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Abstract
Safe and efficient cooperative planning of multiple robots in pedestrian participation envi-
ronments is promising for applications. In this paper, a novel multi-robot social-aware 
efficient cooperative planner on the basis of off-policy multi-agent reinforcement learning 
(MARL) under partial dimension-varying observation and imperfect perception condi-
tions is proposed. We adopt a temporal-spatial graph (TSG)-based social encoder to better 
extract the importance of social relations between each robot and the pedestrians in its field 
of view (FOV). Also, we introduce a K-step lookahead reward setting in the multi-robot 
RL framework to avoid aggressive, intrusive, short-sighted, and unnatural motion decisions 
generated by robots. Moreover, we improve the traditional centralized critic network with 
a multi-head global attention module to better aggregate local observation information 
among different robots to guide the process of the individual policy update. Finally, multi-
group experimental results verify the effectiveness of the proposed cooperative motion 
planner.

Keywords  Multi-agent reinforcement learning · Cooperative navigation · Social aware · 
Comfort aware · Multi-robot systems

1  Introduction

With the development of robotics and artificial intelligence, autonomous mobile robots 
are gradually deployed in our daily lives. For example, mobile service robots cannot 
avoid interacting with multiple pedestrians in scenarios such as airports, campuses, 
unmanned supermarkets, and intelligent warehouses (Dong et  al. 2023). Therefore, it 
is a significant research hotspot to teach robots social safety awareness. Moreover, in 
the application scenarios described above, the single robot often faces problems such 
as limited sensing range, low planning efficiency, and weak stability during the opera-
tion. In contrast, multi-robot cooperation can better share the local observations of the 
environment from multiple perspectives between individuals. This mechanism facili-
tates extending the perception ability of each robot and ultimately improves planning 
efficiency.
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Unlike pure robot co-planning scenarios in He et  al. (2022b) and Song et  al. (2022), 
communication between humans and robots is impossible in social interaction. Thus, it 
is challenging for each robot to perform autonomous collaborative navigation in pedes-
trian-rich environments. Early RL-based works (Phillips and Likhachev 2011; Wang et al. 
2020b; He et  al. 2022a) treat pedestrians as dynamic obstacles with simple state-update 
kinematics. This setting is convenient for robots to handle, but the behavior of pedestrians 
in reality has specific social properties and uncertainties. For example, pedestrians may 
suddenly change their movement speed or change their target points. Robots unable to gen-
erate proper policies to cope with such situations might cause unsafe issues. In Everett 
et  al. (2018), Everett et  al. (2021), Semnani et  al. (2020) and Matsuzaki and Hasegawa 
(2022), researchers design a specialized one-step comfort zone intrusion penalty function 
to improve the social safety of human–robot interaction. Although this setting is more prac-
tical, they choose to deal with the relative social relationship between robots and humans 
on the basis of a simple proximity function. In real-world scenarios, some pedestrians near 
the robot may be moving in the same direction or away from it. The importance of these 
pedestrians may not be as critical as others further away but moving towards this robot 
since these humans are more likely to collide with the current robot. Meanwhile, one-step 
reward consideration only would make the robot short-sighted (Chen et al. 2019). In Zhou 
et  al. (2021) and Nishimura and Yonetani (2020), researchers assume that each robot is 
fully perceptive of environments. This setting is suitable for handling small scene tasks. 
In Liu et al. (2021), researchers propose an effective social-aware planning method for the 
single robot. However, in real life, there are usually multiple robots serving simultaneously 
in public places, such as airports and hospitals. The field of view (FOV) of each robot is 
limited by the sensing range of the dominant sensor. Robot lacks a way to utilize multi-
view global information from others and has to tackle the time-varying issue of the obser-
vation dimensions of the human flow.

At the level of multi-robot cooperative operations, centralized works like (Tang et al. 
2018; Wang et al. 2021; Yu et al. 2021) suffer from scalability and the lack of effective 
global information aggregation patterns. Decentralized approaches like (Desaraju and 
How 2011; Sartoretti et al. 2019; Liu et al. 2022) are efficient but prone to local opti-
mality and self-interested issues. Our previous work (Song et al. 2022) is based on the 
centralized training and decentralized execution (CTDE) MARL paradigm and has been 
demonstrated to achieve state-of-the-art results in dense and pure-robot co-planning 
tasks. We hope to extend this architecture to further address pedestrian participation 
multi-robot co-planning tasks.

