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Abstract

We study the connection between the ordeplefise transitions in combina-
torial problemsand the complexity of decision algorithms for such problekive
rigorously show that, for a class of random constraint &ati®on problems, a lim-
ited connection between the two phenomena indeed existifttally, we extend
the definition of the spine order parameter of Bollobas eff#] to random con-
straint satisfaction problems, rigorously showing thatsiech problems a discon-
tinuity of the spine is associated with2#(™) resolution complexity (and thus a
2(") complexity of DPLL algorithms) on random instances. The phenomena
have a common underlying cause: the emergence of “largegdtisize) minimally
unsatisfiable subformulas of a random formula at the satitifigphase transition.

We present several further results that add weight to thation that random
constraint satisfaction problems with a sharp threshotdeacontinuous spine are
“qualitatively similar to random 2-SAT". Finally, we argteat it is the spine rather
than the backbone parameter whose continuity has impicstior the decision
complexity of combinatorial problems, and we provide ekpental evidence that
the two parameters can behave in a different manner.

Keywords: constraint satisfaction problems, phase transitionsiespiesolution
complexity.
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1 Introduction

The major promise ophase transitions in combinatorial problerhas been to shed
light on the “practical” algorithmic complexity of combitaial problems. A possible
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connection has been highlighted by results of Monasson §&,8] that are based on
experimental evidence and nonrigorous arguments fronsttalt mechanics. Study-
ing a version of random satisfiability that “interpolate€tlveen 2-SAT and 3-SAT,
they suggested that the order of the phase transition, catdially expressed by
continuity of an order parameter called thackbonemight have implications for the
problem'’s typical-case complexity. A discontinuous ortfosder transition appeared
to be symptomatic of exponential complexity, whereas ainanus or second-order
transition was correlated with polynomial complexity.

It is understood by now that this connection is limited. Fwtancek-XOR-SAT
is a problem believed, based on arguments from statistieahanics([3], to have a
first-order phase transition. But it is easily solved by aypomial algorithm, Gaussian
elimination. So, if any connection exists between firsteonohase transitions and the
complexity of a given problem, it cannot involadl polynomial time algorithms for the
problem. Fortunately, this does not end all hopes for a catimewith computational
complexity:descriptive complexitfd] provides a principled way to measure the com-
plexity of problems with respect to more limited classeslgbathms, those express-
ible in a given framework. Here we focus on tBavis-Putnam-Longman-Loveland
(DPLL) class of algorithmg [5].

One way to identify the connection between phase transitiord computational
complexity is to formalize the underlying intuition contieg the two notions in a
purely combinatorial way, devoid of any physics consideret. First-order phase
transitions amount to a discontinuity in the (suitably eded) size of the backbone.
For randomk-SAT [6], and more specifically for the optimization probléiAX- k-
SAT, the backbone has a combinatorial interpretation: thésset of literals that are
“frozen”, or assume the same value, in @fitimal assignments. Intuitively, a large
backbone size has implications for the complexity of findsngh assignments: all lit-
erals in the backbone require specific values in order tsfgatie formula optimally,
but an algorithm assigning variables in an iterative fasthas very few ways to know
what those “right” values to assign are. In the case of a dirder phase transition,
the backbone of formulas just above the transition contaiith high probability, a
fraction of the literals that is bounded away from zero. Agoaithm such as DPLL
that assigns values to variables iteratively may misasaiackbone variable whose
height, in a binary tree characterizing the behavior of tgerithm, isQ(n) wheren
is the number of variables. This would force a backtrack anttee. Assuming the
algorithm cannot significantly “reduce” the size of the expld portion of this tree, a
first-order phase transition would then w.h.p. impBF4™ lower bound for the running
time of DPLL on random instances located slightly above taedition.

There exists, however, a significant flaw in the heuristizargnt above: the back-
bone is defined with respect tiptimal assignments for the given formula, meaning
assignments that satisfy the largest possible number o$eta(or all of them, in the
case where the formula is satisfiable). The argument sugithedta discontinuity in the
backbone size will make it difficult for algorithms that agsivariables in an iterative
manner to findbptimalsolutions. The complexity of the optimization problem isph
ever, often different from that of the corresponding decigiroblem. For instance, that
is the case in XOR-SAT, where the decision problem is easthieudptimization prob-
lem is hard. As mentioned above, XOR-SAT is presumed to hdirsteorder phase



transition, so it is not clear at all that the continuity osabntinuity of the backbone
should be the relevant predictor for the complexity of deeisionproblem as well.

