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Abstract
A multi-objective coyote optimization algorithm based on hybrid elite framework and 
Meta-Lamarckian learning strategy (MOCOA-ML) was proposed to solve the optimal 
power flow (OPF) problem. MOCOA-ML adds external archives with grid mechanism 
on the basis of elite non-dominated sorting. It can guarantee the diversity of the popula-
tion while obtaining the Pareto solution set. When selecting elite coyotes, there is a greater 
probability to select the elite in sparse areas, which is conducive to the development of 
sparse areas. In addition, combined with Meta-Lamarckian learning strategy, based on four 
crossover operators (horizontal crossover operator, longitudinal crossover operator, elite 
crossover operator and direct crossover operator), the local search method is adaptively 
selected for optimization, and its convergence performance is improved. First, the simula-
tion is carried out in 20 test functions, and compared with MODA, MOPSO, MOJAYA, 
NSGA-II, MOEA/D, MOAOS and MOTEO. The experimental results showed that 
MOCOA-ML achieved the best inverted generational distance value and the best hypervol-
ume value in 11 and 13 test functions, respectively. Then, MOCOA-ML is used to solve the 
optimal power flow problem. Taking the fuel cost, power loss and total emissions as objec-
tive functions, the tests of two-objective and three-objective bechmark problems are car-
ried out on IEEE 30-bus system and IEEE 57-bus system. The results are compared with 
MOPSO, MOGWO and MSSA algorithms. The experimental results of OPF demonstrate 
that MOCOA-ML can find competitive solutions and ranks first in six cases. It also shows 
that the proposed method has obtained a satisfactory uniform Pareto front.

Keywords Optimal power flow · Coyote optimization algorithm · Multi-objective 
optimization · Non-dominated ranking · Grid mechanism · Meta-Lamarckian learning 
strategy
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fPloss  Objective function of active power loss
fEmission  Objective function of emission
ai , bi,ci  Fuel cost coefficient of the i-th generator
PGi

  Active power emitted by the i-th generator
QGi

  Reactive power emitted by the i-th generator
NG  Number of generators
Gij  Conductance between the two nodes
Bij  Inductance between the two nodes
V   Node voltage
�  Phase angle corresponding to the node voltage
Nl  Number of transmission lines
�i,�i,�i , �i,�i  Emission coefficients of the i-th generator
T   Setting of the transformer tap position
Q  Reactive capacity of shunt capacitor
NT   Number of transformers
NC  Number of reactive capacitors
Sl  Power transmitted on the line
PDi

  Active power demand of load
QDi

  Reactive power demand of load
soc

p,t
c   Social condition of the c-th coyote of the p-th pack at the t-th generation.

lb,ub  Lower and upper bounds
alphap,t  Social condition of elite coyote of the p-th pack at the t-th generation
cultp,t  Median of the social conditions of the p-th pack at the t-th generation
pupp,t  Social conditions of offspring of the p-th pack at the t-th generation
Ps  Scattering probability
Pa  Association probability

1 Introduction

The optimal power flow (OPF) problem is a large-scale, highly nonlinear, non-convex opti-
mization problem (Singh et  al. 2021). In 1962, Carpentier studied economic scheduling 
and added more constraints (Carpentier 1962). This expanded the economic dispatch prob-
lem, which is served as the foundation for the development of the OPF problem. The basic 
task of the power system is to operate safely and reliably to meet the power supply demand 
of the load side (Abdelaziz et al. 2016). The OPF flow is an effective tool, which can help 
experts make decisions on the planning and dispatching of power systems. Its core process 
is to adjust the control variables, such as active power generated by thermal power units, 
and obtain the power transmitted on each branch and the voltage of each node through 
power flow calculation. Through multiple iterations, the decision variables of the system 
are modified to obtain satisfactory operation status (Khunkitti et al. 2021).

The OPF problem has many constraints and multiple local optimal solutions (Davoodi 
et al. 2018). It means that there are a lot of infeasible solutions in the system. And it is easy 
to fall into the local optimal and stagnate in the process of solving. It is difficult for tra-
ditional optimization methods to find satisfactory results, such as nonlinear programming 
(Lavaei and Low 2011), Newton method (Santos and Costa 1995) and gradient method 
(Dommel and Tinney 1968). Intelligent algorithms with global search capabilities have 
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received widespread attention. They are widely used in optimization problems in science 
and engineering, and can obtain competitive solutions. Many intelligent algorithms are 
employed in order to tackle the OPF problems and economic dispatch problem, including 
Particle Swarm Optimization (PSO) (Gomez-Gonzalez et al. 2012), Cuckoo Search (CS) 
(Ponnusamy and Rengarajan 2014), Ant Lion Optimizer (ALO) (Ali et al. 2016), Differ-
ential Evolution (DE) (Sayah and Zehar 2008) and Mine Blast Algorithm (MBA) (Ali and 
Abd Elazim 2018). These algorithms employ continuous iterations until a predefined ter-
mination condition is met. In each iteration, each individual updates according to certain 
rules or formulas, and constantly moves to the global optimal position. Many algorithms 
are faced with the problems of unbalanced exploration and exploitation and difficulty in 
jumping out of the local optimum. Some scholars have proposed different improvement 
strategies for the OPF problem.

Salma et  al. proposed an improved salp swarm algorithm (ISSA), which incorporates 
random mutation and adaptively adjusts the exploration and exploitation process. The 
study considers the multiple fuel costs, valve point effects and prohibited operating zones 
of generators in the OPF system. ISSA has been able to find competitive solutions in mul-
tiple case studies (Abd El-sattar et al. 2021). Awad et al. proposed a new differential evolu-
tion algorithm, called DEa-AR, to solve the stochastic optimal active–reactive power dis-
patch (OARPD) problems involving renewable energy. DEa-AR uses arithmetic compound 
crossover strategy and adjusts the scaling factor based on Laplacian distribution. It also 
added an archive to place the inferior solution for later use. The simulation results show 
that the proposed algorithm can effectively solve the OARPD problem containing renew-
able energy and provide a high-quality solution (Awad et al. 2019). Farhat et al. proposed 
an enhanced slime mold algorithm (ESMA) based on neighborhood dimension learning 
search strategy so as to enhance its exploitation capability. Its test system incorporates 
wind and photovoltaic generators, and its objective function incorporates a carbon tax in 
order to reduce emissions. The testing results show that ESMA obtains the optimal solu-
tion and show better convergence performance (Farhat et al. 2022). Bentuati proposed an 
Enhanced Moth Swarm Algorithm (EMSA), which combines MSA with a reverse learning 
strategy to maintain the diversity of the moth population. It was tested in 12 cases of three 
OPF testing systems, and the results showed that EMSA had better performance (Bentouati 
et al. 2021).

Real problems usually have multiple objective functions. If these indexes do not con-
flict with each other, an optimal solution can be found by using optimization techniques. 
However, it is more common for objective functions to conflict with each other, and the 
improvement of one objective function will inevitably lead to the reduction of another 
objective function. This problem is known as a multi-objective optimization problem 
(MOP), and its optimal solutions form a set called the Pareto solution set (Rizk-Allah 
et al. 2020). The OPF problem consists of multiple objective functions, such as thermal 
power unit fuel costs, active power loss and emissions, which are inherently conflicting 
with one another (Fonseca and Fleming 1993). Therefore, the OPF problem is regarded 
as a multi-objective optimization problem to balance these conflicting objective func-
tions. In many literatures above, the OPF problem is treated as a single objective opti-
mization problem, and its objective functions are optimized separately. However, this 
approach is no longer suitable at present. American ecosystem conservation organiza-
tions strongly urge power plants not only to pursue the lowest power generation cost, but 
also to consider the pollution index (Taher et al. 2019). So the trend in recent years is 
to develop a multi-objective method to solve the OPF problems. Intelligent algorithms 
combining multi-objective thought have achieved exciting results on this problem, 
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including NSGA-II (Jeyadevi et al. 2011), MOPSO (Hazra and Sinha 2011), MOEA/D 
(Medina et al. 2014), MOGJO (Snášel et al. 2023), etc. According to the law that there 
is no free lunch in the world, no perfect algorithm can have excellent performance in any 
problem, so the multi-objective optimization algorithm for OPF needs further research.

Shabanpour et  al. proposed a modified teaching–learning-based optimization 
(MTLBO) based on an adaptive wavelet mutation strategy, which attached an external 
archive and used fuzzy clustering techniques to maintain the diversity of the external 
archive. It solves the multi-objective OPF problem including power generation cost and 
emissions, and obtains a set of Pareto solutions (Shabanpour-Haghighi et al. 2014). El-
Sattar et al. used a Jaya optimization algorithm to solve the OPF problem, and solved 
the single-objective and multi-objective cases respectively. In the multi-objective frame-
work, the Jaya algorithm is combined with the Pareto concept to obtain the non-domi-
nant solution, and then the fuzzy set theory is used to obtain the optimal compromise 
solution. However, the solution set obtained by this method in solving multi-objective 
OPF problem is uneven (El-Sattar et  al. 2019). Zhang proposed an improved decom-
position method based on multi-objective evolutionary algorithm (MOEA/D) to deal 
with the competition of each index in the optimal power flow. An improved Chebyshev 
decomposition method is introduced to decompose each index in order to obtain uni-
formly distributed Pareto frontiers on each target. Simulation results show that it can 
find well-distributed Pareto solution sets (Zhang et  al. 2016). Khan et  al. proposed a 
multi-objective hybrid firefly and particle swarm optimization algorithm (MOHFPSO) 
by using a multi-objective structure based on non-dominated sorting and crowded dis-
tance methods. And MOHFPSO applied the ideal distance minimization method to 
select the optimal compromise solution from the Pareto optimal set. Although the Pareto 
solution set obtained is improved compared with the standard algorithm, its coverage 
rate decreases (Khan et al. 2020). Chen et al. proposed a Novel Hybrid Bat Algorithm 
(NHBA) to modify the local search formula and add a mutation mechanism by using a 
monotone random fill model (MRFME) based on extreme value. In order to obtain more 
feasible solutions, a non-dominated sorting method combining the Pareto fuzzy domi-
nance (CPFD) of constraints is proposed. The results of OPF show that this method 
can deal with constraints better (Chen et al. 2019). Zhang et al. improved the NSGA-III 
algorithm named I-NSGA-III and applied it to the multi-objective OPF problem. An 
adaptive elimination strategy was proposed to reduce the use of selection strategies, and 
boundary point preservation strategy was integrated to maintain population diversity. 
Experimental results of OPF show that the proposed algorithm had better performance 
on three objectives, but not on two objectives (Zhang et al. 2019).

Multi-objective optimization algorithms often employ two strategies: population elit-
ism and archive elitism. Population elitism algorithms (such as MOJAYA, MOHFPSO, 
NHBA) typically have a fixed population size. Excellent individuals may not be preserved 
and can be discarded during the evolutionary process. For algorithms with an archive (such 
as MTLBO, MOEA/D), the archive is usually used to store non-dominated solutions. How-
ever, the evolutionary process of the population is non-greedy, which does not guarantee 
the convergence and stability of the algorithm’s search for optimal solutions. We believe 
that combining these two aspects can help maintain the stability of the algorithm’s search 
for optimal solutions and find better solutions. Moreover, due to the different nature and 
characteristics of various problems, the same operator may perform well or poorly on 
different problems. For example, DE algorithm has developed many operators to adapt 
to different types of optimization problems. In the absence of prior knowledge, we are 
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committed to developing an adaptive, parameter-free local optimizer that allows the algo-
rithm to spontaneously select the appropriate operator for position updating.

In this paper, the coyote optimization algorithm (COA) is selected for research. 
COA is a new optimization algorithm proposed by Pierezan and Coelho in 2018 
(Pierezan and Coelho 2018). COA combines the principles of evolution and swarm 
intelligence and has a unique algorithm setup, which includes swarm search of sub-
populations and considers the birth and death process of coyotes. The algorithm has 
demonstrated excellent performance and has been successfully applied in numerous 
fields. Souza proposed a binary version of COA, which utilizes a hyperbolic trans-
fer function to select the best feature subset for classification and employs the naive 
Bayes classifier to verify the performance of COA. The results show that COA can 
find subsets with fewer features and achieve better classification accuracy (Souza et al. 
2020). Li added a differential evolution strategy to COA and combined it with the 
fuzzy Kapoor entropy and fuzzy median aggregation method to utilize it in the realm 
of threshold image segmentation and exhibit improved image segmentation quality (Li 
et al. 2021). Ali applied COA to solve the Unit Commitment (UC) problem in power 
systems, which aims to satisfy constraints while achieving an economic minimum cost 
over time. During the simulation experiments, COA was employed to determine the 
optimal generation schedule. The obtained results demonstrated that COA outper-
formed the existing literature in terms of both total cost reduction and shorter CPU 
running time (Ali et al. 2023).

Existing multi-objective algorithms for the multi-objective OPF problem face 
challenges in balancing convergence and diversity simultaneously. It is necessary to 
provide sufficient pressure during the offspring selection process and enhance the 
diversity and convergence of multi-objective optimization algorithms. This will help 
in discovering a higher quality solution set in the MOOPF problem. In this paper, a 
multi-objective COA based on hybrid elite mechanism and Meta-Lamarckian learn-
ing strategy (MOCOA-ML) is proposed for solving multi-objective OPF problems. The 
main contributions are as follows.

