
Vol.:(0123456789)

Artificial Intelligence Review (2024) 57:67
https://doi.org/10.1007/s10462-024-10703-8

1 3

Fashion intelligence in the Metaverse: promise and future 
prospects

Xiangyu Mu1 · Haijun Zhang1 · Jianyang Shi1 · Jie Hou1 · Jianghong Ma1 · Yimin Yang2

Accepted: 4 January 2024 / Published online: 20 February 2024 
© The Author(s) 2024

Abstract
With the development of artificial intelligence (AI) and the constraints on offline activi-
ties imposed due to the sudden outbreak of the COVID epidemic, the Metaverse has 
recently attracted significant research attention from both academia and industrial practi-
tioners. Fashion, as an expression of a consumer’s aesthetics and personality, has enor-
mous economic potential in both the real world and the Metaverse. In this research, we 
provide a comprehensive survey of two of the most important components of fashion in 
the Metaverse: virtual digital humans, and tasks related to fashion items. We survey state-
of-the-art articles from 2007 to the present and provide a new taxonomy of extant research 
topics based on these articles. We also highlight the applications of these topics in the 
Metaverse from the perspectives of designers and consumers. Finally, we describe possible 
scenes involving fashion in the Metaverse. The current challenges and open issues related 
to the fashion industry in the Metaverse are also discussed in order to provide guidance for 
fashion practitioners, and to shed some light on the future development of fashion AI in the 
Metaverse.
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1 Introduction

Building a virtual world that is parallel to the real one has been a dream of human beings 
since ancient times. A science fiction novel written by Neal Stephenson in 1992 (Stephen-
son 2003) originally described a sun-filled virtual world that offered an alternative to the 
abysmal real world, and the author referred to this as the Metaverse. Since then, the con-
cept of the Metaverse has continued to appear in films and television works. Over the last 
decade in particular, the Metaverse has expanded considerably. In addition, many technol-
ogy companies have also drawn attention to the Metaverse, and some of them has even 
changed their names to Meta, taken from the first four letters of ‘Metaverse’.

Essentially, the Metaverse can be regarded as a virtual world that is both parallel to the 
real one and interacts with it. It resides in a virtual space that mirrors the natural world, 
and is independent of the real world. A digital virtual human is an element used by an 
individual in the real world to move freely in the Metaverse. There is no doubt that cloth-
ing plays a vital role in daily life in the real world, as it can implicitly reflect a person’s 
internal characteristics, such as their personality and aesthetics, and social characteristics 
such as social status and occupation. The dressing of a digital virtual human, which is the 
mapping of the human user in the real world, will also therefore play an essential role in 
the Metaverse. A suitable outfit in the Metaverse can not only make a digital virtual human 
more vivid and concrete, but can also represent the characteristics of the person controlling 
the digital virtual human.

Fashion artificial intelligence (AI) can affect a wide range of application scenarios in the 
Metaverse. In fact, the Metaverse is not completely separate from the real world; although 
it is a world formed in a computer, and is a mapping of the natural world to the virtual 
world, this virtual world can affect the real one in a straightforward way. In particular, fash-
ion AI can help us carry out certain activities in both the real and the virtual worlds; for 
example, fashion AI can automatically extract trends from the large amounts of fashion 
data in the Metaverse, thereby assisting designers to create more data-inspired products. 
In addition, when consumers are shopping for clothing, they can choose items that suit 
them more quickly with the help of fashion recommendations. In particular, fashion intel-
ligence can also help us achieve activities that are impossible or difficult to achieve in the 
real world. For example, compared with real-world fashion data, which are hard to collect, 
fashion intelligence applications in the Metaverse can utilize these easily accessible online 
data to make more accurate fashion trend predictions and to help retail companies to char-
acterize market trends. Moreover, fashion editing can help fashion designers to modularize 
clothing, while fashion generation can simplify the processes used in the clothing industry, 
from design to ready-to-wear products, as ‘what you see is what you get’. Thus, the intro-
duction of the Metaverse means that there is a broader range of application scenarios for 
fashion intelligence than in the real world.

As an extension of the real world, the Metaverse presents fashion brands with 
expansive business prospects. Major fashion brands have actively participated in it, 
impacting the public’s horizons with a variety of dazzling and artistic virtual fash-
ion items, and bringing new interests to consumers. In 2019, Amsterdam-based digital 
fashion company, The Fabricant, launched the world’s first digital fashion item, the 
rainbow dress named Iridescence. Since then, world-renowned fashion brands such as 
Burberry, Gucci, BVLGARI, etc. have joined the exploration journey of the Metaverse, 
getting involved in the fields of virtual avatars, virtual clothing and non-fungible token 
(NFT) creation. Table 1 shows some of the products that fashion brands have launched 
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in the Metaverse. These fashion brands’ active exploration of the Metaverse not only 
helps them connect with the exploratory young generation, but also helps them achieve 
digital transformation and enhance their brand influence.

Our research aims to delve into the latest computer technologies in the fashion 
Metaverse. Previous reviews of the fashion Metaverse have typically focused on defin-
ing the Metaverse and its marketing aspects (Belk et  al. 2022; Hadi et  al. 2023; Lee 
and Chen 2011). In contrast, our research focuses on the field of computer science and 
technology, aiming to provide scholars and computer professionals with an in-depth 
understanding of computer technology in the fashion Metaverse.

Although there is a large body of literature in the field of fashion intelligence, to 
the best of our knowledge there has been no systematic investigation of fashion intel-
ligence from the perspective of the Metaverse. To fill this gap, this research aims to 
provide a comprehensive survey of fashion intelligence in the Metaverse. More specifi-
cally, since fashion and people are inseparable, we conduct this survey from two per-
spectives, and consider digital virtual humans and fashion intelligence technologies. 
In regard to digital humans, we use body parts as a basis for exploring the standard 
technologies for generating these avatars, while in regard to fashion intelligence, we 
summarize the latest developments in the technologies required for fashion intelligence 
based on the scenes in which designers and customers are located. Finally, we high-
light some extant challenges in order to shed some light on future developments in 
fashion intelligence in the Metaverse.

The remainder of this paper is organized as follows. Section 2 introduces the basic 
concepts of the Metaverse and the classical tasks associated with fashion AI. In Sect. 3, 
we present our classification framework and a qualitative analysis of relevant studies. 
The generation of a digital human is explained in Sect. 4. Section 5 gives an overview 
of specific methods and techniques used in fashion intelligence, from the perspectives 
of both designers and customers. We illustrate the challenges faced in the domain of 
fashion intelligence in the Metaverse in Sect. 6, and conclude the paper in Sect. 7.

2  Terminology and background concepts

2.1  Metaverse

The word ‘Metaverse’ originates from Neil Stephenson’s novel Snow Crash, published 
in 1992, which described a virtual world parallel to the real world. Each person in the 
real world had a digital avatar, which was used in the virtual realm of the Metaverse 
to work, make friends, shop, travel, etc. Currently, there are several definitions of the 
Metaverse in academia. Mystakidis (2022) views the Metaverse as a persistent multi-
user environment based on a fusion of physical reality and digital virtuality. Ning et al. 
(2021) state that the Metaverse is a multi-technical, social, and super-temporal virtual 
world that is parallel to the real world. At present, the Metaverse remains at the concep-
tual stage, and many existing technologies will need to be combined to create this new 
virtual world and to integrate it with reality. Of these extant technologies, extended 
reality (XR), digital twins, and the blockchain form the core of the Metaverse.
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2.2  Fashion intelligence

As an essential aspect of daily life, fashion can be regarded as a mirror that implic-
itly reflects people’s attitudes. Fashion analysis based on the use of AI has successfully 
increased the economic benefits of the fashion industry (Nunziatini et al. 2022). Fashion 
intelligence focuses on the application of AI to the fashion industry; in particular, computer 
vision technologies such as object detection, object analysis, image retrieval, image genera-
tion, etc., are leveraged to improve the efficiency of practitioners in the fashion industry 
and to enhance the consumer’s shopping experience. Hence, determining how best to trans-
form fashion data into relevant computer vision tasks and design-specific models appears 
to be critical for these real-world applications. In practice, fashion tasks can be roughly 
divided into three categories: low-level pixel-based fashion computing, which can be used 
for fashion parsing and landmark detection; a mid-level fashion analysis, which aims at 
identifying fashion items from images and can be used for fashion detection and fashion 
attribute prediction; and a high-level understanding of fashion, which involves an overall 
analysis of the attributes of fashion items at the image level and explores the relationships 
between fashion items for the tasks such as fashion retrieval, compatibility learning and 
garment recommendations.

3  Classification scheme and analysis

In this section, we classify current research on fashion intelligence in the Metaverse and 
conduct an overall analysis of these studies.

3.1  Classification scheme

In the concept of fashion, people and fashion items are inseparable. Fashion items add a 
unique charm to people, while people become the perfect showcase for fashionable items. 
Even the most finely crafted fashion items can be affected in their beauty if they are not 
worn by the right people. Therefore, we surveyed the use of fashion intelligence in the 
Metaverse, from the generation of digital virtual humans to fashion intelligence technol-
ogy. The generation of digital virtual humans in the Metaverse focuses on efficiently gen-
erating realistic or user-friendly 3D human body models. An avatar can express the user’s 
emotions by wearing fashionable clothing in the Metaverse. Fashion intelligence technol-
ogy concentrates on analyzing and understanding fashion items, and on facilitating the pro-
duction and sale of fashion items. For clarity, Fig.  1 provides a classification of fashion 
intelligence in the Metaverse.

3.1.1  Generation of digital virtual humans

The goal of the Metaverse is to provide users with an immersive virtual world, and the 
realistic 3D modeling of humans is essential to achieve this goal. Much research has been 
conducted on the generation of digital virtual humans, most of which has been devoted to 
automatically generating realistic 3D virtual human models, with the objective of reducing 
the dependence of digital virtual human modeling on expert manual modeling. In prior 
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studies of the human body, the task of generating a digital virtual human has been divided 
into two subtasks: 3D face generation, and 3D human body generation. Extant techniques 
related to these subtasks will be elaborated in the following context.

3D face generation 3D face generation is a popular research direction in the field of 
virtual human generation. In particular, researchers focus on reconstructing 3D faces from 
2D images, which can mitigate the constraints on space and equipment required for tasks 
involved in 3D face reconstruction.

3D human body generation 3D human body generation is an important subtask of 3D 
object reconstruction. The reconstruction of a 3D human body involves integrating the fea-
tures of the body into 2D images and deforming a parametric general model of the body 
to generate a more refined model. The poses of models can be freely changed to match the 
poses in images.