Fortunately, it turns out that the intuition of the previargument also holds for a
different order parameter, a “weaker” version of the backboalled thespine intro-
duced in[[7] in order to prove that random 2-SAT has a secadds@hase transition.
Unlike the backbone, the spine is defined in terms ofdbeisionproblem, hence it
could conceivably have a larger impact on the complexithe$e problems. Of course,
the same caveat applies as for the backbone: any connedtlonamputational com-
plexity can only involve complexity classes that have weak@ressive power than the
class of polynomial time algorithms.

We aim in this paper to provide evidence that for random cairdt satisfaction
problems it is the behavior of the spine, rather than the lbawck, impacts the com-
plexity of the underlying decision problem. To accomplisist

1. We discuss the proper definitions of the backbone and $pmendom con-
straint satisfaction problems (CSP).

2. We formally establish a simple connection between a discoity in the rela-
tive size of the spine at the threshold and the resolutionpbexity of random
satisfiability problems. In a nutshell, a necessary andcseffi condition for
the existence of a discontinuity is the existence of%n) lower bound (w.h.p.)
on the size of minimally unsatisfiable subformulas of a randansatisfiable)
subformula. But standard methods from proof compleXityifigly that for all
problems where we can prove such@m) lower bound, there is 2°(™) lower
bound on their resolution complexity and hence on the coxitylef DPLL al-
gorithms as well[[5]. This property arises from the expansibthe underlying
formula’s hypergraph, and isdependendf the precise definition of the problem
at hand. Conversely we show (Theorl@im 1) thatsfioy generalized satisfiability
problem a second-order phase transition implies, in the regiorrevhmst for-
mulas are unsatisfiable, an upper bound on resolution cauitytbat is smaller
than any exponential) (2<"*) for everye > 0.

3. We give a sufficient condition (Theordih 2) for the existenta discontinuous
jump in the size of the spine. We then show (Theokém 3) thatabidition is
fulfilled by all problems whose constraints have no impksabf size two or less.
Qualitatively, our results suggest that all satisfiabjtitpblems with a continuous
phase transition in the spine are “2-SAT-like".

4. Finally, we present experimental results that attemplanfy whether the back-
bone and the spine can behave differently at the phase ttoamsiThe graph
bipartition problem(GBP) is one case where this seems to happen. In contrast,
for random3-coloring (3-COL), the backbone and spine appear to have similar
behavior.

A note on the significance of our results: a first-order témsior discontinuity
in the size of the spine is weaker than a discontinuity in the ef the backbone. In
the last section of the paper we give a numerical demonstrafi an example where



the backbone and spine behave differently. And unlike feriackbone, we do not
have a physical interpretation for the spine. But this is ot intention. The argu-
ment connecting the continuity of the backbone order patranvéth the complexity
of decision problems is problematic, and what we rigorogslgw is that — with no
physical considerations in mind -the intuitive connection holds instead for the spine

2 Preliminaries

Throughout this paper we assume a general familiarity with ¢concepts of phase
transitions in combinatorial problenid [9], random strue10], and proof complex-
ity [L1]. We assume more detailed familiarity with certaimflamental results on sharp
thresholdsl[12, 13.18], and we make use of some of the mettssisiated with those
results.

Two models arising in the theory of random structures are:

e Theconstant probability moddl(n, p). A random string of bits¥ € I'(n, p) is
obtained by independently setting each bitbto 1 with probabilityp, and the
restto 0.

e The counting model'(n,m). A random stringX € I'(n,m) is obtained by
settingm bits of X', chosen uniformly at random, to 1 and the rest to 0.

For the following purposes, let us work within the constanatyability model. Con-
sider a propertyl that is monotonically increasing, in thatdf holds for a given string
of bits X, then changing any of these bits from 0 to 1 preserves prpgerfor anye >
0, letp. = p.(n) be the canonical probability such thatob x ey, p. (n))[X satisfiesd] =
¢, wherep, increases monotonically with Sharp thresholdare those for which the
function has a “sudden jump” from value O to 1:

Definition 1 Property A has asharp thresholdf for every0 < ¢ < 1/2, we have
lim, — oo % = 0. A hasa coarse thresholififor somee > 0 it holds that
Pi—e(m)—pe(n)

liminf,, oo D172 (n)

We will use the model of random constraint satisfaction fidoiloy [L4]:

Definition 2 LetD = {0,1,...,t — 1}, t > 2 be a fixed set. Consider ar’ —1
possible nonempty sets/ofary constraint templates (relations) with values takemfr
D. LetC be such a nonempty set of constraint templates.