(1) The coyote optimization algorithm was combined with non-dominant ranking. Non-
dominant ranking was used to judge the dominant relationship among individuals, and 
the individuals equal to the population number were selected from all the individuals 
to enter the next iteration.

(2) An external archive is added to retain the excellent individuals, which is similar to the 
archive in MOPSO and adopts the mechanism of grid. The role of the archive is to 
make the stored solution set more diverse and to have a greater probability of selecting 
the elite in the sparse area when selecting the elite coyote in COA. It is conducive to 
the development of the sparse area.

(3) A local development optimizer based on the Meta-Lamarckian learning strategy is 
proposed to optimize the population solution. The local optimizer integrates four kinds 
of crossover operators, and adaptively adjusts the probability of each operator in the 
optimization process to achieve more efficient search.

The remaining sections of the paper are organized as follows. In Sect. 2, the mathemati-
cal model of the OPF problem is presented. In Sect. 3, the proposed MOCOA based on 
hybrid elite mechanism and Meta-Lamarckian learning is introduced. In Sect. 4, the perfor-
mance of the proposed algorithm is tested by benchmark functions. In Sect. 5, six cases are 
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selected in IEEE 30-node system and IEEE 57-node system for simulation experiments. In 
Sect. 6, the conclusion and future research direction are presented.

2  Mathematical model of multi‑objective optimal power flow problem

2.1  Multi‑objective optimization problem

Comparing solutions is a simple task in single-objective optimization since there is 
only one objective function to consider. For the minimization problem, the solution 
X is superior to Y if and only if f(X) is less than f(Y). However, in the field of multi-
objective problems, each solution has multiple evaluation indexes, so some definitions 
need to be introduced.

Definition 1 Pareto domination. When a solution X is superior to a solution Y in all objec-
tives, then the solution X dominates the solution Y, or alternatively, the solution X is domi-
nated by the solution Y. If the solution X has at least one goal better than the solution Y, and 
there is some index worse than the solution Y, then the solution X and the solution Y do not 
dominate each other.

Definition 2 Pareto optimal solution. Solutions that are not dominated by either solution 
are called Pareto optimal solutions and are also called non-dominated solutions.

Definition 3 Pareto solution set. A set of non-dominant solutions is called a Pareto solu-
tion set.

Definition 4 Pareto frontier. Pareto solution sets form Pareto frontier after function 
mapping.

The multi-objective optimal power flow (MOOPF) problem is a constrained optimi-
zation problem. The objective is to minimize the selected objective functions under the 
condition of satisfying the equality constraints and inequality constraints. Since each 
index conflicts with each other, the answer to this problem is a Pareto solution set, 
which represents the optimal trade-off between multiple objectives. Mathematically, 
the MOOPF problem can be expressed in the following form:

where, f (x, y) represents the objective function of the OPF problem; F(x, y) represents the 
set of multiple objective functions; g(x, y) represents the equality constraint; The inequality 
constraint is represented by h(x, y) ; x and y represent control variables and state variables 
respectively.

(1)

Minimize F(x, y) = f
1

(x, y), f
2

(x, y)… fN(x, y)

s.t. g(x, y) = 0

h(x, y) ≤ 0
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2.2  Objective function

In this experiment, a total of three objective functions are selected, which are fuel cost, 
active power loss and pollution emission.

2.2.1  Fuel cost

The fuel cost of each thermal power unit has a certain functional relationship with the 
active power. In the study, approximate fitting is performed in the form of quadratic func-
tion, which is shown in Eq. (2).

where, ai , bi , ci are the fuel cost coefficient of the i-th generator, and PGi
 are the active 

power emitted by the i-th generator; NG is the total number of generators.

2.2.2  Active power loss

There are resistance and conductance with fixed parameters in transmission line. Active 
power loss occurs when power is transferred through the grid. The mathematical formula 
of active power loss is shown in Eq. (3).

where, i and j are the i-th and j-th nodes respectively, Gij is the conductance between the 
two nodes, V  is the node voltage, and � is the phase angle corresponding to the node volt-
age; Nl is the total number of transmission lines.

2.2.3  Emission

In the current society, environmental protection is an important topic. It is necessary to 
reduce the emission index of thermal power units. The total emission of air pollutants such 
as COx and NOx produced by thermal power units can be defined as:

where, �i , �i , �i , �i and �i are the emission coefficients of the i-th generator.

2.3  Control variables

The control variables are the quantity that can be adjusted manually in the power system. 
They mainly include the active power output by the generator, the voltage of the genera-
tor bus, the tap position of the on-load tap changer and the reactive power of the shunt 
capacitor. The operation state of the power system can be changed by changing the control 
variables.

(2)fcost =
∑NG

i=1
ai + biPGi

+ ciP
2
Gi

(3)fPloss =
∑Nl

i=1

∑Nl

j≠i
Gij[V

2
i
+ V2

j
− 2ViVjcos(�i − �j)]

(4)fEmission =
∑NG

i=1
�i + �iPGi

+ �iP
2
Gi
+ �iexp(�iPGi

)

(5)x = [PG2
, ...,PGNG

,VG1
, ...,VGNG

, T1, ...,TNT , ...,QC1
, ...,QCNC

]
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where, the active power output of the generator isPG2
, ...,PGNG

 ; The magnitude of the gen-
erator bus voltage isVG1

, ...,VGNG
 ; T1, ...,TNT is the setting of the transformer tap position; 

QC1
, ...,QCNC

 is the reactive capacity of shunt capacitor; NT  is the number of transformers; 
NC is the number of reactive capacitors.

2.4  State variables

State variables are called dependent variables, which changes as the control variable changes. 
The state variable in the OPF problem is shown in Eq. (6). Once the control variables in the 
system are defined, by employing the Newton–Raphson method, the power flow of the entire 
system and the voltage value of each node can be determined.

where, PG1
 is the active power input by the balance node (in 30-node system and 57-node 

system); NL respectively represent the number of load nodes (PQ nodes). VL1
, ...,VLNL

 is the 
voltage of each load node in the power system; QG1

, ...,QGNG
 is the reactive power gener-

ated by the generator; Sl1 , ..., SlNl is the power transmitted on the line;

2.5  Equality constraints

The power in the power system must satisfy the law of conservation of energy, which means 
that the power emitted is equal to the power consumed. The most typical equality constraint is 
the balance of active power and reactive power in the system, as shown in Eqs. (7 and 8).

Equation (7) is the active power equation constraint, and PDi
 is the active power demand of 

load. Equation (8) is the constraint of reactive power equation, and QDi
 is the reactive power 

demand of load. �i represents the phase Angle of the i-th bus. Gij and Bij are the conductance 
and inductance of the transmission line between the i-th bus and the j-th bus, respectively. NB 
indicates the number of nodes.

No additional treatment is needed for this equality constraint, because the termination con-
dition of Newton–Raphson method can meet Eqs. (7 and 8). The successful execution of the 
power flow calculation program indicates that the results conform to the equation constraints.

2.6  Inequality constraints

Inequality constraints mainly restrict the safe operation of devices in the system. The fol-
lowing four parts are considered here: generator constraints, reactive capacitor capacity con-
straints, transformer constraints and safety constraints.

(1) Generator constraints

(6)y = [PG1
,VL1

, ...,VLNL
,QG1

, ...,QGNG
, ..., Sl1 , ..., SlNl ]

(7)PGi
= PDi

+ Vi

∑NB

j=1
Vj[Gijcos(�i − �j) + Bijsin(�i − �j), i = 1, ...,NB

(8)QGi
= QDi

+ Vi

∑NB

j=1
Vj[Gijcos(�i − �j) + Bijsin(�i − �j), i = 1, ...,NB

(9)Pmin
Gi

≤ P
Gi

≤ Pmax
Gi

, i = 1, ...,NG
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(2) Reactive compensation constraint

(3) Transformer constraint

(4) Safety constraints

where, Smax
ln

 represents the maximum transmission power on the i-th transmission line.
Some of these inequality constraints restrict the value range of control variables, and the 

upper and lower limits of control variables can meet these inequality constraints. The other 
part is to limit the value range of the state variables and the penalty function method is 
selected to deal with it. The penalty function method can transform the constrained optimi-
zation problem into an unconstrained optimization problem. Equations (16 and 17) are the 
penalty function and the modified objective function formula respectively.

where, fi is the i-th objective function; penalty is a penalty item; The value of kp is set to 
106 ; The value of kQ is set to 106 ; The value of kV is set to 109 ; The value of kS is set to 106 . 
The voltage constraint of the load node is easily violated, so the maximum penalty coef-
ficient is set for it.

2.7  Fuzzy membership function

After solving the MOOPF problem, a set of Pareto solutions are obtained. Because these 
solutions are in the same dominant level, the pros and cons of each solution in Pareto 
frontier cannot be directly judged. In MOP, the fuzzy system can be used to deal with the 
contradictory relations of various objective functions. The concept of fuzzy membership 

(10)Qmin
Gi

≤ Q
Gi

≤ Qmax
Gi

, i = 1, ...,NG

(11)Vmin
Gi

≤ V
Gi

≤ Vmax
Gi

, i = 1, ...,NG

(12)Qmin
Cj

≤ Q
Cj

≤ Qmax
Cj

, j = 1, ...,NC

(13)Tmin
K

≤ T
K
≤ Tmax

K
,K = 1, ...,NT

(14)Vmin
Lm

≤ V
Lm

≤ Vmax
Lm

,m = 1, ...,NL

(15)Sln ≤ Smax
ln

, n = 1, ...,Nl

(16)
Penalty =kP ×

(

PG1 − Plim
G1
)2 + kQ ×

∑NG

i=1

(

QGi − Qlim
Gi
)2

+ kV ×
∑NL

m=1

(

VLm − Vlim
Lm

)2
+ kS ×

∑Nl

n=1

(

Sln − Slimln
)2

(17)fi = fi + penalty
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function is introduced in Ref. Hazra and Sinha (2011). Membership function defined by a 
single objective function can be described as follows:

where, f max
i

 is the maximum value of the i-th objective function in Pareto solution set, and 
f min
i

 is the minimum value of the i-th objective function in Pareto solution set. The image 
of this function is shown in Fig. 1.

For the k-th individual in the solution set, the normalized membership function �k is 
defined as follows:

where, Po represents the number of Pareto solution sets, and N represents the number of 
objective functions.

The greater the value of normalized membership function �k , the higher the satisfaction 
of the solution. The solution with the maximum membership function is the best compro-
mise solution.

3  Multi‑objective coyote optimization algorithm based on hybrid elite 
mechanism and Meta‑Lamarckian learning strategy

3.1  Coyote optimization algorithm

COA is inspired by the behavior of coyotes and operates on a swarm-based approach. COA 
does not prioritize the wolf hierarchy and has a distinct algorithmic structure. The focus 

(18)𝜇k
i
=

⎧
⎪⎨⎪⎩

1 fi ≤ f min
i

f max
i

−fi

f max
i

−f min
i

f min
i

< fi < f max
i

0 fi ≥ f max
i

(19)�k =

∑N

i=1
�k
i∑Po

k=1

∑N

i=1
�k
i

Fig. 1  Fuzzy membership func-
tion
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of COA is to imitate the social structure and experience-sharing aspect of coyotes. In the 
COA, the population of coyotes is divided into Np packs with Nc coyotes in each pack. The 
number of coyotes in each pack is fixed. Therefore, the population number in this algo-
rithm is obtained by multiplying Np and Nc . Each coyote has a social condition attribute 
(a set of decision variables), and the social condition of the c-th coyote of the p-th pack is 
written as:

where, SOC represents the decision variable, D is the search space dimension. The first 
step is to initialize the coyote population. As a randomized algorithm, the initial social 
conditions for each coyote of COA are set randomly. It passes through Eq. (21) and assign 
a random value to the j-th dimension of the c-th coyote of the p-th pack in the searching 
space during the t-th iteration.

where, lbj and ubj represent the lower and upper bounds of the j-th dimensional control 
variable respectively, rj is a random number between [0, 1]. Coyotes were then assessed for 
their adaptation to current social conditions.

where, fitp,t
c

 is the fitness value (objective function value).
There is one alpha coyote in each pack, and it is the individual with the best fitness value. 

In the minimization problem, the alpha of the p-th pack at time t-th is defined as:

COA assumes that coyotes have a certain amount of intelligence and organization, and each 
population shares social conditions that will help the population develop. Thus, the COA asso-
ciates individual information from coyotes and calculates it as a cultural trend for the group.

where, Op,t denotes the social condition ranking of all coyotes in the p-th pack in the range 
[1, D] at the t-th iteration. All in all, the cultural disposition of the pack was equal to the 
median of the social conditions of all coyotes in the pack.

For showing the social conditions of different coyotes in pack affect each other, the COA 
assumes that each coyote individual receives alpha effects ( �1 ) and population effects ( �2 ). The 
former represents the cultural difference between the random coyote cr1 and the alpha coyote, 
while the latter represents the difference between the cultural tendency of the random coyote 
cr2 and the group. �1 and �2 are shown in Eq. (25).