3.1.2  Fashion intelligence

The use of AI has brought considerable convenience to the fashion industry (Anantrasiri-
chai and Bull 2022; Hosseinnia and Ebrahimi 2022). Increasing numbers of researchers 
have drawn attention to the mining and analysis of fashion data to achieve an in-depth 
understanding of fashion elements. In practice, however, designers and customers, the two 
main groups of fashion practitioners, have different needs in terms of fashion intelligence 
tasks. Designers prefer technology that can provide them with tools to assist their design 
processes, while customers expect fashion intelligence to provide them with a better shop-
ping experience. Recently, many techniques have been constantly explored in order to meet 
or stimulate the needs of both designers and consumers. As a result, the fashion industry is 
experiencing a strong boom driven by the use of these techniques.

Designers Inspiration is very demanding aspect of the design process. As a result, help-
ing designers to gain inspiration quickly and simplifying the design process are essential. 
Some fashion intelligence technologies can inspire designers and facilitate the design pro-
cess; for example, fashion parsing can help designers to extract the regions in which fash-
ion items are located, while fashion style learning can help designers to understand the 
styles of fashion items and to transfer them to other fashion items, and fashion generation 
can help designers to generate new fashion items based on styles or sketches.

Customers Convenience and thoughtfulness are the service principles of many 
famous fashion retailers, which have made them popular with customers. Certain fash-
ion intelligence tasks can provide customers with a more convenient and thoughtful 
shopping experience. For example, a virtual try-on facility can allow customers to see 

Fig. 1  Research topics associated with fashion in the Metaverse and a taxonomy of these techniques



Fashion intelligence in the Metaverse: promise and future…

1 3

Page 7 of 41 67

the effect of a clothing item without actually trying it on, while a fashion recommen-
dation system can suggest suitable clothes based on the customer’s body shape, pref-
erences, and characteristics, and fashion compatibility learning can score the outfits 
selected by customers using machine learning algorithms.

3.2  Statistical analysis

In this subsection, we conduct a basic statistical analysis of the numbers of publica-
tions, the year of publication, and existing experimental datasets in the domain of fash-
ion intelligence. We used a public database called DBLP as our search engine, as it 
contains most of the studies in this field. The main keywords that were used as input to 
the search engine were “Metaverse”, “fashion”, and “digital human”. We restricted our 
attention to works published in high-quality journals and conference proceedings, such 
as TPAMI, CVPR, ECCV, NeurIPS, etc. Figure 2 shows the distribution of papers pub-
lished via these outlets, and it can be observed that the top two publication venues were 
ACM’MM and CVPR. Figure 3 shows the number of yearly publications from 2008 to 
the present, and an explosive increase in the numbers of publications on the Metaverse 
can be seen from 2021. In addition, due to the successful application of deep learning 
(Dong et al. 2022; Wang and Wang 2020; Abbas et al. 2019; Pratama and Wang 2019; 
Zhou et al. 2023), research on fashion and digital humans has proliferated since 2016.

Fig. 2  Outlets publishing articles on fashion in the Metaverse
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4  Digital virtual humans

As one of the fundamental components in the Metaverse, a digital virtual human is a rep-
resentation of a digital identity that allows a player to interact others or with computer 
agents. A digital avatar is a representation of the user’s identity, and is the virtual entity 
that the user is in contact with for the longest in the virtual world. It is therefore natural 
for users to want to choose the appearance of their digital avatar according to their prefer-
ences. In addition, digital virtual humans can wear fashion items in the Metaverse, such as 
clothes, earrings, bracelets, etc. This section introduces current research on digital virtual 
human generation technology and the development of this field from two perspectives: 3D 
face generation, and 3D human body generation.

4.1  3D face generation

A realistic face can reduce the user’s sense of disobedience and facilitate a more immer-
sive Metaverse experience. The purpose of 3D face generation is to generate a realistic 3D 
model of a human face that can be driven by audio, face transformations, etc. The task of 
3D face reconstruction involves recreating the detailed features extracted from 2D images 
in the form of a 3D model, especially in terms of shapes, textures, etc. More specifically, 
3D face reconstruction can be separated into two primary types based on the number of 
2D photos used for feature extraction: single-view reconstruction and multi-view recon-
struction. Single-view reconstruction is usually more difficult than the multi-view process, 
due to the limitations of a 2D image structure. It is frequently the case that a single image 
cannot provide all the feature information required for face reconstruction, resulting in the 
need to predict attributes to achieve the effect of a 3D model. Currently, 3D morphable 

Fig. 3  Number of publications in each year on fashion in the Metaverse
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models (3DMMs) (Blanz and Vetter 1999) serve as the foundation for 3D face reconstruc-
tion. A 3DMM is a parametric face model that can generate virtually any face based on a 
fixed number of points. Faces can be matched one-to-one in 3D space by linearly adding 
several orthonormal basis weights. The aim of both single-view and multi-view face recon-
struction is to obtain fitting parameters for a 3DMM to obtain realistic faces in 3D space.

4.1.1  Single‑view 3D face reconstruction

Over the past decade, there has been a great deal of research on 3DMM single-image fit-
ting. The texture, color, and other features of the face image need to be preserved in the 
fitted face model as far as possible, and the model must be accurately aligned with the 
facial contours of the target image. Most traditional methods regard face reconstruction 
as an optimization problem, where the 3DMM is used to synthesize images based on the 
unique features of face images, such as facial landmarks, edges, pixel colors, etc. In par-
ticular, Choi et al. (2010) proposed a framework that automatically estimated all 3D scene 
parameters from single- or multi-view images. Kemelmacher-Shlizerman and Seitz (2011) 
presented a single-image face reconstruction model based on a computation of facial simi-
larity. In addition, global human face similarity and face pose estimation were exploited 
to overcome the significant differences in shape between the input and reference subjects. 
Furthermore, Romdhani and Vetter (2005) suggested a multi-feature fitting algorithm to 
improve the convergence properties of conventional face reconstruction models. However, 
due to the diversity of face poses and the complexity of image backgrounds, conventional 
optimization methods are sensitive to initial conditions and parameter changes, making 
the process of single-image face reconstruction relatively fragile for practical applications. 
Recent developments in deep learning have allowed many researchers to present new ideas 
for parameter optimization problems. To address the problem with conventional methods 
whereby they cannot capture nonlinear expressions to create complex expressions, Ranjan 
et al. (2018) introduced a convolutional mesh autoencoder (CoMA) that could learn non-
linear representations of human faces. Richardson et  al. (2017) presented an end-to-end 
convolutional neural network (CNN) framework for generating faces in a coarse-to-fine 
manner. To solve the depth estimation problem in facial reconstruction, Lee et al. (2022) 
proposed a displacement map generation network (DPMMNet) that generated a displace-
ment map to estimate a detailed geometry.

In addition, several methods have been utilized to recover the 3D information of the face 
from a single image. Image processing methods such as shape from shading (SFS), UV 
map, thin plate spline (TPS), and epipolar plane image (EPI) have been applied to single-
image face reconstruction. For example, Jin et al. (2022) first introduced 3DMM to recon-
struct a smooth face shape and employed landmark-conducted Laplace deformation to fine-
tune this shape. An SFS optimization process was then designed to recover the multi-scale 
geometric details. A position map regression network (PRN) (Feng et al. 2018b) was devel-
oped to achieve 3D facial structure reconstruction and dense face alignment. A UV map 
recording the spatial position of each pixel was fed into a lightweight encoder-decoder for 
reconstruction of the 3D model. Bhagavatula et al. (2017) proposed a new method of 3D 
face reconstruction that combined feature extraction with the TPS warping function. EPI is 
an method of estimating scene depth based on the differences between the image pixels at 
points in the camera plane and the image plane. Feng et al. (2018a) presented a model-free 
approach to reconstructing the 3D face model. Their method was trained with a densely 
connected CNN architecture called FaceLFnet, based on the horizontal and vertical EPIs 
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of light field images. The authors reported that this method was robust to changes in pose, 
facial expression, and lighting in face reconstruction tasks.

4.1.2  Multi‑view 3D face reconstruction

Unlike single-view face reconstruction methods, multi-view methods do not require strong 
inductive biases to accomplish model deformation. These approaches can extract facial 
features from multiple viewpoints in different images to create more detailed 3D mod-
els. The efficient fusing of features from multiple views is the key to achieving accurate 
depth estimation and facial texture recovery. Multi-view methods have attracted consider-
able attention due to their powerful, fine-grained modeling capability. However, most 3D 
face reconstruction methods using multi-view face images still rely on generic 3D face 
models. For example, Wang et al. (2010) proposed a 3DMM-based multi-view face recon-
struction method that employed multi-view geometric constraints to eliminate ambiguity 
from images. Subsequently, an adaptive photometric stereo-based reconstruction method 
was presented in Roth et  al. (2017). Wu et  al. (2019a) designed an end-to-end trainable 
CNN network to set 3DMM parameters. Several image processing methods have also been 
employed for the task of multi-view face reconstruction. In particular, Li et al. (2022) used 
an implicit representation to encode the extensive geometric features of faces, which could 
improve the generalization performance and quality of 3D face reconstruction. It is very 
likely that view-based 3D face reconstruction methods will have a multitude of applica-
tions related to the Metaverse; for example, these methods can greatly lower the thresholds 
to the large-scale face reconstruction of users and can reduce the computational overhead 
in the Metaverse.

4.2  Human body generation

A digital virtual human is an indispensable digital identity for each user of the Metaverse. 
All activities in the virtual world, such as communication, picking up items, etc., must be 
handled via these digital identities. A beautiful and unique digital avatar, which is manu-
ally designed and has a rich level of detail, is welcomed by many users of the Metaverse. 
However, creating a digital avatar manually for each user is not practical, as this would 
require a lot of time and effort. The purpose of 3D human body generation is to automati-
cally generate realistic human 3D models, which can reduce the cost of the Metaverse. This 
section gives an overview of current research on 3D human body generation from two per-
spectives: generic 3D human body models and human body construction from images. A 
human body model focuses on representing human bodies in 3D space, whereas human 
body reconstruction is dedicated to generating similar 3D models from 2D images.

