
Vol.:(0123456789)

Artificial Intelligence Review (2024) 57:53
https://doi.org/10.1007/s10462-023-10699-7

1 3

Deep learning for cancer cell detection: do we need 
dedicated models?

Michal Karol1   · Martin Tabakov1   · Urszula Markowska‑Kaczmar1   · 
Lukasz Fulawka2 

Accepted: 31 December 2023 / Published online: 14 February 2024 
© The Author(s) 2024

Abstract
This article proposes a novel concept for a two-step Ki-67/lymphocytes classification cell 
detection pipeline on Ki-67 stained histopathological slides utilizing commonly available 
and undedicated, in terms of the medical problem considered, deep learning models. Mod-
els used vary in implementation, complexity, and applications, allowing for the use of a 
dedicated architecture depending on the physician’s needs. Moreover, generic models’ per-
formance was compared with the problem-dedicated one. Experiments highlight that with 
relatively small training datasets, commonly used architectures for instance segmentation 
and object detection are competitive with a dedicated model. To ensure generalization and 
minimize biased sampling, experiments were performed on data derived from two unre-
lated histopathology laboratories.

Keywords  Histopathology images · Ki-67 index · Cell detection · Machine learning · Deep 
learning · Virtual pathology

1  Introduction

The Ki-67 index is a commonly used predictive factor for treatment decisions in breast 
cancer patients. It plays a significant role in the prediction of whether and what scheme 
of therapy is needed. This fact is due to the role of Ki-67 nuclear protein as a marker of 
cellular proliferation activity, which is defined by the ratio of Ki-67-positive cells (given 

 *	 Michal Karol 
	 michal.karol@pwr.edu.pl

	 Martin Tabakov 
	 martin.tabakow@pwr.edu.pl

	 Urszula Markowska‑Kaczmar 
	 urszula.markowska-kaczmar@pwr.edu.pl

	 Lukasz Fulawka 
	 lukasz.fulawka@cellgen.pl

1	 Department of Artificial Intelligence, Wroclaw University of Science and Technology, Wyb. 
Wyspianskiego 2, 50‑370 Wrocław, Poland

2	 Molecular Pathology Center Cellgen, Ul. Piwna 13, 50‑353 Wrocław, Poland

http://orcid.org/0000-0002-3523-1031
http://orcid.org/0000-0002-7687-9002
http://orcid.org/0000-0001-7606-3057
http://orcid.org/0000-0003-4858-2022
http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-023-10699-7&domain=pdf


	 M. Karol et al.

1 3

53  Page 2 of 36

as a percentage), commonly known as proliferation index (PI) (Inwald et  al. 2013; 
Nielsen et al. 2020). Proliferation Index is also vital in non-breast cancers like prostate 
cancer (Kammerer-Jacquet et al. 2019) and lung cancer (Wei et al. 2018), making it a 
common cancer metric.

The expression of Ki-67 nuclear protein is visualized by immunohistochemistry 
(IHC), which is conducted in each newly diagnosed breast cancer during the routine 
histopathological examination. As a result of the IHC reaction, the Ki-67-positive nuclei 
are stained brown with diaminobenzidine (DAB). The remaining nuclei as well as the 
other tissue elements are colored blue with hematoxylin.

The routinely applied method of PI assessment in diagnostics is eyeballing. How-
ever, this approach is prone to significant interobserver variability reaching up to 57%, 
in one of the previous studies (Fulawka and Halon 2017). The most precise way of PI 
evaluation is one-by-one nuclei counting, which in practice can only be conducted uti-
lizing software equipped with a pointer function. According to the International Ki-67 
in Breast Cancer Working Group recommendations, a minimum of 500 cells should be 
counted to assess the proliferation index (Nielsen et al. 2020). These recommendations 
also suggest that the evaluation of PI may be aided by automated scoring using digital 
image analysis.

The former approaches to solving this problem were mainly based on classic machine 
learning techniques such as clustering and fuzzy logic, Mungle et  al. (2017). Now, it 
is an unquestioned belief that we owe considerable progress in the computer vision 
domain and image analysis to developing deep neural networks (DNNs). Using DNN 
removes the need to select features manually. Instead, the model can learn features from 
the image, process it, and give output. DNN also demonstrated a potential for many 
fields in medicine (Esteva et al. 2021; Iqbal et al. 2021; Lu et al. 2022). In this paper, we 
focus on pathological analysis, which is very subjective in the visual inspection of tissue 
samples under a microscope. It can cause inconsistencies in diagnostic and prognostic 
opinions. Therefore, Deep Learning (DL) can support critical medical tasks. We can 
mention diagnostics, prognostication of outcomes and treatment response, pathology 
segmentation, and disease monitoring.

Many of the approaches described in the literature are evaluated on one dataset with 
limited variability. Therefore, it is difficult to determine if the methods would generalize 
well with new, unseen data.

This observation was the starting point for the research. The primary assumption of 
the study is the application of well-known deep learning models, for instance, segmen-
tation and object detection, to verify if such a process is robust enough in terms of data 
dependents. Many research papers report high classification Ki-67 accuracy results, but 
often they deal with medical data prepared in a specific medical facility, which is avail-
able during the research. Despite maintaining the typical, well-known standards of his-
topathology preparations and acquisition of corresponding microscopic images, it does 
not solve the problem of inter-laboratory variance. Therefore, if processed in the same 
way in the same facility, the test data might be considered a biased sample, which can 
affect the robustness of the proposed classifiers. Therefore, our research focuses on test-
ing the Ki-67 index calculation procedure on an entirely different dataset concerning 
tissue preparation and image acquisition from the training dataset.

The second goal of the study was to check what Ki-67 proliferation index calculation 
results can be obtained using generic models for image segmentation or detection com-
pared to dedicated models such as PathoNet.
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2 � Related work

Deep Neural Networks (DNNs), especially Convolution Neural Networks (CNNs) (LeCun 
et al. 1998), have a relatively long record in artificial intelligence. CNN’s have shown great 
potential in the field of image processing. Based on these models, we can observe research 
development in the Ki-67 index automatic assessment. Several CNNs exist. The most com-
mon are the following AlexNet (Krizhevsky et al. 2012), GoogleNet (Szegedy et al. 2014), 
ResNet (He et al. 2015; Li et al. 2022), DenseNet (Huang et al. 2016). They are frequently 
used in image classification, but segmentation and detection tasks are worth mentioning 
especially histopathological image recognition. Besides these generic architectures, models 
dedicated to histopathological image recognition are also considered.

Smith et  al. (2020) consider the pipeline construction needed to use Deep Learning 
(DL) approach to support physiologists’ work. The first problem in modeling Whole-slide-
images (WSIs) is the scale, which is impossible to process by existing hardware. This 
discrepancy requires tiling and reshaping the tiles. Usually, regions of interest (ROIs) are 
annotated by sampling tiles to prepare learning patterns for models. The way of sampling 
is crucial for the final result. It can be done systematically (grid search) using overlapping 
tiles (a choice in overlap amount is critical to balance redundancy and computational effi-
ciency) or in random sampling, which sampling is impractical to predict the whole region 
of interest. The final decision is based on prediction, which can be made on the tile level or 
slide level (Dimitriou et al. 2019). It means we have to decide whether we are interested in 
drawing a conclusion based on a small piece of the tissue or the slide as a whole. In each 
case, we must prepare the training set appropriately and fit the loss function for training a 
model. In the case of tile-level predictions, even a single positive prediction is essential, 
but sometimes it may require a broader context (information from other tiles or slides). 
More typically used measures were the number of detected metastases, mean detection 
size and standard deviation, mean detection likelihood, and standard deviation. Reasoning 
based on a whole slide considers it as cancer-positive, while only local regions of that slide 
are recognized as positive.