To address the problems mentioned above, we propose a novel social-aware multi-
robot co-planning method called Multi-agent Social-Aware Attention-based Actor-Critic 
(MSA3C) for the task scenario described in Fig. 1. In this task scenario, multiple robots 
with the limited FOV need an efficient approach to navigate collaboratively in a common 
environment full of uncertain pedestrians. First, we introduce the attention-based central-
ized critic to better aggregate multiple observations from different perspectives of mul-
tiple robots, and we utilize its output value to provide better guidance to each robot for 
local policy updates. Also, we design a rollout data processing pipeline to adapt to the 
off-policy MARL setting and handle the variable dimension issue of human flow observa-
tions within the FOV of each robot. This trick is much more practical and can effectively 
improve the scalability of our method. Then, we design a temporal-spatial graph (TSG)-
based social encoder to extract the relative importance of the surrounding pedestrians to 
assist each robot in making better social decisions. In addition, to enhance the social com-
fort awareness of each robot and avoid unnatural, aggressive, and short-sighted decisions, 
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we introduce the K-step lookahead reward function during the training phase to better eval-
uate the impact of current action commands of robots on future human–robot interaction. 
To sum up, our main contributions are as follows:

•	 We propose a CTDE-based MSA3C framework for handling multi-robot cooperative 
planning tasks with social safety and comfort awareness under the limited FOV con-
dition. Our method achieves great performance in multiple experiments compared to 
various baselines.

•	 We design a multi-agent rollout replaybuffer to align the time-varying dimension of 
historical transitions and introduce a parameter-sharing social encoder for each robot 
based on TSG network to help robots better understand the relative social relationship 
of surrounding pedestrians.

•	 We incorporate a predictive K-step lookahead reward function into the MARL para-
digm during the training phase to enhance the social comfort awareness of each robot 
and prevent the adoption of unnatural and shortsighted policies.

The rest of this paper is organized as follows. The related work is introduced in Sect. 2. A 
detailed discussion of our method is presented in Sect. 3. The experiment procedure and 
results of our method are shown in Sect. 4. Finally, we conclude this paper in Sect. 5.

Fig. 1   Multiple robots with limited sensing range perform decentralized cooperative inference planning in 
the pedestrian participation environment. Social-aware and CTDE-based multi-agent reinforcement learn-
ing architecture helps robots interact better with pedestrians while planning efficiently and collaboratively. 
K-step lookahead interaction reward item motivates robots to generate stronger awareness of crowd comfort 
and safety
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2 � Related work

2.1 � Multi‑robot cooperative planning

Classical multi-robot co-planning methods can be divided into centralized methods and 
decentralized methods. Among centralized methods, (Mellinger et  al. 2012) is a typical 
optimization-based collaborative trajectory generation method. Yu and LaValle (2016) is 
a typical co-planning work on the basis of the heuristic search. Centralized methods have 
completeness or probability completeness. However, these methods rely on accurate global 
information acquisition or aggregation approaches. Also, they suffer from several issues, 
such as low scalability and discrete dimensional explosion. As for the decentralized pat-
tern, Desaraju and How (2011) present a decentralized multi-agent rapidly exploring ran-
dom tree and can sample multiple feasible paths for multiple robots simultaneously. The 
application of this approach requires the construction of explicit communication chan-
nels between robots. Reaction-based velocity obstacle (VO) methods (Douthwaite et  al. 
2018) have been widely researched for their high efficiency and real-time properties. Later, 
Reciprocal VO (RVO) (Snape et al. 2011) improves the oscillation issue of VO. In Berg 
et al. (2011), optimal reciprocal collision avoidance (ORCA) and its variants are presented 
to improve the optimality and efficiency of RVO further. In Wang et  al. (2018); Huang 
et al. (2019b), researchers extend the application range of ORCA to handle heterogeneous 
and non-holonomic constraints existing in co-planning tasks. VO-based approaches rely on 
perfect perception conditions and suffer from freezing robot issues. Moreover, such meth-
ods cannot be generalized well across different scenarios without the cumbersome hand-
crafted process.

2.2 � Learning‑based social aware robot motion planning

Currently, mobile robots have been widely deployed in real-life scenarios where humans 
are involved (Dong et  al. 2023). Therefore, relevant studies related to teaching robots to 
learn to interact reasonably with pedestrians and decrease the intrusion into their motion 
comfort zones have attracted the attention of many researchers (Chen et al. 2019). Mean-
while, the development of deep learning (DL) and RL has provided novel avenues for data-
driven social aware planning technologies. Michael Everett et  al. have been working on 
promoting the research on decentralized multi-robot motion planning deployed in pedes-
trian environments (Everett et al. 2018, 2021; Semnani et al. 2020). Their research works 
have also inspired later researchers (Fan et al. 2020; Chen et al. 2019; Liu et al. 2021; Mat-
suzaki and Hasegawa 2022). However, these works only integrate one-step human–robot 
interaction reward and handle social relations on the basis of proximity function. The robot 
cannot fully understand the importance of each pedestrian in its FOV and is prone to be 
short-sighted. Some researchers select raw sensor data (e.g., 2D Lidar (Qiu et al. 2022)) 
as input to design end-to-end multi-agent RL patterns to handle multi-robot co-planning 
in real scenes. The sensor-level approaches overcome the problem of variable observation 
dimension but introduce large-size input and interpretability issues. Moreover, the MARL 
framework used by these methods adopts a simple concatenation trick (Yu et al. 2021) to 
aggregate joint observations from different robots. This unfocused way brings unnecessary 
redundant information to individuals. In Qureshi et  al. (2021) and Rivière et  al. (2020), 
scholars introduce supervised learning to teach the robot planning policy. The actual per-
formance of these methods relies on the quality of labeled data or demonstrations.
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3 � Methodology