Arandom formulap € CSP(C) is a set of constraints specified under the counting
model by the following procedure:

1. Select, uniformly at random and with replacemenhyperedges of the complete
k-uniform hypergraph om variables.

2. For each hyperedge, choose a random ordering of the viasainvolved in it.
Choose a random constraint template frérand apply it to the list of (ordered)
variables.



We use the notatioBAT(C) (instead ofCSP(C)) when t=2.

For an instanc@® € CSP(C), we denote byVar(®) the set of variables that actu-
ally appear inb, and byopt (®) the number of constraints left unsatisfied byogtimal
assignmentor @.

Just as in random graptis [10], under fairly liberal condsione can use the con-
stant probability model instead of the counting model frbmprevious definition. The
interesting range of the parameteris when the ration/n is a constant, called the
constraint density The original investigation of the order of the phase tramsiin
k-SAT used an order parameter caltbd backbonge

B(®) ={z € Var(®) | IW € {z,T} : opt(PUW) > opt(P)}, 1)

or more preciselyhe backbone fraction

fB(®) = - ()

Bollobas et al.[[7] have investigated the order of the phisesition ink-SAT (for
k = 2) under a different order parameter, a “monotonic versidrthe backbone called
the spine

S(®) = {z € Var(®) | IW € {2,7},2C &:Z € SAT,EAW € SAT}. (3)

Here, “€ SAT” means “is satisfiable” and&' SAT” means “is unsatisfiable”.
The corresponding version of EQl (2) is

fs(®) = (4)

They showed that random 2-SAT has a continuous (secona)quiagse transition:
the size offs approaches zero w.h.p. (as— oo) for constraint density < co_gat =
1, and is continuous at = ¢o_gaT. By contrast, nonrigorous arguments from sta-
tistical mechanics[6] imply that for 3-SAT the paramefer jumps discontinuously
from zero to a positive value at the transition paint c3_gat (a first-order phase
transition).

S(@)|

3 How to define the backbone/spine for random CSP
(and beyond)

We would like to extend the concepts of backbone and spinest@ml constraint
satisfaction problems. The extended definitions must press many of the properties
of the backbone/spine as possible.

Certain differences between the case of rande8AT and the general case force
us to employ an alternative definition of the backbone/spliiee most obvious is that
Eqg. (3) involves negations of variables, unlike Molloy’s deb. Also, these definitions
are inadequate for problems whose solution space preseri&baling symmetry, such



as the case ofraph coloringwhere the set of (optimal) colorings is closed under
permutations of the colors. Due to this symmetry, no vaeatan be “frozen” to a
fixed value) as in Eq.[IL).

We therefore define the backbone/spine of a random instah€&B(C) in a
slightly different manner. LeC be the set of constraints obtained by applying the
constraint templates i@ to all ordered lists of; variables chosen from the set of all
variables.

Definition 3
B(®) = {z € Var(®) |3C € C:x € C,opt(dDUC) > opt(®)},
S(®)={x e Var(®)|3CeC,EC®:2€C,2e CSP,EUC € CSP}.

For k-CNF formulas whose (original) backbone/spine contairleadt three liter-
als, a variabler is in the (new version of the) backbone/spine if and onlytifieix or
T were present in the old version. In particular the new dédinitioes not change the
order of the phase transition of rand@nBAT.

Alternatively, in studying 3-colorability (3-COL) of rawdn graphsG = (V, E),
Culberson and Genit[1L6] defined the spine of a colorable giagahbe the set of vertex
pairs(z,y) € V? that get assigned the same coloalhcolorings ofG.

Following up on the idea of defining the backbone and spinerms ofconstraints
rather tharvariables and by analogy with the definition inl[7], one can extend the
definition of S(G) to general graphsy

S(G) ={(v,y) €V?*|IHCG: He3-COLHU (z,y) € 3-COL}. (5)

We can further extend these definitions to all random coimstsatisfaction prob-
lemsCSP(C):

Definition 4
Be(®) = {C € C | opt(®UC) > opt(D)},
Se(®)={CeC|IECP:=Z e CSP,ZUC € CSP}.

