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Abstract
Cancer remains a significant cause of mortality, and the application of microarray technol-
ogy has opened new avenues for cancer diagnosis and treatment. However, due to the chal-
lenges in sample acquisition, the genetic dimension of microarray data surpasses the sam-
ple dimension, resulting in high-dimensional small sample data. Effective feature selection 
is crucial for identifying biomarkers and facilitating further analysis. However, existing 
methods struggle to fully exploit the interdependencies among genes, such as regulatory 
networks and pathways, to guide the feature selection process and construct efficient clas-
sification models. In this paper, we propose a novel feature selection algorithm and clas-
sification model based on graph neural networks to address these challenges. Our proposed 
method employs a multidimensional graph to capture intricate gene interactions. We lev-
erage link prediction techniques to enhance the graph structure relationships and employ 
a multidimensional node evaluator alongside a supernode discovery algorithm based 
on spectral clustering for initial node filtering. Subsequently, a hierarchical graph pool-
ing technique based on downsampling is used to further refine node selection for feature 
extraction and model building. We evaluate the proposed method on nine publicly avail-
able microarray datasets, and the results demonstrate its superiority over both classical and 
advanced feature selection techniques in various evaluation metrics. This highlights the 
effectiveness and advancement of our proposed approach in addressing the complexities 
associated with microarray data analysis and cancer classification.

Keywords  Graph neural networks · Feature selection · Graph pooling · Feature 
dependencies · Microarray data

1  Introduction

Cancer poses an escalating risk and mortality worldwide, posing a significant threat to 
human life and health. It has emerged as a leading cause of death in both developed and 
developing countries (Serrano et al. 2019). With the absence of a definitive treatment for 
cancer, the focus has shifted towards cancer prevention as a meaningful approach to miti-
gate the risk of this devastating disease (Liu et al. 2017).
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The Cancer Genome Atlas (TCGA) database contains genetic microarray data from 
cancer patients necessary for cancer identification and analysis. Microarray data can detect 
tens of thousands of genes from patients at the same time, and the precise analysis of these 
genes can determine and discover biomarkers with diagnostic significance for characteris-
tic diseases, which is of interest for early diagnosis of cancer, prognosis, and various other 
applications in such fields (Shukla 2020). However, the challenge of this study comes from 
two aspects. The first is the curse of the dimensionality of the data, which is used to inte-
grate tens of thousands of expression levels simultaneously in a single experiment, so the 
feature dimension is much higher than the sample dimension (Agarwalla and Mukhopad-
hyay 2022). Another challenge comes from the sample size. The number of patients par-
ticipating in the test cohort is usually much smaller than the feature dimension, which can 
easily lead to problems such as data overfitting and sample imbalance (Chen et al. 2013).

Feature selection is essential for analyzing large-scale high-dimensional data, such as 
microarray data and mass spectrometry analysis data, and building statistically significant 
models (Cheng et  al. 2012). In the feature selection process, significant features can be 
analyzed from microarray data as biomarkers, and effective classification models that can 
be used to predict diseases can be built (Wang et al. 2021). Based on the evaluation met-
rics and how feature selection methods are combined with classification models, standard 
feature selection methods include Filter method, Wrapper method, and Embedded method 
(Ghosh et al. 2020).

Filter methods assess feature importance based on data properties such as feature redun-
dancy and feature-label correlation (Pashaei and Pashaei 2022). While they efficiently 
eliminate redundant features, their precision can be further enhanced for fine-scale filtering. 
Notable filter methods include T-Test (Hua et  al. 2009), Chi-squared test (Huang 2009), 
MIC (Li et al. 2020), and Fisher score (Zhang et al. 2021). In contrast, Wrapper methods 
integrate meta-heuristic optimization algorithms with classification models to seek opti-
mal feature subsets, with techniques like GA (Oh et al. 2004), PSO (Xue et al. 2012), and 
ACO (Ghosh et al. 2020). However, they may suffer from high time complexity and risk 
of local optimality. Embedded methods, bridging machine learning models with feature 
selection, rank features based on their weights during model construction, achieving a bal-
ance between efficiency and accuracy (Rodriguez-Galiano et al. 2018). Common embed-
ded techniques are DT (Zhou et al. 2021), RF (Zhou et al. 2016), Lasso (Muthukrishnan 
and Rohini 2016), and Ridge Regression (Xu et al. 2020).

Hybrid feature selection methods have been extensively studied and proven to be effec-
tive on microarray data to address the above issues (Momenzadeh et al. 2019; Lin et al. 
2019; Wang et al. 2022; Wan et al. 2016; Ouadfel and Abd Elaziz 2022; Zhang et al. 2020; 
Annavarapu and Dara 2021; Peng et  al. 2013). These reports will be described in detail 
in the related work section. The hybrid approach combines the computational efficiency 
advantage of the Filter method and the accuracy advantage of the Wrapper method, which 
is essential for biomarker selection and cancer diagnosis.

Many feature selection methods, especially wrapper-based ones applied to microar-
ray data, assume data is independently and identically distributed (i.i.d). These methods 
often miss intrinsic feature dependencies, even when real-world gene dependencies, such 
as genetic pathways, exist. Recognizing these can augment biomarker identification and 
enhance the biological relevance of selected features. Such interactions are cataloged in 
databases like GeneMANIA and String, which record gene and protein interactions respec-
tively (Warde-Farley et al. 2010).

Research indicates that embracing feature dependencies can bolster feature selec-
tion accuracy. Jl et  al. (2020), Saranya and Pravin (2022), Bhuyan et  al. (2021), and 
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others have adopted various methodologies. Several regularization methods have also 
highlighted the advantages of utilizing feature dependencies (Yuan and Lin 2006; Zou 
and Hastie 2005; Efron et al. 2004; Fan and Li 2002; Zou and Zhang 2009; Liu et al. 
2019; Zeng and Xie 2014). However, a gap persists in merging deep learning-focused 
dependencies and the unified application of ensemble techniques and graph neural 
networks.

Addressing this, our study introduces a graph neural network approach to microar-
ray data feature selection. Although graph neural networks can capture intricate data 
dependencies, their direct application to microarray data feature selection remains 
pioneering. Earlier studies honed in on gene features using graph structures but often 
sidestepped higher-order graph data connectivity, emphasized by He et al. (2020). Our 
method leverages graph structures and neural networks, drawing from our previous 
work (Yu et al. 2021; Xie et al. 2022a, b).

Using gene data relationships from GeneMANIA, our approach employs multidi-
mensional graph neural network techniques. After refining the relationship graph, we 
minimized isolated nodes, thereby improving spectral clustering efficiency. The feature 
selection mechanism used a node importance method, combined with spectral cluster-
ing to identify supernodes. This leads to the establishment of an effective graph-based 
classification model.

We conducted experiments on nine publicly available microarray datasets. The 
results show that the prediction models built by the features selected by the proposed 
method have high accuracy and outperform the classical feature selection methods and 
most of the compared state-of-the-art hybrid methods. In addition, our method also 
outperforms the graph neural network approach for feature selection on microarray 
data. The main innovations of the proposed approach are as follows. 