3.1 � Dec‑POMDP configuration

First, we model the problem of multi-robot cooperative planning in human crows as a 
decentralized partially observable Markov decision problem (Dec-POMDP) consisting of 
the tuple G = (N, S,O,A,P, r,Ω) . Here, N = {1,… , n} is a finite set describing the num-
ber of robots in the environment. s ∈ S represents the full state space of all agents (includ-
ing robots and pedestrians). oi ∈ Ω ∼ O(s, i) denotes the partial observation of each robot i 
for the external world at each timestep. O is the observation kernel. P

(
s� ∣ s, a

)
 is the state 

transition function of the environment. A represents the joint action space of all robots. r is 
the team reward for all robots.

3.1.1 � Observation

In this paper, the observation setting of the robot i at timestep t is as follows:

where sego = [px, py, r, gx, gy, vpref, vx, vy, �] is the entire state vector of the ego-robot, 
including the position, the radius of the safety domain, the relative position of the target 
point, the preferred velocity, and the orientation. oother is an imperfect perception vector 
with variable dimensionality. It only integrates the relative position of all agents (including 
pedestrians and other robots) in the FOV of ego-robot at timestep t.

3.1.2 � Action space

All robots in this paper are holonomic. This setting improves the training efficiency. We 
can utilize the hybrid planning framework in our previous work (He et al. 2022b) to han-
dle extra optimization objectives and constraints, and improve the quality of the final 
motion trajectory at the back-end. In this paper, each robot have continuous action space 
at = [vx, vy] in the range of [vmin, vmax] . These two parameters depend on the performance 
of motors. In fact, we scale the speed range to [−1, 1] during the training phase and rescale 
it during the environment update phase.

3.1.3 � Reward setting

In this paper, we split the reward setting of the robot i into a basic configuration and a K-step 
lookahead reward setting. Note that we assume that each robot has integrated object detection 
module and can accurately identify whether the interaction object is a human or another robot.

The total reward configuration is shown as follows:

(1)ot = [sego, oother]

(2)

rRi
=

{
−1, if any(dRRs) < 0 or any(dRPs) < 0.

−Fscale ∣ d
t
g
∣ +rtime + rcomfort + rKstep

, otherwise.
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where dRRs = [d̃RiR1
,… , d̃RiRj

] represents the relative distance vector between the robot i 
and all other robots {1,… , j} in its FOV. d̃RiRj

= dRiRj
− rRi

− rRj
 where rRi

 and rRj
 represent 

the radius of the safety zone of the robot i and the robot j. Similarly, dRPs = [d̃RiP1
,… , d̃RiPm

] 
is the relative social distance vector between the robot i and other pedestrians {1, ..,m} in 
its FOV. dt

g
= ||pt

g
− pt

r
||2 is the relative L2 distance between the robot i and the target point 

at timestep t. Fscale =
1

R2
env

 is the scaling constants. Renv is the radius of the current scenario. 

rtime = −0.001 is the time penalty. This item promotes the robot to reach the goal as quickly 
as possible. Also, r comfort = −� ⋅ 0.5 . � indicates whether the robot i invades the social com-
fort zone of pedestrians at the current timestep.

Inspired by Liu et  al. (2022), we also design a prediction-based reward function called 
K-step lookahead reward rKstep

 to induce multiple robots to learn more socially reasonable col-
laborative motion strategy. As represented in Fig. 2, the K-step lookahead reward configura-
tion between the robot i and the human j is as follows:

where t is the current timestep. dcomfort = 0.25 is the comfort threshold of social distance. 
We consider that during the human–robot interaction, the intrusion action of  
robots can cause “discomfort” and deliberate avoidance behavior of pedestrians. 
d
tp

R�
i
P�
j

= [d̃t+1
R�
i
P�
j

,… , d̃t+K
R�
i
P�
j

] represents the lookahead social distance vector between the robot i 
and pedestrian j in its FOV. The final K-step lookahead reward of the robot i is the mini-
mum of all rRiPj

Kstep
 where j = {1, 2,… ,m} represents the index of the pedestrian that appears 

in FOV of the robot i.

(3)r
RiPj

Kstep
=

{
mintp={t + 1,...,t + K} −e

−k, if min�
tp

R�
i
P�
i

< dcomfort.

0, otherwise.

(4)rKstep
= min

j={1,2,…,m}
r
RiPj

Kstep

Fig. 2   At timestep t, robot i makes a K-step trajectory prediction for pedestrian j in its FOV, and preforms 
K-step uniform trajectory evolution on the basis of the current velocity. At each look-ahead step, it robot i 
virtually invades the comfort zone of pedestrian j or collides with it, a specific penalty signal is produced. 
The magnitude of this penalty decays exponentially with the increasing of lookahead step K
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In addition, it is noteworthy that implementing the K-step lookahead reward setting relies 
on two key points. First, we need a pre-trained trajectory prediction module (e.g., Social-
GAN (Gupta et al. 2018), MID (Gu et al. 2022), etc.) to predict the K-timestep trajectory 
evolution of pedestrians in FOV at each timestep in the lookahead virtual time domain. 
Second, for the motion evolution of the robot i in the lookahead virtual time domain, we 
choose to perform a uniform robot state update according to the current evaluated real 
action pair. This trick accelerates the training process and allows the algorithm to focus on 
quantifying the social reasonableness of the policy at the actual present timestep.