Similarly, one can define theackbone/spine fractioloy

_ |Bc(®)
ch ((I)) - |C'| )
an |Sc(®)|
o C
fSc ((I)) - |é| .

1Culberson and Gent employ an “effective” version of the sjtirey calffrozen developmertihat is more
amenable to experimental analysis. Frozen developmerdibset of the spine, as defined in Hd. (5).



We will refer to these concepts as tbenstraint-basetackbone/spine (fractions),
as opposed to the previously defineatiable-basedjuantities. The two are clearly
related. For instance one can easily show that

B(®) = Ucepe () Var(C),

where Var(C) represents all variables appearing in constr@imtione. It is also clear
that| Bo(®)| = O(|B(®)|*) and similarly for the spine. Sind€'| = ©(n*), it follows
that the continuity off 5 or fs implies the continuity off 5. or fs.. However, the con-
verse is not in general true, and so the two backbone/sgngdns do not necessarily
behave in the same way.

Given the two types of definitions, which should we chooseg diswer depends
on the problem, as well as on the issue we wish to addressn&tanice, in the statisti-
cal mechanics analysis of combinatorial problems, theysnebly “correct” definition
of the backbone emerges from the analysis undertaken irofgphdomk-SAT. But
since we are interested in a combinatorial definition, withpiysics considerations
in mind, the only principled way to choose between the twatypf order parameters
(one based on variables, the other based on constrainta$ésilon the class of algo-
rithms we are concerned with. In the case of random constatisfaction problems
and DPLL algorithms, it is variables that get assigned \&lse DefinitiorB is pre-
ferred. On the other hand, constraint-based definitionswake sense for problems
that share some characteristics with random 3-COL (i.earyiconstraint satisfaction
problems, and problems with built-in symmetries of the Boluspace). In a later sec-
tion we will see an example, the casegnéph bipartition where the constraint-based
backbone and spine seem to behave differently. (Whethecameome with a natural
example of this phenomenon for the variable-based backisoae interesting open
problem.)

4  Spine discontinuity and resolution complexity of ran-
dom CSP

In this section we will study the continuity of the spine-bdorder parametefs for

boolearrandom constraint satisfaction, or satisfiability, prote The kind of continu-
ous/discontinuous behavior we are looking for is formalilag the following definition
(a similar one can be given for the constraint-based vesgiéthe order parameter):

Definition 5 LetC be such thaSAT(C) has a sharp threshold. ProbleSAT(C) has
a discontinuous spini there exists) > 0 such that for every sequenge= m(n) we
have
lim Prob [® € SAT] =0= lim Prob [fs(®)>n]=1. (6)
n—00 m=m(n) n—00 m=m(n)
If, on the other hand, for every> 0 there exists a constant= ¢(¢) such that the map
e — ¢(e) is monotonically increasing and
lim Prob [® € SAT]=0and lim Prob [fs(®)>¢€] =0 (7)

n—o0 m:c(g)n n—0o0 m:C(E)n

we say thaBAT(C) has acontinuous spine



We now give a simple observation that will be the basis foniifging discontinu-
ities of the spine:

Proposition 1 Let ® be a minimally unsatisfiable formula, and letbe a literal that
appears in®. Then, by DefinitioBl3; € S(®).

Proof. There exists € ® such that: € C. But® \ C'is satisfiable and® \ C)u C
is not, thuse € S(®). O

Corollary 1 k-SAT,k > 3 has a discontinuous spine.

Proof. To show a discontinuous spine it is sufficient to show thadradom unsatis-
fiable formula contains w.h.p. a minimally unsatisfiablefsatmula involving a linear
number of literals. In the Chvatal-Szemerédi praol [18]ttw.h.p. randont-SAT has
exponential resolution size fér> 3, the claim is implicitly proved. O

Definition 6 Thewidth of a resolution proof’ of the unsatisfiability of a CNF-formula
F is defined to be the maximum number of literals in any clauaedhpears in the
proof P.

If @ is an instance oBAT(C), denote byCl(®) the CNF formula obtained by
expressing each constraint @fas a conjunction oflauseqi.e., expressing in con-
junctive form).

Theresolution complexityf an instanceb of SAT(C) is defined as the length of
the smallest resolution proof @f/(®).