(20)socp,t
c

= �⃗x = (x1, x2,… , xD)

(21)soc
p,t

c,j
= lbj + rj ∙ (ubj − lbj)

(22)fitp,t
c

= f (socp,t
c
)

(23)alphap,t =
{
socp,t

c
|argc={1,2…Nc}minf (soc

p,t
c
)
}

(24)cult
p,t

j
=

⎧
⎪⎨⎪⎩

O
p,t
NC+1

2
,j
,Ncisodd

O
p,t

NC
2

,j

+O
p,t

NC+1

2
,j

2
, otherwise
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Therefore, the new social conditions of coyotes are updated by the influence of alpha and 
group.

where, r1 represents the weights affected by alpha and population. r1 is defined as random 
numbers in the range [0, 1] generated with uniform distribution. r2 decreases linearly with 
the number of iterations, r2 = 1 − it∕Maxit . The new social situation is then assessed by 
Eq. (27).

Coyotes have the cognitive ability to judge whether new social conditions are better 
than old ones, which means that only when they get better social conditions, they will be 
updated.

After each pack position update, coyote births and deaths are considered. The birth of 
a new coyote is a crossover of the social conditions of the parents (chosen at random) and 
then the random effects of the environment. The formula for the birth is shown in Eq. (29).

where, r1 and r2 are random coyote individuals in the p-th pack; j1 and j2 are the two ran-
dom dimensions of the problem; Ps is the scattering probability, Pa is the association prob-
ability; Rj is a random number in the range of control variables for the j-th dimension; and 
rndj is a random number generated with a uniform distribution in the range [0, 1]. Scatter-
ing and association probabilities guide the cultural diversity of coyotes so that Ps and Pa 
can be defined as:

where, Pa has the same effect on both parents.
After evaluating the fitness values of all coyotes, the one with the highest fitness value 

is chosen as the global optimal solution for the problem. The pseudo code for COA is pre-
sented in Algorithm 1.

(25)
�1 = alphap,t − socp,t

cr1

�2 = cultp,t − socp,t
cr2

(26)new_socp,t
c

= socp,t
c

+ r1 ∙ �1 + r2 ∙ �2

(27)new_fitp,t
c

= f (new_socp,t
c
)

(28)socp,t+1
c

=

{
new_soc

p,t
c , new_fitp,t

c
< fitp,t

c

soc
p,t
c , otherwise

(29)pup
p,t

j
=

⎧
⎪⎨⎪⎩

soc
p,t

r
1

,j
, rndj < Psorj = j

1

soc
p,t

r
2

,j
, rndj ≥ Ps + Paorj = j

2

Rj, otherwise

Ps = 1∕D

(30)Pa = (1 − Ps)∕2
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Algorithm 1  Pseudo code of the COA

3.2  Meta‑Lamarckian learning

Traditionally, Meta-Lamarckian Learning is often used in memetic algorithm (MA), and 
a local search process is added after the iterative update of MA (Ong and Keane 2004). 
It is difficult for a single local search method to achieve good results in different prob-
lems. Therefore, multiple local search (LS) methods are often used in MA searches. Meta-
Lamarckian learning is motivated by the desire to improve search performance and reduce 
the probability of using inappropriate local methods. Meta-Lamarckian learning (adaptive) 
strategy can be described as cooperative and/or competitive. Competition means that LS 
method with higher fitness improvement has a higher chance to be selected for subsequent 
optimization. Cooperation means that LS and their improvement rewards work together to 
select an LS for subsequent optimization (Konstantinidis et  al. 2018). Meta-Lamarckian 
Learning usually uses the improvement of the fitness value of a single objective function as 
an indicator to establish a reward mechanism, so it is often used in single-objective optimi-
zation and multi-objective optimization based on decomposition. For being used in multi-
objective optimization, the reward mechanism is defined as follows:

where, �k is the reward value of the k-th LS method, n is the number of times that the LS 
method is used in the iteration, and ns is the number of times that the LS method is used to 
generate a non-inferior solution.

The incentive mechanism is to calculate the ratio of the number of non-inferior solutions 
generated by using each local optimization strategy to the number of generated individuals. 

(31)�k =
ns

n
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In each iteration, after obtaining the reward value �k of each LS method, the probability of 
updating the roulette LS method after normalization is used for the next iteration. In other 
words, if a certain LS is used to generate the highest proportion of high-quality solutions, it 
is more likely to be selected in the next iteration. The probability of each LS method being 
selected at the beginning is equal. With the progress of iteration, the method with high 
reward value obtains higher probability of adoption. Random roulette works as follows:

Step 1: Calculate the reward value �k of each LS method.
Step 2: Standardize (normalize) the reward value of each LS method to obtain the rela-
tive reward value.
Step 3: Allocate space for each LS based on relative reward value.
Step 4: Generate a random number and select the LS method of the disk position cor-
responding to the random number.

The common local optimization methods include crossover, mutation, Powell method 
and simplex search method. In this experiment, a total of four crossover operators are 
adopted into the local optimizer, which are respectively called horizontal crossover opera-
tor, longitudinal crossover operator, elite crossover operator and direct crossover operator.

3.2.1  Transverse crossover operator

Inspired by the crisscross optimization algorithm (CSO) (Meng et al. 2014), the transverse 
crossing process is selected as the LS. As shown in Eq. (32), the function of this operator 
is to generate new individuals at the position between parents with a high probability and 
individuals at the extension line of parents with a low probability.

where, Xnewi,d is the i-th new individual in the d-th dimension; r1 is a random number 
between [0, 1]; a is the random number between [-1, 1]; Xi1,d

 and Xi2,d
 are randomly 

selected parents in the cross operation.

3.2.2  Longitudinal crossover operator

Inspired by the CSO (Meng et  al. 2014), the longitudinal crossover process is selected 
as the LS. As shown in Eq. (33), the effect of the operator is to change the value of one 
dimension of the individual.

where, r2 is a random number between [0, 1]; Xi,d1
 and Xi,d2

 are values of the same indi-
vidual in the dimensions of d1 and d2 . Since solutions may have different upper and lower 
limits in different dimensions, the values of each dimension should be normalized.

3.2.3  Direct crossover operator

Equation (29) is selected as the LS, whose function is to generate individuals in the posi-
tion of parent or parent.

(32)Xnewi,d = r1 ∙ Xi1,d
+
(
1 − r1

)
∙ Xi2,d

+ a ∙ (Xi1,d
− Xi2,d

)

(33)Xnewi,d1
= r2 ∙ Xi,d1

+
(
1 − r2

)
∙ Xi,d2
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3.2.4  Elite crossover operator

An elite crossover operator is proposed based on the direct crossover operator. As 
shown in Eq. (34), it serves to cross the position of the current coyote with that of the 
alpha coyote it follows.

where, alphai,d is an elite coyote that Xi,d has followed.

3.3  Multi‑objective COA based on hybrid elite framework and Meta‑Lamarckian 
learning strategy

3.3.1  Elite non‑dominant sorting

In the proposed MOCOA, NSGA-II’s elite non-dominant ranking method and the 
crowding distance method to maintain diversity are introduced. The crowding distance 
is calculated to rank the populations of the same non-dominant level. First, a non-dom-
inant ranking was used to obtain non-dominant levels of different individuals, and then 
the crowding distance method was used to maintain the diversity between the optimal 
sets.

3.3.1.1 Fast non‑dominated sorting Firstly, all targets of the objective function F are eval-
uated for each solution obtained from the basic search method (COA) or the initially gener-
ated random population PO . Each solution p has two properties, np is the number of solu-
tions that dominate individual p , and Sp is the set of solutions that individual p dominates.

(1) For solutions with np = 0 , the solutions are not dominated by any individual, whose 
non-dominated level prank is set to 1 and stored in set F1.

(2) For each solution p with np = 0 , access each member q in the set Sp , and its dominant 
count nq decreases by 1. If the nq count drops to zero, the corresponding solution q is 
stored in the second non-dominated level set F2 , whose non-dominated level prank is 
set to 2.

(3) Repeat the process for each member of the second non-dominated level to obtain the 
third non-dominated level, and then repeat the process until the whole population is 
divided into different non-dominated levels.

3.3.1.2 Determine crowding distance To ensure that Pareto optimal solutions are well-
distributed in the objective space, NSGA-II utilizes a crowding distance method to assess 
the quality of each solution within the same front, resulting in a more evenly distributed 
solution set. The main goal of using the crowding distance approach is to preserve popu-
lation diversity by achieving a trade-off between solutions. Specifically, it refers to the 
density of individuals in a single rank layer after the non-dominant sorting of a popula-
tion in accordance with the dominant relationship.

(34)Xnewi,d =

⎧
⎪⎨⎪⎩

alphai,d, rndj < Psorj = j
1

Xi,d, rndj ≥ Ps + Paorj = j
2

Rj, otherwise
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The crowding degree/crowding distance is calculated as follows. For each objective 
function, find two solutions adjacent to the current solution and calculate the functional 
difference between the two solutions. To calculate the crowding distance of a given 
solution, the differences between the objective function values of neighboring solutions 
are summed. The individual crowding degree at the boundary of each non-dominant 
layer is directly set to infinity (Jeyadevi et  al. 2011). The sum of the two sides of the 
rectangle in Fig. 2 is the crowding distance of the p-th individual.

3.3.1.3 Crowding comparison operator and elite strategy After the previous fast non-dom-
inant ranking and crowding degree calculation, the i-th individual in the population has two 
attributes: the non-dominant layer prank (the number of levels) and the crowding distance pd . 
According to these two attributes, the crowding degree comparison operator can be defined 
as follows. The individual p is compared with another individual q . If any of the following 
conditions are true, the individual p wins.

(1) If the non-dominated layer of individual p is better than the non-dominated layer of 
individual q , prank < qrank;

(2) If they have the same rank and the individual p has a larger crowding distance than the 
individual q , that is, prank = qrank and pd > qd.

The first condition ensures that the selected individual belongs to the superior non-infe-
rior rank. The second condition can select the individual in the less crowded area (with a 
greater distance of crowding) among two individuals with the same non-inferior rank.

The elite strategy is used to select individuals to enter the next iteration. The new popu-
lation P generated in the t-th iteration is combined with the old population Q . Then a series 
of non-dominated sets are generated by non-dominated sorting, and the degree of crowding 
is calculated. Set the population number to N in the iteration, and select from the first layer 
until enough N individuals are selected according to the crowding comparison operator. 
These N better individuals enter the next iteration process and continue to update accord-
ing to the formula of COA. This selection process is shown in Fig. 3.

Fig. 2  Crowding distance
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3.3.2  Archives based on grid mechanism

3.3.2.1 Grid mechanism For the solution set stored in the archive, the target space is 
divided equally by grid, and the number of grids on each target is set manually. Figure 4 
is a schematic diagram in two-dimensional space. The number of grids on each target is 5. 
Each grid containing the solution is given an index number. For example, the index number 
of grid A in Fig. 4 is (2, 2). The purpose of the grid mechanism is to distinguish the density 
of the archive space in order to find a more crowded or sparse area for the next operation 
(Coello and Lechuga 2002).

3.3.2.2 External archive An external archive is a storage unit defined as a fixed size. It can 
save or retrieve the non-dominant Pareto optimal solution obtained so far. The key module 
for archiving is an archiving controller that can control archiving when the solution wants 
to access the archive or when the archive is full. It is important to note that the archive has 
a maximum number of members. During the iteration, the non-dominant solutions obtained 
to date were compared to archived data. There are three different cases that can happen.

Q

F3

F4

F5

F1

F2

F1

F2

F3

P

Rejected

Non-dominated

sorting

Crowding

distance sorting

Individuals

entering the

next cycle

Fig. 3  Individual selection based on non-dominant ranking

Fig. 4  Individual selection pro-
cess of grid mechanism
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(1) New members are dominated by at least one archive member. In this case, the solution 
should not be allowed to enter the archive.

(2) The new solution dominates one or more solutions in the archive. In this case, delete 
the dominant solution from the archive and allow the new solution to enter the archive.

(3) If the new solution and archive members are not mutually dominant, the new solution 
should be added to the archive.

If the archive is full, the grid mechanism should first be run to rearrange the segmenta-
tion of the object space. Through the roulette selection technique, the grids are selected 
to remove one of the solutions and the probability of each grid being selected is shown in 
Eq. (35). Then, the new non-dominated solution is recorded in the archive to improve the 
diversity of Pareto optimal frontier. As shown in Fig. 4, when the archive is full, there is a 
greater probability to select B(5, 1), the most crowded area, and randomly delete one of the 
solutions.

where, E is a constant and n is the number of solutions in the grid.

3.3.2.3 Elite selection mechanism Elite is the alpha coyote in COA. Firstly, the grid mech-
anism is used to divide the archive. Then select a solution from the archive as alpha coyote 
through roulette. The probability of selection is calculated by Eq. (36).

where, E is a constant and n is the number of solutions in the grid.
The fewer the number of solutions in the grid, the greater the chance that the grid will 

be selected. As shown in Fig. 4, there is only one solution in A (2, 2), so A has the highest 
probability of being selected. The mechanism selects the sparser location solution as alpha 
coyote (elite). Alpha coyote, as the leader of the population, will guide the population to 
search for a more sparse solution set space, which can help it to find a more uniform Pareto 
front.