To sum up, our final joint reward setting of multi-robot social-aware cooperative 
planning task is as follows:

where N is the number of robots in the environment. This mode of joint reward decomposi-
tion specifies the contribution of each agent to the team and effectively attenuates the credit 
assignment issue in the MARL setting.

3.2 � Algorithm description of MSA3C

The overall MSA3C algorithm architecture of our multi-robot social-aware coopera-
tive planning method is shown in Fig.  3. MSA3C belongs to the CTDE paradigm. 
The CTDE paradigm-based co-planning inherits the advantages of centralized and 
decentralized methods, respectively (He et al. 2022b). We design the local TSG-based 
social encoder module to perform the social-interaction hidden state extraction and 
handle the problem of time-varying input dimension caused by the dynamic change 
of pedestrians in the limited FOV of each robot. By combining it with the parame-
ter-sharing mechanism, the scalability of the planner is effectively improved. In addi-
tion, we utilize a multi-head global observation attention module as an alternative to 
the traditional concatenation centralized critic network (He et  al. 2022b; Liang et  al. 
2021; Wang et al. 2020a). This approach provides a more focused and oriented evalu-
ating mode of the decision-making importance of different social features, weakens the 
weight of irrelevant information in the global information, allows better aggregation of 
sensing information shared between robots, which can be leveraged to guide decentral-
ized policy network updates better and more directional.

3.2.1 � Rollout replay buffer

In the training phase, we need to push the joint interaction experience generated by all 
robots to the replaybuffer. Different from the previous approach of pushing transitions (He 
et  al. 2022b), these data need to be partitioned and stored in a fixed timestep sequence 
owing to the utilization of GRU-based local TSG in the later module. As shown in Fig. 4, 
we design the rollout replaybuffer to deal with the rollout data and record padding posi-
tions used to align the timestep length in order to mask those pseudo-data in the subse-
quent loss back-propagation process.

(5)r
R
=

N∑

i=1

rRi
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3.2.2 � Social encoder

As shown in Fig. 4, although we align the timestep length of each batch, the observation 
dimension is inconsistent due to the dynamic changing of the number of pedestrians per 
timestep in the limited FOV of each robot. So, the first step is to align the maximum obser-
vation dimension in each batch via the data packaging module in Fig. 3. Then, the encap-
sulated data are fed into the local TSG as the input of spatial-edge RNN, temporal-edge 
RNN, and node RNN, respectively.

The TSG is widely applied in the field of pedestrian trajectory prediction (Vemula 
et  al. 2018; Chen et  al. 2019; Huang et  al. 2019a). In this paper, we utilize part of this 
graph to extract the human–robot interaction feature, and take this social feature as input 
to the MARL module. The social feature contains historical information and can reflect the 
potential importance of each human in FOV for the robot to make the next decision. The 
spatial-edge RNN of the TSG is responsible for capturing the spatial information, such 
as the relative orientation and distance of each robot with respect to other agents (e.g., 
humans, other robots, etc.) in its limited FOV. The specific procedure is as follows:

Fig. 3   The overall architecture of the Multi-robot Social-Aware Attention-based Actor-Critic (MSA3C) 
algorithm

Fig. 4   Rollout data processing pipeline: from rollout replaybuffer to the social encoder
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where xt
riA

 represents the relative position vector between robot i and all other agents in its 
FOV at timestep t. � is the embedding layer, including a fully connected (FC) layer and a 
layer normalization (LN) layer. Wemb

spatial
 are the embedding weights. ht

riA
 is the hidden state 

of the GRU at timestep t. Wh
spatial

 are the weights of spatial-edge RNN.
Temporal-edge RNN is responsible for capturing the position evolution representation 

of the current robot in adjacent frames. The specific process is similar to (6):

where xt
riri

 is the position changing vector of the robot i at adjacent timesteps. Then, we put 
ht
riri

 and hriA over a dot product multi-head social attention module to obtain the attention 
scores of different human–robot interactions. The specific process is shown as follows:

where Fscale is the scale constant. Wq are the Query weights, Wk are the Key weights, and 
Wv are the Value weights. Finally, we concatenate xattnri with the ego state of robot i and 
send them to the node RNN after embedding operation. The embedding feature is passed 
through the final feature extraction layer to generate the fixed-length social feature:

x
t
sociali

 would be fed to the MARL part in the later stage.