A simple observation is that a continuous spine has imptinatfor resolution com-
plexity:

Theorem 1 LetC be a set of constraint templates such tBAfT'(C) has a continuous
spine. Then for every constraint density> lim._c(e), andeverye > 0, random
formulas of constraint densityhave w.h.p. resolution complexify(2<").

Proof.

Because of Propositidd 1 and the fact tRAT'(C) has a continuous spine, for ev-
erye > 0, minimally unsatisfiable subformulas of a random formailavith constraint
densityc(e) contain w.h.p. at most: variables. Consider the backtrack tree of the nat-
ural DPLL algorithm that tries to satisfy constraints ona &tme on such a minimally
unsatisfiable subformul&. By the usual correspondence between DPLL refutations
and resolution complexity (e.gLl[5]) this yields a resmntproof of the unsatisfiability
of ® having size at most”.

Takinge to be small enough thate) < ¢, and using the fact that resolution com-
plexity of a random formula is a monotonically decreasingcfion of the constraint



density, we get the desired result. O

Let us observe that we have stated the preceding theorerg osimditionc >
lim._c(€) since we cannot be sure, even foSAT, that the phase transition takes
place at a constant value of the constraint densitin practice one would of course
expect that, for a problem with a continuous spine, therstgex sequencde) as in
Definition[d having the constraint density at the phase ttiansas its limit.

Definition 7 Denote by F'| the number of constraints that appear in formi#laDefine

|H|
“(F) = _ HCF ;.
o) =max{ gy 0 H <
The next result gives a sufficient condition for a generaligatisfiability problem
to have a discontinuous spine. Interestingly, it is one d@rdstudied in [14].

Theorem 2 Let C be such thaBAT(C) has a sharp threshold. If there exists> 0
such that for every minimally unsatisfiable formdfat holds thatc* (F') > ;fi , then
SAT(C) has a discontinuous spine.

Proof. The proofis similary to that of Corollafy 1: we will show tha.h.p. a random
formula contains a minimally unsatisfiable subformula eaming a linear number of
variables, and apply Propositibh 1.

To accomplish that, we first recall the following conceptfir{iL3]:

Definition 8 Letxz,y > 0. A k-uniform hypergraph witm vertices is(x,y)-sparsef
every set of < zn vertices contains at mogt edges.

We also recall Lemma 1 from the same paper.

Lemmal Letk,c > 0andy > 1/(k — 1). Then w.h.p. the rando&uniform hyper-
graph withn vertices and:n edges ig«, y)-sparse, where

()T ®

Lety = % Directly applying Lemm@l1, w.h.p. a randderuniform hypergraph

with en edges is(xg,y) sparse, forzy, = (2—16(%)?/)%. The critical observation is
then that the existence of a minimally unsatisfiable formuith 2n variables and with
c*(F) > ,1“_“; implies that the:-uniform hypergraph associated with the given formula
isnot(x, y)-sparse. It follows that any formula with fewer thagn/k constraints (and
thus fewer thangn variables) is satisfiable. Therefore, any minimally ursetble
subformula of random formul& has more thamyn/k constraints.

To show that such formulas have many variables, we againasntipd expansion of
the formula hypergraph given by Lemiiila 1, and infer #ilasubformulas of size less

thanan of @ (in particular those that are also subformulas of a miniynafisatisfiable




subformula of®) have a linear number of variables. O

One can give an explicitly defined class of satisfiability jeons for which the
previous result applies:

Theorem 3 Let k£ > 2 and letC be such thaSAT(C) has a sharp threshold. o
clause templaté’ € C has (when expressed as a CNF-formula) an implicate of length
2 or1then

1. For every minimally unsatisfiable formulg ¢*(F) > 2. ThereforeSAT(C)
satisfies the conditions of the previous theorem, i.e. stehdiscontinuous spine.

2. Moreover, there exists a constapt> 0 such that w.h.p. random instances of
SAT(C) haveQ(2") resolution complexify

The condition in the theorem is violated, as expected, bgoan2-SAT. It is also
violated by the random version of the NP-complete probleim-2-SAT. This can be
seen as follows. The problem can be representedsdyC), for C a set of2* con-
straints corresponding to all ways to negate some of thabi@s, and has a rigorously
determined “2-SAT-like” location of the transition poiifd]. However, the formula

Clxr,x2,...,2p—1,2k) AN C(Tk, Lht1, - - - L2k—2,L1)

NC(T1, Tok—1, -+, ¥3k—3,Tk) N C(Tp, T3k—2, . - -, Tag—4, 1),
where( is the constraint “1-ink”, is minimally unsatisfiable but has clause/variable

ratiol/(k — 1) and implicatesy V 7 andz V xk.