3.3.3  The process of MOCOA‑ML

The proposed multi-objective coyote optimization algorithm (MOCOA) uses the multi-
objective framework of non-dominated sorting and external files to obtain the Pareto opti-
mal solution. There is one and only one optimal solution obtained by the single objec-
tive COA, which is the solution corresponding to the optimal fitness value. The MOCOA 
adopts the idea of COA to update the population position, merges the new solution set and 
the old solution set. Then, the non-dominant sorting and the crowding distance methods 
are used to get the undominated relations in the new set. After that, according to the size 
of the population, select the better individuals to enter the next iteration process, and other 
poor individuals are eliminated (dead). Archive the non-dominated solution (the first fron-
tier individual) obtained from the non-dominated sorting. If the archive is full, use the grid 
mechanism to delete and add the individual. In addition, during the iteration process, alpha 
coyotes (leaders) are also selected from the archive according to the roulette method. After 
the iteration, output the Pareto solution set in the archive.

(35)P =
n

E

(36)P =
E

n
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The Meta-Lamarckian learning strategy was combined with multi-objective coyote 
optimization algorithm, and it was named MOCOA-ML. On each loop, after the coy-
ote position in each pack is updated, the local optimizer based on Meta-Lamarckian 
learning starts working, randomly picking individuals in the pack for a local search. 
Each time LS is selected and the scheme is selected by way of roulette according to 
the reward value in the last iteration. The individual generated by the local optimizer is 
compared with one of its parents. If the new individual dominates the parent, the new 
individual replaces the parent. If the new individual and the parent do not dominate, or 
the new individual is dominated by the parent, the new individual replaces any indi-
vidual in the previous iteration. In other words, we tend to retain solutions generated by 
the local optimizer. This approach does not add any more computational pressure to the 
non-dominated sorting process, since the number of individuals participating in non-
dominated sorting is still twice as large as the number of populations. The flow chart 
of MOCOA-ML is shown in Fig. 5. It should be noted that MOCOA-ML differs from 
MOCOA in whether it contains a local optimizer under the Meta-Lamarckian learning 
strategy.

Start

c > ncoyote

select alpha coyote from archive

according to roulette wheel

The calculation of cultural tendency

in pack (Eq.24)

Update the social

conditions.(Eq.26)

c = c+1

Meta-Lamarckian Learning

(Eq.29, 32, 33, 34)

p = p+1
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If t >MaxIter

End
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Fig. 5  Flow chart of MOCOA-ML
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4  Test function simulation and result analysis

In order to verify the performance of MOCOA-ML, several test functions were selected 
for testing, and the results were compared with MOCOA, MODA, MOPSO, MOJAYA, 
NSGA-II, MOEA/D, MOAOS and MOTEO. Because the algorithms used in the experi-
ments were all random algorithms, and in order to be true and fair, when MOCOA-ML 
and other multi-objective intelligent optimization algorithms were used for the test, each 
group of experiments were independently run 10 times. The maximum number of itera-
tions is set to 300, the population number N is set to 100, and the size of archive is set to 
100. The parameter settings of the multi-objective improved algorithm and comparison 
algorithms are shown in Table 1. For each algorithm, calculate the fuzzy membership 
function of each solution according to Eqs. (18, 19) in Sect. 2.7, and the solution with 
the maximum membership function �max is considered the best compromise solution.

4.1  Performance metrics

Convergence and diversity are two key points in finding an appropriate Pareto optimal 
solution set for a particular problem. Convergence refers to the ability of multi-objective 
algorithm to determine the accurate approximation of Pareto optimal solution. Diversity 
refers to the ability of the algorithm to find a more complete Pareto front. The ultimate 
goal of the multi-objective optimization algorithm is to find the most accurate approxi-
mate value of the true Pareto optimal solution (convergence) with uniform distribution 
(diversity) on all targets. In this part, three commonly used indicators are selected to 
reflect the advantages and disadvantages of Pareto solution set of each algorithm. They 
are inverted generational distance (IGD) (Coello and Cortés 2005) and hypervolume 
(HV) (Zitzler and Thiele 1999). The first indicator is a reverse indicator, and the second 
is a positive indicator.

Table 1  Setting of algorithm parameters

Algorithm Parameters

MOCOA Number of pack (n_packs) = 10; Number of coyotes in each pack(n_
coy) = 10; Number of grid = 7; Archive size = 100

MOCOA-ML Number of pack (n_packs) = 10; Number of coyotes in each pack(n_
coy) = 10; Number of grid = 7; Archive size = 100

MODA Mirjalili (2016) Archive size = 100; Inertia weigh(w) = w = 0.9 − t*((0.9–0.2)/MaxIt)
MOPSO Hazra and Sinha (2011) Number of Grid = 7; Inertia weight(w) = 0.5; coefficient (c1) = 1;

Social coefficient (c2) = 2; Archive size = 100
MOJAYA Berrouk et al. (2018) Archive size = 100
NSGA-II Jeyadevi et al. (2011) Crossover probability (Pc) = 0.7; Mutation probability (Pm) = 0.4; 

mu = 0.02;
MOEA/D Medina et al. (2014) Archive size = 100; gamma = 0.5; T = 0.15*Population
MOAOS Azizi et al. (2022) Archive size = 100; Layer number = 10; Foton rate = 0.1; Number of 

grid = 30;
MOTEO Kumar et al. (2022) c

1
=1.1 ; c

2
=c

1
∗ 2 ; Crossover probability (Pc) = 0.7; Mutation probability 

(Pm) = 0.4; mu = 0.02; Mutation Step Size = 0.1
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4.1.1  Inverted generational distance

The IGD metric is used to calculate the minimum distance between an individual on the 
actual Pareto frontier and the set of individuals generated by the algorithm. It can be 
expressed as:

where, ko is the number of Pareto solutions. It is expressed as the Euclidean distance 
between the p-th real Pareto solution and the nearest obtained Pareto solution.

4.1.2  Hypervolume

The HV value is the volume of the space covered by the Pareto front. The higher the HV 
value, the better the diversity and convergence of the corresponding Pareto frontier.

where, � is a Lebesgue measure used to measure volume. |N| represents the number of 
Pareto solution sets, and ci represents the hypercube formed by the reference point and the 
i-th solution in the solution set.

4.2  Function optimization simulation and result analysis

4.2.1  Simulation result and analysis of benchmark test functions

In order to prove the performance of MOCOA-ML, experiments were carried out on 
the test functions ZDT1-ZDT4, ZDT6, DTLZ2 and DTLZ4-DTLZ7. MOCOA, MODA, 
MOPSO, MOJAYA, NSGA-II, MOEA/D, MOAOS and MOTEO were selected as the 
comparison algorithms. Tables 2, 3 records the optimal value, average value and stand-
ard deviation of each algorithm in IGD and HV. Figure 6 shows the Pareto frontier of 
double-objective test functions, and Fig. 7 shows the Pareto frontier of three-objective 
test functions.

From the experimental results, it can be observed that MOCOA-ML has the ability 
to find the Pareto front of each test function and has better convergence and coverage. 
The average rankings obtained from the Friedman test are listed in Tables  2 and 3, 
and MOCOA-ML ranks first in both IGD and HV. This indicates that it outperforms 
MOCOA, MODA, MOPSO, MOJAYA, NSGA-II, MOEA/D, MOAOS and MOTEO on 
most test functions. Additionally, MOCOA-ML performs better than MOCOA in all 
performance metrics, demonstrating the effectiveness of the Meta-Lamarckian learn-
ing strategy. Among the 10 test functions, MOTEO performs well, second only to 
MOCOA-ML. NSGA-II and MOPSO also have good results, while MOJAYA performs 
the worst. MOCOA-ML exhibits better competitiveness in both bi-objective and tri-
objective problems. In summary, MOCOA-ML showcases commendable performance 

(37)IGD =

�
(
∑ko

p=1
(d�

i
))

ko

(38)HV = �(

|N|⋃
i=1

ci)
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(a) MOCOA-ML                                        (b) MODA                                            (c) MOPSO

(d) MOCOA                                     (e) NSGA-II                                        (f) MOEA/D

(g) MOJAYA                                       (h) MOAOS                                             (i) MOTEO

(1) ZDT1

(a) MOCOA-ML                                       (b) MODA                                           (c) MOPSO

Fig. 6  Pareto frontiers obtained by each algorithm on two-objective test functions
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(d) MOCOA                                          (e) NSGA-II                                       (f) MOEA/D

(g) MOJAYA                                      (h) MOAOS                                             (i) MOTEO

(2) ZDT2

(a) MOCOA-ML                                      (b) MODA                                             (c) MOPSO

(d) MOCOA                                       (e) NSGA-II                                            (f) MOEA/D

Fig. 6  (continued)
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(g) MOJAYA                                       (h) MOAOS                                          (i) MOTEO

(3) ZDT3

(a) MOCOA-ML                                      (b) MODA                                             (c) MOPSO

(d) MOCOA                                          (e) NSGA-II                                          (f) MOEA/D

(g) MOJAYA                                      (h) MOAOS                                           (i) MOTEO

(4) ZDT4

Fig. 6  (continued)
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and can be considered as a viable alternative algorithm. It is important to note that in 
Table 3, the rankings obtained from the Friedman test are inverted due to HV being a 
positive indicator.

4.2.2  UF test function results and analysis

In this section, MOCOA-ML was used to solve the test functions UF1-UF10. MOCOA, 
MODA, MOJAYA, MOPSO, NSGA-II, MOEA/D, MOAOS and MOTEO were selected 
as the comparative algorithms. The best values, average values, standard deviations of IGD 
and HV obtained by each algorithm, and the average rankings obtained from the Fried-
man test are recorded in Tables 4, 5. Figure 8 shows the best Pareto front obtained from 
the experiments. From Tables 4 and 5, it can be observed that MOCOA-ML exhibits sig-
nificantly better convergence and diversity in UF1-UF6, UF8, and UF10, while its perfor-
mance is slightly worse in UF9. The average rankings obtained from the Friedman test 

(a) MOCOA-ML                                       (b) MODA                                           (c) MOPSO

(d) MOCOA                                        (e) NSGA-II                                            (f) MOEA/D

(g) MOJAYA                                       (h) MOAOS                                           (i) MOTEO

(5) ZDT6

Fig. 6  (continued)
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(d) MOCOA                                                  (e) NSGA-II                                       (f) MOEA/D

(g) MOJAYA                                      (h) MOAOS                                           (i) MOTEO

(1) DTLZ2

(a) MOCOA-ML                                    (b) MODA                                                 (c) MOPSO

(d) MOCOA                                       (e) NSGA-II                                              (f) MOEA/D

(a) MOCOA-ML                                             (b) MODA                                             (c) MOPSO

Fig. 7  Pareto frontiers obtained by each algorithm on three-objective test functions
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(g) MOJAYA                                            (h) MOAOS                                        (i) MOTEO

(2) DTLZ4

(a) MOCOA-ML                                           (b) MODA                                             (c) MOPSO

(d) MOCOA                                     (e) NSGA-II                                            (f) MOEA/D

(g) MOJAYA                                          (h) MOAOS                                             (i) MOTEO

(3) DTLZ5

(a) MOCOA-ML                                      (b) MODA                                         (c) MOPSO

Fig. 7  (continued)
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(d) MOCOA                                       (e) NSGA-II                                             (f) MOEA/D

(g) MOJAYA                                        (h) MOAOS                                            (i) MOTEO

(4) DTLZ6

(a) MOCOA-ML                                    (b) MODA                                             (c) MOPSO

(d) MOCOA                                         (e) NSGA-II                                            (f) MOEA/D

(g) MOJAYA                                         (h) MOAOS                                             (i) MOTEO

(5) DTLZ7

Fig. 7  (continued)
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show that MOCOA-ML achieves the first rank in both IGD and HV indicators among the 
nine algorithms. MOCOA ranks second, followed by MOPSO. These results indicate that 
MOCOA-ML has highly competitive performance on the UF series test functions.

(a) UF1                                                                              (b) UF2

(c) UF3                                                                               (d) UF4

(e) UF5                                                                              (f) UF6

Fig. 8  Pareto frontiers obtained by each algorithm under CEC 2009



 J.-H. Zhu et al.

1 3

117 Page 38 of 64

4.3  Population diversity analysis

MOCOA-ML utilizes a grid mechanism to maintain the diversity of the archive. To vali-
date the effectiveness of this mechanism, the diversity of the archive during the conver-
gence process of MOCOA-ML on different test functions was analyzed. The diversity 
curves for some test functions are shown in Fig. 9. The formula for calculating the popula-
tion diversity div is given by Eq. (39) (Zamani et al. 2021).

where, N represents the number of individuals in the archive, D represents the maximum 
dimension of the decision variables, xid represents the value of the i-th individual on the d
-th dimension, and xmean,d represents the mean value of all individuals in the archive on the 
d-th dimension.