1.	 Innovative use of graph neural networks for feature selection on microarray data and 
constructing graph structures based on multiple prior knowledge bases, and using mul-
tidimensional graph neural network technology techniques to achieve node embedding 
representation and information aggregation.

2.	 A multidimensional node importance assessment method is designed and combined with 
a supernode assessment method based on spectral clustering for coarse-scale filtering 
of nodes.

3.	 A hierarchical pooling technique based on downsampling to learn an end-to-end hierar-
chical representation of data with fewer parameters to effectively learn the importance 
of nodes for fine-scale filtering and a classification model based on graph structure is 
designed.

4.	 A complete comparison with six classical methods on nine microarray datasets and a 
comparison with 18 advanced algorithms on three datasets prove the effectiveness and 
advancement of the proposed method. In addition, we compare GNN-based feature 
selection methods to demonstrate the advancedness of the proposed method.

The rest of the paper is organized as follows: Sect. 2 presents the related work, Sect. 3 
describes the proposed method and each module in detail, Sect. 4 lists the experimen-
tal results and comparison results, and Sect. 5 summarizes the work of this paper and 
lists future directions.
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2 � Related work

In this section, we review the current advancements in various categories of feature selec-
tion methods, emphasizing their use in microarray data analysis. Based on insights from 
review articles (Remeseiro and Bolon-Canedo 2019; Alhenawi et al. 2022; Bolón-Canedo 
et al. 2014), these methods are categorized into Filter, Wrapper, Embedded, Hybrid, and 
Ensemble approaches. Owing to the exceptional efficacy of regularization methods with 
grouping effects for grouped feature evaluation, we treat it as a separate category. For con-
ciseness, we group the Embedded and Hybrid methods under the Wrapper category due 
to their similarities (Xue et al. 2015), and this categorization is further elaborated in this 
section.

2.1 � Filter method

Mazumder and Veilumuthu (2019) proposed an advanced filter for microarray cancer data 
classification. The method, aiming for improved accuracy in differentiating cancer types, 
showcased promise in handling the complexities of microarray datasets. Thabtah et  al. 
(2020) introduced "Least Loss", a refined filter technique for feature selection. Central to a 
unique strategy, this method streamlines feature selection, evidencing its efficiency across 
diverse data analysis scenarios. Yuan et  al. (2017) developed a feature selection method 
emphasizing correlation information maximization, especially for high-dimensional pro-
tein data. By harnessing correlation insights, the method enhanced the accuracy of protein 
data analysis, marking a pivotal contribution to bioinformatics. Lefakis and Fleuret (2016) 
unveiled a Gaussian modeling-based feature selection approach, targeting jointly informa-
tive features. Their methodology simplifies the otherwise complex task, underscoring the 
collective significance of features in machine learning. Li and Oh (2016) advocated for 
feature selection enhancement using pairwise pre-evaluation. Emphasizing feature collabo-
ration, their method points towards optimized feature selection outcomes in bioinformatics.

2.2 � Wrapper method

Wang et al. (2022) introduced an adaptive weighted differential evolutionary algorithm to 
select features from high-dimensional small sample data. This method, building on the dif-
ferential evolution algorithm, uses an adaptive mechanism, leverages historical data, and 
applies a weighting model. Its effectiveness has been confirmed on 12 datasets, surpassing 
six comparable evolutionary algorithms.

Wan et al. (2016) combined a binary coded ant colony optimization algorithm with a 
genetic algorithm to refine feature selection. They introduced the visibility density model 
(VMBACO) and the pheromone density model (PMBACO), utilizing the genetic algorithm 
for initial data gathering. This method prioritizes features with low redundancy and high 
discriminative power and outperforms several other algorithms in effectiveness.

Ouadfel and Abd Elaziz (2022) developed a two-stage feature selection approach for 
high-dimensional small sample data. Initially, the ReliefF method preprocesses features, 
which is then followed by a balanced optimization algorithm. Pearson coefficients help in 
weeding out redundant features. The method’s success is evident on 26 varied datasets.

Zhang et  al. (2020) unveiled a binary difference evolutionary algorithm with a self-
learning strategy for multiple objective feature selection. It introduces a binary mutation 
operator and a one-bit purifying search operator. Furthermore, a non-dominated sorting 
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operator cuts down the selection operator’s time consumption, with the method’s efficacy 
tested on 20 UCI datasets.

Annavarapu and Dara (2021) proposed a hybrid method for microarray data feature 
selection. Their approach combined a k-mean clustering algorithm with a signal-to-noise 
ratio ranking. The results on five datasets highlight its potential.

Peng et  al. (2013) showcased a modified sequential forward floating selection algo-
rithm for feature selection, emphasizing gene classification. This method pairs weighted 
Mahalanobis distance with a modified SFFS technique. Results from the Colon dataset 
validate its capabilities.

Aziz (2022) presented a hybrid machine learning framework maximizing classification 
accuracy. Merging the Cuckoo Search Algorithm and the Artificial Bee Colony, the method 
excels in exploration and exploitation phases, with Independent Component Analysis 
assisting in feature acquisition. Its prowess is evident across six gene expression datasets.

Shen and Zhang (2022) delivered a two-stage Grey Wolf Optimization algorithm for 
high-dimensional data. A multi-layer perceptron plays a central role in both the pre-screen-
ing and final selection stages. Its effectiveness is endorsed by results from ten gene expres-
sion datasets.

2.3 � Embedded method

Momenzadeh et al. (2019) introduced a feature selection method for microarray data using 
the Hidden Markov Model, combining five metrics to enhance classification performance. 
This method’s efficacy was validated on three distinct datasets. Seijo-Pardo B et al. intro-
duced thresholding methods in feature selection. In their first study (Seijo-Pardo et  al. 
2016), they utilized data complexity measures as thresholds. In another study (Seijo-Pardo 
et  al. 2019), they aimed to develop an automatic threshold for ensemble-based feature 
selection, enhancing ensemble techniques’ accuracy. Bolón-Canedo et al. (2014) presented 
an ensemble method for data classification that blends multiple filters to achieve superior 
results, underscoring the ensemble approach’s potential in this domain. Abdulla and Kha-
sawneh (2020) unveiled "G-Forest," designed for cost-sensitive feature selection in gene 
expression microarrays. Their innovative ensemble-based method balances cost consid-
erations with accuracy, showcasing its applicability in microarray analysis. Ben Brahim 
and Limam (2018) proposed an ensemble feature selection technique for high-dimensional 
data. This approach consolidates the benefits of various feature selection methods, with 
validations emphasizing its effectiveness in high-dimensional datasets like genomics. Li 
F et al. introduced methods for molecular signature discovery. In their first work (Li et al. 
2022a), ConSIG was presented to consistently identify molecular signatures across data-
sets. In another study (Li et al. 2022b), the POSREG method was crafted to discover prot-
eomic signatures, optimizing both reproducibility and generalizability, addressing the ris-
ing demands in proteomics.