Many previous works, for example, Xing et  al. (2014) assumed manual selection of 
hot spots (ROIs) to assess the Ki-67 index. In new research, automatic detection of hot 
spots is popular. Govind et al. 2020 describe the whole pipeline, which classifies each hot-
spot-sized tile in a WSI into one of four classes: background, non-tumor, G1 tumor, and 
G2 tumor. A Ki-67 index of<3% is grade 1 (G1), between 3 and 20% is grade 2 (G2), 
and>20% is grade 3 (G3). The developed approach termed Synaptophysin-Ki-67 Index 
Estimator (SKIE) automatically detects hot spots and calculates the Ki-67 index from those 
hot spots.

One of the first uses of DNN for Ki-67 stained hotspot detection and proliferation rate 
scoring is the paper (Saha et  al. 2017), where authors used a five-layered convolutional 
network (CNN). They assessed the obtained results based on their dataset containing 450 
samples and compared the results to the traditional approaches.

Niazi et al. (2018) used two CNN networks (AlexNet and Inception Ver 3) trained ini-
tially on ImageNet. They retrain Inception v3 via transfer learning to classify 64x64 pixel 
tiles extracted from Ki-67 stained neuroendocrine tumor biopsies. AlexNet was fine-tuned 
using the same dataset. It served as a baseline for comparison. Feng et al. (2020) proposed 
the method based on GoogLeNet Inception V1 (Szegedy et al. 2014) to calculate the Ki67 
index automatically. The GoogleNet model was used to locate invasive ductal carcinoma in 
the form of a box with a heatmap. Then, they use another algorithm to extract the structure, 
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morphology, color, and other characteristics automatically of positive/negative cells, to 
train the random forest classifier.

In Liu et al. (2020) a modified ResNet18 convolutional network was applied as a clas-
sifier to locate positive or negative cells in large-scale images of H &E (hematoxylin & 
eosin) stained slides. The authors applied a special transformation method to the trained 
CNN to convert fully connected layers into convolutional layers. Thanks to this procedure, 
the classification of Region of Interests (ROIs) sized (7, 556x3, 864) was possible.

In the context of this survey, the U-Net architecture is also worth mentioning. Initially, 
the U-Net architecture was designed for segmenting biomedical images. The model used 
a per-pixel classification approach semantic segmentation) to segment cells, followed by 
a watershed to separate overlapping cells in the prediction. The U-NET is also based on 
a convolutional neural network (CNN) with an encoding part that compresses the images 
into a compact representation and a decoding part that reconstructs the prediction.

Negahbani et  al. in Negahbani et  al. (2021) describe the whole pipeline to assess the 
Ki67 index. They also present PathoNet architecture designed explicitly for Ki-67 prolif-
eration index calculation. First, the PathoNet model estimates a density map for each class. 
Then, binary images are produced based on these maps. Next, region centers with low 
and borders with high values are scored using inverse distance transformation. Finally, the 
watershed algorithm predicts cell center coordinates. The PathoNet model is based on the 
U-Net-like (Ronneberger et al. 2015a) backbone, where convolutional layers are replaced 
by a new inception module called residual dilated inception module (RDIM). The Patho-
Net network produces the density map of Ki-67 immunopositive, immunonegative, or 
lymphocyte class. The authors collected their SHIDC-B-Ki-67 dataset (from Shiraz His-
topathological Imaging Data Center) that served as the evaluation of the proposed method.

The KiNet model proposed by Xing et  al. (2019) is also based on the U-Net model 
with residual connections for nucleus recognition. To handle scale variation of nuclei, they 
apply a multi-context aggregation to the combination of multi-level features. The new ele-
ment is also ROI prediction (with weak supervision), which assists the nucleus identifica-
tion task.

U-Net is also the central part of piNET (Geread et al. 2021). Instead of the watershed 
algorithm, this model uses a Gaussian-defined proximity map as ground truths for indi-
vidual nuclei and a regression-based loss function on a per-pixel basis to identify central 
regions of the tumor nuclei. In the case of this research, the method was evaluated using 
five different datasets. The proliferation index was divided into three ranges (Low<25, 
Medium 25–75, High>75). The model predicted the class of the image. The proliferation 
index accuracy was from 80% to 88.3%, depending on the dataset.

Li et al. (2021) proposed another model for Ki-67 index predictions in gliomas in a non-
invasive way. The authors also named it KiNet. It differs from the one described by Xing 
et al. (2019). The model uses multimodal information. It contains two independent auxil-
iary branches and one main branch. Each branch is responsible for four feature extraction 
stages, and each stage is composed of several blocks. The blocks have structures similar to 
the ResNet block. The whole network performs binary classification (Ki-67 indexes less 
than 10% were labeled as 0, and the rest are called high Ki-67 indexes labeled as 1).

A deep CNN ensemble model for the Nottingham histological grade (NHG) into three 
classes is proposed in Wang et al. (2022). The ensemble is composed of 20 CNN models.

Considering Ki-67 proliferation index calculation, deep models can solve various tasks. 
As the first one, we can mention binary classification (Li et al. 2021) (one class assigns 
the Ki-67 index less than 10% and the second contains index values higher than 10%.). 
Multiclass classification is considered for instance in Geread et al. (2021) where ranges are 
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defined as Low<25, Medium 25–75, High>75. The research focused on individual nucleus 
recognition, first needs nuclei identification and classification. In such a case, the index can 
be calculated manually, or other algorithms are used. Sometimes before index calculation, 
the task first is to segment all immunopositive nuclei or detect them by surrounding these 
nuclei with bounding boxes. The index calculation is based on another algorithm.

Summing up this survey, it is worth citing the authors of Srinidhi et  al. (2021) who 
noticed that there is no generic rule about the choice of architectures with the type of dis-
ease prediction task. This observation also gave motivation to our research.

3 � Materials and methods

We prepared a special experimental procedure to test both of the problems. First, color 
correction and padding were applied to the images. Next, deep neural networks that enable 
automatic detection, classification, and counting of cells on images were used. All these 
steps are presented in detail in Sect. 3.4. As a dedicated model for Ki-67 calculation, the 
PathoNet was used in two variants—with base weights and retrained. As for generic mod-
els, Faster R-CNN, SSD, RetinaNet, YOLO ver4, and Mask R-CNN were picked. The 
need for an additional lymphocyte classifier emerged after initial experiments due to the 
high error rate in classifying lymphocyte and Ki-67 negative cells. Therefore, to improve 
results, we developed a new lymphocyte classifier. Experiments were performed using two 
datasets: a subset of the SHIDC-B-Ki-67 dataset (Negahbani et al. 2021) and LSOC-Ki-67 
(Fulawka et al. 2022) acquired in a different laboratory. The SHIDC-B-Ki-67 dataset was 
split into a training dataset and a validation dataset. Generic networks need the appropriate 
image annotation (bounding boxes and segmented cells). Therefore, before experiments, a 
subset of the SHIDC-B-Ki-67 dataset was taken and annotated appropriately to the needs 
of the networks. Next, this subset was divided into training and validation datasets. To test 
the results, the original SHIDC-B-Ki-67 test set was used as well as the LSOC-Ki-67 data-
set. Figure 1 shows the general overview of the dataset structure and names used.