3.2.3 � Multi‑robot global attention‑based actor‑critic

Our MSA3C is proposed on the basis of our previous multi-agent local-and-global atten-
tion actor-critic (MLGA2C) in Song et al. (2022). Here, we replace the local attention mod-
ule in MLGA2C with a social encoder to better help the robot understand human–robot 
interaction in FOV to improve the safety of planning in human crowds. The final training 
paradigm of is shown in Fig. 5, where

The final part of MSA3C integrates a global-attention-based critic network and a 
actor network. Different homogeneous robots are parameter-sharing to improve train-
ing efficiency. The attention-based double value network receives concatenation tensors 
ei
social

= [xsociali , ai](i = 1,… ,N) from different robots. Next, the processes of social feature 
embedding for the robot i and other robots −i are performed via (11), (12).

The purpose of global attention computation between robots in a centralized value net-
work is to capture the most critical shared inter-robot feature for the current robot. This 

(6)ht
riA

= GRU(ht−1
riA

,�(xt
riA

;Wemb
spatial

);Wh
spatial

)

(7)ht
riri

= GRU(ht−1
riri

,�(xt
riri
;Wemb

temporal
);Wh

temporal
)

(8)x
t
attnri

= softmax(FscaleWqh
t
riA

htT
riri
WT

k
) ⋅ (WvhriA)

(9)ht
ri
= GRU(ht−1

ri
,�(cat[xt

attnri
, xt

ri
];Wemb

node
);Wh

node
)

(10)x
t
sociali

= �(ht
ri
;Wemb

social
)

(11)ei
self

= � self

(
cat

[
x
i
social

, ai
]
;Wemb

self

)

(12)e−i
other

= � other

(
cat

[
x
i
social

, ai
]
;Wemb

other

)
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information aggregation pattern facilitates more accurate decision-making by the current 
robot.

Specifically, for the robot i, the joint action state evaluation Q can be described as follows:

where WRL
q

,WRL
k

,WRL
v

 represent the weights of the dot product attention module between 
robots. The output value of the final layer is the joint state-action Q value of the robot i. 
The loss function of our centralized Q is defined as follows:

where

where D represents our rollout replaybuffer. To avoid the overestimation problem of classi-
cal deep Q learning, we introduce two separated Q heads Q�1

ri
,Q

�2

ri
 and corresponding target 

(13)Qri
= �emb(

[
softmax(WRL

q
ei
self

(WRL
k

e−i
other

)T )) ⋅ (WRL
v

ei
self

), ei
self

]
)

(14)LQ(�) =

N∑

i=1

�(o,a,r,o�,htemp,hspa,hnode)∼D

[
∑

j={1,2}

(
Q

�j

ri
− yri

)2

]

(15)yri = �
a�∼𝜋𝜃

(
x
�
sociali

)
[
r + 𝛾

(
−𝛼 log

(
𝜋𝜃

(
a
�
i
∣ x�

sociali

))
+min

(
Q𝜓̄1

ri
,Q𝜓̄2

ri

))]

Fig. 5   The training details of the global-attention-based actor-critic
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Q heads Q𝜓̄1

ri
,Q

𝜓̄2

ri
 . �� is the policy network with shared parameters. yri is the soft TD target 

value. We have the same policy entropy setting about yri as in the previous paper (He et al. 
2022b). � is the discount factor. � is a trainable parameter that can be used to auto-adjust 
the exploration degree of the robot during the training phase.

The update of the policy network is consistent with our previous work (Song et  al. 
2022):

Also, the reparameterization trick (Duan et al. 2021) are deployed here to ensure the conti-
nuity of the gradient back-propagation process::

where �� and �� are the outputs of the policy network. Thus the expectation for action com-
mands is rewritten as an expectation for the standard Gaussian noise � , which ensures the 
derivable property of the policy network.

3.2.4 � Decentralized cooperative planning

The decentralized execution of our MSA3C-based cooperative planning methods is much 
easier. As shown in Fig. 3, each robot utilizes its local observation to make decisions, and 
this process can be online and in real time. In the realistic deployment stage, this coopera-
tive planner can be combined with the model predictive controller or others to achieve the 
autonomous and collaborative operation of multiple robots.

4 � Experiments and discussion

4.1 � Experimental configuration

4.1.1 � Basic setting

To verify the performance of MSA3C, we have developed a Python-based gym simula-
tion platform for multi-robot cooperative planning in pedestrians based on Everett et  al. 
(2018) and Chen et al. (2019). As shown in Fig. 1, we utilize the circle to represent the 
safety zone and the social comfort zone of pedestrians. At the beginning of each episode, 
we randomly assign the safety radius, the social comfort radius, and the preferred velocity 
to simulate different numbers, body shapes, and motion states of each pedestrian unit. We 
assign each pedestrian a random goal change probability parameter with the value range 
[0.2, 0.3] to simulate the motion uncertainty of humans during the training phase. Also, we 
add timestep-varying random noise to the safety radius of each pedestrian unit to simulate 
the sensing error of the robot. Unlike previous work (Chen et al. 2019), we utilize social-
force (SF) model to simulate the movement and interaction of pedestrians. SF can describe 
the self-organization of several group effects of the observed pedestrian behavior more 