4.2.1  Human body models

Modeling the human body has always been challenging for practitioners in both academia 
and industry. In the past, creating detailed human models required professional artists to 
generate models manually or the use of 3D scanning to capture the geometry and texture 
features of the body. However, these methods are time-consuming, require a high level of 
expertise of the artists, and are sensitive to site conditions. Fortunately, the human body has 
standard features in terms of shape and pose, which allow researchers to build a paramet-
ric 3D body model based on an analysis of high-quality data representing human features. 
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This parametric model can create a detailed 3D human body model base on only a few 
body features, as well as significantly improving the efficiency of body modeling. There 
exist two commonly used parametric human body models: shape completion and anima-
tion for people (SCAPE) (Anguelov et al. 2005), and the skinned multi-person linear model 
(SMPL) (Loper et al. 2015). Both approaches represent the human body through a set of 
triangular surfaces 

{

f1, f2, ..., fn
}

 , where the vertices of each triangle fi are 
{

vi,1, vi,2, vi,3
}

 . 
SCAPE (Anguelov et al. 2005) is a unified parametric 3D human body model that com-
bines body shape and pose information to achieve a human representation. Drawing on 
Sumner’s idea of deformation transfer (Sumner and Popovic 2004), SCAPE employs a 
3 × 3 matrix to represent the deformation of each triangle as a discrete differential gradient 
field, which can be used to transfer deformation from one model to another. The introduc-
tion of SCAPE is regarded as a milestone in the development of 3D human body modeling, 
and many studies have been devoted to improving the performance of this method. For 
example, Hasler et al. (2009) designed a model called invariant-SCAPE to solve the prob-
lem whereby the triangle deformation in the original SCAPE uses different encodings for 
the same shape. Hirshberg et al. (2012) proposed an optimized BlendSCAPE model that 
made the joints of the digital body smoother. In addition, Mebatsion et al. (2012) proposed 
a simplified SCAPE model (s-SCAPE) to improve the speed of body modeling.

The deformation in SCAPE (Anguelov et al. 2005) depends on the rotational deforma-
tion of a triangle patch, which means that human models are unable to be used directly in 
popular animation software. SMPL (Loper et al. 2015) was proposed to solve this problem. 
In a similar way to SCAPE, SMPL (Loper et al. 2015) employs pose and shape to model 
the human body. It uses 10-dimensional values to describe the shape of the body. The 
parameters can be obtained by principal component analysis (PCA) based on the deforma-
tion. To calculate the pose representation, SMPL uses a kinematic tree to represent the 24 
joint points of the body. Many studies have been devoted to improving the performance of 
SMPL. For example, SMPLify (Bogo et al. 2016) is a CNN two-dimensional human pose 
estimation model in which the SMPL parameters (including body shape and pose param-
eters) were optimized by minimizing the mean vertex-to-vertex Euclidean error between 
the synthesized 3D pose and the detected 2D joint points. However, this method does not 
constrain the shape of the body, and the algorithm easily falls into local optimal solutions, 
causing reconstruction failure. Based on the SMPLify model (Bogo et al. 2016; Lassner 
et al. 2017) added more human joint points (91 points) and obtained accurate pose recon-
struction results. Corona et al. (2021) proposed a differentiable model for the reconstruc-
tion of the body and clothing.

A parametric human body model can be regarded as an essential 3D human body recon-
struction technique, in which the aim is to use corresponding parameters as input to con-
struct a precise 3D model of the shape and posture of the human body. SCAPE and SMPL, 
the two most well-known parametric body models, were developed by leveraging human 
body datasets to learn the characteristics of the human body shape. Fitting dense 3D point 
cloud data or depth data of the body to the parameters of a parametric model through point 
cloud registration, template deformation, etc., is a standard method of reconstructing the 
human body in fine detail.

4.2.2  Human body reconstruction from images

Human body generation based on 3D scanners requires specialized capturing systems with 
strict environmental constraints (e.g., large numbers of sensors and controlled lighting) that 
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are very expensive and cumbersome to deploy. Due to its convenience, image-based 3D 
human body reconstruction has attracted the attention of many researchers over the last 
decade. Based on the number of perspectives used for feature extraction, it can be divided 
into single-view and multi-view methods. Single-view human reconstruction is less 
restricted by the environment than multi-view approaches, and the corresponding accuracy 
of the reconstructed 3D model is often lower. In a similar way to 3D face reconstruction, 
3D human body reconstruction also requires strong prior models as support. Hence, gen-
eral body modeling methods such as SCAPE (Anguelov et  al. 2005) and SMPL (Loper 
et al. 2015) are widely used for 3D reconstruction.

Statistical body shape models, as a powerful human prior, allow for convenient disen-
tanglement of pose and shape. Fitting the pose and shape of statistical body shape models 
to a body in a 2D image is an essential aspect of model-based single-view human body 
reconstruction. In traditional methods, the prediction of human body model parameters is 
transformed into a model parameter optimization problem. Initially, annotated 2D land-
marks and silhouettes were employed (Guan et al. 2009) as image features to optimize the 
parameters of the SCAPE model, with promising results. Lassner et al. (2017) used auxil-
iary landmarks on the body surface and added an estimated silhouette to make the model 
more accurate. Bogo et  al. (2016) annotated keypoints in 2D images and aligned them 
with keypoints in 3D models to obtain better results. However, optimization problems rely 
heavily on the initialization effect of the solution, and are prone to local minima. Hence, 
many researchers have performed pose and parameter regression through network train-
ing by mapping the extracted image features to a low-dimensional parameter space. The 
basic framework used for 3D human body reconstruction for network regression is shown 
in Fig.  4. Effective feature extraction is critical to ensure an accurate 3D result. Feature 
extraction strategies such as landmark detection, keypoint detection, body silhouette detec-
tion, and semantic segmentation have often been used to improve the fitness of a model.

The parametric general body model can keep the prediction space small in the recon-
struction of the human body. However, it leads to the inability of the body model to model 
the human body in clothing. Therefore, non-parametric methods such as hulls (Wang 
et al. 2019), point clouds (Qi et al. 2017), triangular meshes (Lin et al. 2019), and voxel 
grids (Tahir et al. 2021) were used for 3D human body reconstruction. They can predict 
shape representations directly from images. Natsume et  al. (2019) implicitly represented 
the shape of the human body through the contours and joints of the body pose and then 
fed the frontal image and its mask into a generative adversarial network (GAN) to infer 
the texture of the human body to model the clothed human body. Moreover, Krajnik et al. 

Fig. 4  Pipeline for single-view human body reconstruction
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(2022) proposed a novel method to reconstruct each part of the human body independently. 
It appeared to have smaller errors than other methods, especially in the concave area of the 
human body.

Unlike single-view body reconstruction, multi-view reconstruction can describe body 
features from multiple views, which can reduce the error in the prediction of unobserv-
able body parts. Traditional methods use image consistency and depth estimation to estab-
lish the correspondence of joints and other feature points between images with different 
views; however, these methods are easily affected by occlusion. The task of 3D human 
body reconstruction therefore employs a depth map of 2D images and fuses them to create 
a united mesh for 3D body generation. With the help of the multi-view calibration capabil-
ity of deep learning, many of these approaches have overcome the limitations of traditional 
methods. For instance, Liang et al. (2020) used an image encoder to extract image features 
and passed these features through multiple regression blocks to predict human body param-
eters in a stage-by-stage and view-by-view process. Pix2Vox (Xie et al. 2019) involved the 
use of a decoding encoder to generate corresponding 3D bodies for humans in each view. 
Saito et al. (2019) designed an end-to-end network to digitize a clothed human body, using 
a network that employed a pixel alignment implicit function (PIFu) to locally align the 
pixels in the 2D image with the corresponding context in the 3D body. In addition, Yu et al. 
(2022) proposed a coarse-to-fine linear learning model that utilized graph convolutional 
networks to deform templates to the ground-truth mesh.

4.3  Other research between digital human and fashion

In addition to 3D face generation and human body generation, there is a growing interest 
in research focusing on fashion generation tasks leveraging digital human features. These 
tasks aim to enhance the appearance and styling of digital humans through the manipula-
tion of various human body details. Notably, makeup transfer and hairstyle generation have 
emerged as prominent research directions within the realm of digital human fashion-related 
generation tasks.

4.3.1  Makeup transfer

Facial makeup serves as an effective means to enhance the beauty of an individual’s face 
by adding intricate details to various facial areas. The process of makeup transfer entails 
seamlessly applying a desired makeup style onto a human face. Preserving key features, 
including the shape of eyebrows, the size of the mouth, the blush color, and the eye rim 
hue, presents a significant challenge in facial makeup transfer. Traditional methods (Tong 
et al. 2007; Guo and Sim 2009; Xu et al. 2013) for makeup transfer primarily rely on com-
paring before-and-after face images captured under similar lighting conditions and poses. 
These traditional approaches necessitate intricate image processing techniques, including 
face alignment, layer decomposition, and appearance correction. Moreover, they primarily 
leveraged low-level image features and imposed stringent requirements concerning training 
data and application scenarios.

With the widespread application of deep learning in computer vision, success-
ful advancements have been made in the domain of makeup transfer tasks. Early on, 
researchers employed CycleGAN (Zhu et al. 2017a) to implement facial makeup style 
transfer by treating non-makeup face images and makeup face images as content and 
style images, respectively. However, CycleGAN, which primarily focuses on global 
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features, encounters difficulties in achieving satisfactory migration due to the signifi-
cant variations across different regions of the face. To address this limitation, makeup 
transfer can be enhanced by targeting different facial areas individually. PairedCycle-
GAN (Chang et al. 2018) and BeautyGAN (Li et al. 2018) incorporate additional loss 
functions such as identity loss, makeup loss, histogram loss, and style loss to regulate 
the intricate details of non-makeup faces. Kips et  al. (2020) proposed the utilization 
of a background consistency loss and a color discriminator to mitigate issues arising 
from changes in skin tone during makeup transfer with reference face images. Deng 
et  al. (2021) tackled spatial misalignment between the input face and reference face 
by learning face identity features with fusing features from the eyes, skin, and lips 
regions. Zhang et  al. (2019) decomposed facial image features into personal identity 
features and makeup style features, and achieved local controllable makeup transfer 
by editing style codes. Furthermore, Sun et al. (2020b) designed four encoders specifi-
cally to extract personal identity information, lip makeup style, eye makeup style, and 
face makeup style, respectively.