2.4 � Regularization methods with grouping effects

Yuan and Lin (2006) discussed regression with grouped variables, introducing methods 
that enhance model accuracy and interpretability by considering group structures. Zou and 
Hastie (2005) introduced the "elastic net" to overcome challenges with Lasso and corre-
lated predictors, combining L1 and L2 penalties. This approach, influential in statistical 
learning, manages multicollinearity in predictors. Efron et al. (2004) presented the LARS 
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method for high-dimensional regression. LARS, efficient in computing Lasso regression 
paths, has become pivotal in statistical learning for large datasets. Fan and Li (2002) cen-
tered on variable selection in survival analysis, introducing nonparametric methods for the 
Cox’s proportional hazards and frailty models, aiming to enhance model flexibility and 
capture nuances. Zou and Zhang (2009) explored the adaptive elastic-net for high-dimen-
sional data, adjusting penalties based on variable importance, optimizing variable selection 
in large datasets. Zeng and Xie (2014) proposed a group variable selection method using 
SCAD-L2, innovatively combining L2-norm adjustments to handle high-dimensional and 
group-structured data more effectively. Liu et al. (2019) showcased a novel regularization 
method for biomarker identification in cancer classification, merging computational and 
biological data to enhance precision and offering promising insights for bioinformatics in 
cancer diagnostics.

By summarizing the existing methods, it can be observed that the following improve-
ment strategies are mainly applied to feature selection techniques for microarray data. 

1.	 Hybrid two-stage feature selection: This type of methods uses the Filter method as a pre-
processing process to reduce the feature space at the coarse granularity and improve the 
efficiency of the algorithm. Subsequently, the wrapper method is used to further search 
for optimal features at a fine-grained scale. It is difficult for these research methods to 
effectively exploit the dependencies between features.

2.	 Integration of multiple methods: In this type of methods, multiple feature evaluation 
methods are used to assess feature importance, and subsequently, a unified feature rank-
ing list is generated based on the aggregation strategy.

3.	 Combination of multiple evolutionary algorithms: In this strategy, an attempt is made to 
draw on the advantages of different evolutionary algorithms by two or more evolutionary 
algorithms combined into an evolutionary algorithm with better classification accuracy 
and operational efficiency for feature selection.

4.	 Using feature dependencies: in this strategy, the algorithm is able to analyse the features 
based on the dependencies between the features so as to achieve feature selection based 
on the dependencies between different features.

Yet, many existing techniques fall short in effectively integrating reported and validated 
feature dependencies across various dimensions using deep learning. Moreover, to the best 
of our understanding, there hasn’t been any research that leverages graph neural networks 
for the amalgamation of such multi-dimensional features in tandem with ensemble evalu-
ation strategies for feature selection. Therefore, to address these challenges, we present a 
feature selection algorithm grounded in graph neural networks. This model erects graph 
structures rooted in a priori knowledge, enabling thorough utilization of feature dependen-
cies and capturing high-order feature connections, culminating in a more proficient and 
precise feature selection.

3 � The proposed method

3.1 � Overall framework of the proposed method

The overall framework of the proposed method is shown in Fig.  1. In our study, we 
designed a graph-based framework wherein every feature of the primary gene expression 



Feature selection of microarray data using multidimensional…

1 3

Page 7 of 29  63

matrix acted as a node. Each sample was represented by an individual graph, with all 
graphs maintaining a consistent structure. Inter-node relationships were sourced from 
GeneMANIA’s multi-dimensional gene connections. Utilizing these connections and as 
delineated in Sect.  3.2, we employed a multi-dimensional graph construction method to 
derive multi-dimensional relationships, subsequently producing multiple relational graphs. 
These graphs depicted varied relational weights between nodes, as showcased in Fig. 1. A 
node’s preliminary data corresponds to the expression value of the related sample across 
diverse features. After removing superfluous connections to refine the graph, the multi-
dimensional graph filtering method from Sect.  3.3 was invoked to harness multi-dimen-
sional relationships for disseminating and collating node data. This led to the creation of a 
node feature matrix using multi-dimensional associations. Nodes linked in GeneMANIA 
received an edge, leading to our definitive representation graph.

Post execution of the above steps, we curated a graph-structured dataset for each sam-
ple, ensuring uniformity in structural details. Moreover, distinct samples had differing node 
feature vectors. To address the relationships GeneMANIA couldn’t discern, the link predic-
tion method in Sect. 3.4 was adopted. Subsequently, the multi-dimensional node evaluation 
technique from Sect. 3.5 and the super-node identification algorithm from Sect. 3.6 were 
utilized for node appraisal, highlighting key nodes. In the end, the method from Sect. 3.7 
focusing on Hierarchical graph pooling based on downsampling was employed to sieve 
through nodes, streamline feature selection, and devise a predictive model.

3.2 � Multidimensional graph construction and graph purification

In a gene relationship network, there are multiple types of relationships between pairs of 
genes, including physical correlation, co-expression, co-localization and gene pathways, etc. 

Fig. 1   The overall framework of the proposed method



	 W. Xie et al.

1 3

63  Page 8 of 29

We use multidimensional graphs to construct graph structure data to represent such complex 
relationships effectively. In a multidimensional graph, all dimensions share the same set of 
nodes, and each dimension can also have its unique structure. First, the microarray data from 
the GPL platform need to be transformed with probe and gene IDs, and then their correlation 
information is obtained from GeneMANIA using the gene IDs.

The mathematical representation of the above operations is as follows. Firstly, microarray 
data can be defined as two sets of samples and features, in which the sample set can be 
expressed as S =

{
S1, S2,… , sm

}
 , Where, each sample corresponds to a label 

yi ∈ {0, 1}(i = 1, 2,… ,m) (take the second category task as an example). The feature sets 
can be represented as F =

{
f1, f2,… , fn

}
 , The feature dependency obtained from GeneMA-

NIA can be expressed as matrix R, which contains the dependency rk
(fifj)

(k = 1, 2,… k) 
between any fi and fj . Where k represents the different dependencies included.

Subsequently, we can define a set of graphs G =
{
g1, g2,… , gk

}
 , where g = (V, E) , where 

V =
(
v1, v2,… , vn

)
 corresponding to the feature set F, set E contains the connection weights 

between any two nodes 
(
evi , evj

)
= r(fi,fj).

Since the complex relations obtained by GeneMANIA are uncertain, we introduce the sum 
graph purification operation. Specifically, for the set of graphs G =

{
g1, g2,… , gk

}
 defined 

above, in each graph g, we compute the adjacency matrix Agi corresponding to each graph and 
decompose it using singular value decomposition (SVD), keeping only top-k singular values 
to reconstruct the adjacency matrix (experimentally 90% of the overall number is kept), and 
the reconstructed adjacency matrix can be approximated as the purified graph structure for the 
following operations.

3.3 � Multi‑dimensional graph filter

When designing multidimensional graph filters, intra-dimensional and inter-dimensional 
interactions must be considered. Specifically, intra-dimensional interactions are reflected in 
the connections between nodes in the same dimension. In contrast, inter-dimensional interac-
tions are reflected in the "copies" of the same node in different dimensions. Therefore, we use 
a graph filter that captures both intra-dimensional and inter-dimensional information to filter 
the graph structure data in different dimensions.