Fig. 1   Overview of the datasets 
used in the experiments
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3.1 � Datasets

In this section, both datasets used will be described alongside the preprocessing steps 
needed for experiments.

3.1.1 � SHIDC‑B‑Ki‑67

The SHIDC-B-Ki-67 dataset contains microscopic biopsy images of invasive ductal carci-
noma type of breast cancer. The entire SHIDC-B-Ki-67 dataset contains 1656 training and 
701 test data. The histopathological images were derived from Ki-67-IHC slides prepared 
from tru-cut biopsies. Stained images were annotated by expert pathologists concerning 
three categories: Ki-67 positive tumor cells, Ki-67 negative tumor cells, and tumor cells 
and tumor-infiltrating lymphocytes (Fig. 2: Data Stage). Each image contains 69 cells on 
average, and there are 162,998 cells. All further details of the SHIDC-B-Ki-67 dataset 
preparation procedure can be found in Negahbani et al. (2021).

Fig. 2   The pipeline used in the research
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In the raw SHIDC-B-Ki-67 dataset, only the cell center points are assigned. To conduct 
the study, cell masks and bounding boxes were added but only in the training dataset. The 
rest (validation and test data sets) remained unchanged. And from SHIDC-B-Ki-67 train 
set, a subset of 94 images, was extracted. The training dataset was annotated by the anno-
tation team with masks and bounding boxes based on experts’ center point annotations to 
prepare correct labeling for the task of segmentation and object detection. Thus allowed 
us for training such models (Fig. 2: Data Stage). The resulting annotated dataset contains 
6884 masks and bounding boxes. Images were then split into 512x512 pixel tiles, and the 
resulting dataset is further referred to as SHIDC-B-Ki-67-subset. This dataset was split in 
an 80:20 ratio to training and validation images (623 tiles for training and 145 tiles for 
validation).

After running the first round of experiments, it was decided to create a unique SHIDC-
B-Ki-67. This subset, later called the SHIDC-B-Ki-67-supertest dataset, contains 50 ran-
dom images from the SHIDC-B-Ki-67 test dataset. Images included in this super-test data-
set were annotated by the expert pathologist. Annotations were made based only on the 
raw image data, without any preliminary annotations marked on the image. The new test 
dataset preparation was motivated by measuring the impact of the false positive errors due 
to missing annotation and the overall effect on the result.

3.1.2 � LSOC‑Ki‑67 dataset description

The LSOC-Ki-67 (Lower Silesian Oncology Center) dataset applied as the test set in the 
research consists of 95 whole slide images (WSI) of ductal carcinoma in situ (DCIS). The 
diagnostic tissue material was obtained by minimally invasive vacuum-assisted percutane-
ous breast biopsy in the Breast Unit, Lower Silesian Oncology Center (Wroclaw, Poland), 
in the period 2003–2011. The biopsied tissue was processResNeSted with standard diag-
nostic procedures applicable in the Department of Pathology. The tissue slides for the cur-
rent project, retrieved from archival FFPEs, were subjected to an immunohistochemical 
(IHC) reaction against the human Ki-67 antigen. The 4 �m-thick paraffin sections were cut 
onto SuperFrost Slides (Thermo Fisher Scientific, Gerhard Menzel GmbH, Braunschweig, 
Germany). The rabbit monoclonal ready-to-use (2 �g/mL) antibody (Clone 30-9) and ultra-
View Universal DAB Detection Kit (Ventana, Tucson, AZ, USA) were applied. The pro-
cedure was performed automatically using Benchmark XT (Ventana, Tucson, AZ, USA), 
according to the producer’s manual.

The process was conducted following local guidelines and regulations. The study was 
approved by the local ethics committee (Bioethics Committee Wroclaw Medical Univer-
sity, Poland). The use of the archival material has been approved by the Director of the 
Lower Silesian Oncology Center. Additionally, archival hematoxylin-eosin slides for each 
case were retrieved to be assessed as a ’second look’ by the two board-certified patholo-
gists experienced in breast cancer. The IHC slides were scanned using the two-slide scan-
ners: ScanScope CS (Aperio ePathology, Leica Biosystems Imaging, Vista, CA, USA) 
and Pannoramic 250 (3DHistech Ltd., Budapest, Hungary). A board-certified pathologist 
marked hot spots (areas of elevated Ki-67 protein expression). One hot spot was selected 
for each WSI and defined as a pathological region of interest (pROI) (Fig.  2: level test 
phase). Following selection criteria for pROI were used: representativeness in morphology, 
the highest image sharpness, possible lack of artifacts, absence of unspecified cytoplas-
mic staining pattern and extracellular reaction, and possible avoidance of tissue edges. Of 
course, it does not mean that selected pROIs may not contain such areas. The selection 
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procedure aimed to choose regions with a high number of tumor cells for further annota-
tion by the domain expert. The size of pROIs varies from 736 × 1216 pixels (0.895 Mpix) 
to 9488 × 4832 pixels (45.846 Mpix), with an average size of 9.705 Mpix. The pROIs 
images were saved as RGB tiff/png files with lossless compression. Each Ki-67 slide com-
prises 2 stains: diaminobenzidine (DAB) for positive nuclei and hematoxylin for all nuclei 
and background. It is worth underlying that the staining is not limited to cancer cell nuclei 
only, since cancer tissue by itself is composed of other elements, such as fibroblasts, col-
lagen fibers, immune cells (overwhelmingly lymphocytes), and blood vessels. The annota-
tion process was done by a domain expert using the ImageJ software with the Cell Coun-
ter plug-in (Schneider et al. 2012); Vos (Retrieved on 2022-07-12) (Rueden et al. 2017). 
The detailed methodology is described in Fulawka and Halon (2016). Diaminobenzidine 
(DAB) and hematoxylin-stained neoplastic nuclei were annotated in the area of pROIs 
(Fig. 2). Complete agreement of reviewing expert was required to include annotation from 
annotating expert in dataset.

Following the recommendations of the International Ki-67 in Breast Cancer Working 
Group 6, the nuclei were considered Ki-67-positive despite the staining intensity. Artifi-
cially changed nuclei were not marked. A total number of 150,592 nuclei were selected, 
including 26,093 DAB-stained ones. On average, 1585 (median 1220) nuclei per image 
were annotated. The annotations were revised and accepted by the second board-certified 
pathologist. The ground truth (gold standard) is the labeling index, i.e. proliferation index 
(PI), calculated by dividing the number of DAB-stained neoplastic nuclei (Ki-67-positive) 
by the total number of neoplastic nuclei (the sum of DAB and hematoxylin stained nuclei) 
(Eq. 1).

This data set was used and described in detail in Fulawka et al. (2022). Neoplastic nuclei 
were annotated in the pROIs.

To test models, additional refinement of the selected pROI was utilized. As models of 
instance segmentation or object detection target all viable cells, the objective compari-
son with other cell recognition procedures is hard to be applied. The reason is that many 
authors present test results considering only annotated image ROIs. This implies that if a 
cell is recognized correctly but is not located in the annotated ROI, wrongly would be rec-
ognized as a false positive. Considering the above, the LSOC-Ki-67 histopathology images 
were limited in the area of annotated ROIs for comparative analyses.