4.3.2  Hairstyle learning

The hairstyle of an individual is among the foremost attributes that catch people’s 
attention. A well-designed and customized hairstyle can make a person stand out from 
the crowd and make a great impression. Hairstyles serve as a means to express one’s 
personal style, taste, and distinct personality traits. Nevertheless, exploring the realm 
of hairstyles proves to be a challenging endeavor due to the extensive range of avail-
able styles, intricate hair textures, and the appearance of hairstyles changing with pos-
tures. Consequently, exploring and comprehending hairstyles is a relatively difficult 
task. Liu et al. (2014a) introduced a groundbreaking approach to hairstyle recommen-
dation that incorporates makeup as a vital factor. Their proposed model utilizes image 
features, aesthetics, and relevant attributes to determine the most suitable hairstyle that 
complements the makeup style. To accomplish this, they employed a multi-tree hyper-
graph model that effectively identifies and selects the hairstyle exhibiting the highest 
degree of compatibility with the given makeup. Hairstyle-GAN (H-GAN) (Yin et  al. 
2017) was proposed to edit hairstyles in person images. H-GAN consists of three parts: 
encoder decoding subnetwork, GAN and recognition subnetwork, and the recognition 
subnetwork and discriminator of GAN share the same network structure. In response 
to the persistent challenge of locally generated ambiguities within hairstyles, Gee et al. 
(2022) introduced a framework for hairstyle generation. This comprehensive approach 
comprises two fundamental modules: the segmentation module and the generation 
module. The face segmentation module plays a pivotal role in detecting and extracting 
both hairstyles and facial features accurately. Leveraging this crucial information, the 
hairstyle generation module employs an advanced transformer-based GAN to generate 
high-quality hairstyle images. Notably, this approach not only focuses on generating 
visually appealing hairstyles but also endeavors to restore intricate details simultane-
ously. HairstyleNet (Song et al. 2023) was proposed as an interactive hairstyle editing 
network that allows users to manipulate local or entire hairstyles by adjusting param-
eterized hair regions. The network encodes roughly hair parameters, face and back-
ground images into a latent representation in the hairstyle generation stage, and then 
generates high-fidelity face images with ideal new hairstyles from the latent codes.
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5  Fashion items in the Metaverse

As the two most important roles in the real-world fashion industry, designers and consum-
ers play a vital role in the fashion community of the Metaverse. By creating new fashion 
items, designers can increase the diversity of the fashion community. As users of fashion 
items, consumers inject vitality into the fashion community through their evaluations and 
feedback on fashion items. In this section, we give an overview of certain exciting fashion 
scenarios in the Metaverse from the perspectives of both designers and consumers. The 
common methods used in these fashion scenes are summarized and classified, with particu-
lar reference to the most representative and novel methods in this field.

5.1  Fashion intelligence for designer innovation

The main objective of fashion designers in the Metaverse is the same as in the real world: 
to create consumer-preferred fashion products. A system that can facilitate fashion tasks in 
the Metaverse is crucial in terms of helping fashion designers to design satisfactory prod-
ucts more quickly and efficiently. Metaverse Fashion Intelligence plays a pivotal role in fos-
tering designers’ innovation, helping them to conceive exceptional works of fashion. In the 
following, we describe how carrying out fashion tasks in the Metaverse can help designers.

5.1.1  Fashion parsing

When a designer wants to create a fashion item, browsing existing items of the same type 
can help in finding inspiration. However, searching for a particular type of fashion item in 
a multimedia database is difficult for designers. In the Metaverse, fashion parsing can help 
designers achieve this efficiently.

Fashion parsing involves segmenting fashion items from images containing multiple 
such items by labeling each pixel in an image. Fashion parsing is a prerequisite for many 
fashion tasks, as it can identify the individual fashion items in an image for subsequent 
processing. Due to the diversity of clothing types, fashion parsing is more challenging than 
general semantic parsing. In addition, the non-rigid characteristics and the deformed struc-
ture of clothing on the body in a given image make it necessary to add semantic informa-
tion to both the clothing and the human body in order to perform high-level judgments in 
the task of fashion parsing. In general, fashion parsing methods can be divided into two 
categories: non-deep learning methods, based on traditional techniques, and deep learn-
ing methods, which rely on a fully connected network (FCN)-based image segmentation 
pipeline. In non-deep learning methods, specific prior rules for label inference are added 
to traditional semantic segmentation models for fashion parsing. In contrast, deep learning 
methods rely on the robust feature extraction ability of a neural network to fuse information 
such as the texture, edge, and shape of the clothing, which are used to enhance the perfor-
mance of the clothing parsing model.

Clothing parsing tasks have been explored for a long time by researchers focusing on 
clothing recognition in only a few scenarios (Hasan and Hogg 2010) or sketch recognition 
for clothing design (Chen et al. 2006). However, these works (Hasan and Hogg 2010; Chen 
et al. 2006) are limited to only a few applications, and the results are usually unsatisfactory 
in practice. Yamaguchi et al. (2012) put forward an innovative idea for fashion parsing, in 
which they used superpixels to simplify the task of fashion parsing and combined human 
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feature estimation to parse clothing. However, their approach requires pixel-level labels in 
order to carry out model training, which imposes enormous costs in terms of time and 
manual labor. To address this problem, Liu et al. (2014b) employed multiple well-trained 
classifiers to parse fashion items from a given image. Drawing on the idea underlying the 
scheme in Yamaguchi et al. (2012), Dong et al. (2016) proposed Parselet for human pose 
estimation and used conditional random fields (CRFs) to perform clothing analysis in the 
unary and pairwise potential. In order to solve the problem in which the performance of a 
parser is typically limited by the training data, Liu et al. (2015) proposed a fashion parsing 
algorithm that could be trained on fashion videos. In a later study, Zhao et al. (2016) pro-
posed a clothing co-segmentation (CCS) algorithm to automatically segment and extract 
clothing regions from given images with natural backgrounds. Although the styles of cloth-
ing are ever-changing, most clothing of the same type has similar characteristics, leading to 
the possibility of parsing garments based on data-driven techniques. In particular, Yamagu-
chi et al. (2013) proposed a data-driven fashion parsing method that essentially transferred 
pixel predictions from samples retrieved in response to a query.

Unlike traditional methods, which require prior knowledge in the form of manual seg-
mentation for preprocessing, deep learning methods rely on receptive fields of various 
sizes in the network to extract the contextual information on the human body and cloth-
ing items in an image. Following the developments in deep learning technology, the suc-
cessful use of FCNs for general semantic segmentation tasks has attracted the attention of 
researchers working on fashion parsing. Some researchers have performed clothing parsing 
by adding subsequent processing steps, such as CRF and additional discriminators, to the 
FCN architecture (Zhang et al. 2022). One group of researchers have focused on building 
an end-to-end fashion parsing framework by incorporating CRF into parsing neural net-
works (Fan et al. 2022). Fashion parsing methods based on deep learning generally adopt 
a dual-path network architecture, as shown in Fig. 5. In this structure, one path employs an 
FCN to extract the fine-grained content features from images, while the other employs aux-
iliary modules to enhance the annotation segmentation pipeline. These auxiliary modules 
improve the accuracy of clothing parsing by extracting the unique semantic information 
of fashion items. These modules include texture feature maps (Khurana et al. 2018), out-
fit encoders (Tangseng et al. 2017), edge-preserving modules (Fan et al. 2022), pyramidal 
aggregation-excitation context modules (Fan et al. 2022), and other network flows.

Fashion parsing is one of the most fundamental problems in fashion computing, as 
numerous high-level fashion tasks such as virtual try-ons, fashion retrieval, etc. are per-
formed based on the output of fashion parsing. The issue of how to improve the efficiency 
of fashion parsing while maintaining accuracy is therefore the goal of many researchers. In 

Fig. 5  Basic pipeline for fashion parsing
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addition, expanding the categories of items that can be parsed is also an exciting topic in 
this field.

5.1.2  Fashion style learning

Style is an overall semantic attribute of a fashion item, and is jointly determined by low-
level attributes such as color, texture and shape. People who wear different styles of cloth-
ing show different temperaments. Style is also an essential factor for designers to consider 
in their designs. Fashion style learning allows the fashion-assisted design systems in the 
Metaverse to understand the characteristics of fashion styles in a similar way to humans. 
In general, fashion style learning can not only help designers to classify fashion styles, but 
can also predict fashion trends.

Style can be regarded as a semantic description of a fashion item. The classification of 
fashion styles remains challenging, as items with different fabrics, colors and shapes may 
belong to the same fashion style. Early studies (Kiapour et al. 2014) used body detection 
and descriptions for fashion style classification. With the help of deep learning, it is now 
possible to directly use images of people as input for the task of style classification. Takagi 
et al. (2017) created a fashion style dataset containing 13,126 images that were classified 
into 14 categories. They demonstrated the feasibility of fashion style classification through 
the direct use of a generic classification network. A joint classification and ranking network 
for weakly labeled data was proposed for style classification in Simo-Serra and Ishikawa 
(2016), in which global feature extraction was performed on images to measure the simi-
larity between the anchor image and both similar and dissimilar images, and feedback was 
passed to the classification network for style classification. Identifying clothing style based 
on local semantic features means that style classification is sensitive to the appearance 
of clothing items. To address this issue, Yue et al. (2021) developed design issue graphs 
(DIGs) to provide global and semantic descriptions of clothing styles. As shown in Fig. 6, 
the semantic representations of fashion style were formed with DIGs and the global fea-
tures were extracted based on clothes images. However, the precise definition of fashion 
style remains an ongoing research problem. Although extant style classification datasets 

Fig. 6  Fashion style classification method proposed in Yue et al. (2021)
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already contain many style categories based on the knowledge of fashion experts, they still 
cannot cover all styles due to the rapid changes in fashion trends. Furthermore, since no 
commonly accepted classification criteria for fashion styles have been developed by fash-
ion experts, the same look may be classified into several different styles. Hence, multi-label 
prediction of styles is also an important direction for future research on style classification.

The prediction of fashion trends is another important application of fashion style repre-
sentation. The aim in this case is to capture the visual style features of clothing and then to 
combine historical cross-domain data containing time series to predict future trends. Al-
Halah et  al. (2017) were the first to propose a fashion style prediction system based on 
consumer purchase records and images. Later, Zhao et al. (2021) designed a system called 
NeoFashion to predict trends for fashion designers. In similar research, Gabale and Sub-
ramanian (2018) predicted social media trends in India with an improved object detection 
model. Jin et al. (2021) proposed an end-to-end LSTM encoding-decoding framework for 
the prediction of clothing trends in various price ranges. Fashion trend forecasting can be 
seen as a subtask of temporal forecasting. Unlike in ordinary temporal prediction tasks, 
non-temporal features such as customers’ opinions, celebrity outfits, and popular social 
events may cause sudden changes in fashion trends. Determining how to represent celeb-
rity effects and unexpected events in forecasting is a topic worthy of further discussion in 
the area of fashion trend forecasting.

5.1.3  Fashion design

In traditional fashion design, designers must spend a great deal of time on carefully select-
ing colors, fabrics, and textures in order to draw a clothing tile image. Fortunately, com-
puter-aided drawing tools can assist designers in creating clothing templates, which can 
greatly reduce the workload of designers. However, clothing design requires a wealth of 
professional knowledge in practice. The Metaverse may lower this barrier to fashion design 
with the help of AI. It may be that designers and users will be able to specify a few con-
straints on products in the Metaverse environment, and the system will then instantly gen-
erate sketch samples that meet their expectations. Designers will then be able to add fur-
ther details to these samples to produce a richly textured digital garment. Such a system 
could greatly improve the working efficiency of designers, and could enable users to create 
personalized products based on their preferences. Depending on the type of input, fashion 
design can be divided into single-modal and multi-modal processes.