First we give the process of node information propagation and aggregation in a one-dimen-
sional graph structure. We define the L-layer hidden state vector of any node vi as hL

vi
 , define 

N(vi) to represent the first-order neighborhood of node vi . The graph neural network can be 
implemented by introducing spatial filters to propagate and aggregate node information to 
obtain hidden state vectors that can have the ability to characterize the global situation. The 
aggregation process is represented as shown in Eq. 1, by which we get the hidden state vector 
of the node’s L layer.

where AGGREGATEL denotes the aggregation process of nodes from L − 1 layer hid-
den state to L layer hidden state, and h represents the function’s output, which is obtained by 
aggregating all the first-order neighborhood node information of node vi.

where AGGREGATEL denotes the aggregation process of nodes from L − 1 layer hidden 
state to L layer hidden state, and h represents the function’s output, which is obtained by 
aggregating all the first-order neighborhood node information of node vi . Subsequently, 

(1)hL
vi
← AGGREGATEL

({
hL−1
N(vi)

∀vi ∈ N(vi)

})
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stitch the vectors of nodes using the Eq. 2, and normalize the node vectors using the Eq. 3 
to obtain the Embedding information of each node.

Next, we extend the above procedure to the multidimensional graph, where two types of 
neighbours are defined: intra-dimensional neighbours and cross-dimensional neighbours. 
For a given node vi in dimension d, an intra-dimensional neighbour is a node directly con-
nected to node vi in dimension d. Moreover, cross-dimensional neighbours consist of cop-
ies of node vi in other dimensions, and we define the intra-dimensional neighbours of a 
node on dimension d to be denoted as Nd

(
vi
)
 . As shown in Fig. 2, node v2 ’s intra-dimen-

sional neighbours in the orange dimension are nodes v1, v3, v4, v5 . In addition, all dimen-
sions share the same node v2 , which can be considered copies of the same node in different 
dimensions. These nodes in different dimensions are implicitly connected. So they are the 
cross-dimensional neighbours of node v2 . The cross-dimensional neighbours of node v2 in 
Fig. 2 are its copies of node v2 in the blue and green dimensions.

Using these two neighbors, we can give the graph filtering operation for the multidimen-
sional graph structure, which is shown in Eqs. 4 to 8.

(2)hk
vi
← �

(
Wk

⋅ COUNCAT
(
hk−1
vi

, hk
N(vi)

))

(3)hk
vi
← hk

vi
∕
‖‖‖h

k
vi

‖‖‖2, vi ∈ v

(4)F
(l−1)

d,j
=�

(
F
(l−1)

j
Θ

(l−1)

d

)
, vj ∈ Nd

(
vi
)

Fig. 2   Multidimensional graph structure representation form
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In Eq. 4 and Eq. 5, the representation of the intra-dimensional neighbours of the nodes vi 
from the previous layer (layer l − 1 ) is mapped to dimension d by Θ(l−1)

d
 , where �(∗) is a 

nonlinear activation function. Similarly, the representations of node vi from the previous 
layer are mapped to different dimensions, where D is the total number of dimensions in the 
multidimensional graph. Inter-dimensional aggregation is performed in Eq. 6, which gener-
ates intra-dimensional representations for node vi in layer l. Cross-dimensional information 
aggregation is executed in Eq.  7, where �(l−1)

g,d
 is the attention score, which indicates the 

influence of dimension g on dimension d. It is calculated as shown in Eq. 9.

where W (l−1) is the parameter matrix to be learned. Finally, the intra-dimensional and cross-
dimensional representations of the nodes are combined in Eq. 8 to generate the representa-
tion F(l)

i
 of the node vi updated after layer l, where parameter � is the hyperparameter used 

to balance these two components.

3.4 � Link prediction

Genes not involved in the prior knowledge will form isolated nodes during the establishment 
of the graph structure. However, isolated nodes are likely to be critical non-redundant features, 
so link prediction of the established graph structure establishes connections between isolated 
nodes and other nodes to achieve further information sharing and to lay a good foundation for 
discovering supernodes.

In the link prediction process, positive and negative samples must be constructed first. Tak-
ing node vi as an example, we destroy any head-to-tail link connected to node vi in graph G, 
randomly sample some new edges en with vi as the center node, and mark them as positive 
samples if en ∈ E ; otherwise, mark them as negative samples. We then record the similarity 
between the node with vi as the center node and all new edges connected to it, which is calcu-
lated as shown in Eq. 10.

(5)F
(l−1)

g,i
=�

(
F
(l−1)

i
Θ(l−1)

g

)
, g = 1,⋯ ,D

(6)F
(l)

w,d,i
=

∑
vj∈Nd(vi)

F
(l−1)

d,j

(7)F
(l)

a,d,i
=

D∑
g=1

�
(l−1)

g,d
F
(l−1)

g,i

(8)F
(l)

i
=�F

(l)

w,d,i
+ (1 − �)F

(l)

a,d,i

(9)𝛽
(l−1)

g,d
=

tr
�
Θ(l−1)⊤

g
W (l−1)Θ

(l−1)

d

�

∑D

g=1
tr
�
Θ

(l−1)⊤

g W (l−1)Θ
(l−1)

d

�
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where zvi denotes the value of the feature vector z, w denotes the dimensionality of the 
feature vector. We set the set of positive samples as Pos and the set of negative samples as 
Neg, and establish the loss function as shown in Eq. 11.

where Llink denotes the loss value of the loss function, E
(
vj, vr

)
∈ Pos denotes the edge of 

any set of positive samples of data, E
(
vj, vr

)
∈ Neg denotes the edge of any set of positive 

samples of data, and � is the nonlinear activation function. The model is trained using the 
stochastic gradient descent algorithm, and the loss value Llink in training is retained, and 
training is stopped when the difference between the loss values of two training sessions is 
less than B. Meanwhile, we calculate the Mean reciprocal rank (MRR) of each predicted 
graph in training, calculated as shown in Eq. 12, and select the optimal graph as the final 
result according to the MRR.

MRR represents the average reciprocal rank, and rank represents the rank number of the 
scores from highest to lowest when the � − th edge in the positive sample set scores the 
corresponding � − th edge in the negative sample set.

3.5 � Multi‑dimensional node evaluator

In order to evaluate the performance of nodes corresponding to features from multiple 
dimensions for a more comprehensive feature selection, we also added a multidimensional 
evaluation score for each node, which a multidimensional feature evaluator obtained we 
designed to perform a more accurate node evaluation based on the multidimensional evalu-
ation results for the feature selection task. The multidimensional feature evaluator is deter-
mined jointly using feature selection evaluation methods with the ability to evaluate fea-
tures. We used a feature ranking fusion method to combine the results of each evaluator in 
the following procedure.

Feature ranking fusion can fuse the evaluation results of features from multiple evaluators 
and generate a unified ranking list. This method is effective in producing fair and objective 
unified rankings. Although the advantages of feature ranking fusion have been reported in 
studies, these methods are not fully applicable to fusing the evaluation results of features from 
different evaluators because the noise of the original data cannot be handled effectively. In the 
proposed method, we employ a new robust rank aggregation (RRA) method, which detects 
features with higher than expected rank under the null hypothesis that they are not correlated 
between feature preference lists as well as within feature preference lists, and assigns a signifi-
cance score to each feature, which is ranked from smallest to largest to obtain the final ranking 
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of the features. The probabilistic model at the bottom of the algorithm is robust to outliers, 
noise and errors (Kolde et al. 2012).