The general pipeline of the research experiment is shown in Fig. 2. It consists of the fol-
lowing steps:

•	 preparation of the annotated SHIDC-B-Ki-67-subset
•	 training models on the training set of the SHIDC-B-Ki-67-subset and validation and 

early-stopping based on a validation subset of SHIDC-B-Ki-67-subset.
•	 application of the SHIDC-B-Ki-67 original test set for base model comparison,
•	 application of the LSOC-Ki-67 dataset as a test set for final model comparison.

3.1.3 � Dataset preprocessing

A custom pipeline for the SHIDC-B-Ki-67-subset was developed to achieve the best results 
from such a limited number of data. The research pipeline consists of: 

(1)PI =
NKi−67(+)

NKi−67(−) + NKi−67(+)
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1.	 Color correction by white balancing the images This operation allowed us to work on 
images with better visualization possibilities, and white balancing allowed us to run 
models on other white-balanced datasets (like LSOC-Ki-67). White balancing was per-
formed by clipping the top and the bottom 5% of pixel values for each of the channels, 
and then scaling the remaining 90% of values to the full pixel value range(0–255).

2.	 Padding and tiling with a tile size of 512x512 pixels and overlap of 10% Such a small 
tile size is due to GPU memory limitations. Using smaller tile sizes made it possible to 
train models without the need to downscale the images. To use as much as possible out 
of training data in the SHIDC-B-Ki-67-subset, 10% overlap was used. That was training 
cells that would occur on tile-splitting lines and would have to be discarded and could 
be used in research.

3.	 Transformations using the following operators: vertical flip, horizontal flip, hue/bright-
ness/saturation change, and Gaussian blur Operators are randomly selected, where the 
probability of choosing a single operator is 50%, and operator choice probabilities are 
independent of each other.

The resulting images and annotations are saved in COCO dataset format for later use. 
Due to specific needs, the dataset for YOLOv4 and PathoNet had to be transformed from 
COCO-style JSON format annotations to architecture-specific text files.

3.2 � Deep neural networks models

In this subsection, all models applied in the research will be shortly described. Mostly 
generic models intended for object detection will be mentioned, but there is also one model 
for instance segmentation. At the end of the section, a model explicitly designed for prolif-
eration index calculation will be outlined.

3.2.1 � Faster R‑CNN

faster R-CNN (Ren et  al. 2016) was developed to improve the detection results of Fast 
R-CNN’s early architecture (Girshick 2015). Adding a fully convolutional region pro-
posal network made it possible to obtain possible ROI with the probability score quickly. 
Using the Non-Max-Suppression algorithm (NMS) (Neubeck and Van Gool 2006) causes 
a significant proposal reduction, resulting in a faster network overall speed. The network 
became the state-of-the-art solution for object detection after surpassing other solutions 
like MultiBox.

3.2.2 � Mask R‑CNN

Mask R-CNN (He et  al. 2017) is an extended and improved version of Faster R-CNN 
with a particular parallel branch dedicated to segmentation mask generation. With this 
simple addition of a fully convolutional mask prediction branch, extraordinary results 
were achieved for object segmentation, surpassing state-of-the-art solutions. Architecture 
enhancement of detection RoI alignment step improved bounding box detections alongside 
mask predictions.
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3.2.3 � SSD

Single Shot MultiBox Detector (SSD) (Liu et al. 2016) is one of the earliest general–pur-
pose one-shot detection architectures, beating state-of-the-art Faster R-CNN. By changing 
completely how detections and bounding boxes are calculated in contrast to the R-CNN 
architectures, already pretrained parts of VGG/ResNet convolutional neural networks can 
be used as feature maps. Multiscale object detection with built-in NMS simplifies working 
with the architecture, as different scale detections are cleared and not overlapping. SSD 
was and still is an inspiration for more complex object detection architectures.

3.2.4 � RetinaNet

RetinaNet (Lin et al. 2017) is one of the best one-shot object detection architectures. Using 
a feature pyramid network (FPN), class+box subnetworks with a highly specialized loss 
function called focal loss instead of cross-entropy loss allowed for improvements in mAP 
scores. Focal loss favors the hard–to–learn detection cases in the presence of an over-
whelming number of easy background cases.

3.2.5 � YOLOv4

YOLOv4 (Bochkovskiy et al. 2020) further improves the already excellent YOLOv3 (Red-
mon and Farhadi 2018) architecture based on CSPDarkNet53 (Wang et al. 2019). YOLO 
architectures are specifically designed for maximum performance for live object detection. 
By using simple but effective changes like mosaic data annotation, actively randomizing 
training image size, switching variants of IoU loss, and adding a learning rate scheduler, 
the authors improved the resulting mAP. But except for those simple changes, other spe-
cific actions were taken, e.g., changing layer activation to Mish activation function, cross-
stage partial connections, and many others. The resulting architecture traded off slight per-
formance loss for huge mAP improvements in object detection tasks.

3.2.6 � PathoNet

PathoNet (Negahbani et al. 2021) is currently one of the best choices for automatic pro-
liferation index calculation. The solution uses well-established U-Net (Ronneberger et al. 
2015b) architecture as a backbone. It also takes advantage of the watershed algorithm, giv-
ing precise center point detections as a final result. Furthermore, the open dataset used by 
the authors of the PathoNet allows us to apply it for comparison. In contrast to general-
purpose object detection models, it is tailored to the proliferation index calculation task, 
increasing its quality and performance.

3.3 � Lymphocyte classification

One of the obstacles that emerged during the experiments was the issue of lymphocytes 
looking like Ki-67-negative cells. To accurately calculate the proliferation index, bet-
ter differentiation of the lymphocytes from the Ki-67-negative cells is needed. This sec-
tion describes two approaches to handle higher lymphocyte class presence in test datasets 
than in train datasets. The first one relies on binary classification (lymphocytes vs. the Ki-
67-negative cells). The second one performs neighborhood analysis.
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3.3.1 � Reclassification–binary classification

During model training and validation, lymphocytes were often improperly classified as Ki-
67-negative cells. The main issue is that lymphocytes in the SHIDC-B-Ki-67-subset data-
set are underrepresented, and models struggle to distinguish between those two classes. 
To improve results quality, the post-processing step reclassifying Ki-67 negative detections 
using a small convolutional neural network was added.

ROI areas of Ki-67-negative cells and lymphocytes were extracted from the SHIDC-B-
Ki-67-subset dataset by cropping an image to the cell bounding box and padding it up to 
the 256 × 256 pixel input image to train the reclassifier model. Lymphocyte samples were 
cloned to balance the classes in the resulting dataset. It could have posed a threat of overfit-
ting on specific images, so data augmentation in image rotation by random angle was used. 
All steps are depicted in Fig. 3.

Initially, the authors’ efforts focused on training ResNet50 or ResNet101 architectures to 
do this reclassification task, but soon it was clear that using deep architecture was an exces-
sive move. Results obtained from training ResNet50 and ResNet101 were of low quality 
(F1 below 0,85). Finally, the small multimodal convolution architecture shown in Fig. 4 

Fig. 3   Pipeline for reclassification model dataset

Fig. 4   Architecture of reclassification network
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was chosen, and as a result, finally, F1 scores were acceptable (F1 over 0,95). All models 
where lymphocytes were reclassified are marked with ’lym-reclass’ postfix.