The aim of single-modal fashion design is to transfer visual elements (such as colors, 
textures, etc.) from one fashion item to another. However, there are several difficulties with 
this approach at the transfer stage. First, single-modal fashion designs require high-resolu-
tion textural details, and low-resolution fashion items cannot clearly illustrate the effects 
of style transfer. Second, a fashion design system needs to capture the boundaries of a tex-
ture filling accurately. In addition, some parts of fashion items do not need texture pad-
ding, such as buttons, zippers, etc. With the help of the controllable generation features 
of a GAN, many researchers have generated refined and user-controllable fashion items. 
The loss functions commonly used in single-modal fashion design include the feature loss, 
style loss �s , pixel loss �p , classification loss �c , texture loss �tex , color loss �col , etc. These 
losses constrain the images generated by the GAN in terms of style, pixels, texture, etc., 
and ensure that the generated images do not deviate too far from expectations. TextureGan 
(Xian et al. 2018) was the first method to allow the user to control the synthesis of fashion 
items from sketches and textures. Figure  7 showed it reproduced ground-truth handbag, 
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clothes images and supported a broader range of textures by fine-turning the network with 
the texture database.

A later system called FashionGAN (Cui et  al. 2018) was designed based on an end-
to-end virtual clothing generation network, in which simple textures and corresponding 
design sketches were utilized to achieve intelligent clothing design. A fashion generation 
framework called StyleGan was created by Sbai et al. (2018), which was designed to gener-
ate realistic virtual clothing without input. Using a different approach, Jiang et al. (2022) 
synthesized clothing images by blending them with textures of other items while preserv-
ing the global content of the clothing. Recently, Yan et al. (2022a, 2022b, 2022c) focused 
on the disentanglement of visual attributes, such as the textures and shapes of fashion 
images, in order to assist designers in accomplishing the task of fashion design. Current 
research in the field of single-modal fashion design focuses on the refinement, migration, 
and filling of visual features such as color, texture, shape, etc. Mapping fashion images to 
a latent space and transferring the mapping matrix can generate new fashion images with 
similar textures and colors. However, this method cannot edit a single attribute of a fashion 
item, such as its color or texture. Decoupling the visual attributes of fashion items remains 
a challenging topic in the area of single-modal fashion design.

Multimodal fashion design combines fashion images with other types of information, 
such as textual descriptions of fashion items, to generate corresponding fashion images. 
For example, Zhu et al. (2017b) focused on replacing the clothing of a person with a gar-
ment described in the form of text. Their method was implemented in two stages: in the 
first stage, human parsing was used to generate a reasonable human segmentation map, to 
maintain the shape of the body and the coherence of the text used to describe the human 
body, while in the second, a generator was tasked with generating clothing images based on 
the segmentation map and text descriptions. Zhang et al. (2020a) introduced three attention 

Fig. 7  The pipeline of TextureGan (Xian et al. 2018)
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layers to the second stage of the network proposed in Zhu et al. (2017b) to obtain more 
refined clothing details. The generation of clothing images directly from text descriptions 
is also a research focus in the domain of multimodal design. In particular, an enhanced 
attentional GAN (e-AttnGAN) (Ak et  al. 2020) was proposed to accomplish the task of 
text-to-image generation. Another system called M6-UFC (Zhang et  al. 2021) uniformly 
leveraged multiple multimodal information to generate new images. The two main research 
paths in multimodal fashion design involve accurately establishing the mapping relation-
ship between fashion features and text in different spaces and effectively integrating mul-
timodal features, as these can help models to generate more refined fashion items and 
improve the overall consistency of the generated images.

5.2  Fashion intelligence for enhanced consumer experience

Consumers in the fashion community are expected to have a completely different shop-
ping experience in the Metaverse than in the real world, due to the greater creativity of the 
Metaverse. The time and distance restrictions of traditional shopping are eliminated, and 
consumers can shop for impressive clothing at any time, and from anywhere. In the follow-
ing, we review extant techniques that can be used in shopping scenarios in the Metaverse.

5.2.1  Virtual try‑on

If a consumer finds a model in the Metaverse wearing a very attractive outfit, or the clothes 
in a store catch their eye, it is natural for them to wish to buy such clothing. Trying on 
clothes directly is an intuitive way for the customer to judge whether clothes suit them. 
Unlike in the real world, where clothes must be tried on in an offline shop, consumers can 
wear their favorite clothes at any time, and anywhere, in the Metaverse. Users can freely 
change their clothes in real time by selecting the clothes they want to try on, and virtual 
try-on technology is laying the groundwork for these exciting scenarios. The purpose of a 
virtual try-on is to check the appearance of the target clothing on the user without taking 
off the clothes that are currently being worn. A virtual try-on can be viewed as a special 
image-generation task in which images of a model wearing the target outfit are created, 
under limited circumstances. More specifically, a virtual try-on usually takes two images 
as input: one is a given model image mt , which contains the given human body p0 and the 
clothing c0 , and the other is a target clothing image ct . The output of a virtual try-on system 
is an image mg , in which the human body pt is shown wearing the target clothes ct and the 
body shape and pose of the model in the input image are preserved. Semantic information 
about the clothing and models is also fed into the system as one kind of supervision infor-
mation. A basic virtual try-on framework is illustrated in Fig. 8.

In order to simplify the problem, the backgrounds of the clothing and human body 
images are usually clear. In a fashion shop, image pairs, i.e., a model wearing the clothes in 
the target image, are easy to obtain. However, triple image pairs in which the same model 
has same pose but is wearing different clothes are difficult to collect. This means that each 
model with different and pixel-wise aligned clothes is usually infeasible. The problem of 
using unpaired images can be handled in two ingenious ways, as shown in Fig. 9. Many 
researchers regard the virtual try-on task as an image repairing problem; they first mask 
the region of the body with the clothes that they want to change, to cover the semantic 
information of the clothing, and the masked image can then be repaired using the clothing 
item worn by the model for network training. However, since each person is only matched 
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to one clothing item during the image reconstruction process, the performance of a virtual 
try-on model is usually limited, due to the generalization problem. When the target cloth-
ing and the clothing on the model have significantly different visual appearances, the vir-
tual try-on system tends to be ineffective. In addition, a cycle-consistent approach is used 
to train an end-to-end virtual try-on network (Ge et al. 2021a; Kips et al. 2020). The train-
ing process of this approach is shown in the right of Fig. 9. The clothes in the input image 
are replaced with the target clothes, and the clothes in the output image are also replaced 
with the original clothes in the input image. Several virtual try-on methods have employed 
the cycle-consistent approach for model training. Notably, Conditional Analogy Genera-
tive Adversarial Network (CAGAN) (Kips et al. 2020) is the first method to introduce the 
cycle-consistent in the virtual try-on task to solve the problem that paired images are dif-
ficult to obtain. CAGAN exhibits the capability to implicitly acquire segmentation masks, 
eliminating the need for costly and time-consuming supervised labeled data. CAGAN 
also demonstrates its ability to directly predict images that possess the desired attributes, 
streamlining the process and bypassing the requirement for explicit segmentation informa-
tion. Furthermore, Ge et al. (2021a) introduced the Disentangled Cycle-Consistency Try-
On Network (DCTON) as an improvement upon CAGAN. DCTON generates highly realis-
tic try-on images by effectively distinguishing clothing regions from non-clothing regions. 
Nevertheless, it is still challenging to simultaneously generate the shape and texture of the 
clothes, human skin, and non-clothing contents using a cycle GAN. Based on the type of 

Fig. 8  General framework for virtual try-on models

Fig. 9  Two pipelines for virtual try-on systems
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the target clothing image, the virtual try-on task can be divided into two categories: the 
target clothing in a fashion item image, and the target clothing in a human body image. In 
the first category, in the same way as in a traditional virtual try-on task, the system replaces 
the region of the clothing on the human body with the target clothing from an image that 
contains only a single fashion item with a clean background. Replacing the region of cloth-
ing in an input image through the target clothes on the human body is another category of 
virtual try-on tasks.

In practice, transforming a real garment from a shop into a photo-realistic garment fitted 
to a reference image of a person is an important subtask of a virtual try-on. In response to 
this issue, many researchers have focused on generating natural, realistic transferred gar-
ments and retaining more fine texture. They have usually warped the input clothing to align 
it with the image of the customer using two general methods: a geometric transformation 
and a warping module. Geometric transformation exploits spatial information to make the 
deformed clothes more realistic. TPS (Belongie et al. 2002) is a general method of geomet-
ric transformation for garment warping. It has been proven to be an effective coordinate 
transformation model in many computer vision tasks, such as object recognition, virtual 
try-ons, etc., and is a basic function used to map the representing coordinates. The cloth-
ing from an in-shop image is then geometrically transformed to produce the warped cloth-
ing image by TPS. VITON (Han et  al. 2018) was the first system to exploit TPS for a 
virtual try-on task, and deformed in-shop clothing to warped clothes with a composition 
mask. A neural network was also used to learn the transformation parameters of TPS in 
CP-VITON (Wang et  al. 2018). Later, Fenocchi et  al. (2022) introduced self- and cross-
attention operations to the warping module. They aligned the refined representation of a 
person and an in-shop garment using two-branch cross-modal attention blocks. In a vir-
tual try-on framework, a generator is typically employed to synthesize the final results, in 
which a model wears the target garment. The U-net architecture (Ronneberger et al. 2015) 
is the most widely used type of generator for this task, as it directly shares the features 
between different layers. However, the basic U-net architecture (Ronneberger et al. 2015) 
is limited to blurred texture and loss of detail in the generated image of the person. To 
address these problems, several refinement strategies have been adopted to improve the 
quality of the final results. For example, realistic details from the deformed clothing have 
been exploited by a network to render blurred regions (Han et al. 2018). In the same vein, 
Ge et al. (2021b) used warped clothes, human pose estimation, and reserved regions on the 
human body as input. They combined Res-UNet with residual connections to preserve the 
details of the deformed clothes and to generate realistic fitting results.