The flow of the feature ranking fusion algorithm is as follows, for a given dataset DM∗N , 
where M denotes the number of features and N denotes the number of samples. For any evalu-
ation model EVk(∗) , the nodes go through the evaluation model and generate the correspond-
ing feature ranking vector R(i) as shown in Eq. 13.

where r1 < r2 < ⋯ < rM , ricorresponds to a feature in the original data. In this paper, we 
use L1 regularization, L2 regularization, linear regression, stability selection, random for-
est, correlation coefficient and the maximal information coefficien, respectively, as feature 
evaluation methods. The set EVS =

{
EV1,EV2,⋯EV7

}
 corresponds to each evaluation 

method. Each individual generates a corresponding feature ranking vector after the feature 
evaluation set, and we input these vectors together into the feature ranking model to finally 
obtain a final score list after feature fusion ranking.

3.6 � Supernode discovery algorithms

In order to perform initial feature selection from the original graph structure and screen fea-
tures with rich information and low redundancy, we use a supernode discovery algorithm for 
initial feature screening. The set composed of all supernodes constitutes a feature subset after 
feature coarse-grained screening. We use a spectral clustering-based approach to generate the 
supernodes and form the graph structure and node features of the coarsened graph.

The goal of subgraph cutting is to generate subgraphs with "the lowest possible sum of 
edge weights between subgraphs and the highest possible sum of edge weights within sub-
graphs" so that nodes within the generated subgraphs have more edge weights (more redun-
dancy between features) and nodes between subgraphs have fewer edge weights (less redun-
dancy between features), thus generating a subgraph based on a given number k of features.

First, given the set of all nodes V =
{
v1, v2,⋯ , vi

}
 to be clustered and the number of clus-

ters K. Next, the fully connected method is used to construct the similarity matrix W, which is 
a similarity matrix composed of Wij and is calculated as shown in Eq. 14.

It is assumed that any two samples have similarities, but the more distant samples have 
lower similarities. � is used to control the width of the neighbourhood of the sample points. 
Then the degree matrix D is calculated, where the similarity D is the n ∗ n diagonal matrix 
composed of di , and the di is calculated as shown in Eq. 15.

Subsequently, the Laplacian matrix L = D −W is calculated and the symmetrized Lapla-
cian matrix representation is used to obtain the normalized Laplacian matrix Lsym as shown 
in Eq. 16.

(13)Ri =
{
r1, r2,⋯ rM

}
= EVk

(
Pi
1×M

)

(14)Wij = Wji =

n∑
i=1,j=1

exp
−
‖‖‖xi − xj

‖‖‖
2

2�2

(15)di =

n∑
j=1

wij
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Our target is to minimize the loss function as shown in Eq. 17. Next, the eigenvalues of 
Lsym are calculated and sorted from smallest to largest, and the first k eigenvalues are taken 
according to the number of clusters k and their eigenvectors u1, u2,⋯ , uk are calculated. 
and the k eigenvectors are made into a matrix U = u1, u2,… , uk,U ∈ Rn∗k . In this paper, k 
is set according to the elbow rule.

Subsequently, let yi ∈ Rk be the i-th row feature vector of U ( i = 1, 2,⋯ , n),and cluster 
the new sample points Y = y1, y2,… , yn into clusters C = C1,C2,… ,Ck using the K-Means 
clustering algorithm.

After spectral clustering we divide its nodes into K groups: V =
[
V1,V2,⋯Vk

]
 , Vt rep-

resents the set of nodes in the t-th group, so we can obtain k subgraphs as shown in Eq. 18.

where each Et contains a connection between nodes Vt . If the adjacency matrix of graph 
Gt is represented by A, the adjacency matrix is decomposed into a k2 matrix as shown in 
Eq. 19 after performing the partition.

where each diagonal block Att is the Vt ∗ Vt adjacency matrix that contains all the con-
nections between graphs Gt , Ā is the adjacency matrix of graph G ∗ , and Amn represents 
the connections between the Vm and Vn components. Δ is the matrix consisting of all non-
diagonal blocks of matrix A.

This gives us k Clusters, the connectivity matrix Â within a Cluster, and the connectivity 
matrix Δ between Clusters. It can be assumed that the features characterized by the nodes 
within each Cluster have high redundancy, while the features characterized by the nodes 
between each Cluster have low redundancy. Subsequently, we evaluate supernodes in each 
Cluster as a subset of features in coarse filtering mode and capture the adjacency matrix 
between supernodes from the original graph structure to form a graph structure that is used 
as input for the next step of downsampling hierarchical graph pooling for further feature 
selection. The supernode evaluation score is calculated as shown in Eq. 20.

where vedge denotes the degree of the node, � is the hyperparameter used to balance the 
relationship between the two components, and Ri is the node’s corresponding multidimen-
sional evaluator ranking.

3.7 � Hierarchical graph pooling based on downsampling

After obtaining the graph structure composed of supernodes, we use a hierarchical graph 
pooling method based on downsampling for further feature selection. Specifically, we first 
obtain the importance score of each node by evaluating the node importance and then rank 

(16)Lsym = D−1∕2LD−1∕2 = I − D−1∕2WD−1∕2

(17)Lsd = D − Lsym

(18)G∗ =
[
G1,⋯ ,Gk

]
=
[
V1, E1,⋯ , Vk, Ek

]

(19)A = Ā + Δ =

⎡⎢⎢⎣

A11 ⋯ A1k

⋮ ⋱ ⋮

Ak1 ⋯ Akk
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the nodes to retain the top-k nodes. Finally, based on the retained nodes, a classification 
model based on the graph structure is built to evaluate the feature selection performance 
and achieve the final classification task. In our graph pooling model, we use cross entropy 
as loss function, Adam as optimiser, ReLU as activation function and learning rate is set to 
0.001, in addition Dropout technique is used in the network to prevent overfitting.

In the process of evaluating the important nodes, we use a downsampling strategy to 
perform a hierarchical pooling operation on the whole graph, and the importance of the 
nodes is learned from the features F(ip)

i
 of the input nodes, as shown in Eq. 21.

where F(ip)

i
∈ ℝ

Nip×dip denotes the input feature of the i-th node and p ∈ ℝ
dip denotes the 

feature vector to be learned. After obtaining the importance score y, all nodes can be sorted 
and the top n most important nodes are selected, and the selected node index idx is shown 
in Eq. 22.

Subsequently, to avoid introducing information about nodes that have not been selected in 
the new graph, we extract the adjacency matrix after node selection from the adjacency 
matrix of the original graph as the structural information of the new graph operated as 
shown in Eq. 23.

Finally, we re-perform the filtering operation on the obtained graph and build the classifi-
cation model. The overall flow of the hierarchical graph pooling process based on down-
sampling is shown in Fig. 3.