Algorithm 1   Lymphocyte reclassification based on the neighborhood analysis

3.3.2 � Neighborhood analysis

The second approach adds the neighborhood analysis step just before the ground truth 
point matching step to improve proper lymphocyte classification. The whole procedure, 
described by Algorithm 1, is to find Ki-67 negatives, which are surrounded by lympho-
cytes with a high probability of improperly classified lymphocytes, as suggested by an 
expert. At first, centers of all detections are calculated (line 2). The points selected for 
analysis are calculated as the minimum value from the set composed of the number 10, 
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which is the threshold, and the number of detections to handle cases when the number 
of detections is below the 10 point threshold. (line 3). Next, detections are filtered to get 
only Ki-67 negative detections (line 4) and the neighborhood is queried for those detec-
tions (line 5).

Next, the algorithm is run multiple times (line 6) to converge to the best solution. In the 
single algorithm step, Ki-67 negative detections are iterated over (line 8), and for each 
detection, the neighborhood is defined for it (line 9) as well as the distance between centers 
of detection, and neighborhood detection is calculated (line 10). For the detection, neigh-
borhood indexes of Ki-67 negative neighbors (line 11) and lymphocyte neighbors (line 12) 
are calculated that are used to calculate scores for both Ki-67 negative and lymphocyte 
classes (lines 13,14). The score is calculated as 1

distance_between_centers
 . In case of a score of the 

lymphocyte class is higher than for Ki-67 negative class (line 15), true index of the detec-
tion is calculated (line 16) and class is changed to lymphocyte (line 17). After going 
through all Ki-67 negative detections, it is assessed (line 19) whether the number of lym-
phocytes changed based on the values calculated at the beginning and the end of the step 
(lines 7 and 18 respectively). When the number of lymphocytes on the image has stabi-
lized, the algorithm will finish (line 20). Models where neighborhood analysis was per-
formed are marked with ’neigh’ postfix.

3.4 � Experimental procedure

This section describes in detail all steps of the experimental procedure that is visualized in 
Fig. 5.

3.4.1 � Image preprocessing

The baseline for comparison was a pretrained model PathoNet shared by authors on their 
GitHub repository. PathoNet detection thresholds as stated in the article’s (Negahbani 
et  al. 2021) supplementary materials were used. In the case of the pretrained PathoNet 
model for SHIDC-B-Ki-67, padding and tiling were omitted, as test image sizes are the 
same as the model’s image input size. For the LSOC-Ki-67 dataset, images were padded to 
fit 1228x1228 pixel tiles with no overlap and tiled. For pretrained PathoNet LSOC-Ki-67 
dataset was color corrected, by applying reverse process to white balancing. This means 
that normally white-balanced images match SHIDC-B-Ki-67 train dataset channel mean 
values. The resulting point detections, in order to fit the bounding box output of other mod-
els, were transformed to 60x60 pixel artificial bounding boxes with the detection in the 
center.

For architectures other than PathoNet, test dataset images were padded with white back-
ground, white-balanced and split into 512 ×  512 pixel tiles with 10% overlap, as in the 
training transformation pipeline.

Additionally, PathoNet on 512 × 512 pixel tiles from the SHIDC-B-Ki-67-subset dataset 
was trained. The primary reason for training such a model was to compare the quality of 
PathoNet architecture when the dataset is substantially reduced and to use it as a com-
mon ground between generic models and PathoNet. Such a model is later referenced as 
‘PathoNet-trained‘. Similarly, as in pretrained PathoNet, artificial bounding box detection 
was used to match the output of other models.
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3.4.2 � Training models

This study uses implementations provided by library torchvision (Paszke et  al. 2019) 
developed by PyTorch Contributors, YOLOv4 implementation sourced from Alexey 
Bochkovskiy GitHub repository, and PathoNet implementation provided by the authors 
of the PathoNet article. Architectures used in this article were state-of-the-art for generic 
object detection or segmentation and used as a base for further developments in the field. 
Such flexibility is perfect for medical image analysis, as the variety in the color of the 

Fig. 5   Experimental procedure for both SHIDC-B-Ki-67 and LSOC-Ki-67 datasets. In step "Data aggrega-
tion and saving to disk" X, Y are coordinates of the top-left point of the detection; W, and H are the width 
and height of a detection bounding box, and the score shows how sure models are with the detection and its 
recognized class
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background field could potentially result in lower detection quality. Training started by 
using transfer learning out of the models pretrained on the COCO dataset, and later train-
ing was conducted on the SHIDC-B-Ki-67-subset training set. Early stopping was used 
for PyTorch models based on the value of mAP to avoid overfitting models to data. The 
value of mAP was calculated on the SHIDC-B-Ki-67-subset validation set. From this step 
on, SHIDC-B-Ki-67-subset is no longer used, and only test datasets: SHIDC-B-Ki-67 and 
LSOC-Ki-67 will be used.

Hyperparameters The main goal was to show the flexibility of generic models, and as 
so, the experiment hyperparameter policy uses default implementation values from light-
ning_bolts library. For generic models implemented in Pytorch, the default learning rate 
value of 0.0001 and SGD (Robbins and Monro 1951) optimizer with a momentum of 0.9 
and weight decay of 0.005 were chosen as in default implementations in lightning_bolts. 
For YOLOv4 architecture, we made the appropriate adjustments to the default configura-
tion to accommodate the change in the number of classes. The learning rate (0.001) and 
SGD parameters (momentum: 0.949, decay: 0.0005) were kept as default. For PathoNet, 
the selected optimizer was Adam (Kingma and Ba 2017), and thresholds were adjusted to 
[60, 55, 40] as indicated in Appendix A to the PathoNet Article (Negahbani et al. 2021). 
Table 1 summarizes the values of the assumed hyperparameters for all models.

3.4.3 � Result extraction

The procedure shown in Fig. 5 was used to produce experimental results for all models. 
First, all steps are performed—loading, color correction, padding, and tiling. The models 
then process the resulting images, and the detections are aggregated and grouped by the 
input image. Detections are in the form of confidence score and detected class as well as 
bounding box described as coordinates of the upper-left point (X, Y on the image) and 
width and height (W and H, respectively).

3.4.4 � Result post‑processing and lymphocyte reclassification

Before the final step, it is applied one more post-processing step—detection reclassification. 
This step is only used for PyTorch models and YOLO as those models have correct informa-
tion about detection bounding boxes. In the case of PathoNet, bounding boxes are gener-
ated artificially. During this step, the previously mentioned lymphocyte classifier is used and 
only detections of Ki-67-negative cells are processed again, so class labels are adjusted.

As a final step for all architectures, we performed a grid search on SHIDC-B-Ki-67-
train dataset for the best F1 score over post-processing parameters: PThr for minimum score 
filtering and IOUThr for NMS. Selected post-processing parameters PThr and IOUThr will 
be utilized for post-processing on SHIDC-B-Ki-67-test, SHIDC-B-Ki-67-supertest and 
LSOC-Ki-67 datasets. The reasoning behind performing grid search is that each architec-
ture assigns unique confidence values, and models use different strategies to draw bound-
ing boxes. Therefore, no universal post-processing parameters can be chosen. Parameter 
PThr was searched in range 0.0 to 0.9 with step 0.1, and IOUThr was searched in range 
0.1–1.0 with step 0.1. and the whole parameters space was checked to find the best set of 
parameters. PThr is a parameter of the minimum detection score threshold, and during mini-
mum score filtering, all detections that model scored below PThr are filtered out. This way, 
detections that are most probably false positives are removed. IOUThr is the parameter of 
the NMS algorithm that indicates the minimum IOU value of two boxes to be considered 
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for the detection of the same object. With this parameter, NMS identifies groups of detec-
tions covering the same object (based on the IOU value and IOUThr ) and keeps only the 
detection with the best score.