A virtual try-on task can also replace a target garment on a person with the target model. 
This task focuses on transferring the clothes worn in the original image Co onto arbitrary 
model images ma , rather than requiring clean product images. However, this task gives rise 
to different challenges compared to inputting a target garment from a fashion item image 
with a clear background. For example, identifying and extracting regions of clothing in the 
input model image ma becomes essential for a natural result. Due to the differences between 
the person in the original image Co and the model image ma , the problem of aligning the 
poses of the two bodies is also challenging. In addition, the seamless synthesis between 
the desired clothing in Co and the model in the target image ma is also a factor affecting the 
success of the virtual try-on task. In view of these issues, researchers have attempted to 
handle arbitrary poses, clothing extraction, and other challenging problems by developing 
frameworks with multiple components. For example, Wu et al. (2019b) proposed the M2E-
Try-on network to transfer clothes from an original image to an arbitrary person. Since the 
clothing in the input image contains the pose information of the original person, the pose 
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alignment module is a critical component in which the pose of the model is aligned to that 
of the input person. Similarly to the pose transfer module, the pose alignment component 
aims to modify the viewpoint and the pose of the human in an image. Dense pose condi-
tioning (Güler et al. 2018) and human body segmentation (Raj et al. 2018) are often used 
to generate pose images in the task of pose transfer. Moreover, a body fitting module (Wu 
et al. 2019b) and a texture module (Raj et al. 2018) are widely used to facilitate the task of 
garment transfer learning.

The focus of most research on target clothing in fashion item images and human body 
images involves warping clothing and splicing it with an image of a human body. However, 
most current research studies have considered the VITON dataset, which only contains a 
single type of clothing, and the performance of these systems on a wide variety of garment 
types is still unpredictable. In addition, the issue of how to alleviate the dependence of vir-
tual dressing tasks on preprocessing, such as fashion segmentation and pose estimation, is 
also a topic worthy of further research.

5.2.2  Fashion recommendation

Shopping in the Metaverse can overcome space constraints, and can allow customers to 
enjoy an immersive shopping experience at any time and from anywhere. Since a fash-
ion store in the Metaverse can offer countless fashion products, it represents a paradise 
for fashionistas who enjoy shopping. However, customers who have difficulty in choosing 
or who have less time for shopping will have trouble in selecting suitable products when 
faced with so many, even if these items can be displayed based on their attributes through 
a fashion retrieval process. To address this issue, fashion recommendation techniques can 
be adopted to alleviate the burden of choosing products for customers. This type of system 
can actively recommend suitable products for customers, acting as a shopping guide during 
their shopping process. Due to the real-time interaction between the customer and the sys-
tem in the Metaverse, the shopping experience can be greatly improved.

As a specific type of a more general recommendation system (Batmaz et al. 2019), fash-
ion recommender systems have attracted considerable attention from academic researchers 
and industrial practitioners. The aim in this case is to automatically select clothing that will 
meet the consumer’s preferences or match the customer’s needs according to their personal 
information, dressing scenes, and other information. Compared with a general recommen-
dation system, the task of fashion recommendation has the characteristics of both visual 
priority and local priority. This means that traditional, general recommendation methods 
may not be ideal for carrying out fashion recommendation tasks in a straightforward way.

A fashion item with good design has a strong visual expression that is recognized by 
customers. A recommendation system that considers both the appearance of a product and 
the user’s consumption habits can deliver suggestions that match the customer’s prefer-
ences. Determining how to represent the visual features of products and how to add them to 
the recommendation system as essential reference factors are critical aspects of the fashion 
recommendation task. A CNN framework is a typical means of extracting the visual fea-
tures of items. As they have excellent feature extraction ability, deep CNNs such as ResNet 
(He et al. 2016), Caffe (Jia et al. 2014), etc. are widely used to extract the visual features 
of items at a high level. He and McAuley (2016) first introduced the visual appearance of 
items into a preference predictor. A network was fitted with an additional layer that could 
extract the relevant visual features and latent dimensions to provide recommendations.



 X. Mu et al.

1 3

67 Page 24 of 41

In the field of fashion recommendation, the style of a fashion item also has a signifi-
cant impact on customer preference. Liu et al. (2017) proposed a method called DeepStyle 
(Liu et  al. 2017) to characterize user preferences by learning the style features of items. 
As shown in Fig. 10, the style features was obtained by subtracting item category features 
from visual features. Style features were then integrated into the widely used BPR (Rendle 
et al. 2012) framework to generate fashion recommendations.

There is a large body of literature in the domain of fashion recommendation on how to 
recommend appropriate fashion items to create outfits with existing clothing. This problem 
can be summarized as a compatibility estimation task, which will be introduced in the later 
context. However, scenario-oriented and explainable fashion recommendations, among 
others, are also indispensable aspects of the task of fashion recommendation. Scenario-
oriented fashion recommendation recommends suitable outfits for a user based on certain 
events that the user needs to attend. Liu et al. (2012a) devised a “magic closet” system that 
suggested the best matching outfits for a special occasion. Zhang et al. (2017) designed a 
clothing recommendation system that was able to recommend clothing for travelers based 
on the relevance of the clothing and the destination. When customers receive recommen-
dations from a system, they may also want to know why these clothes were recommended 
for them. The task of explainable fashion recommendation is more complicated, as it usu-
ally involves multiple forms of domain knowledge such as user attributes, regional culture, 
computer vision, etc. Chen et al. (2019) used an attention model to learn the regions that 
attracted the customers’ attention. They claimed that this method could visually illustrate 
the reasons for recommending the garment by highlighting the key regions of an image. 
Using another approach, Lin et al. (2020) explained system-based clothing recommenda-
tions by analyzing customer reviews. Tangseng and Okatani (2020) proposed a method 
of quantifying the impacts of different attributes of clothing. They represented the gar-
ment in an image by interpretable features of humans and providing the reason to pick 
the clothing by the most influential item features. Zhou et al. (2022a, 2022b) introduced 
outfit generation frameworks to automatically synthesize compatible fashion items when 

Fig. 10  The pipeline of DeepStyle (Liu et al. 2017)
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given an extant item. Collecting the highly correlated factors affecting the customer’s pur-
chase intention and adding them to the recommendation network is a critical step in fash-
ion recommendation. However, to create a recommendation model that performs well on 
the market, the visual similarity must not be considered alone, and the regional culture, the 
personal attributes of target customers, and social networks are all factors that need to be 
taken into account in real-life applications.

5.2.3  Fashion retrieval

In the real world, customers may find it tiresome to select the clothes they want from a store 
which is full of merchandise. However, customers may not encounter this irritating shop-
ping experience in a Metaverse store. When faced with a range of countless products, cus-
tomers can quickly filter the products based on their attributes at any time, to allow them 
to pick out suitable products. To address this issue, the task of fashion retrieval involves 
methods of quickly and accurately searching for a specified item from a massive dataset.

The aim of fashion retrieval is to return accurate and relevant fashion products in 
response to a query by a customer, thus increasing the convenience of purchasing fashion 
products. A retrieval system usually retrieves data from the dataset that are similar to the 
query item based on a comparison of visual similarity. Depending on the scenario in which 
the query object and the returned object are located, this process can be divided into intra-
scenario and cross-scenario fashion retrieval. Intra-scenario image retrieval searches for 
similar fashion items from the dataset whose images have the same scenario as the query 
images. In contrast, in the cross-scenario fashion retrieval task, the scenario of the query 
fashion images is often different from that of the returned fashion images. For instance, 
users can search for similar fashion items photographed in daily life from an online shop-
ping image dataset or for similar fashion items in online retail fashion images from street 
photographs. A valid representation of an item is essential for fashion retrieval. Both non-
deep learning methods and deep learning methods are effective means of representing the 
visual features of fashion items.

Non-deep learning fashion retrieval methods can be implemented in two stages. The 
first stage involves locating and segmenting the region containing a query garment in an 
image. In the second stage, artificially constructed visual feature representations of seg-
mented garments are captured to enable an image search. Liu et al. (2012b) first proposed a 
solution to the issue of cross-scene fashion retrieval. An occasion-oriented fashion retrieval 
approach was also proposed, in which the low-level visual features of clothing and high-
level occasion category features were fused with mid-level clothing attributes. A feature 
representation that was able to characterize the clothing appearance well, using a pose-
dependent approach, was used for fashion retrieval (Vittayakorn et al. 2015). These feature 
representation schemes can facilitate the quantitative analysis of cross-domain clothing 
image similarity.

Thanks to their powerful feature extraction capabilities, deep learning methods have 
become the most common solution to the problem of fashion retrieval. A deep network 
is used to model the similarity of the garments, which is used to determine whether the 
clothes in two images are the same based on a set of designed rules. The basic pipeline for 
these deep learning methods is illustrated in Fig. 11.

In the intra-scenario fashion retrieval, the similarity can be calculated without an inter-
mediate image between the query clothes and the candidate clothes, as they reside in the 
same scenario. As shown in Fig. 11 (Input (a)), the input can be represented by the paired 
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fashion items in two images. The similarity learning of binary sample pairs can be regarded 
as a binary classification task, in which the aim is to minimize the distance between posi-
tive sample pairs and maximize the distance between negative sample pairs simultaneously. 
In view of this, Kiapour et al. (2015) employed a pre-trained CNN with ImageNet to extract 
feature representations from a query bounding box and the clothing region in shop images. 
Kinli et  al. (2019) proposed densely-connected capsule networks to search for in-shop 
clothing. Zhao et al. (2022) proposed an anchor-free framework for joint clothing detection 
and search. The framework grasps more information about the mask area of clothes by pre-
dicting the mask of the clothes and extracting the embedding features of the clothes, and 
improved the retrieval ability of the framework by a matching loss. Gao et al. (2022) uti-
lized the global mask to obtain more comprehensive clothing features rather than being 
limited to the center point. SEAM Match-RCNN (Godi et al. 2022) connects store images 
with video sequences to remove the reliance on annotated bounding boxes in previous fash-
ion retrieval datasets.

The difference between cross-scenario and intra-scenario fashion retrieval lies in the 
scenario of the query and candidate images. In practice, it is challenging to handle the 
discrepancies between fashion items in different scenarios. One commonly used strategy 
is the use of domain adaptation techniques, in which triple embeddings are adopted to 
bridge the discrepancies between domains. As shown in Fig. 11 (Input (b)), a triple data 
pair 

{(

xa, xp, xn
)}

 is fed into a deep network to map the samples onto a space. A triplet 
sample consists of an anchor xa , a positive sample xp , and a negative sample xn . Samples 
with matching labels are regarded as positive pairs, and those with mismatched labels as 
negative pairs.

Using this approach, Huang et al. (2015) proposed a dual attribute-aware ranking net-
work (DARN), which consisted of two sub-networks for feature learning. A sub-network 
was designed for each domain, and semantic attribute learning was exploited for feature 
representations. The two sub-networks were connected by feeding the features extracted 
from each into a triplet loss function.

Fashion retrieval can help customers to select coordinating fashion items from a mas-
sive dataset of fashion items in the Metaverse based on the attributes and characteristics 
of the items. Identifying deformed fashion items and mapping cross-domain attributes are 

Fig. 11  Basic pipeline for fashion retrieval
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currently research hotspots in the field of fashion retrieval. Exploring the controllability 
provided by attribute disentanglement and retrieval of unlabeled fashion items is also a 
worthwhile avenue for future work.