4 � Data set and experimental results

4.1 � Data sets and pre‑processing

The 9 publicly available datasets used in this experiment are from the GEO (Gene Expres-
sion Omnibus) database, namely ALL2, ALL3, ALL4, DLBCL, Leukemia, Prostate, CNS 
and Myeloma. All datasets can be obtained from NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) and the details of the datasets are shown in Table 1.

(21)y =
F
(ip)

i
p

‖p‖

(22)idx = rank
(
y,Nop

)

(23)A(op) = A(ip)(idx, idx)

Fig. 3   Schematic diagram of the graph neural network used in the proposed method

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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We first use prior knowledge to build gene network. GeneM​ANIA provides a large 
amount of functional association data that can help us find other genes related to a set 
of input genes. These association data include interactions, pathways, co-expression, co-
localization, and protein domain similarity (Warde-Farley et al. 2010).

We use the method described in Sect. 3 to weighted average these relations, combining 
the microarray data expression values to the graph structure data. All results are averaged 
with five-fold cross-validation as the final evaluation result. Specifically, the dataset was 
partitioned into five subsets. In each iteration, four subsets were utilized for training, while 
the remaining subset was used for testing. This process was repeated five times to ensure 
each subset had an opportunity to serve as the test set. This method provides a more com-
prehensive evaluation of our model’s performance.

4.2 � Analysis of the results of the proposed method feature selection

In this subsection, we perform a detailed analysis of the feature ranking results of the 
proposed method on night publicly available microarray datasets, as shown in Fig. 4. We 
select the number of features from 1 to 50 according to the feature ranking results, input 
them into different classification models, and evaluate the performance of the feature set 
using the average classification accuracy of the five-fold cross-validation as the final evalu-
ation index. These classification models include Support Vector Machine (SVM), Deci-
sion Tree (DT), K-Nearest Neighbor (KNN), Navie Bayes (NB), Logistic Regression (LR), 
and our Graph Neural Network based method (GNN), Figure 4a–i correspond to the data-
sets ALL2, ALL3, ALL4, DLBCL, Leukemia, Prostate, CNS, Myeloma and Lymphoma 
respectively.

Based on the analysis of the results of Fig.  4, we can conclude the following. The 
proposed method uses a graph neural network-based classifier with a definite advantage 
among all classifiers, especially when the number of features is relatively small (up to 10) 
and can obtain a higher classification accuracy. This is because the graph neural network-
based classifier can effectively exploit the dependencies between features. In addition, we 
found that in the feature selection task for microarray data, the classification accuracy does 
not improve significantly as the number of features increases. There is even a decreasing 
trend in the classification accuracy on some datasets due to the introduction of too many 
redundant features, which justifies our proposed method for feature selection, i.e., remov-
ing redundant features by multiple dependencies between features.

Moreover, from the practical application point of view, the sample size needs to be 
expanded for clinical validation and application after performing the feature selection task 
to select valid biomarkers. Too many features will incur a considerable cost and cause a 
waste of resources. We believe selecting less than 20 features as biomarkers is usually 
reasonable.

4.3 � Comparison with classical feature selection methods

To demonstrate the effectiveness of the proposed methods, in this subsection, we com-
pare the proposed methods with a variety of classical feature selection methods, including 
L1 regularization (Lasso) based methods, random forest (RF), linear regression (LR), L2 
regularization (Ridge) based methods, correlation coefficient (Corr) methods, and deci-
sion trees (DT). Additionally, we compared four feature selection methods based on group 
information, namely Group Lasso (GL), Sparse Group Lasso (SGL), Group Elastic Net 

http://genemania.org/
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(GEN), and Least Angle Regression (LARS). Among these methods, we employed the 
KMeans algorithm to define the grouping strategy and utilized the elbow method to deter-
mine the optimal number of clusters. Considering that the data include unbalanced data-
sets, we compared four evaluation metrics separately, including the average Acc, Pre, Rec 
and F1 for five-fold cross-validatio. To ensure the fairness of the results, we used SVM as 
the classification model and set the number of features to 10. The comparison model uses 
the default parameters of scikit-learn 0.24.2, and the regularization-based model achieves a 
constraint on the number of features by controlling the penalty term coefficients.

Table 2 shows the results of the proposed method compared with the classical methods 
mentioned above in terms of classification accuracy, from the results it can be found that 
the proposed method outperforms the classical feature selection methods on all datasets, 
where the proposed method improves the average classification accuracy over all classical 
feature selection methods by 21.12% on the ALL2 dataset, 9.31% on the ALL3 dataset, 
4.72% on the ALL4 dataset, on the DLBCL dataset by 5.58%, on the Leukaemia dataset by 
4.83%, on the Prostate dataset by 9.04%, on the CNS dataset by 12.3%, on the Myeloma 
dataset by 8.88%, and on the Lymphoma dataset by 9.3%. Overall, the features selected 
by the proposed method improved on average 9.46% in classification accuracy compared 
to the classical method, which proves the effectiveness of the features selected by the pro-
posed method.

Table 3 shows the results of the proposed method compared with the classical method 
mentioned above on the F1 Score. From the results it can be found that the proposed 
method outperforms the classical feature selection method on all datasets, where the 
proposed method improves the average classification accuracy over the classical method 
by 13.5% on the ALL2 dataset, 22.49% on the ALL3 dataset, 7.89% on the ALL4 data-
set, on the DLBCL dataset by 6.91%, on the Leukemia dataset by 7.17%, on the Prostate 

Fig. 4   The classification accuracy of the proposed method under different datasets
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dataset by 8.51%, on the CNS dataset by 19.68%, and on the Myeloma dataset by 5.49% 
and on the Lymphoma dataset by 10.82%. Overall, the features selected by the proposed 
method improved on average by 11.38% in classification accuracy compared to the clas-
sical method, which proves that the proposed method is equally effective on the imbal-
anced dataset.

Table  4 shows the results of the proposed method compared with the classical 
method mentioned above on the Pre Score. From the results it can be found that the pro-
posed method outperforms the classical feature selection method on all datasets, where 
the proposed method improves the average Pre over the classical method by 24.80% 
on the ALL2 dataset, 20.00% on the ALL3 dataset, 7.06% on the ALL4 dataset, on the 
DLBCL dataset by 7.34%, on the Leukemia dataset by 3.84%, on the Prostate dataset by 
9.20%, on the CNS dataset by 13.83%, and on the Myeloma dataset by 10.48% and on 
the Lymphoma dataset by 9.53%. Overall, the features selected by the proposed method 

Table 2   Results of the proposed method versus the classical method in terms of Acc Score

Bold text indicates optimal results

Method ALL2 ALL3 ALL4 DLBCL Leu Pro CNS Mye Lym

Lasso 0.65 0.81 0.89 0.94 0.98 0.88 0.69 0.67 0.82
RF 0.70 0.83 0.88 0.94 0.97 0.89 0.71 0.69 0.92
LR 0.62 0.69 0.84 0.93 0.97 0.78 0.67 0.74 0.81
Ridge 0.72 0.82 0.86 0.96 0.95 0.91 0.66 0.78 0.82
CORR 0.67 0.73 0.90 0.93 0.94 0.82 0.62 0.63 0.95
DT 0.68 0.78 0.90 0.95 0.95 0.88 0.71 0.74 0.94
GL 0.73 0.82 0.91 0.97 0.92 0.92 0.77 0.80 1.00
SGL 0.64 0.81 0.77 0.97 0.96 0.81 0.67 0.81 1.00
GEN 0.69 0.69 0.81 0.78 0.95 0.91 0.72 0.82 0.89
LARS 0.67 0.79 0.84 0.97 0.96 0.91 0.73 0.81 1.00
Proposed 0.82 0.85 0.90 0.99 1.00 0.95 0.78 0.82 1.00

