Notations and definitions
	Appendix 2: The process of using the DQN-BSPER model for customer credit scoring in P2P lending
	Appendix 3: The pseudo-codes
	Appendix 4: The main parameters setting of DQN-BSPER and other reinforcement learning models
	Appendix 5: The CCS performance of the DQN-BSPER model under 11 kinds of discount factors
	Appendix 6: The CCS performance of the DQN-BSPER model under 11 kinds of 
	Appendix 7: The customer credit scoring performance of DQN-BSPER and seven traditional benchmark classification models on the IF and LE datasets

	Acknowledgements 
	References