5.2.4  Fashion compatibility

Many people like to ask friends to accompany them when shopping, to help them evalu-
ate the clothes they choose and provide suggestions. However, this may not be possible 
for someone who has difficulty in finding companions for shopping. Fortunately, there is 
no such barrier to users when shopping in the Metaverse. The shopping guide offered by 
a Metaverse store can actively score the clothes chosen by a user in real time, and provide 
suggestions when a user has difficulty in selecting a match.

The aim of a fashion compatibility system is to estimate how well different types of 
fashion items match. Learning the compatibility between fashion items forms the basis 
for many advanced fashion tasks, and represents a challenging task in itself. In practice, 
it is undesirable to calculate fashion compatibility based solely on visual similarity, as the 
shapes of different fashion items may be quite different, and the visual properties of two 
harmonious fashion items, such as their colors and textures, are not necessarily the same. 
Researchers have developed several models in which harmonic matching is inferred in the 
fashion domain to enable compatibility learning. Compatibility semantics are usually mod-
eled and characterized based on the deep features of fashion items. Mainstream methods 
embed fashion items into the underlying representation of the fashion domain through dif-
ferent embedding strategies, and use this underlying representation as the basis for compat-
ibility calculations. Due to their powerful feature extraction ability, deep learning methods 
of fashion compatibility can map fashion items into deep fashion space, and can learn com-
patibility based on distance metrics in the mapping space. Hence, the problem of fashion 
compatibility can be viewed as a specific type of metric learning in which the compat-
ibility of fashion items is determined by computing the independence of their vectors. A 
further focus for research involves compatibility learning for outfits composed of multiple 
garments.

The goal of metric learning is to learn a measure of the similarity between two items. 
In this approach, a pair of items is treated as two feature points x and y in the deep learning 
space, and a distance function d(x, y) is employed to measure the distance between them. 
A fashion compatibility system leverages metric learning to learn an embedding space in 
which the distances between compatible items (positive) are closer than those for non-
compatible items (negative). McAuley et  al. (2015) were the first to introduce low-rank 
embeddings to metric learning. Chen and He (2018) added a mixed category metric to 
the scheme in McAuley et al. (2015), and solved the problem of fashion compatibility by 
extending the triplet neural network to accept multiple instances in an iterative approach. 
Sun et al. (2020a) employed the visual semantic fusion model (VSFM) to extract the high-
level semantic and visual features of fashion items to learn fashion compatibility. As shown 
in Fig. 12, a triplet of items with images and texts is inputted into the model, wherein vis-
ual embeddings, textual embeddings, and a pioneering triplet loss layer with appropriately 
tuned weights are merged. To address the issue of difficulty in accessing fashion datasets 
for supervised learning, a semi-supervised visual representation of fashion compatibility 
methods (Revanur et al. 2021) was proposed. An encouraging finding was that this method 
achieved equivalent performance to fully supervised methods. Item-to-item research in 
metric learning is relatively abundant (Ghojogh et al. 2022); however, limited research has 
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been done on item-to-set metrics. Zheng et al. (2021) proposed a general item-to-set metric 
for the task of fashion compatibility that used the neighboring importance and intra-set 
importance to filter out instances that were far away from a set.

In outfit compatibility learning, multiple garments are combined into sets to enable com-
patibility prediction. The compatibility of outfits is evaluated based not only on the visual 
similarity and semantic information of the fashion items, but also on the types of fashion 
items that are necessary to compose outfits. For example, Han et al. (2017) addressed the 
task of multi-garment compatibility learning by exploiting a bidirectional LSTM model 
(Le et al. 2019) in which clothing was viewed as a sequence and each item was taken at 
a step. Hsiao and Grauman (2018) designed a capsule wardrobe that could automatically 
form outfits from candidate items in a wardrobe to create recommendations. Using another 
approach, Zhang et al. (2020b) argued that color plays a significant role in clothing com-
patibility, and used a graph model to model multiple garments. Pang et al. (2021) divided 
compatibility into three levels and increased the interpretability of fashion compatibility 
predictions through the use of gradient penalties. In addition, Sarkar et al. (2022) designed 
a system called OutfitTransformer to capture the global representation of an item set and 
trained a network using a classification loss.

Fashion compatibility involves calculating the overall harmony of an outfit. Obvi-
ously, it is insufficient to treat clothing as a sequence and to focus only on the relationships 
between items, as this approach will overlook the overall harmony between item sets. Fash-
ion compatibility learning has many important application scenarios in both the physical 
world and the Metaverse. It can help designers and consumers to select clothing, and can 
provide quantitative matching assistance for high-level fashion technologies.

5.3  Metaverse marketing

In the Metaverse, individuals have unlimited possibilities for creation, interaction, and 
exploration. Similar to the real world, the Metaverse contains unlimited business oppor-
tunities. A symbiotic and self-reinforcing relationship is formed between marketing and 
the development of Metaverse. A successful marketing strategy not only generates sub-
stantial profits for fashion companies but also allocates a portion of these earnings toward 

Fig. 12  The pipeline of VSFM (Sun et al. 2020a)
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Metaverse construction. This investment serves to draw an increasing number of con-
sumers into the Metaverse, thus facilitating the expansion of the consumer market. Some 
emerging work has begun to explore marketing in the Metaverse. Ahn et al. (2022) studied 
advertising in the Metaverse by analyzing the relationship among consumers, media, and 
participation behavior. They proposed a bifold triadic relationships model to help readers 
understand the role of advertising in the Metaverse and its impact on consumer behav-
ior. In the Metaverse, real-time multi-sensory social interaction (RMSI) between people is 
an important way of communication. Through theoretical logic and extensive field experi-
ments, Hennig-Thurau et al. (2023) found that accessing the virtual world by VR headsets 
as part of RMSI can generate more interactive values than the 2-dimensional Internet. Hadi 
et al. (2023) argued that key characteristics of the Metaverse include digital mediation, spa-
tiality, immersion, shared experiences, and real-time interactions. They also explored how 
the Metaverse is reshaping the understanding of consumer behavior in three areas: con-
sumer identity, social influence, and ownership. Lu and Mintz (2023) aimed to offer mar-
keting guidance from a corporate perspective to reduce uncertainty in the Metaverse. They 
provided a detailed explanation of Reibstein’s 4P (Promotion, Product, Place, and Price) 
and 5C (Customer, Company, Competitors, Collaborators, and Context) theories (Reibstein 
and Iyengar 2023) and proposed seven Metaverse marketing strategies.

In addition to the methods mentioned above, many researchers also explored the impact 
of the Metaverse on consumers from various perspectives. Belk et al. (2022) focused on 
the research of digital economy and property ownership in the Metaverse, analyzing the 
motivations of digital art buyers. Giang Barrera and Shah (2023) argued that the user expe-
rience in the Metaverse depends on the level of immersion, environmental fidelity, and 
sociability, and enhancing these three aspects of the experience can attract more consum-
ers. Dwivedi et al. (2023) enumerated various perspectives on the impact of the Metaverse 
on consumer psychology, consumer well-being, consumer awareness, sensory acceptance, 
and consumer information flow status. They also provided recommendations for how busi-
nesses can meet consumer demands.

5.4  Legal issues in Metaverse

The Metaverse, which remains in its nascent stage, has already gained nearly 100-billion-
dollar investments from different companies. However, the absence of a comprehensive 
regulatory and legal framework presents significant risks. To mitigate these risks and foster 
further growth, it is essential to establish a rational and robust legal framework that can 
attract more participants and infuse vitality into the Metaverse. Currently, many scholars 
have attempted to explore the potential legal issues in the Metaverse. Kostenko et al. (2022) 
argued that the existing jurisdictional regulations for electronic governance are unappli-
cable to the regulations of public relations in the Metaverse. Their research and analysis 
on administrative, civil, criminal, labor, and property laws suggested that Metaverse enter-
prises, non-governmental organizations, and research institutions should jointly initiate the 
Metaverse Grand Legal Charter project to standardize public relations in the Metaverse. 
Cheong (2022b) discussed the powers, obligations, and potential risks that avatars possess 
in the Metaverse. He believed that real individuals behind the avatars should bear respon-
sibility for the actions of their avatars in the Metaverse. Furthermore, he also extensively 
examined the risks associated with widely utilized non-fungible tokens (NFTs) within the 
Metaverse from the perspectives of ownership, financial regulation, taxation, and intel-
lectual property rights (Cheong 2022a). Kasiyanto and Kilinc (2022) further explored the 
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limitations of directly applying real-world laws to the Metaverse. They believed that prop-
erty law and intellectual property law would face challenges in terms of legal coverage, 
choices, and enforcement in the Metaverse. Moreover, they specifically highlighted issues 
such as data protection, network security, taxation and constraints on unethical behavior.

6  Future prospects and challenges

As an emerging field over the past year, fashion in the Metaverse is attracting increasing 
amounts of attention from both academia and industry. Many fashion companies have 
already invested resources into the Metaverse, for example by building virtual spokes-
persons and running catwalks. Nevertheless, many fashion application scenarios in the 
Metaverse are still unexplored. This section envisions some novel scenarios involving the 
Metaverse and highlights the current challenges in this domain.

6.1  Future prospects

6.1.1  Overcoming the physical constraints on fashion items

Beauty and comfort are the two most important factors in fashion clothing design. How-
ever, it is difficult to achieve both of these simultaneously due to physical constraints such 
as gravity, clothing fabrics, etc. For example, when designing a suit, designers add shoul-
der pads to widen the shoulders to make the body appear tall and straight. However, this 
limits the movement of the wearer, and prevents them from raising their arms comfortably. 
Fortunately, it is possible to overcome the constraints on the physical properties of materi-
als in the Metaverse. Garments in the virtual world are a set of data that can make people 
feel comfortable in various activities. In addition, in the real world, a consumer must wear 
a heavily padded coat to stay warm, whereas in the Metaverse, clothing can automatically 
regulate body temperature, which makes it possible to wear lighter-looking clothing in cold 
places. Clothing in the Metaverse has the potential to overcome the physical constraints of 
the real world. Under these conditions, designers can boldly use their imagination to create 
astonishing fashion items that could not be made in the real world.

6.1.2  Convenience of fashion design in the Metaverse

Although designers may be inspired by many things in the real world, they cannot carry 
out an objective evaluation of clothing at the design stage; they typically first need to create 
a sketch of a garment and produce a physical sample before they can objectively evaluate 
it. Obviously, this process wastes a lot of the designer’s time. In addition, due to the limi-
tations of printing and dyeing technology, the clothing may not be able to be dyed to the 
color the designer wants.