Table 3   Results of the proposed method versus the classical method in terms of F1 Score

Bold text indicates optimal results

Method ALL2 ALL3 ALL4 DLBCL Leu Prostate CNS Mye Lym

Lasso 0.78 0.69 0.75 0.97 0.98 0.89 0.79 0.80 0.86
RF 0.80 0.76 0.75 0.97 0.96 0.91 0.78 0.80 0.88
LR 0.77 0.71 0.77 0.87 0.96 0.85 0.74 0.82 0.85
Ridge 0.81 0.75 0.76 0.92 0.94 0.92 0.74 0.83 0.86
CORR 0.79 0.67 0.78 0.89 0.91 0.79 0.77 0.79 0.90
DT 0.79 0.74 0.78 0.90 0.93 0.87 0.81 0.84 0.82
GL 0.79 0.63 0.82 0.96 0.87 0.91 0.72 0.88 1.00
SGL 0.73 0.54 0.58 0.96 0.94 0.88 0.68 0.85 1.00
GEN 0.76 0.47 0.61 0.86 0.91 0.93 0.70 0.88 0.85
LARS 0.73 0.33 0.73 0.96 0.94 0.90 0.62 0.85 1.00
Proposed 0.88 0.77 0.79 0.99 1.00 0.96 0.88 0.88 1.00
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improved on average by 11.79% in Pre compared to the classical method, which proves 
that the proposed method is equally effective on the imbalanced dataset.

Table 5 shows the results of the proposed method compared with the classical method 
mentioned above on the Rec Score. From the results it can be found that the proposed 
method outperforms the classical feature selection method on all datasets, where the 
proposed method improves the average Rec over the classical method by 16.37% on 
the ALL2 dataset, 24.60% on the ALL3 dataset, 13.34% on the ALL4 dataset, on the 
DLBCL dataset by 9.76%, on the Leukemia dataset by 7.07%, on the Prostate dataset by 
8.99%, on the CNS dataset by 16.55%, and on the Myeloma dataset by 7.90% and on the 
Lymphoma dataset by 10.38%. Overall, the features selected by the proposed method 
improved on average by 12.77% in Rec compared to the classical method, which proves 
that the proposed method is equally effective on the imbalanced dataset.

Table 4   Results of the proposed method versus the classical method in terms of Pre Score

Bold text indicates optimal results

Method ALL2 ALL3 ALL4 DLBCL Leu Prostate CNS Mye Lym

Lasso 0.59 0.67 0.88 0.92 0.99 0.88 0.71 0.61 0.81
RF 0.66 0.77 0.86 0.93 0.97 0.89 0.68 0.66 0.93
LR 0.58 0.60 0.85 0.93 0.98 0.77 0.66 0.70 0.80
Ridge 0.71 0.69 0.83 0.95 0.96 0.91 0.66 0.72 0.84
CORR 0.68 0.61 0.87 0.91 0.95 0.81 0.59 0.57 0.92
DT 0.68 0.71 0.89 0.91 0.95 0.90 0.74 0.69 0.95
GL 0.77 0.74 0.92 0.94 0.93 0.91 0.78 0.77 1.00
SGL 0.61 0.67 0.78 0.95 0.96 0.80 0.68 0.77 1.00
GEN 0.63 0.58 0.80 0.74 0.96 0.92 0.70 0.79 0.88
LARS 0.66 0.71 0.82 0.95 0.98 0.91 0.74 0.78 1.00
Proposed 0.82 0.81 0.91 0.98 1.00 0.95 0.79 0.78 1.00

Table 5   Results of the proposed method versus the classical method in terms of Rec Score

Bold text indicates optimal results

Method ALL2 ALL3 ALL4 DLBCL Leu Prostate CNS Mye Lym

Lasso 0.79 0.66 0.72 0.94 0.98 0.89 0.77 0.76 0.88
RF 0.82 0.75 0.73 0.93 0.97 0.90 0.74 0.72 0.90
LR 0.77 0.71 0.72 0.82 0.97 0.87 0.71 0.77 0.87
Ridge 0.78 0.74 0.75 0.94 0.93 0.91 0.74 0.79 0.85
CORR 0.80 0.69 0.71 0.88 0.92 0.80 0.73 0.78 0.89
DT 0.81 0.74 0.73 0.91 0.92 0.88 0.74 0.81 0.79
GL 0.80 0.60 0.79 0.92 0.88 0.92 0.66 0.87 1.00
SGL 0.76 0.58 0.51 0.95 0.92 0.89 0.59 0.81 1.00
GEN 0.77 0.44 0.60 0.78 0.89 0.93 0.69 0.84 0.88
LARS 0.72 0.35 0.71 0.95 0.96 0.91 0.58 0.82 1.00
Proposed 0.91 0.78 0.79 0.99 1.00 0.97 0.81 0.86 1.00
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4.4 � Comparison with graph neural network‑based methods

We compared feature selection methods based on graph neural network techniques to 
demonstrate the advancedness of the proposed methods. These methods include the 
GNNSC method based on graph neural networks and spectral clustering (Yu et al. 2021), 
the GNNGR method based on graph neural networks and feature correlation coefficients 
(Xie et  al. 2022b), and the SAGPOOL method via classical hierarchical graph pooling 
(Lee et  al. 2019). The first two of these comparison methods can be directly applied to 
our dataset. In contrast, for the SAGPOOL method, we use the pooling part of the SAG-
POOL method as a feature selector and use the nodes after pooling as the feature selection 
result. We adjusted the parameters of the above methods so that all feature selection meth-
ods guaranteed the same number of features and compared them on four publicly available 
datasets. The results are shown in Fig. 5.

The results in Fig. 5 show that the proposed method pair has some advantages over the 
compared methods on different datasets. Among them, the proposed method improves the 
average classification accuracy by 3.14% compared to the GNNSC method, 2.58% com-
pared to the GNNGR method, and 7.81% compared to the SAGPOOL method. The pro-
posed method is proved to be advanced among graph neural network-based methods and 
suitable for the feature selection task of processing microarray data.

4.5 � Comparison with advanced feature selection methods

To demonstrate the advancedness of the proposed method, in this subsection, we compare 
the proposed method with some advanced feature selection methods used for microarray 
data. The detailed results are shown in Table 6, where MFDPSO means novel multi-fitness 

Fig. 5   Comparison of the proposed method with the graph neural network-based feature selection and pool-
ing method
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discrete PSO, BLABC means blended Laplacian ABC algorithm, TSMO means two-
phase sequential minimal optimization, ICA means Independent component analysis, RST 
means rough set theory, NEB means neighborhood entropy-based, IQMI means iterative 
qualitative mutual information, MMBDE means min-Redundancy and Max-Relevance and 
Binary Differential Evolution, EF means Ensemble filter, DEAV means Differential Evolu-
tion and African vultures. The two most effective methods are shown in bold in the table.