(16)
∇�J

(
��
)
=

N∑

i=1

�(o,a,htemp,hspa,hnode)∼D,ai∼��

[
∇� log��

×
(
−� log�� +min

(
Q�1

ri
,Q�2

ri

))]

(17)ai ∼ 𝜋𝜃 = tanh
(
𝜇𝜃 + 𝜎𝜃 ⊙ 𝜀

)
, 𝜀 ∼ N(0, I)
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realistically (Mehran et al. 2009). In addition, we adopt a non-collaborative human–robot 
interaction mode. Pedestrians are defaulted to be the influencer, and robots are the reac-
tor. This setting prevents robots from learning aggressive cooperative planning policies to 
obtain high returns (Liu et al. 2022). It is worth mentioning that we adopt a multi-stage 
training scheme. In stage I, our goal is to encourage multiple robots to learn a high-effi-
ciency cooperative pattern. In stage II, we introduce the K-step prediction reward setting 
to develop the comfort social awareness of each robot while employing a larger collision 
penalty (− 5) to ensure the planning safety.

All experiments are performed on a server with an Intel(R) Xeon(R) Silver 4214CPU and 
a GeForce RTX 3090 GPU. We have summarized the basic parameter setting in Table 1.

4.1.2 � Network setting of MSA3C

MSA3C consists of the social encoder, the attention-based double value net, and the pol-
icy net. The social encoder including the temporal-edge RNN with the size of [2,64,256], 
the spatial-edge RNN with the unit dimension of [2,64,256], the multi-head social atten-
tion block with three embedding layers ( Wq,Wk,Wv ) of dimension [256,128], and the node 
RNN with the unit dimension [7,64,128,256]. Each RNN module is equipped with the Lay-
erNorm layer and the LeakyReLU activation function. The global attention-based double 
value net contains two critic heads. Each critic head is composed of the ego-embedding 
layer with the size of [258, 128], the others-embedding layer with the size of [258, 128], 
the multi-head global attention block with three embedding layers ( WRL

q
,WRL

k
,WRL

v
 ) of 

dimension [128, 128], and the Q value output block with the unit dimension [256, 128, 
128, 1]. Similarly, each sub-block of the global critic head is equipped with the Layernorm 
layer and the LeakyReLU activation function. The decentralized policy network contains 
three hidden FC layers with the dimension of [256,128,128,128,2].

4.2 � Metrics

To quantify the performance of different algorithms, we set the following evaluation met-
rics for the pedestrian participation co-planning task inspired by Chen et al. (2019), Zhou 
et al. (2021) and Liu et al. (2022): 

Table 1   The basic parameter 
setting of the environment and 
MSA3C

Env setting Value RL setting Value

r
P

Safety
0.5–1.3 m Klookahead 5

r
R

Safety
0.6 m rtime − 1e−3

v
P

pref
0.5–1.5 m/s lr 5e−4

v
R

pref
1 m/s � 0.01

dcomfort 0.25 m Policy delay 2
Rscenario [6 m, 8 m, 10 m] Batch size 256
Npeds 5–20 �init 0.02
Nrobots 3 Buffer size 2e5
FOV 2� , [5 m, 10 m] episode 5e4
Timestep 0.25 s lrollout-tps 10
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1.	 “CSR”: Success rate of the co-planning process. We specify that all robots reach their 
target points within the limited timesteps to be considered as a “success”.

2.	 “CR”: Collision rate. CR describes the probability that the robot collides with other 
agents.

3.	 “APL”: Average co-planning path length of all robots. This metric describes the coopera-
tive capability of different algorithms.

4.	 “NTC”: N-robot co-planning timestep consumption. This metric describes the coopera-
tive efficiency of different algorithms.

5.	 “CIR”: Comfort zone intrusion rate. This metric reflects the social awareness of robots 
during the co-planning process.

4.3 � Quantitative and qualitative analysis

Table 2 summarizes the performance of different algorithms. “NpMr” represents that there 
are “N” pedestrians and M robots in the current scenario. “FX” represents the current FOV 
of each robot is “X”m. For each “NpMr” scenario, we randomly run 500 times against 
different algorithms. Each algorithm is run with the same random seed to ensure the con-
sistency of the pedestrian randomness and the same initial positions of robots. Most impor-
tantly, we specify 150 limited timesteps for each scenario to compare the efficiency of dif-
ferent algorithms.