In the curve shown in Fig.  9, smaller values indicate poorer diversity in the archive, 
while larger values indicate higher population dispersion. It can be observed that in ZDT1, 
div decreases continuously. This is because the true Pareto solution set of ZDT1 contains 

(39)div =
1

N

N∑
i=1

√√√√ D∑
d=1

(xid − xmean,d)
2

(g) UF7                                                                                   (h) UF8

(i) UF9                                                                                    (j) UF10

Fig. 8  (continued)
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(a) ZDT1                                                                          (b) ZDT4

(c) DTLZ2                                                                            (d) DTLZ7

(e) UF1                                                                               (f) UF4

(g) UF5                                                                           (h) UF8

Fig. 9  Iteration curves of population diversity
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a significant number of zeros. During the iterative process, the individuals in the archive 
gradually approach the true Pareto solution set, resulting in this outcome. On the other 
hand, in other test functions, the div values remain at a high level, indicating good diversity 
in the archive. This further demonstrates the effectiveness of the grid mechanism in main-
taining diversity.

4.4  Performance index analysis

To compare the performance of different algorithms, them are evaluated by using the Per-
formance Index (PI) (Deep and Thakur 2007). PI is a positive indicator that takes into 
account the algorithm’s runtime. A higher value of PI indicates better algorithm perfor-
mance. The detailed formulas for calculating PI are given by Eqs. (40 and 41).

(40)Avet
j

i
=

1

H

H∑
T=1

Time(T)

Fig. 10  PI diagram of test functions
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where, Avetj
i
 represents the average runtime of the i-th algorithm on the j-th test function, 

H represents the number of runs of an algorithm on a test function, Time(T) represents the 
time taken by the algorithm in the T-th run, PIi is the performance index of the i-th algo-
rithm, Nf  represents the total number of test functions, Minf j represents the minimum aver-
age error value obtained by all algorithms on the j-th function, Avef j

i
 represents the average 

error value obtained by the i-th algorithm on the j-th function, and Mintj represents the 
minimum time obtained by all algorithms on the j-th function. � and � are parameters in 
the range [0, 1] and have a linear relationship, � + � = 1.

In this section, � is set to 0, 0.2, 0.4, 0.6, 0.8, and 1. Minf j and Avef j
i
 are used as the 

average minimum IGD value and the average IGD value obtained by the i-th algorithm, 
respectively. The PI values of these algorithms on different series of test functions are 

(41)PIi =
1

Nf

Nf∑
j=1

(� ×
Minf j

Avef
j

i

+ � ×
Mintj

Avet
j

i

)

Table 6  Results of Wilcoxon signed-rank test on IGD

IGD MOCOA MODA MOPSO MOJAYA NSGA-II MOEA/D MOAOS MOTEO

ZDT1 6.88E−01 9.13E−05 7.01E−03 9.13E−05 9.13E−05 9.13E−05 9.91E−01 1.41E−03
ZDT2 3.78E−02 9.13E−05 1.81E−03 4.37E−05 9.13E−05 9.13E−05 8.46E−01 5.15E−01
ZDT3 7.64E−01 9.13E−05 1.88E−02 9.13E−05 9.13E−05 9.13E−05 9.62E−01 9.13E−05
ZDT4 9.13E−05 9.13E−05 9.13E−05 8.44E−05 9.13E−05 9.13E−05 5.15E−01 9.13E−05
ZDT6 2.36E−01 9.13E−05 1.41E−03 9.13E−05 1.00E+00 9.13E−05 2.91E−04 1.00E+00
DTLZ2 2.29E−03 9.13E−05 9.13E−05 9.13E−05 1.00E+00 9.13E−05 9.13E−05 1.10E−03
DTLZ4 4.45E−02 9.13E−05 9.13E−05 9.13E−05 1.41E−03 1.65E−04 9.13E−05 9.13E−05
DTLZ5 1.65E−04 9.13E−05 9.13E−05 9.13E−05 1.00E+00 2.91E−04 9.13E−05 9.13E−05
DTLZ6 2.26E−02 9.13E−05 4.55E−03 9.08E−05 9.13E−05 9.13E−05 9.13E−05 9.99E−01
DTLZ7 2.70E−02 9.13E−05 9.81E−01 8.63E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF1 6.06E−02 9.13E−05 2.20E−04 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF2 1.56E−02 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF3 9.13E−05 1.37E−01 9.13E−05 9.13E−05 1.56E−02 9.13E−05 6.59E−05 9.73E−03
UF4 3.12E−01 9.13E−05 3.64E−03 9.13E−05 9.13E−05 9.13E−05 9.13E−05 1.41E−03
UF5 5.04E−04 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF6 5.66E−03 9.13E−05 1.81E−03 9.13E−05 2.90E−03 9.13E−05 9.13E−05 5.04E−04
UF7 9.81E−01 9.13E−05 4.45E−02 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF8 2.60E−01 9.13E−05 7.86E−01 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF9 2.85E−01 9.13E−05 9.56E−01 9.13E−05 9.13E−05 9.13E−05 5.04E−04 9.13E−05
UF10 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
±/= 1/12/7 0/19/1 0/17/3 0/20/0 3/17/0 0/20/0 2/16/2 1/17/2
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plotted in Fig. 10. It can be observed that the MOCOA-ML algorithm has a certain advan-
tage in terms of PI values on the test functions in all three series.

Table 7  Results of Wilcoxon signed-rank test on HV

HV MOCOA MODA MOPSO MOJAYA NSGA-II MOEA/D MOAOS MOTEO

ZDT1 4.85E−01 3.19E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 1.00E+00 1.41E−03
ZDT2 2.65E−02 9.13E−05 2.91E−04 4.37E−05 9.13E−05 4.37E−05 9.19E−01 5.15E−01
ZDT3 1.92E−01 7.02E−02 5.21E−02 9.13E−05 9.39E−01 9.13E−05 9.97E−01 1.00E+00
ZDT4 5.53E−05 9.13E−05 6.59E−05 7.69E−05 3.19E−05 6.59E−05 7.86E−01 6.59E−05
ZDT6 1.06E−01 9.13E−05 1.10E−03 9.13E−05 1.00E+00 5.53E−05 2.20E−04 1.00E+00
DTLZ2 2.20E−04 9.13E−05 9.13E−05 9.13E−05 1.00E+00 5.75E−01 9.13E−05 5.04E−04
DTLZ4 4.45E−02 8.63E−05 1.23E−04 5.53E−05 1.41E−03 1.81E−03 3.19E−05 5.04E−04
DTLZ5 1.23E−04 9.13E−05 9.13E−05 6.59E−05 1.00E+00 4.55E−01 6.59E−05 9.13E−05
DTLZ6 1.01E−02 3.19E−05 1.37E−01 7.47E−05 3.19E−05 8.93E−05 9.13E−05 9.99E−01
DTLZ7 9.29E−02 3.19E−05 3.67E−01 8.15E−05 9.13E−05 8.93E−05 9.13E−05 9.13E−05
UF1 1.06E−02 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF2 7.01E−03 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05
UF3 9.13E−05 3.20E−02 9.08E−05 8.93E−05 5.15E−01 9.13E−05 9.13E−05 1.45E−02
UF4 2.91E−04 9.13E−05 9.13E−05 9.13E−05 9.13E−05 3.20E−02 9.13E−05 9.13E−05
UF5 1.65E−04 3.19E−05 8.93E−05 8.15E−05 9.08E−05 5.53E−05 3.19E−05 7.47E−05
UF6 8.53E−04 4.37E−05 9.13E−05 4.37E−05 4.55E−01 7.47E−05 3.19E−05 6.06E−02
UF7 1.56E−02 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 9.13E−05 2.20E−04
UF8 6.06E−02 9.13E−05 7.40E−01 2.20E−04 9.13E−05 9.13E−05 1.23E−04 9.13E−05
UF9 5.75E−01 9.13E−05 9.84E−01 9.13E−05 9.13E−05 9.13E−05 8.53E−04 9.13E−05
UF10 9.13E−05 6.59E−05 9.13E−05 9.13E−05 9.13E−05 6.59E−05 9.13E−05 9.13E−05
±/= 0/15/5 0/19/1 1/15/4 0/20/0 3/14/3 0/18/2 0/16/4 1/16/3

Table 8  MAE results of IGD index for each algorithm

Algorithms MAE
ZDT

Rank MAE
DTLZ

Rank MAE
UF

Rank

MOCOA-ML 2.532E−03 2 6.533E−04 1 6.581E−03 1
MOCOA 5.015E−03 4 6.818E−04 2 7.412E−03 2
MODA 1.394E−02 7 2.463E−02 9 2.286E−02 9
MOPSO 5.044E−03 5 1.073E−03 3 9.348E−03 3
MOJAYA 2.149E−02 9 7.300E−03 7 1.657E−02 6
NSGA-II 1.299E−02 6 2.284E−02 8 1.464E−02 4
MOEA/D 1.709E−02 8 1.400E−03 4 1.489E−02 5
MOAOS 3.604E−04 1 4.869E−03 6 2.216E−02 8
MOTEO 4.525E−03 3 1.961E−03 5 1.946E−02 7
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4.5  Wilcoxon signed‑rank test

Wilcoxon signed-rank test is a non-parametric hypothesis test used to compare whether 
there is a difference in medians between two related samples (Zamani et  al. 2022). It is 
suitable for situations where the data of the two related samples do not follow a normal 
distribution. In this test, the p-value with a significance level of 95% (α = 0.05) is calcu-
lated. If the p-value is less than or equal to the significance level (0.05), the null hypothesis 

Fig. 11  Standard IEEE 30-bus system

Table 9  Coefficient values of generators of IEEE 30-bus system (Biswas et al. 2018)

Generator Bus a b c � � � � �

G
1

1 0 2 0.00375 4.091 − 5.554 6.49 0.0002 2.857
G

2
2 0 1.75 0.0175 2.543 − 6.074 5.638 0.0005 3.333

G
3

5 0 1 0.0625 4.258 − 5.094 4.586 0.000001 8
G

4
8 0 3.25 0.00834 5.326 − 3.55 3.38 0.002 2

G
5

11 0 3 0.025 4.258 − 5.094 4.586 0.000001 8
G

6
13 0 3 0.025 6.131 − 5.555 5.151 0.00001 6.667
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Fig. 12  Standard IEEE 57-bus system

Table 10  Coefficient values of generators of IEEE 57-bus system (Biswas et al. 2018)

Generator Bus a b c � � � � �

G
1

1 0 20 0.0775795 4.091 − 5.554 6.49 0.0002 0.286
G

2
2 0 40 0.01 2.543 − 6.047 5.638 0.0005 0.333

G
3

3 0 20 0.25 6.131 − 5.555 5.151 0.00001 0.667
G

4
6 0 40 0.01 3.491 − 5.754 6.39 0.0003 0.266

G
5

8 0 20 0.0222222 4.258 − 5.094 4.586 0.000001 0.8
G

6
9 0 40 0.01 2.754 − 5.847 5.238 0.0004 0.288

G
7

12 0 20 0.0322581 5.326 − 3.555 3.38 0.002 0.2
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was rejected. If the p-value is greater than the significance level, we fail to reject the null 
hypothesis.

Wilcoxon signed-rank tests are conducted to compare the IGD and HV values of MOCOA-
ML on different test functions with eight other algorithms. The results are shown in Tables 6 
and 7. The “+” sign indicates that the algorithm is significantly better than MOCOA-ML, the 
“−” sign indicates that the algorithm is significantly worse than MOCOA-ML, and the “=” 
sign indicates that there is no significant difference between the algorithm and MOCOA-ML. 
From the results in the tables, it can be concluded that in most cases, MOCOA-ML performs 
better than the eight compared algorithms.

4.6  Mean absolute error

The mean absolute error (MAE) is used to analyze the IGD indicators obtained by all 
algorithms to determine the difference between the obtained Pareto frontier and the real 
Pareto frontier. The calculation formula of MAE is shown in Eq. (42) (Zamani et al. 2021). 
The obtained results are shown in Table 8. MOCOA-ML ranked second in the ZDT test 
functions and first in the DTLZ and UF test functions. MOCOA-ML also performs well in 
MAE analysis.

where, Nf  is the number of functions, Cj is the optimal IGD value of the j-th function, Dj is 
the optimal IGD value obtained from the j-th function.

(42)MAE =

∑Nf

j=1
�Cj − Dj�
Nf

Table 11  Objective function combination

Combination Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

fCost ✓ ✓ ✓ ✓ ✓ ✓
fPloss ✓ ✓ ✓ ✓
fEmission ✓ ✓ ✓ ✓
system IEEE 30 IEEE 30 IEEE 30 IEEE 57 IEEE 57 IEEE 57

Table 12  Setting of algorithm parameters

Algorithm Parameters

MOCOA Number of pack (n_packs) = 10; Number of coyotes in each 
pack(n_coy) = 10; Number of Grid = 10; Archive size = 100

MOCOA-ML Number of pack (n_packs) = 10; Number of coyotes in each 
pack(n_coy) = 10; Number of Grid = 10; Archive size = 100

MOPSO Hazra and Sinha (2011) Number of Grid = 10; Inertia weight(w) = 0.5; coefficient (c1) = 1;
Social coefficient (c2) = 2; Archive size = 100

MOGWO Mirjalili et al. (2016) Number of Grid = 10; Archive size = 100
MSSA Mirjalili et al. (2017) Archive size = 100
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5  Case study of optimal power flow

In order to verify the performance of the proposed MOCOA-ML to solve the MOOPF 
problem, simulation studies are carried out in IEEE 30-bus system and IEEE 57-bus sys-
tem respectively in this section.