After filtering out low-quality detections, an additional step of lymphocyte reclassifica-
tion is performed to find Ki-67 negative detections surrounded by the lymphocytes. This 
simple neighborhood analysis improves the pipeline’s ability to work with images contain-
ing lymphocyte clusters and correctly classify them.

The post-processing pipeline for an image consists of: 

1.	 Filtering by the minimum score—detection score must be over the PThr.
2.	 NMS filter with IOU threshold equal to IOUThr

3.	 Lymphocyte reclassification based on neighborhood analysis
4.	 Sorting filtered detections by score and detection to ground truth point match.

The last step of detection to ground truth match was performed by following algorithm 
Algorithm 2.

Algorithm 2   Matching detections with ground truth points
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As depicted in Algorithm  2, at the beginning detections are sorted by score (line 
1) and the k-d tree (Bentley 1975) is constructed from ground truth points to quickly 
find nearest neighbors (line 2). Then empty containers for results (line 3) and used 
points (line 4) are prepared. The number of selected points is calculated as the mini-
mum number out of 3 and the number of ground truth points to handle cases when the 
number of ground truth points is low (line 5). Then for each detection, a center point 
is found (line 6) and find the closest pointNb neighbors to this center point (line 8). 
Neighboring points (dots) are filtered at first by checking whether they were already 
used (line 9) and if the point is inside the detection bounding box (line 11). Then, 
if any point is left, it is marked as used (line 12) and the match of detection class 
and point class is added to the results (line 13); otherwise it is assigned the detection 
class of the ’background’ class (line 15). After setting the detections to ground truth 
annotations, the reminding ground truth points set is constructed (line 16) and clas-
sified as detected with class ’background’ (lines 17–18). Such a way of handling not 
detected points and false detections allows us to use already implemented metrics from 
the sklearn(Pedregosa et al. 2011) module.

3.4.5 � Metrics

The proliferation index is calculated for each test image. The quality assessment of model 
predictions is based on the R2 , MSE, and MAE values. As the quality of bounding boxes 
is irrelevant, the standard object detection metric—mean average precision—is unsuitable 
here. Therefore, four classification metrics (accuracy, precision, recall, and F1) were calcu-
lated based on the following values:

•	 True Positive (TP) is the number of correct positive predictions,
•	 False Positives (FP) is the number of incorrect positive predictions,
•	 False Negatives (FN) is the number of incorrect negative predictions,
•	 True Negatives (TN) is the number of correct negative predictions.

These four metrics applied in the experimental part are the following: Accuracy (Eq.  2) 
allows calculating rate of true class detections to all detections.

Precision (Eq. 3) gives the proportion of true detection of a specific class to all these class 
detections. Precision is beneficial to getting information about the percentage of relevant 
objects among all class detections.

Recall (Eq.  4) depicting percentage of relevant objects of certain class detected by the 
model.

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN
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F1 (Eq. 5) is a harmonic mean of precision. F1 metric is reacting stronger to changes in 
each of the components. A high F1 score is only possible when precision and recall are 
high, making it a universal metric.

Additionally, model are compared with manual annotations by the expert using regression 
metrics: R2 (Eq. 6), Mean Squared Error (Eq. 7), and Mean Absolute Error (Eq. 8) metrics.

In those metrics, yi equals to real proliferation index for i image calculated based on ground 
truth annotations, and ŷi , on the other hand, is a value of proliferation index calculated 
based on the model detections. R2 is a percentage of data variance described by a model. It 
is one of the best statistical metrics for describing a model, but it must be accompanied by 
some metric describing residual error due to its limitations.

Mean Square Error is an excellent metric, strongly reacting to the outlier errors, consist-
ing of the arithmetic mean of squared errors between observation and predicted value.

Mean Absolute Error is a metric better representing the value of error as the unit of meas-
urement and is not squared. Therefore, calculating the simple arithmetic mean of the abso-
lute error value between observations and the predicted value allows for a better under-
standing of how severe the model error is. The metrics were calculated using a widely used 
sklearn.metrics module to limit possible implementation errors.

4 � Results

This section will describe the model evaluation results on both the SHIDC-B-Ki-67 test 
dataset and the LSOC-Ki-67 dataset. All experiments were conducted in a single comput-
ing environment: Ubuntu 22.04, CPU AMD Ryzen 9 5900X, GPU Nvidia RTX3080 Ti. To 
provide reproducibility, the DVC (Kuprieiev et al. 2023) pipeline was prepared, and each 
step, depending on a random value, was fixed on the selected seed.

(5)F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall

(6)R2 =
n(
∑n

i=0
yiŷi) − (

∑n

i=0
yi)(

∑n

i=0
ŷi)

�
(n
∑n

i=0
y2
i
− (

∑n

i=0
yi)

2)(n
∑n

i=0
ŷi
2
− (

∑n

i=0
ŷi)

2)

(7)MSE =
1

n

n∑

i=0

(yi − ŷi)
2

(8)MAE =
1

n

n�

i=0

‖yi − ŷi‖
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4.1 � Experiment 1: assessment of the models based on SHIDC‑B‑Ki‑67 testing 
dataset

The first experiment tests the quality of models on PathoNet’s test dataset SHIDC-B-Ki-67. 
Results of the evaluation are presented in Table 2. Ki67- and Ki67+ labels in Table 2 cor-
respond with Ki-67-negative and Ki-67-positive classes, for which the metric is calculated. 
For Faster R-CNN, RetinaNet, and Mask R-CNN, ResNet (He et al. 2015) backbone was 
used, and for SSD, VGG (Simonyan and Zisserman 2014) was used. The number next to 
the backbone name indicates the number of convolutional layers used in that backbone var-
iant. YOLOv4 is using CSPDarkNet53 (Wang et al. 2019) backbone, known to be rather 
specific for YOLO architecture. PathoNet, on the other hand, utilizes U-Net architecture 
(Ronneberger et al. 2015b).

The results of experiments on SHIDC-B-Ki-67, visualized in Table 2 show that models 
using some generic architecture for object detection or instance segmentation are slightly 
inferior compared to the state-of-the-art model PathoNet. SSD architecture is not the best 
choice for this task, based on classification metrics like Precision and F1. Other network 
architectures are lagging a little bit behind, but still with excellent results of F1 metric and 
R2 values. RetinaNet and YOLO are third-best in the case of classification quality (Preci-
sion, Recall, and F1 taken into account), surpassed by Mask R-CNN and Faster R-CNN, 
and, of course, PathoNet. There are, unfortunately, cases where some of the errors depicted 
in Fig. 6a prove that models can still be improved. But looking at the quality of PathoNet-
trained results of generic models are even more impressive.

The SHIDC-B-Ki-67-supertest dataset was used to estimate the significance of the 
missing annotation error. Results from Table 3 show that the models’ performance is 
reduced, primarily due to a significant decrease in Ki-67 positive cells’ detection qual-
ity. In most cases, it is caused by additional expert annotations of Ki-67 positive cells 
in groups and cells that are not that saturated and contrasting with the background. 
Generic models were unaffected, as the white balancing preprocessing step helped 
increase the contrast between background and low-saturated cells. More commonly 
used models detect more cells in cell groups; therefore, new cell annotations inside the 
groups are not influencing the result that much. Because the SHIDC-B-Ki-67-supert-
est dataset is relatively small, it has to be considered whether additional annotations 
would be significant given the whole SHIDC-B-Ki-67-test. Nonetheless, this dataset 
allows for understanding and finding weak points of models and the training process. 
It is also clearly visible that additional post-processing is causing decrease in detection 
quality for all the architectures.