Table 2   Summary table of 
quantitative experiment results in 
different pedestrian participation 
scenarios with limited timesteps 
(150)

“*” means that this algorithm belongs to the decentralized or distrib-
uted algorithm

Algorithms Scene Different Metrics

CSR%↑ CR%↓ APL↓ NTC↓ CIR%↓

MASAC-F10 5p3r Nan Nan Nan Nan Nan
MLGA2C-F10 5p3r 98.0 44.2 26.8 45.7 10.2
MSA3C-F10 5p3r 92.6 0.9 27.7 51.4 3.0

10p3r 80.2 2.2 31.8 71.6 4.1
20p3r 61.4 5.8 36.9 81.4 6.7

MSA3CPred-F10 5p3r 98.8 2.4 28.7 51.7 1.2
10p3r 99.8 2.5 33.1 65.2 1.6
20p3r 92.6 8.4 41.2 81.0 2.9

MSA3CPred-F5 5p3r 99.2 11.6 34.2 65.8 2.3
10p3r 97.2 14.9 40.2 79.3 2.7
20p3r 89.5 16.6 43.6 84.3 3.8

SARL-F10* 5p3r 85.2 12.2 40.4 56.5 4.9
ORCA-PS-F10* 5p3r 98.4 2.8 30.2 66.4 1.4

10p3r 92.4 3.5 38.2 89.7 1.6
20p3r 60.4 7.8 39.5 102.9 2.5

SF-F10* 5p3r 98.0 35.5 33.1 80.8 7.3
10p3r 68.2 77.9 37.1 89.4 9.6
20p3r 71.2 135.1 42.9 99.0 12.5
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4.3.1 � Baselines

We set up multiple baseline algorithms for comparison. We first select off-policy MASAC 
under local observation conditions as the MARL architecture. The MASAC-based co-
planning method has achieved good collaborative performance in pure robot environments 
with the naive concatenation global information aggregation pattern He et  al. (2022a). 
MLGA2C is a recent work that achieving SOTA cooperative performance in dense pure 
robot scenarios Song et al. (2022). SARL in Zhou et al. (2021) is a representative decen-
tralized social aware planning method with the single agent RL (SARL) setting. We utilize 
this method to verify the effect of offline multi-robot information aggregation on improving 
the overall co-planning performance. ORCA-PS-F10 is the typical optimal reactive-based 
multi-robot co-planning method under the local perfect sensing condition in Berg et  al. 
(2011). SF stands for the classical social force approach Mehran et al. (2009).

4.3.2 � Quantitative analysis

First, we would analyze the primary 5p3r group. Since MASAC cannot converge in this 
pedestrian participation environment setting, the detailed data on each metric cannot be 
output. A comparison on APL and NTC metrics shows that our previous global attention 
critic-based MLGA2C still obtains excellent cooperative performance He et  al. (2022a). 
However, the simple proximity function cannot correctly inspire the robot to learn to han-
dle social relationships with uncertain pedestrians in its FOV. Higher CR% and CIR% 
imply that the robot develops an aggressive policy with the primary target of goal-reaching. 
As for SARL-F10, we adopt a recent decentralized social aware planning method in Zhou 
et al. (2021). Although SSR% and CIR% performance of SARL-F10 is not bad, the lack 
of global information makes it cannot achieve good performance in cooperative metrics, 
like APL and NTC. Our MSA3Cs under different settings not only both have great CSR% 
and lower CR% compared to other baselines, but also produce great a better cooperative 
performance on the metrics of APL and NTC between multiple robots. Most importantly, 
with the help of the TSG-based social encoder and the K-step lookahead reward function, 
our MSA3Cs help robots generate more reasonable social awareness, which leads to lower 
CR% and CIR%.

In the more complex and dense 10p3r and 20p3r scenarios, basic MLGA2C fails to con-
verge. With the introduction of our TSG-based social encoder, MSA3C-F10 can aid robots 
in making more socially safe decisions. After further coupling the K-step lookahead reward 
function, MSA3CPred-F10 performs well in different metrics, especially in CIR%. This 
means robots under this setting generate social comfort awareness. We also find that the 
K-step lookahead trick motivates robots to master the skill of avoiding dense social interac-
tion regions. This skill avoids freezing robot issue and help the full version of MSA3CPred 
achieve higher CSR% in limited timesteps compared to other MARL-based and reactive-
based methods.

Furthermore, we narrow the sensing range of each robot to 5m. The results of 
MSA3CPred-F5 show that the global attention module-based MARL architecture can still 
effectively aggregate the limited local observation of each robot and help multiple robots 

Fig. 6   Collaborative trajectories of multiple robots generated by different co-planning algorithms in a 
pedestrian interaction scenario with fixed random seeds. The red curve represents the pedestrian motion 
trajectory, and the black curve represents the robot motion trajectory

▸
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obtain decent collaborative performance on CSR%, APL, and NTC. The TSG-based social 
encoder and K-step lookahead trick help robots to maintain efficient co-planning ability 
while still achieving a good level of social safety and social comfort on CR% and CIR% 
metrics in the human–robot interacting process.

4.3.3 � Ablation results

In this subsection, we conducted multiple groups of ablation experiments to further verify 
the effectiveness of each critical sub-module in MSA3C including attention-based double 
value net (-Attn), temporal spatial graph-based social encoder (-TSG), and K-step looka-
head reward setting (-Pred). The results are summarized in Table 3. First, we can notice 
that compared to the MASAC baseline in Table  2, the introduction of the ‘Attn’ mod-
ule can help the co-planner achieves better cooperating social navigation performance in 
the 5p3r task environment, which proves that the inter-agent attention encoder aggrega-
tor between different robots is much more effective than the naive concatenation form 
in MASAC. Furthermore, with the introduction of the TSG-based social encoder which 
can well handle the social relation between the robot and other agents, the co-planner 
achieve a higher CSR% and better overall social co-planning performance in 5p3r and 
10p3r task environments. But, in the denser 20p3r scenario, the limitations of the short-
sighted reward setting severely impact the final planning results. Finally, with the intro-
duction of ‘Pred’ module, the co-planner achieves great CSR% in different pedestrian 
density task scenarios. Moreover, the obvious decrease in CIR% metric indicates that the 
robot has learned a more social friendly collaborative planning capability. Indeed, the 
slight increase in APL and NTC metrics, as the robot avoids social conflict zones by tak-
ing detours, is within expectations.