Table 13  Solution set obtained in Case 1

Optimal values of objective functions are bolded

Algorithm MOCOA-ML MOCOA

MIN C MIN P COMP MIN C MIN P COMP

PG2
(MW) 47.6877 80 53.2904 47.5353 80 51.5488

PG
5
(MW) 21.5551 50 32.3423 20.3466 50 32.9151

PG8
(MW) 23.0780 35 35 19.7809 35 35

PG11
(MW) 13.0492 30 27.9989 13.8224 30 30

PG13
(MW) 12 40 21.8586 12.3047 40 20.9186

VG1
(p.u.) 1.0821 1.0574 1.0714 1.0859 1.0597 1.0701

VG
2
(p.u.) 1.0642 1.0539 1.0588 1.0664 1.0589 1.0593

VG5
(p.u.) 1.0326 1.0394 1.0280 1.0349 1.0432 1.0339

VG8
(p.u.) 1.0359 1.0442 1.0410 1.0408 1.0471 1.0480

VG11
(p.u.) 1.0284 0.9874 1.0161 1.0364 0.9888 1.0027

VG13
(p.u.) 1.0313 1.0586 1.0568 1.0241 1.0551 1.0515

T
11

(p.u.) 1.0948 1.0676 1.0373 1.0533 1.1000 1.1000
T
12

(p.u.) 0.9527 0.9303 0.9608 0.9878 0.9000 0.9000
T
15

(p.u.) 0.9694 1.0059 0.9860 0.9584 0.9862 0.9714
T
36

(p.u.) 0.9760 0.9712 0.9851 0.9976 0.9836 0.9788
QC10

(MVAr) 3.8768 3.2591 2.8268 4.4249 0.1192 0
QC

12
(MVAr) 3.5960 4.9238 1.7195 0.6618 0 0.0013

QC15
(MVAr) 2.7789 4.6953 2.9395 3.0137 5 0

QC17
(MVAr) 3.4381 5 3.2662 2.5474 4.9838 5

QC20
(MVAr) 4.6003 4.8923 3.5359 1.7598 4.9574 4.1573

QC21
(MVAr) 4.9832 4.9988 4.9652 0.2547 5 5

QC23
(MVAr) 1.3731 1.4648 3.6794 4.2175 5 4.5847

QC24
(MVAr) 4.1488 4.8924 2.4257 5 0 5

QC29
(MVAr) 2.0625 1.7212 2.7909 1.2101 2.1292 0.3694

PG
1
(MW) 174.8879 51.5146 118.2429 178.8126 51.5311 118.3008

Fuel cost($/h) 800.7669 967.6973 834.6730 800.9718 967.7366 836.5858
Ploss(MW) 8.8580 3.1147 5.3332 9.2025 3.1312 5.2834
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5.1  Test system and parameter setting

IEEE 30-node system is shown in Fig. 11. The system consists of 6 generators, 4 adjustable 
transformers and 9 capacitors. On the basis of 100 MVA, the active power demand at the 
load side is 283.4 MW and the reactive power demand is 126.2 MVAr. The voltage range 

Fig. 13  Pareto frontier obtained by each algorithm in Case 1

Table 14  Compromise solution 
obtained by each algorithm

Algorithm Cost($/h) Ploss(MW)

MOCOA-ML 834.6730 5.3332
MOCOA 836.5858 5.2834
MOPSO 836.7859 5.4029
MOGWO 836.7707 5.5058
MSSA 834.8014 5.6435
NSGA-II Sivasubramani and Swarup 

(2011)
837.416 5.2397

NSGA-III Chen et al. (2019) 835.0259 5.9213
ICA Ghasemi et al. (2014) 848.0544 4.5603
PSO-Fuzzy Liang et al. (2011) 847.01 5.67
EGA Herbadji et al. (2019) 847.011 5.6658
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of generator bus is 0.95–1.1 p.u.. The normal range of load bus voltage is 0.95–1.05 p.u. 
Bus 1 is the balance bus. The parameters of the generators are listed in Table 9, including 
cost coefficients and emission coefficients.

The structure of the IEEE 57 node system is shown in Fig. 12. The system consists 
of 7 generators, 50 load buses, 80 transmission lines, 17 adjustable transformers and 3 
capacitors. The total active power demand at the load side is 1250.8 MW and the total 
reactive power demand is 336.4MVAr. The load bus voltage range is 0.94–1.06 p.u., and 
the transformer tap range is 0.9–1.1 p.u.. Shunt capacitor maximum reactive power is 30 
MVAr. The cost and emission coefficients of generators are shown in Table 10. In this 
experiment, fuel cost, active power loss and total emissions were selected as objective 
functions and tested in two systems, with a total of 6 cases. The specific case combina-
tions are shown in Table 11.

5.2  Simulation results and analysis

In order to verify the performance of MOCOA-ML, the results were compared with 
MOCOA, MOPSO, MOGWO and MSSA. For the IEEE 30-node test system, the popu-
lation of each algorithm is set to 100, and the maximum number of iterations is 300. For 
the IEEE 57 node test system, the population of each algorithm is set to 100, and the 
maximum number of iterations is 700. Detailed parameter settings of each algorithm are 
shown in Table 12. They are independently run 30 times in each case.

Fig. 14  Pareto frontier obtained by each algorithm in Case 2
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Table 15  Solution set obtained in Case 2

Optimal values of objective functions are bolded

Algorithm MOCOA-ML MOCOA

MIN C MIN E COMP MIN C MIN E COMP

PG2
(MW) 48.7222 68.1878 55.9650 48.0114 67.7323 60.1727

PG
5
(MW) 21.8651 50 28.3170 21.5952 50 27.8339

PG8
(MW) 22.2842 35 34.4453 21.3186 35 34.9741

PG11
(MW) 11.8491 30 27.4468 11.6491 30 26.3913

PG13
(MW) 12 40.0000 26.3893 12 40 24.5596

VG1
(p.u.) 1.0796 1.0592 1.0684 1.0868 1.0377 1.0646

VG
2
(p.u.) 1.0638 1.0513 1.0570 1.0654 1.0292 1.0466

VG5
(p.u.) 1.0345 1.0314 1.0357 1.0359 1.0021 1.0175

VG8
(p.u.) 1.0404 1.0417 1.0380 1.0413 1.0037 1.0269

VG11
(p.u.) 1.0128 1.0687 1.0351 1.0263 1.0604 0.9826

VG13
(p.u.) 1.0274 1.0602 1.0506 1.0233 1.0215 1.0059

T
11

(p.u.) 1.0439 1.1000 1.0733 0.9605 1.0771 1.0532
T
12

(p.u.) 0.9829 0.9777 0.9381 1.1000 0.9073 1.0312
T
15

(p.u.) 0.9817 0.9950 0.9907 0.9683 0.9396 1.0174
T
36

(p.u.) 1.0086 0.9901 0.9903 1.0040 0.9582 1.0003
QC10

(MVAr) 5 3.1589 5 2.6280 5 3.3710
QC

12
(MVAr) 3.5874 0 5 4.4242 0.6941 2.1905

QC15
(MVAr) 4.7660 4.7160 1.1163 3.1855 5 4.1140

QC17
(MVAr) 5 2.6086 4.8809 4.8762 3.0405 4.3360

QC20
(MVAr) 5 1.8158 3.4031 0.8327 5 4.2750

QC21
(MVAr) 5 5 0 4.2959 2.0534 2.5529

QC23
(MVAr) 3.2267 3.2192 2.1246 2.5456 3.3298 4.4370

QC24
(MVAr) 3.1175 3.5379 3.2664 0 4.8975 4.7605

QC29
(MVAr) 4.2335 0 3.2616 0.9919 1.9627 0.4602

PG
1
(MW) 175.6405 63.5148 116.3380 177.9974 64.0755 115.1995

Fuel cost($/h) 800.7411 945.5703 834.2074 800.9233 945.0795 834.2965
Emission(ton/h) 0.3621 0.20485 0.2454 0.3686 0.20488 0.2457

Table 16  Compromise solution 
obtained by each algorithm

Algorithm Cost($/h) Emission(ton/h)

MOCOA-ML 834.2074 0.2454
MOCOA 834.2965 0.2457
MOPSO 839.1628 0.2431
MOGWO 835.7207 0.2457
MSSA 836.8744 0.2493
AGSO Daryani et al. (2016) 843.5473 0.2539
ESDE Pulluri et al. (2017) 833.4743 0.2540
BSA Chaib et al. (2016) 835.0199 0.2425
NSGA-II Zhang et al. (2016) 835.59 0.2449
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5.2.1  Case 1

Fuel cost and active power loss are considered in this case. The optimal solutions and com-
promise solutions of MOCOA-ML and MOCOA on each objective are shown in Table 13. 
MIN C represents the solution corresponding to the minimum fuel cost, MIN P represents 
the solution corresponding to the minimum active power loss, and COMP represents the 
best compromise solution. The minimum fuel cost and the minimum power loss obtained 
by MOCOA-ML are 800.7669 $/h and 3.1147  MW, respectively, and the compromise 
solutions are 834.6730 $/h and 5.3332 MW, which are not dominated by the compromise 
solutions of 836.5858$/h and 5.2834 MW obtained by MOCOA. The simulation result is 
shown in Fig. 13, showing the Pareto frontier found by each algorithm. It can be seen that 
MOCOA-ML has a Pareto solution set with more advanced position, and the result is better 
than MOCOA. Table 14 compares the compromise solutions of each algorithm. The com-
promise of MOCOA-ML is superior to MOPSO, MOGWO, MSSA, NSGA-III (Chen et al. 
2019), PSO-Fuzzy (Liang et al. 2011) and EGA (Herbadji et al. 2019).

5.2.2  Case 2

Fuel cost and emissions are considered in this case. The simulation result is shown in 
Fig. 14, showing the Pareto frontier found by each algorithm. It can be seen that MOCOA-
ML has a more advanced Pareto solution set, with slightly better results than MOCOA. The 
optimal solutions and compromise solutions of MOCOA-ML and MOCOA on each objec-
tive are shown in Table 15. The minimum fuel cost and minimum emissions obtained by 
MOCOA-ML are 800.7411 $/h and 0.20485 ton/h respectively, and the compromise solu-
tions are 834.2074 $/h and 0.2454 ton/h. Table 16 compares the compromise solutions of 
each algorithm. The compromise scheme of MOCOA-ML is superior to that of MOCOA, 
MOGWO, MSSA and AGSO (Daryani et al. 2016), and it has the same dominant level as 
the compromise scheme of other algorithms.

Fig. 15  Pareto frontier obtained by each algorithm in Case 3



Multi‑objective coyote optimization algorithm based on hybrid…

1 3

Page 51 of 64 117

Table 17  Solution set obtained in Case 3

Optimal values of objective functions are bolded

Algorithm MOCOA-ML MOCOA

MIN C MIN E MIN P COMP MIN C MIN E MIN P COMP

PG2
(MW) 49.0086 67.5909 80 60.3497 47.7642 67.7715 80 63.3827

PG
5
(MW) 21.4140 50.0000 50 37.0525 20.6283 50.0000 50 36.8097

PG8
(MW) 21.4771 35.0000 35 35 21.9645 35.0000 35 35

PG11
(MW) 12.1804 30 30 29.7698 12.9960 30 30 29.7536

PG13
(MW) 12 40.0000 40 34.3586 12 40.0000 40 33.1526

VG1
(p.u.) 1.0809 1.0600 1.0593 1.0592 1.0811 1.0612 1.0505 1.0674

VG
2
(p.u.) 1.0567 1.0551 1.0541 1.0490 1.0621 1.0541 1.0493 1.0547

VG5
(p.u.) 1.0265 1.0353 1.0361 1.0206 1.0299 1.0323 1.0277 1.0403

VG8
(p.u.) 1.0417 1.0475 1.0394 1.0343 1.0393 1.0332 1.0386 1.0469

VG11
(p.u.) 1.0096 1.0164 1.0528 1.0640 1.0887 1.0346 1.0138 0.9699

VG13
(p.u.) 1.0484 1.0335 1.0541 1.0333 1.0264 1.0571 1.0626 0.9891

T
11

(p.u.) 1.1000 0.9831 0.9927 0.9949 1.0548 1.0232 1.0886 1.0886
T
12

(p.u.) 0.9214 1.0715 1.0322 1.0397 1.0878 0.9764 0.9026 0.9173
T
15

(p.u.) 0.9792 0.9895 0.9844 0.9950 0.9485 1.0288 0.9781 0.9944
T
36

(p.u.) 1.0003 0.9721 0.9609 0.9757 1.0191 0.9901 0.9784 0.9872
QC10

(MVAr) 4.2247 4.4537 2.1961 0 1.6611 2.2210 0 0.1675
QC

12
(MVAr) 3.2150 3.1316 1.5841 4.6978 3.3284 3.5205 0.6466 5

QC15
(MVAr) 1.9102 4.7593 2.1551 4.3384 0.0538 0.0096 0 3.7618

QC17
(MVAr) 2.2557 5 2.1441 0.8411 4.8803 2.0941 0.8304 4.9962

QC20
(MVAr) 2.6381 4.0734 4.0030 1.8353 4.7869 2.1753 1.7956 4.9890

QC21
(MVAr) 4.5050 3.8487 5 5 2.3472 1.4363 3.0354 4.7117

QC23
(MVAr) 3.3162 4.5087 0 3.7527 4.4179 1.5020 4.9957 0.3167

QC24
(MVAr) 4.8703 0.9969 2.2774 4.0734 2.6045 4.9884 4.1756 0.9253

QC29
(MVAr) 2.5213 3.0827 0.8025 1.8427 5 4.9057 0 0

PG
1
(MW) 176.4041 64.1090 51.5407 91.2504 177.1849 63.9732 51.6025 89.8133

Fuel cost($/h) 800.8717 944.5804 967.7595 873.9523 801.0532 944.9874 967.9071 874.8882
Emission(ton/h) 0.3642 0.20484 0.2073 0.2191 0.3661 0.20486 0.2073 0.2191
P-loss(MW) 9.0844 3.3000 3.1408 4.3810 9.1379 3.3448 3.2026 4.5120