4.2 � Experiment 2: assessment of the models based on LSOC‑Ki‑67 dataset

Results of running the experiments on the LSOC-Ki-67 dataset, visualized in Table 4 
in the same fashion as in Experiment 1 identify Faster R-CNN as a possible archi-
tecture for proliferation index calculation. All 3 models achieve high F1 scores for 
both Ki-67-positive and Ki-67-negative cells. RetinaNet and Mask R-CNN architec-
tures struggle with correct Ki-67-negative cell detections, while SSD and YOLOv4 
models are having real issues with Ki-67-negative cell detection. YOLO architecture 
severely overestimates the number of cells, as can be seen on Table  5 classification 
metrics. PathoNet-trained is still lagging behind generic models, but on the other hand, 
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PathoNet trained on the full SHIDC-B-Ki-67 train dataset is achieving results com-
parable with inferior common models. For this step, post-processing in the form of 
lymphocyte reclassification is giving inconclusive improvements in detection quality. 
Neighborhood analysis algorithm is providing negative effect on detection quality.

4.3 � Model errors overview

All the networks based on ResNet50 are rather basic solutions to the cell counting prob-
lem. Networks work well with ideally visible cells and little cell groups but, on the other 
hand, are not very reliable in case of false positives: empty spaces (e.g., blood vessels or 
artifacts) are often detected as Ki-67-negative cells. Networks based on ResNet101 are 
often better at handling basic problems, but they, unfortunately, developed an issue of 
skipping detections in cell groups. Otherwise, this backbone performs well, e.g., for the 
Mask R-CNN+ResNet101 model. ResNet152 is the biggest and better backbone for net-
works. It is better at splitting and detecting cell groups and an overall number of detec-
tions. The problem with not annotated cells did not skew the results of the models used 
in detections. Due to the simpler network, Faster R-CNN worked well with SHIDC-B-
Ki-67-test and LSOC-Ki-67. Overall, Mask R-CNN with bigger backbones performed 
well in detecting cells on the images from the same laboratory as for training images. 
It is mainly the cause of much better behavior in splitting up of cell groups and the 
skipping of empty space and colored artifacts. RetinaNet, regardless of the backbone, 
is an excellent network for images with multiple cell crowds. The network worked rela-
tively well and split cell groups into individual cells. One downside of such an approach 
was the reported several false positive cells, many of which were not correctly anno-
tated. SSD with VGG16/19 backbone is struggling with detecting cells blended into the 
background, but even worse, obvious cells. We observed a lot of false negatives due to 
the fact many cells were just ignored. YOLOv4 was performing great with large cell’s 
detection and failed on smaller ones. Unfortunately, the network is using much bigger 
windows than the SSD or RetinaNet therefore, it requires different network anchors 
size. PathoNet-trained could not perform even the basic task of detecting ideally visible 

(a) False positive due to
missing annotation

(b) False positive due to
invalid detection on back-
ground

(c) False negative due
missing detection

Fig. 6   Bounding boxes with false-positive and false-negative cases. Dots of various colors represent the 
ground truth annotations, and boxes represent the model prediction. Red dots and boxes depict the Ki-
67-positive class; similarly, the blue color is used for the Ki-67-negative class. All images are example 
results of Faster R-CNN ResNet50 and examples for Fig. 6a and c are from SHIDC-B-Ki-67 test dataset 
and Fig. 6b is taken from LSOC-Ki-67 dataset
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Table 5   Cell counts reported for models for each of the testing datasets compared with ground truth annota-
tions

Architecture,Backbone,Post-processing SHIDC-B-Ki-67 SHIDC-B-Ki-67 LSOC-Ki-67

test supertest

Ki67- Ki67+ Ki67- Ki67+ Ki67- Ki67+

Ground truth 32643 15755 2604 1180 124344 26180
Faster R-CNN,ResNet50 30763 17241 2090 816 84826 20848
Faster R-CNN,ResNet101 26934 16424 1831 796 85206 20101
Faster R-CNN,ResNet152 34379 16426 2281 783 86010 19743
RetinaNet,ResNet50 29174 15226 1975 741 73329 14435
RetinaNet,ResNet101 31500 15137 2028 713 75323 17871
RetinaNet,ResNet152 32270 14171 2132 685 83152 17910
Mask R-CNN,ResNet50 35025 16163 2240 760 80936 18290
Mask R-CNN,ResNet101 28202 16363 1934 779 83665 18249
Mask R-CNN,ResNet152 29180 17225 2003 841 85462 19924
SSD,VGG16 35816 20698 2265 1106 104304 21528
SSD,VGG19 35760 20722 2311 1101 85288 21736
YOLOv4,Darknet 32969 15923 2321 750 131711 17000
Faster R-CNN,ResNet50,lym-reclass 30726 17609 2046 837 84535 21248
Faster R-CNN,ResNet101,lym-reclass 31457 17203 2077 834 92270 20977
Faster R-CNN,ResNet152,lym-reclass 31439 16368 2118 783 82653 19743
RetinaNet,ResNet50,lym-reclass 27085 15176 1837 741 72144 14435
RetinaNet,ResNet101,lym-reclass 31563 16061 2073 777 78400 19403
RetinaNet,ResNet152,lym-reclass 29923 14120 1989 685 81196 17910
Mask R-CNN,ResNet50,lym-reclass 33721 16706 2197 798 83442 18980
Mask R-CNN,ResNet101,lym-reclass 32420 17092 2181 833 90586 19106
Mask R-CNN,ResNet152,lym-reclass 31755 17055 2099 832 87133 19687
SSD,VGG16,lym-reclass 33016 20590 2112 1106 101281 21528
SSD,VGG19,lym-reclass 32777 20609 2149 1101 83318 21736
YOLOv4,Darknet,lym-reclass 28700 15871 2053 750 126383 17000
Faster R-CNN,ResNet50,lym-reclass+neigh 26260 17176 1768 816 78341 20848
Faster R-CNN,ResNet101,lym-reclass+neigh 26934 16424 1831 796 85206 20101
Faster R-CNN,ResNet152,lym-reclass+neigh 29402 16368 2038 783 81795 19743
RetinaNet,ResNet50,lym-reclass+neigh 25957 15176 1782 741 72000 14435
RetinaNet,ResNet101,lym-reclass+neigh 26848 15082 1794 713 70751 17871
RetinaNet,ResNet152,lym-reclass+neigh 28570 14120 1947 685 80931 17910
Mask R-CNN,ResNet50,lym-reclass+neigh 27990 16105 1888 760 76569 18290
Mask R-CNN,ResNet101,lym-reclass+neigh 28202 16363 1934 779 83665 18249
Mask R-CNN,ResNet152,lym-reclass+neigh 29180 17225 2003 841 85462 19924
SSD,VGG16,lym-reclass+neigh 31411 20590 2050 1106 100720 21528
SSD,VGG19,lym-reclass+neigh 31009 20609 2077 1101 82949 21736
YOLOv4,Darknet,lym-reclass+neigh 25382 15871 1871 750 124472 17000
PathoNet-trained,UNet 19961 10256 1162 448 56721 14725
PathoNet,UNet 38025 16146 1278 589 45111 14695
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cells. We observed results filled with false negative detections due not improper detec-
tion. Base PathoNet was unbeatable on the test set from SHIDC-B-Ki-67. However, the 
LSOC-Ki-67 test set caused many false negatives, as many cell groups were calculated 
as single cells. Overall, PathoNet was not handling the change in the dataset well, as the 
number of errors reported increased dramatically.