4.3.4 � Qualitative analysis

The co-planning trajectories of robots driven by different algorithms in a random sce-
nario are shown in Fig. 6. Meanwhile, we extract one critical frame from this co-plan-
ning process to visualize the effect of the pedestrian trajectory prediction module-based 
K-step lookahead reward function on the human–robot social interaction process in 
Fig. 7. It is necessary to state that these plots are generated with the same random seed. 

Table 3   Summary table of 
ablation experiment results in 
different pedestrian participation 
scenarios with limited timesteps 
(150)

Scene Module setting Different metrics

-Attn -TSG -Pred CSR%↑ CR%↓ APL↓ NTC↓ CIR%↓

5p3r ✓ ✗ ✗ 95.6 29.2 30.8 52.5 6.6
10p3r ✓ ✗ ✗ 54.5 45.9 39.8 78.7 15.5
20p3r ✓ ✗ ✗ Nan Nan Nan Nan Nan
5p3r ✓ ✓ ✗ 92.6 1.9 27.7 51.4 3.0
10p3r ✓ ✓ ✗ 80.2 2.2 31.8 71.6 4.1
20p3r ✓ ✓ ✗ 61.4 7.8 36.9 81.4 6.7
5p3r ✓ ✓ ✓ 98.8 2.4 28.7 51.7 1.2
10p3r ✓ ✓ ✓ 99.8 2.5 33.1 65.2 1.6
20p3r ✓ ✓ ✓ 92.6 8.4 41.2 91.0 2.9
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Fig. 7   The social relationship plots and the visualization of K-step prediction of human comfort zones for 
MSA3C and full version MSA3CPred at specific frame extracted from Fig. 6
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The denser the red trajectories of pedestrians, the more timesteps robots consume for the 
co-planning process. First, we can find that the MLGA2C group generates co-planning 
trajectories with better smoothness and straightness but fails to complete these three tests 
without collision. Reactive-based methods are weak in generalizing across different sce-
narios and have inconsistent performance. The other three MSA3C-based settings help 
robots complete co-planning without human–robot collision. Further study of the trajec-
tories reveals that MSA3CPred can help the robot adjust its policy to avoid dense social 
interaction regions during the planning process. Figure 7 can illustrate this conclusion 
more visually. We can find that the full version MSA3CPred helps robots produce more 
farsighted policies in the scenarios of 5p3r, 10p3r, and 20p3r. These motion policies not 
only guarantee the social safety of robots in the present timestep but also ensures robots 
avoid entering the K-step prediction comfort zone of pedestrians in the future predic-
tion time domain. This mechanism also effectively motivates robots to escape from dense 

Fig. 8   Comparison results of the co-planning effects of MSA3C and MSA3CPred in 20p3r Pybullet simula-
tion scenario
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social interaction areas prone to freezing issues. In addition, combing with the results 
in Table 2, we can find that MSA3C trained in 10p3r environment effectively general-
izes to 5p3r and 20p3r scenarios and maintains better social co-planning performance 
compared to other baselines. This further validates the scenario scalability of MSA3C. 
To sum up, these above qualitative analyses are highly consistent with the conclusions 
drawn in quantitative experiments.

Further, we perform 20p3r co-planning inference tests for MSA3C and MSA3CPred in 
Pybullet physical engine simulator. The final result in Fig.  8 shows that without K-step 
prediction module, robots are inclined to make non social-aware decisions such as comfort 
zone intrusion, dense social area intrusion, and forced detour. In contrast, MSA3CPred co-
planner has managed to circumvent these issues. This inference is further validated by the 
2.66% CIR social performance compared to 6.77% of MSA3C in this scenario.

5 � Conclusion

We present a brand new social aware multi-robot cooperative planning method MSA3C 
based on MARL architecture with an attention mechanism. The algorithm generally fol-
lows the CTDE paradigm and introduces the multi-head attention-based centralized critic 
network to better aggregate the local information from each robot. By replacing the simple 
proximity function with a TSG-based social encoder, our model allows each robot to bet-
ter understand the social importance of each pedestrian in its FOV. Also, we introduce the 
K-step lookahead reward setting to alleviate the intrusion of the robot into the social com-
fort zone of pedestrians and avoid the short-sighted decision-making process of each robot. 
Through quantitative and qualitative analyses in multiple pedestrian participation co-plan-
ning scenarios, we show that our MSA3C outperforms multiple baselines.
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