Table 18  Compromise solution obtained by each algorithm

Algorithm Cost($/h) Ploss(MW) Emission(ton/h)

MOCOA-ML 873.9523 4.3810 0.2191
MOCOA 874.8882 4.5120 0.2191
MOPSO 875.7404 4.6815 0.2198
MOGWO 880.8689 4.5705 0.2209
MSSA 856.0247 5.3074 0.2369
WA Anantasate and Bhasaputra (2011) 897.2797 4.6211 0.2175
NSGA-III Chen et al. (2019) 898.5219 4.1419 0.2115
MOEA/D Zhang et al. (2016) 902.54 3.4594 0.2107
NSGA-II Sivasubramani and Swarup (2011) 866.0169 4.5583 0.2165
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5.2.3  Case 3

Fuel cost, emissions and active power loss are considered in this case. The simulation 
result is shown in Fig. 15, which shows the Pareto frontier found by each algorithm. It can 
be seen that MOCOA-ML has a more advanced Pareto solution set, and the result is bet-
ter than MOCOA. The optimal solutions and compromise solutions of MOCOA-ML and 
MOCOA in each objective are shown in Table 17. The minimum fuel cost, minimum emis-
sion and minimum active power loss obtained by MOCOA-ML are 800.8717 $/h, 0.20484 
ton/h and 3.1408 MW respectively, and the compromise solutions are 873.9523 $/h, 0.2191 
ton/h and 4.3810  MW. Table  18 compares the compromise solutions of each algorithm. 
The compromise of MOCOA-ML is superior to that of MOCOA, MOPSO and MOGWO, 
and is at the same dominant level as that of other algorithms.

5.2.4  Case 4

In this case, fuel cost and active power loss are considered and simulated in IEEE 57 node 
system. The simulation result is shown in Fig. 16, showing the Pareto frontier found by 
each algorithm. It can be seen that MOCOA-ML has a more advanced and more malleable 
Pareto solution set, and its results are superior to MOCOA. The optimal solutions and com-
promise solutions of MOCOA-ML and MOCOA in each objective are shown in Table 19. 
The minimum fuel cost and minimum active power loss obtained by MOCOA-ML are 
41,675.44 $/h and 10.0428 MW respectively, and the compromise solution is 42,146.23 
$/h and 11.0192 MW. Table 20 compares the compromise solutions of each algorithm. The 
compromise of MOCOA-ML is superior to that of MOCOA, MOPSO, MOGWO, MSSA, 
BMPSO (Qian and Chen 2022) and MOJFS (Shaheen et al. 2021).

Fig. 16  Pareto frontier obtained by each algorithm in Case 4
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5.2.5  Case 5

Fuel cost and emissions are considered in this case. The simulation result is shown in 
Fig. 17, showing the Pareto frontier found by each algorithm. It can be seen that the Pareto 

Table 19  Solution set obtained in Case 4

Optimal values of objective functions are bolded

Algorithm MOCOA-ML MOCOA

MIN C MIN P COMP MIN C MIN P COMP

PG2
(MW) 91.0352 30 71.5206 86.2769 30 72.4361

PG
3
(MW) 44.9291 139.8292 63.4934 44.5440 115.8068 58.7525

PG6
(MW) 64.9920 100 99.9807 64.5510 99.5688 100

PG8
(MW) 458.3547 312.1038 358.9955 462.9583 303.3304 352.3207

PG9
(MW) 99.8533 100 99.5027 99.8074 99.9601 100

PG12
(MW) 365.9525 410 410 363.9872 409.9514 409.9998

VG
1
(p.u.) 1.0715 1.0689 1.0577 1.0571 1.0592 1.0560

VG2
(p.u.) 1.0683 1.0625 1.0542 1.0549 1.0541 1.0526

VG3
(p.u.) 1.0595 1.0602 1.0500 1.0506 1.0558 1.0489

VG6
(p.u.) 1.0617 1.0633 1.0580 1.0592 1.0538 1.0588

VG8
(p.u.) 1.0780 1.0702 1.0679 1.0719 1.0600 1.0689

VG9
(p.u.) 1.0538 1.0505 1.0445 1.0459 1.0391 1.0426

VG12
(p.u.) 1.0594 1.0592 1.0475 1.0475 1.0428 1.0417

T
19

(p.u.) 1.0937 1.0808 0.9841 1.0565 0.9089 1.0960
T
20

(p.u.) 0.9437 1.0218 1.0730 0.9434 1.0989 0.9848
T
31

(p.u.) 1.0347 1.0423 1.0319 0.9887 1.0213 1.1000
T
35

(p.u.) 0.9141 0.9479 1.1000 0.9848 1.0900 0.9763
T
36

(p.u.) 1.0716 1.0711 1.0238 1.1000 0.9543 1.0991
T
37

(p.u.) 1.0523 1.0098 1.0157 1.0193 1.0110 1.0202
T
41

(p.u.) 0.9963 0.9948 0.9962 1.0061 0.9948 0.9942
T
46

(p.u.) 0.9657 0.9906 0.9570 0.9743 0.9844 1.0150
T
54

(p.u.) 0.9027 0.9392 0.9000 0.9000 0.9034 0.9521
T
58

(p.u.) 0.9857 0.9853 0.9762 0.9820 0.9759 0.9778
T
59

(p.u.) 0.9748 0.9717 0.9661 0.9800 0.9582 0.9593
T
65

(p.u.) 0.9854 0.9805 0.9727 0.9758 0.9755 0.9695
T
66

(p.u.) 0.9352 0.9476 0.9366 0.9302 0.9441 0.9194
T
71

(p.u.) 0.9834 0.9728 0.9819 0.9992 0.9769 0.9640
T
73

(p.u.) 1.0189 1.0003 1.0101 0.9681 0.9678 0.9553
T
76

(p.u.) 0.9806 0.9825 0.9844 0.9352 0.9950 0.9997
T
80

(p.u.) 1.0055 0.9968 1.0020 1.0235 0.9804 0.9824
QC

18
(MVAr) 0.6017 5.5454 6.1419 0 0.0004 0.4690

QC25
(MVAr) 2.6376 8.6312 13.0960 11.2875 11.3191 10.0866

QC53
(MVAr) 3.4088 5.4130 7.6298 8.3036 9.8390 8.0241

PG1
(MW) 140.4018 168.9085 158.3252 143.7006 202.3575 168.3859

Fuel cost($/h) 41,675.44 44,714.45 42,146.23 41,679.64 44,013.66 42,183.76
Ploss(MW) 14.7208 10.0428 11.0192 15.0265 10.1759 11.0961
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solution set of MOCOA-ML has obvious advantages, and the result is better than that of 
MOCOA. The optimal solutions and compromise solutions of MOCOA-ML and MOCOA 
in each objective are shown in Table 21. The minimum fuel cost and minimum emissions 
obtained by MOCOA-ML are 41,698.88 $/h and 0.9546 ton/h respectively, and the com-
promise solutions are 42,474.51 $/h and 1.0632 ton/h. Table  22 compares the compro-
mise solutions of each algorithm. The compromise of MOCOA-ML is superior to that of 
MOCOA, MOPSO, MSSA, MPIO-PFM (Chen et al. 2020), NSGA-III (Chen et al. 2019) 
and MOJFS (Shaheen et al. 2021).

Table 20  Compromise solution 
obtained by each algorithm

Algorithm Cost($/h) Ploss(MW)

MOCOA-ML 42,146.23 11.0192
MOCOA 42,183.76 11.0961
MOPSO 42,181.35 11.4155
MOGWO 42,070.82 12.2947
MSSA 42,155.31 13.1737
ICA Ghasemi et al. (2014) 42,850.6407 10.289
MICA Ghasemi et al. (2014) 42,834.7597 10.2511
BMPSO Qian and Chen (2022) 42,150.7986 11.1328
MOJFS Shaheen et al. (2021) 42,591.8712 15.1461

Fig. 17  Pareto frontier obtained by each algorithm in Case 5



Multi‑objective coyote optimization algorithm based on hybrid…

1 3

Page 55 of 64 117

5.2.6  Case 6

Fuel cost, emissions and active power loss are considered in this case. The simulation result 
is shown in Fig. 18, showing the Pareto frontier found by each algorithm. It can be seen 

Table 21  Solution set obtained in Case 5

Optimal values of objective functions are bolded

Algorithm MOCOA-ML MOCOA

MIN C MIN E COMP MIN C MIN E COMP

PG2
(MW) 99.9373 99.9755 100 99.9834 99.9988 99.9780

PG
3
(MW) 41.4842 140 81.4389 40.8131 140 81.2529

PG6
(MW) 91.4852 100 99.9977 98.1770 99.9990 100

PG8
(MW) 451.7860 272.0993 343.8289 442.7961 278.0674 340.7195

PG9
(MW) 90.9582 100 100 96.2657 99.9432 99.9851

PG12
(MW) 351.0554 356.1969 365.2878 347.6511 355.7908 369.1975

VG
1
(p.u.) 1.0510 1.0722 1.0476 1.0469 1.0641 1.0007

VG2
(p.u.) 1.0464 1.0676 1.0466 1.0437 1.0630 0.9968

VG3
(p.u.) 1.0478 1.0583 1.0410 1.0368 1.0605 0.9892

VG6
(p.u.) 1.0589 1.0553 1.0474 1.0534 1.0508 1.0035

VG8
(p.u.) 1.0711 1.0618 1.0468 1.0655 1.0535 1.0061

VG9
(p.u.) 1.0400 1.0403 1.0222 1.0333 1.0314 0.9774

VG12
(p.u.) 1.0414 1.0468 1.0223 1.0290 1.0381 0.9748

T
19

(p.u.) 0.9672 1.0795 1.0007 1.0469 0.9911 1.0675
T
20

(p.u.) 1.0357 0.9659 1.0510 1.0999 1.0468 1.1000
T
31

(p.u.) 0.9988 1.0825 1.0194 1.0719 1.0724 1.0037
T
35

(p.u.) 1.0260 1.0614 1.0069 1.0118 1.0222 0.9015
T
36

(p.u.) 1.0114 1.1000 1.0315 1.0989 0.9492 1.0238
T
37

(p.u.) 1.0312 1.0168 1.0190 1.0688 1.0784 1.0145
T
41

(p.u.) 1.0083 1.0049 0.9801 1.0392 1.0419 0.9465
T
46

(p.u.) 0.9713 0.9700 0.9897 0.9877 0.9010 0.9210
T
54

(p.u.) 0.9233 0.9364 0.9006 0.9736 0.9147 0.9368
T
58

(p.u.) 0.9667 0.9949 0.9646 0.9650 0.9842 0.9047
T
59

(p.u.) 0.9681 0.9674 0.9527 0.9514 0.9715 0.9189
T
65

(p.u.) 0.9755 0.9827 0.9483 0.9689 0.9626 0.9237
T
66

(p.u.) 0.9380 0.9386 0.9101 0.9002 0.9009 0.9000
T
71

(p.u.) 0.9616 0.9741 0.9885 0.9491 0.9795 0.9002
T
73

(p.u.) 1.0041 1.0123 1.0293 0.9515 0.9887 1.0412
T
76

(p.u.) 0.9658 0.9745 0.9808 1.0940 1.0294 0.9540
T
80

(p.u.) 0.9879 0.9913 0.9638 1.0274 1.0168 0.9264
QC

18
(MVAr) 3.4666 5.2396 6.7966 15.9064 2.9703 20

QC25
(MVAr) 8.1369 11.0002 10.8232 13.1724 0 0.1437

QC53
(MVAr) 7.6256 5.5510 7.9909 5.0102 11.9368 19.6699

PG1
(MW) 139.7307 195.7842 172.8223 141.0471 190.5239 173.6028

Fuel cost($/h) 41,698.88 45,192.39 42,474.51 41,727.86 45,102.96 42,559.47
Emission(ton/h) 1.3114 0.9546 1.0632 1.2804 0.9555 1.0646
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that MOCOA-ML has a more advanced Pareto solution set, and the result is better than 
MOCOA. The optimal solutions and compromise solutions of MOCOA-ML and MOCOA 
on each objective are shown in Table 23. The minimum fuel cost, minimum emission and 
minimum active power loss obtained by MOCOA-ML are 41,695.75 $/h, 0.9556 ton/h and 
10.3392 MW respectively, and the compromise solutions are 42,669.53 $/h, 1.0682 ton/h 
and 11.0802  MW. Table  24 compares the compromise solutions of each algorithm. The 
compromise of MOCOA-ML is superior to that of MOCOA, MOGWO, MSSA, MPIO-
PFM (Chen et al. 2020) and MOALO (Herbadji et al. 2019), and is at the same dominant 
level as the compromise of other algorithms.