4.4 � Side‑by‑side comparison

In this section, models are compared with each other in the context of all experiments.
Figure 7 is a box and whiskers plot visualizing the distributions of the variables. The 

plot for single variables consists of the interquartile range (IQR) box containing the second 
and third quartiles of the distribution. In this range, 50% of the observations are located. 
The IQR box also includes the line indicating the position of the median value, which is the 
middle value of the observations. The position of the median line in the IQR box signifies 
whether the distribution is left or right-skewed. Whiskers show the range of the first and 
fourth quartiles, visualizing the spread of the values on the axis. Finally, on the plot, there 
are also outliers indicated using diamonds - observations outside the ( Q1 − 1.5 ∗ IQR ; 
Q3 + 1.5 ∗ IQR ) range.

Data for Fig.  7 is the weighted F1 score computed as a weighted mean of F1 scores 
per class on a single image. This is a different approach from the results tables (Tables 2, 
3, and 4), as F1 is calculated for each of the classes and based on values from all images. 
Therefore, this approach allows us to better visualize the model’s performance as it indi-
cates possible outlying images. Moreover, such information allows us to plot the distribu-
tion and range of the resulting F1 values.

Based on Fig. 7 it can be concluded that PathoNet-trained, YOLOv4, and SSD-based 
models are underperforming compared with Faster R-CNN, RetinaNet, Mask R-CNN 
architectures and PathoNet trained on full SHIDC-B-Ki-67 train dataset as signified by 
the distributions. All 3 generic architectures left (Faster R-CNN, RetinaNet, and Mask 
R-CNN) are close to the PathoNet comparing the distributions for SHIDC-B-Ki-67 and 
even closer on the SHIDC-B-Ki-67 superset. For LSOC-Ki-67, the plot indicates the 
superiority of generic architectures over task-specific PathoNet architecture. Moreover, 
Faster R-CNN seems to achieve better IQR range width and Q1-Q4 width results over 
RetinaNet and Mask R-CNN.

5 � Discussion

The primary goal of the research, which was to test whether specialized methods for counting 
Ki-67 stained cells are significantly better than generic models without hyperparameter tuning 
and pretrained on a task different from cell detection, was achieved. By analyzing the results 
and taking a solid look into the PathoNet-trained, it can be presumed that generic models with 
the training set of the size of a complete training set of PathoNet could even outperform Patho-
Net in the task. It is worth underlying that a very effective algorithmic pipeline was devel-
oped and by combining object detection/instance segmentation models with another classifier 
and unsupervised method for additional reclassification steps based on the neighboring cells 
results are greatly improved.
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The main benefit of using other architectures than those relying on U-Net is a better model 
selection depending on the model use case. With its lightning speed of detection, YOLO archi-
tecture could be used for real-time cell detection and fast proliferation index estimation during 
tissue scanning. Mask R-CNN, with its rather unique output of object mask, could be used 

Fig. 7   Weighted F1 score per image. The box on the chart represents the range where 50% of the observa-
tions are located. Whiskers depict the first and last quartiles of the interquartile range, and outliers are rep-
resented as diamonds. They are visible on the left side of the plot
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to clearly show the margins of the cell to the pathology doctor. Faster R-CNN and RetinaNet 
could be used as object detection models in automatic proliferation index calculators.

What is more, it is observed that in complex cases like, e.g., a cluster of cells, generic mod-
els are handling the input better, giving clear margins between the object in contrast to the 
PathoNet that is relaying on U-Net convolutional neural network.

Fig. 7   (continued)
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On the other hand, models unfortunately were unable to be fully utilized on a separate data-
set. Despite preprocessing the input data to minimize the effects of color variation, and post-
processing to counter class imbalance in the training set, the results are far from perfect. One 
explanation could be a too big difference in the histograms of images in both datasets. The 
SHIDC-B-Ki-67 dataset is colored yellow, and even with white balancing, the color distribu-
tion is different from the LSOC-Ki-67. Other factors that could have impacted the experiment 

Fig. 7   (continued)
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are blurry training images and class imbalance in the training dataset compared to the test 
dataset.

Moreover, it is identified that comparing models based on the calculated proliferation index 
from its detections is not a real possibility. As seen in examples of YOLOv4 or PathoNet-
trained R2 , MSE and MAE metrics could be showing great regression results despite low-qual-
ity detection metrics. It might be caused by simply keeping the same ratio of class detections; 
therefore, if a model is not performing well enough in detecting both classes, the proliferation 
index will remain the same. Thus, in the work, the results of R2 , MAE, and MSE metrics were 
not analyzed as those metrics could be misleading.

During the research, two significant factors affecting model performance were detected. 
The first one is the number of lymphocytes on the images. As LSOC-Ki-67 had not selected 
hot spots, the balance of lymphocytes to Ki-67-negative cells was different from the SHIDC-
B-Ki-67-subset train dataset or even the SHIDC-B-Ki-67-train dataset. With the novel 
approach to pre-and post-processing of data, this factor impact can be reduced significantly. 
Such actions give the option to use pipelines without the need to mask the pROI. Another 
critical component was scaling datasets to training dataset resolution. The process of adjusting 
scales was very cumbersome and required an expert to calibrate images accordingly based on 
cues from the specific cells (lymphocytes, erythrocytes).

Most impediments in the research could be tracked to the training data—the quality of data, 
the quality of annotations, and the number of annotated samples. Authors look forward to the 
new generative neural network research, allowing artificially balanced datasets with high-
quality image output and automated annotation generation. Such a solution with the method 
presented in a paper could be a key to training generic architectures, resulting in overall higher 
metrics.

6 � Conclusion

This paper presents that the results of generic object detection and instance segmen-
tation models are comparable to those of the cell detection dedicated model. Using 
pre- and post-processing steps, those models could match the dedicated model’s results 
despite a reduced train dataset and even outperform PathoNet on a custom dataset 
sourced from an unrelated laboratory—LSOC-Ki-67. Moreover, although there are sig-
nificant differences between the two datasets, the novel cell detection pipeline allowing 
for using the models on such different datasets was developed, showing the significance 
of pre- and post-processing in computer vision tasks.

Furthermore, by adding post-processing steps, an original approach to the lympho-
cyte classification problem is proposed. It applies a deep learning solution and a classi-
cal one to solve it. The deep learning solution is based on a multimodal convolutional 
neural network, and the classical one uses neighborhood analysis. The performance of 
lymphocyte reclassification was not significant, and neighborhood analysis method was 
causing a drop in quality.

The performed experiments show that generic object detection and image segmen-
tation architectures, even without hyperparameter optimization, are achieving simi-
lar results or even outperforming dedicated architectures. Moreover, depending on the 
pathologist’s needs and tasks, generic object detection and image segmentation archi-
tectures allow full pipeline utilization and achieve high-quality results.
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In future works, it is planned to utilize image generation to balance datasets and 
extend train and test datasets with data from multiple independent laboratories. The pri-
mary purpose of those works is to improve source material quality on which models can 
train. Furthermore, the use of more advanced image normalization algorithms to handle 
better image data of various characteristics is considered.

The datasets generated during and/or analyzed during the current study are avail-
able from the corresponding author upon reasonable request. Source code is available at 
https://​github.​com/​Micha​lKarol/​do_​we_​need_​dedic​ated_​models on MIT license.
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