It is clear from the results that the proposed method can obtain higher classification 
accuracy using a smaller number of features. It is important to note that the proposed 
method outperforms the hybrid feature selection method and outperforms the feature 

Table 6   Comparison with advanced feature selection methods

Dataset Literature Year Method Features Acc

DLBCL Wang et al. (2015) 2015 FFS+KNN 110 0.948
Salem et al. (2016) 2016 IG+GA 110 0.948
Jian and Zhou (2016) 2016 MI 15 0.918
Apolloni et al. (2016) 2016 BDE-XRank 15 0.929
Medjahed et al. (2016) 2016 RFE+BDF 15 0.894
Agarwalla and Mukhopadhyay (2017) 2017 PSO+BLABC 15 0.900
Wang et al. (2017) 2017 MB 15 0.809
Jinthanasatian et al. (2018) 2018 FA+Neuro-fuzzy 13 0.838
Momenzadeh et al. (2019) 2019 HMM 5 0.945
Khani and Mahmoodian (2020) 2020 Ridge logistic regression 26 0.948
Proposed – Multidimensional GNN 3 0.979

Prostate Bolón-Canedo et al. (2012) 2012 Combine+Vote 4 0.916
Wu et al. (2017) 2017 TSMO 25 0.906
Lu et al. (2017) 2017 MI+AGA​ 3 0.830
Wang et al. (2017) 2017 MB – 0.905
Jinthanasatian et al. (2018) 2018 FA+Neuro-fuzzy 5 0.930
Momenzadeh et al. (2019) 2019 HMM 5 0.922
Musheer et al. (2019) 2019 ICA+ABC 5 0.918
Lin et al. (2019) 2019 RST 3 0.865
Khani and Mahmoodian (2020) 2020 Ridge logistic regression 5 0.874
Annavarapu and Dara (2021) 2021 SNR+cluster 4 0.763
Proposed – Multidimensional GNN 5 0.932

Leukemia Salem et al. (2016) 2016 IG+GA 3 0.971
Lu et al. (2017) 2017 MI+AGA​ 7 0.976
Tumuluru and Ravi (2017) 2017 GOA+DBN – 0.946
Wang et al. (2017) 2017 MB 8.3 0.961
Sun et al. (2018) 2018 Fisher+NEB 3 0.927
Momenzadeh et al. (2019) 2019 ICA+ABC 12 0.986
Lin et al. (2019) 2019 NEB 9 0.952
Nagpal and Singh (2019) 2019 IQMI 93 0.986
Xie et al. (2021) 2021 MMBDE 5 0.972
Li et al. (2023) 2023 EF+DEAV 3 0.971
Proposed – Multidimensional GNN 4 0.986
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dependency-based method. For example, in the DLBCL dataset, the Hidden Markov Deci-
sion-based feature selection method achieves a classification accuracy of 0.945 on five 
features, which is better than all the compared hybrid methods. However, the proposed 
method improves the classification accuracy by 2.9% while reducing the number of fea-
tures by 67%. The proposed method improved the classification accuracy by 3.6% over the 
method for the same number of features on the Prostate dataset. Sun et al.’s information 
entropy-based method on the Leukemia dataset also outperformed the hybrid feature selec-
tion method. However, the proposed method improved the classification accuracy by 1.08% 
compared to this method despite adding one feature. When the same number of features is 
used, the proposed method still has a 5.9% improvement in classification accuracy, proving 
the proposed method’s advancedness. Collectively, the proposed method can outperform 
feature selection methods based on information entropy, Markov decision-making, and 
meta-heuristic algorithms, proving the advancedness of the proposed method.

4.6 � Feature analysis selected by the proposed method

In this subsection, to demonstrate the effectiveness of the features selected by the pro-
posed method, we analyze the first three features selected by the proposed method on the 
Lymphoma dataset, which corresponds to the probe IDs GENE3314X, GENE3332X and 
GENE3264X. First we analyze the heat map of these three features, and the results are 
shown in Fig. 6. It can be seen that there is a significant difference in the distribution of 
the features selected by the proposed method on the positive and negative samples, which 
indicates that the three features selected by the proposed method can effectively distinguish 
between positive and negative samples. We also plotted the distribution of these three fea-
tures in the three-dimensional spatial structure, and the results are shown in Fig. 7, where 
black for positive samples and in red for negative samples. It can be seen that the distribu-
tion features of the three features are equally effective in distinguishing between positive 
and negative samples.

In addition, we also analyzed the Pearson correlation coefficients of these three features, 
and the results are shown in Fig. 8. It can be seen that none of the selected features has a 
strong correlation, so we consider that the features selected by the proposed method have a 
low redundancy.

Finally, we analyzed the statistical significance of the three probes, including the mul-
tiplicity of differences and p-values shown in Table 7. As can be seen, where * indicates 
p < 0.05 , ** indicates p < 0.01 , and *** indicates p < 0.001 . from the p-value, it can be 
seen that all features are significantly significant. From the difference multiples, we can 
see that GENE3264X and GENE3314X are significantly different in positive and nega-
tive samples, and the difference multiples are close to the absolute value of 2. Moreover, 
GENE3332X has a very significant difference, with a difference multiple reaching an abso-
lute value of 14.

5 � Conclusion and future work

This article proposes a method for biomarker selection and classification tasks in micro-
array data, using multi-dimensional graph neural networks to establish and capture gene 
multi-dimensional relationships. The method combines multi-dimensional node evaluation, 
spectral clustering, and super-node discovery algorithms to achieve biomarker selection 
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and classification model construction. Experimental results demonstrate that the proposed 
method, employing graph neural network technology, effectively utilizes feature dependen-
cies, improves feature selection, enhances classification model performance, and reduces 
the number of features. Furthermore, analysis of the selected features indicates that the 
proposed method identifies features with significant statistical differences and holds poten-
tial as viable biomarkers.

In future applications and research, for both genomics and proteomics data, we can uti-
lize existing tools such as GeneMANIA (Warde-Farley et al. 2010) or STRING (Damian 
et al. 2015) to obtain the dependencies between features. By integrating this information 
with the expression profiles of omics data, we can effectively analyze potential biomark-
ers and establish diagnostic models. Clinical cohort data can also be analyzed to assist 
clinical researchers in identifying potential biomarkers. Moving forward, for the future 
research direction of the model, we can effectively combine graph neural network-based 
feature selection methods with multi-objective evolutionary algorithms. In recent years, 
multi-objective evolutionary algorithms have been proven to be highly capable in feature 
selection tasks (Han et  al. 2021). Furthermore, some studies have already been reported 
concerning network biomarkers (Tang et al. 2022; Zhang et al. 2022), and combining these 
studies with graph neural network-based feature selection algorithms can be a promising 
avenue for future research.

Fig. 6   Heat map analysis of features selected by the proposed method on positive and negative samples
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Fig. 7   The results of the 3D visualization of the features selected by the proposed method

Fig. 8   Feature correlation analysis of proposed method selection
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