Table 22  Compromise solution 
obtained by each algorithm

Algorithm Cost($/h) Emission(ton/h)

MOCOA-ML 42,474.51 1.0632
MOCOA 42,559.47 1.0646
MOPSO 42,625.42 1.0658
MOGWO 42,118.55 1.1624
MSSA 42,665.47 1.1559
MPIO-PFM Chen et al. (2020) 43,205.8477 1.2386
NSGA-III Chen et al. (2019) 43,323.7670 1.2592
MOJFS Shaheen et al. 2021) 43,888.232 1.2384

Fig. 18  Pareto frontier obtained by each algorithm in Case 6
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5.3  Evaluation on performance metrics

In this section, two performance indicators, IGD and HV, are selected to evaluate the algo-
rithm. The former is an inverse index, reflecting the difference between the Pareto solu-
tion set found by the algorithm and the real Pareto solution set. The latter is a positive 

Table 23  Solution set obtained in Case 6

Optimal values of objective functions are bolded

Algorithm MOCOA-ML MOCOA

MIN C MIN E MIN P COMP MIN C MIN E MIN P COMP

PG2
(MW) 93.8442 100 30 99.6217 91.1750 100 33.6875 97.5136

PG3
(MW) 40 140 120.2669 80.8993 46.7192 140 119.2988 82.2691

PG6
(MW) 78.5192 99.9338 99.9671 100 81.8374 100 98.0136 98.6241

PG8
(MW) 459.7178 274.7273 307.6299 317.1069 449.3197 273.6402 324.2483 317.8328

PG9
(MW) 94.7586 99.9998 99.9835 99.7651 98.5632 100 100 99.6736

PG12
(MW) 359.3066 350.2921 410 410 354.7121 357.4455 410 410

VG
1
(p.u.) 1.0642 1.0546 1.0602 1.0627 1.0604 1.0511 1.0566 1.0471

VG2
(p.u.) 1.0589 1.0539 1.0536 1.0599 1.0545 1.0456 1.0529 1.0449

VG3
(p.u.) 1.0452 1.0550 1.0522 1.0494 1.0490 1.0404 1.0571 1.0449

VG6
(p.u.) 1.0587 1.0527 1.0632 1.0611 1.0641 1.0539 1.0634 1.0545

VG
8
(p.u.) 1.0729 1.0536 1.0609 1.0625 1.0676 1.0563 1.0597 1.0666

VG9
(p.u.) 1.0414 1.0250 1.0399 1.0394 1.0430 1.0289 1.0367 1.0320

VG12
(p.u.) 1.0353 1.0209 1.0474 1.0445 1.0433 1.0235 1.0369 1.0221

T
19

(p.u.) 0.9893 0.9561 0.9127 1.1000 0.9667 0.9993 0.9358 1.0960
T
20

(p.u.) 1.0017 1.0999 1.1000 1.0340 1.0997 1.0941 1.0933 0.9071
T
31

(p.u.) 1.0182 1.0194 1.0156 1.0443 1.0687 1.0652 0.9815 1.0252
T
35

(p.u.) 0.9877 0.9517 0.9883 1.0608 1.0972 1.0790 1.1000 0.9000
T
36

(p.u.) 1.0037 0.9266 0.9715 0.9915 1.0828 1.0809 1.0978 1.0042
T
37

(p.u.) 1.0130 1.0072 1.0175 1.0430 1.0901 1.0369 1.1000 0.9965
T
41

(p.u.) 1.0036 1.0015 0.9925 1.0132 1.0527 1.0556 1.0633 0.9978
T
46

(p.u.) 0.9832 1.00427 0.9826 0.9652 0.9860 0.9833 0.9610 0.9658
T
54

(p.u.) 0.9152 0.9334 0.9702 0.9114 0.9570 0.9248 0.9267 1.0965
T
58

(p.u.) 0.9931 0.9700 0.9751 0.9722 0.9763 0.9729 0.9754 0.9677
T
59

(p.u.) 0.9930 0.9602 0.9828 0.9919 0.9784 0.9847 0.9822 0.9806
T
65

(p.u.) 0.9606 0.9543 0.9838 0.9958 0.9870 0.9600 0.9689 0.9697
T
66

(p.u.) 0.9671 0.9151 0.9214 0.9489 0.9163 0.9000 0.9300 0.9025
T
71

(p.u.) 0.9692 0.9548 0.9685 0.9659 0.9743 0.9608 0.9950 0.9442
T
73

(p.u.) 0.9828 1.0258 0.9831 1.0215 0.9078 0.9192 1.0412 1.0424
T
76

(p.u.) 0.9614 0.9870 0.9787 0.9240 1.0749 1.0085 0.9397 0.9020
T
80

(p.u.) 0.9904 0.9924 0.9924 1.0054 1.0805 1.0591 1.0616 0.9799
QC18

(MVAr) 0 9.9830 6.3163 7.6720 0.2296 11.6840 9.1728 0.9397
QC25

(MVAr) 7.3369 1.1706 4.2494 10.0313 17.7532 16.5342 15.6382 0
QC53

(MVAr) 6.4393 8.2051 9.3938 4.7346 7.4268 7.9233 20 14.9821
PG

1
(MW) 140.2227 199.6906 193.2909 154.4862 144.0915 193.8403 176.4072 156.7346

Fuel cost($/h) 41,695.75 45,220.43 44,070.80 42,669.53 41,708.66 45,199.00 43,805.79 42,726.38
Emission(ton/h) 1.3501 0.9556 1.1220 1.0682 1.3088 0.9564 1.1277 1.0716
Ploss(MW) 15.5701 13.8441 10.3392 11.0802 15.6242 14.1267 10.8631 11.8483
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indicator, reflecting convergence and coverage. This is described in details in the previous 
section. Since the real Pareto frontier of OPF problem cannot be obtained, all the solution 
sets obtained by running each algorithm for 30 times are taken as a whole, and the non-
dominant solution is found to replace the real Pareto frontier. The experimental results of 
IGD and the average rankings obtained from the Friedman test are shown in Table 25, and 
the box diagram is shown in Fig. 19. The results of HV and the average rankings obtained 
from the Friedman test are shown in Table 26, and the box diagram is shown in Fig. 20. 
The values within parentheses in Tables 25, 26 are the p-values obtained from the Wil-
coxon signed-rank test (at a significance level of 95%). This test compares the results of 

Table 24  Compromise solution obtained by each algorithm

Algorithm Cost($/h) Ploss(MW) Emission(ton/h)

MOCOA-ML 42,669.53 11.0802 1.0682
MOCOA 42,726.38 11.8483 1.0716
MOPSO 42,723.47 11.9625 1.0645
MOGWO 42,922.23 13.4192 1.3971
MSSA 42,865.42 12.5382 1.1415
MOFA-CPA Chen et al. (2018) 42,665.51 11.7785 1.5234
MPIO-PFM Chen et al. (2020) 43,133.9896 11.7899 1.5027
MOEA/D-SF Biswas et al. (2020) 42,648.69 11.8862 1.3437
MOALO Herbadji et al. (2019) 42,931.4007 15.0270 1.6349

Table 25  Statistical results of IGD in different cases

Case # MOCOA-ML MOCOA MOPSO MOGWO MSSA

Case 1 Mean 4.03e−04 5.89e−04 
(3.34e−11)

0.0034 
(3.02e−11)

0.0041 
(3.34e−11)

0.0057 
(3.02e−11)

Std 2.61e−05 1.44e−04 0.0028 0.0027 0.0028
Case 2 Mean 3.37e−04 3.88e−04 

(4.94e−05)
0.0074 

(3.02e−11)
0.0016 

(3.02e−11)
0.0029 

(3.02e−11)
Std 3.22e−05 4.77e−05 0.0038 0.0011 0.0014

Case 3 Mean 6.10e−04 7.43e−04 
(2.03e−09)

0.0071 
(3.02e−11)

0.0018 
(3.02e−11)

0.0108 
(3.02e−11)

Std 4.68e−05 1.11e−04 0.0024 4.77e−04 0.0020
Case 4 Mean 0.0045 0.0120 

(4.44e−07)
0.0262 

(9.92e−11)
0.0545 

(3.02e−11)
0.0375 

(3.02e−11)
Std 0.0028 0.0086 0.0241 0.0250 0.0075

Case 5 Mean 8.22e−04 0.0017 
(9.53e−07)

0.0081 
(3.02e−11)

0.0283 
(3.02e−11)

0.0183 
(3.02e−11)

Std 2.34e−04 0.0016 0.0050 0.0142 0.0049
Case 6 Mean 0.0031 0.0073 

(3.81e−07)
0.0154 

(3.69e−11)
0.0304 

(3.02e−11)
0.0224 

(3.02e−11)
Std 0.0010 0.0059 0.0056 0.0138 0.0050

Avg 1 2 3.5 4.1667 4.333
Rank 1 2 3 4 5
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MOCOA-ML with those of other algorithms. The IGD and HV values of the proposed 
algorithm are better than those of other algorithms. And MOCOA-ML obtained the opti-
mal index in all cases. At the same time, its standard deviation is also smaller, which indi-
cates the stability of the optimization algorithm to a certain extent.

Fig. 19  Boxplots of the IGD
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6  Conclusions and future works

In this paper, a MOCOA based on hybrid elite framework and Meta-Lamarckian learn-
ing strategy is proposed to deal with multi-objective OPF problems with complex con-
straints. MOCOA-ML retains the main position updating formula of COA, and selects 
better populations by non-dominated sorting. Additional external archive can store 
uniform and diverse Pareto solution sets. Combined with the Meta-Lamarckian learn-
ing strategy, a local optimizer is established to further improve the performance of 
the algorithm. The experimental contents and results are as follows. (1) The proposed 
method was tested on 20 test functions, including ZDT series, DTLZ series and UF 
series, which were run independently 10 times in each case to record the performance 
metrics of the algorithm. The results of the test functions show that MOCOA-ML can 
find true Pareto frontiers on most functions, and the diversity of solution sets is best. 
(2) Simulation experiments were conducted on 6 OPF cases in IEEE 30-bus system 
and IEEE 57-bus system with fuel cost, active power loss and emissions as objective 
functions. The experimental results of OPF demonstrate that MOCOA-ML outperforms 
other advanced multi-objective optimization algorithms, such as MOPSO, MSSA and 
MOGWO. It effectively balances convergence performance with ductility, resulting in a 
superior and more uniformly distributed Pareto solution set.

The OPF problem has complex constraints, so proposing and selecting different con-
straint processing methods will directly affect the quality of the solution set. This paper 
only uses the basic penalty function method. The future work will focus on the con-
straint processing technology. In addition, the integration of new energy into the power 

Table 26  Statistical results of HV in different cases

Case # MOCOA-ML MOCOA MOPSO MOGWO MSSA

Case 1 Mean 0.1465 0.1449 
(3.02e−11)

0.1351 
(3.02e−11)

0.1312 
(3.02e−11)

0.1252 
(3.02e−11)

Std 1.79e−04 6.61e−04 0.0080 0.0093 0.0071
Case 2 Mean 0.1022 0.1019 

(4.08e−11)
0.0901 

(3.02e−11)
0.0992 

(3.02e−11)
0.0969 

(3.02e−11)
Std 5.6e−05 1.36e−04 0.0080 0.0024 0.0020

Case 3 Mean 0.0718 0.0706 
(1.21e−10)

0.0544 
(3.02e−11)

0.0647 
(3.02e−11)

0.0369 
(3.02e−11)

Std 3.04e−04 7.45e−04 0.0079 0.0026 0.0061
Case 4 Mean 0.0538 0.0485 

(6.74e−06)
0.0387 

(1.09e−10)
0.0194 

(3.02e−11)
0.0283 

(3.02e−11)
Std 0.0024 0.0072 0.0106 0.0128 0.0051

Case 5 Mean 0.0508 0.0499 
(7.04e−07)

0.0457 
(3.02e−11)

0.0245 
(3.02e−11)

0.0315 
(3.02e−11)

Std 2.40e−04 0.0018 0.0031 0.0107 0.0054
Case 6 Mean 0.0186 0.0149 

(2.03e−07)
0.0098 

(3.34e−11)
0.0046 

(3.02e−11)
0.0062 

(3.02e−11)
Std 0.0013 0.0041 0.0031 0.0034 0.0020

Avg 5 4 2.5 1.8333 1.6667
Rank 1 2 3 4 5
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grid is the future research trend. In the future work, the modeling of wind turbines and 
photovoltaic power stations will be carried out, and new energy will be added into 
the OPF problem and simulation will be carried out so as to deal with the challenges 
brought by the uncertainty of power and load demand of distributed generation.

Fig. 20  Boxplots of the HV
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