Fortunately, every stage of the clothing design process is facilitated in the Metaverse. 
First, designers working in the environment of the Metaverse are able to easily obtain items 
that can inspire them. Famous designers do not need to spend several months traveling 
to find inspiration, as in the real world. In addition, designers can directly put clothing 
on a virtual model at the design stage for evaluation, which eliminates the step of pro-
ducing a sample garment in the real world. Second, clothing designed with computer 
tools in the Metaverse will not show the deviations that occur in the real world, such as 
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color variations, discrepancies in garment shape, etc. In addition, a modular approach to 
the design of clothing can be applied in the Metaverse. Designers can employ a computer 
to preview and evaluate parts of the clothing before the overall design is complete. The 
Metaverse can therefore shorten the design process and lower the threshold of professional 
experience required for fashion design, allowing more consumers to join in the design pro-
cess in an interactive way.

6.1.3  Shopping in the Metaverse

Metaverses are virtual worlds built on networks that can eliminate the physical distances 
that exist in the real world. Today, consumers generally buy fashion items in two ways: 
the first is offline shopping, while the other is online shopping and delivered production 
by express. Both of these methods have drawbacks. Offline shopping requires consum-
ers to spend a lot of time on the road, while online shopping may mean that consumers 
buy unsuitable items, and several days may be needed to receive them. In contrast, shop-
ping in the Metaverse offers the advantages of both types. Consumers can select and try 
on their favorite fashion items directly in a Metaverse fashion shop, which allows them to 
view the fitting in real time. A virtual shopping guide can provide customers with clothing 
evaluations and recommendations at any time. In addition, consumers can edit the size of 
the clothes according to their avatar’s body, to achieve the most suitable effect. Finally, 
when consumers have chosen clothing that suits them, they can directly add it to their vir-
tual wardrobe without waiting for delivery, as in the real world. In this way, shopping for 
clothes in the Metaverse will perfectly combine the advantages of online and offline shop-
ping in the real world, providing the users (or “meta person”) with a more comfortable 
shopping experience.

6.1.4  Expressing emotions and personality through clothing

In the real world, a fashionista can express their mood by the style and color of the clothing 
that they are wearing. For example, people in a good mood tend to wear brightly colored 
clothing. However, due to the limitations arising from the physical properties of the fabric, 
the color and style of clothing cannot be changed according to the mood of the wearer. In 
contrast, clothing in the Metaverse can overcome these limitations. The Metaverse allows 
designers to add variable properties to the clothing, such as images and colors, so that con-
sumers can freely edit clothing elements based on their thoughts and emotions. For exam-
ple, consumers can change their clothing to a warm color to indicate to others that they 
are in a good mood, while they may change to a cool color to express the idea of keeping 
strangers away. As a result, clothing in the Metaverse can convey more information and can 
be used to express the user’s personality anywhere, at any time.

6.1.5  Expanding the boundaries of fashion in Metaverse

In the real world, the human body is the main vehicle for fashion items, and the physical 
features of the human body are one of the most important elements to be considered in 
clothing design. In the Metaverse, however, avatars can be of various types, and may be 
human-like, animal-like or even monster-like, meaning that the design of fashion items in 
the real world may no longer be valid in the Metaverse. For example, clothing designed 
to cover the private parts of humans would no longer work for avatars that do not have 
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private parts, such as puppies, Godzilla, aliens, etc. Hence, the Metaverse would signifi-
cantly enlarge the range of fashion items, enrich the design ideas for fashion items, and 
expand the boundaries of fashion.

6.2  Challenges

6.2.1  Technology issues

A. Fine modeling of the human body and fashion items The great attractiveness of the 
Metaverse lies in the fact that it depicts a world that is completely different from the real 
one, and users can immerse themselves in it to experience an utterly different life. This 
immersive experience can be realized through the fine modeling of hundreds of objects 
in the Metaverse. Currently, fine modeling of fashion items and the human body relies on 
3D scanning and manual modeling by artists with specialist knowledge, making it imprac-
tical to model thousands of objects using these time-consuming methods. Although the 
use of view-based 3D reconstruction methods can improve the efficiency of this process, 
the generated models have low accuracy, creating a less immersive experience for users of 
the Metaverse. Hence, the development of low-cost fine modeling methods for human and 
fashion items is a significant avenue for future work.

B. Simulation of 3D clothing fabrics Apparel fabric is an essential factor that character-
izes the category and style of clothing. The physical properties of fabrics make clothing 
with the same style visually different. For example, a silk shirt is softer than a cotton shirt, 
and the details of their textures are also different. Many researchers focus on modeling 
the texture of clothing materials, and ignore the simulation of the stiffness of the fabrics. 
Poor simulation of fabric stiffness can make the avatar’s clothing deform and swing more 
rigidegally when exercising, as well as causing unnatural mapping of clothing to different 
shapes of bodies. The accurate simulation of clothing fabrics in the Metaverse is another 
challenging topic.

6.2.2  Legal issues

A. Issues of fashion copyright in Metaverse Digitization is a feature that makes it easy to 
replicate Metaverse fashion items, and it is reasonable to expect that the illegal copying 
and counterfeiting of fashion items will become more widespread in the Metaverse. Hence, 
strengthening the copyright protection of fashion items in the Metaverse is an essential 
topic. In addition, the copyright owner of a given style of fashion item in the physical and 
virtual worlds is also an issue that needs to be discussed. For example, designer A may 
design a famous sweater S in the physical world, while designer B may digitize this sweater 
into the Metaverse. The copyright ownership of sweater S in the Metaverse then becomes 
controversial. The definition and protection of copyright for fashion items in the Metaverse 
is a topic that needs to be fully discussed and constrained.

B. Legal issues of avatars A digital avatar serves as the vessel of a real-world individ-
ual within the Metaverse. The question of whether identities in the Metaverse should have 
a one-to-one correspondence with natural persons is a topic worthy of discussion (Yang 
2023). An individual from the real world possessing multiple digital avatars may more eas-
ily engage in illegal activities within the Metaverse (Cheong 2022b). Coordinating fraud 
using different avatars would also be facilitated. Furthermore, in the event of a sufficient 
number of avatars, it may even be possible to manipulate the Metaverse’s stock market.
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If Metaverse designers restrict each person to a unique avatar, they would inevitably 
employ distinct characteristics owned by each individual, such as fingerprints, iris patterns, 
etc., as login credentials. Ensuring the security of natural persons’ login information and 
addressing potential leaks is a critical concern (Wu and Zhang 2023). Moreover, due to 
the one-to-one binding between Metaverse avatars and real-world individuals, it not only 
jeopardizes an individual’s reputation but also leads to consequences in the real world if an 
avatar is stolen within the Metaverse.

C. Children’s fashion in Metaverse In the Metaverse, the design of fashionable items also 
needs to adhere to the constraints of social ethics (Joy et al. 2022). Creating a Metaverse 
environment conducive to the healthy growth of children is a consideration for Metaverse 
designers (Patruti et al. 2023). For instance, designs for children’s clothing should avoid 
any sexual implications or excessive exposure. Fashion items intended for display in public 
domains should refrain from incorporating elements like pornography or violence. There-
fore, fashion designers within the Metaverse should conscientiously abide by social eth-
ics, avoiding the introduction of products that promote deviant or harmful behaviors. Such 
constraints not only contribute to upholding harmony within the Metaverse community but 
also aid in fostering children’s proper understanding of aesthetics and values.

6.2.3  Marketing issues

A. Diversity of Metaverse avatars Due to the complexity of consumer’s hobbies, differ-
ent consumers have different attitudes toward digital avatars in the Metaverse. Since the 
research on human-like digital avatars is relatively extensive, we take it as an example to 
introduce the development of digital avatar technology in the field of computer science. 
However, a significant portion of consumers prefers to use non-humanoid avatars such as 
animals or slimes. Therefore, in the Metaverse design stage, the needs and expectations of 
users must be fully considered. For instance, we can create a diverse virtual community 
which offers multilingual support to accommodate different cultures, genders, and abilities. 
In addition, providing customized fashion services that allow users to shape their virtual 
lives according to their own desires and interests is also essential. Such Metaverse that can 
include a variety of different user experiences and preferences can attract more consumers, 
thus producing more values for business.

B. Uncertainties in Metaverse development Since the concept of the Metaverse has only 
entered the public consciousness for a short time, the construction of the Metaverse remains 
in its early stage. There is great uncertainty about the ultimate form of the Metaverse and 
how consumers will utilize it. From a perspective of computer technology, limitations in 
computing resources, computer vision and 3D modeling, still prevent us from achieving 
highly fine modeling and real-time rendering for large-scale virtual worlds. Additionally, 
the challenges of ensuring real-time communication among hundreds of millions of users 
in the Metaverse persist due to network quality and data processing speed constraints. 
From a commercial perspective, how to understand and guide consumer behavior in the 
Metaverse and how to adjust brand and service marketing to meet consumer needs are also 
important issues in building a healthy ecology of the Metaverse.

C. Shifting focus between Metaverse and generative AI Recently, the emergence of large 
models such as ChatGPT (Van Dis et al. 2023) and Stable diffusion (Rombach et al. 2022) 
has brought amazing results on generative AI. This shift in focus has led people to move 
their attention from the Metaverse towards generative AI which is also called Artificial 
Intelligence Generated Content (AIGC). Even Meta, which had previously invested $36 
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billion in the Metaverse, has shifted the firm’s focus away from a Metaverse-first position. 
This has raised questions among companies about the continued value of researching the 
Metaverse. From a business perspective, due to technological limitations, the Metaverse 
still has many uncertainties in the Metaverse, making it challenging to bring substantial 
profits in a short period. In contrast, AIGC can be embedded into existing services through 
simple fine-tuning, thereby improving the service experience. However, it is essential to 
note that the Metaverse and AIGC are not mutually exclusive. The Metaverse focuses on 
building virtual worlds and optimizing human-computer interaction services, while AIGC 
specializes in content generation. Currently, research in AIGC can contribute AI-generated 
contents to the Metaverse, enabling it to offer higher-quality services and making the 
Metaverse even more attractive.

7  Conclusion

In this paper, we have presented a comprehensive survey of the two main elements of 
fashion in the Metaverse: digital virtual humans and fashion items. In our study of digi-
tal virtual humans, we focused on investigating methods of generating 3D avatars, which 
can reduce the cost in the Metaverse of generating digital bodies. In addition, we reviewed 
fashion learning and analysis methods that could assist both fashion designers and con-
sumers in the Metaverse. We also envisioned certain fashion scenarios in the Metaverse 
and discussed several important open issues associated with the future development of the 
Metaverse. We believe this survey will be instructive for both academics and industrial 
practitioners, and will shed some light on the study of fashion tasks in the Metaverse.
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