Proof.

1. For anyreat > 1, formulaF and set of clauses C F', define the--deficiency
of G, §,(G) = r|G| — 2| Var(G)|. Also define

55(F) = max{8,(G) : 0 # G C F} ©)
Definition 9 Let F' be a formula, and le€,,Cs, ..., C;, ..., C,, be alisting of
the constraints inF'.

A variablew is privatefor constraintC; if v appears inC; but in no other con-
straint.

Variablev is free inC; if v appears inC; butin noC}, j < . Otherwise we say
thatv is bound inC;.

2This result subsumes some of the resultdn [17]. While drpiery version of this paper was under
consideration (and publicly available 125]) related arahtécally more sophisticated results have been given
independently in[18].
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We claim that for any minimally unsatisfiablg, 63, _,(F) > 0. Indeed, assume
this was not true. Then there exists suclsuch that:

dor—3(G) < —1forall® # G C F. (10)

Lemma 2 Let I be a formula for which conditidnl 0 holds. Then there exists a
orderingCh, . . ., C ) of constraints inF" such that each constraiidt; contains
at leastk — 2 variables that are free iit’;.

Proof. Denote by; the number of variables that appeaekactly: constraints
of F. We have)_ ., iv; = k|F|, therefore2| Var(F')| — v; < k|F|. This can
be rewritten as, > 2| Var(F)| — k|F| > |F|(2k —3—k) = (k— 3)|F|, where
we use Eq.[(0). Therefore there exists at least one comis@ain F' with at
leastk — 2 variables that are private ifi, hence necessarily free ii. We set
Cir| = C and apply this argument recursively ¥\ C. O

Let us show now thak’ cannot be minimally unsatisfiable. Construct a satisfying
assignment foF' incrementally, so that the partial assignment construapett
stagej will satisfy constraint€’, . .., Cj.

Indeed, suppose we have constructed a partial assignnagsatisfies’;, ..., C;_1,
and consider now constrai@t;,. At most two of the variables i6'; are bound in
C;. SinceC; has no implicates of length two or less, no matter what thigiass
ment to these two variables might have been in the previagest one can set
the variables that are free @; in a way that satisfies this clause. Iteratively per-
forming this construction yields a satisfying assignmemt, in contradiction
with our assumption tha' was minimally unsatisfiable.

Therefored;, (F) > 0, a statement equivalent to our conclusion.
. To prove the resolution complexity lower bound we use the-width connec-
tion for resolution complexity obtained iql[8]: it is suffesit to prove that there

existsn > 0 such that w.h.p. random instancesSifT(C) having constraint
densityc have resolution width at least:.

To accomplish this, we use the same strategy &s in [8]: deding finsatisfiable
formula® a measurg : Clauses — N (whereClauses is the set of all possible
disjunctions of literals fromVar(®), including the contradictory clauge) such
that

(a) for every claus€ that appearsiCl(®), u(C) <1,

(b) w.h.p.p(O) is “large”.

(c) Infer that in any refutation there exists a cladavith “medium” x(C),

and

(d) prove that ifu(C) is “medium” than the width o is “large”.
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As in [8], define
w(C)=min{|Z|: 2 C ,E E C},

where = is the logical entailment relation. In particulaf0d) is the size of
the smallest unsatisfiable subformuladf . is subadditive, that is, for every
clause”; and(C, that share a variable appearing with opposite signs in the
two clauses,

p(resz(Cr, C2)) < p(Ch) + pu(Cz).

whereres, (C1, C2) denotes the clause obtained by applying resolution to ekaus
C1, Co with respect to variable. Itis clear that condition a) is satisfied. As to
b), the following is true:

Lemma 3 There exist3;; > 0 such that for any: > 0, w.h.p.u(8) > mn,
where® is a random instance ¢fAT(C) having constraint density.

Proof. In the proof of Theorerill2 we have shown that there exjsts> 0
such that w.h.p. any unsatisfiable subformula of a given tdanhas at least
non constraints. Thereforany formula F' made up ofclausesfrom the CNF-
representation of constraintsdn and which has fewer thagpyn clauses is sat-
isfiable (since it is less tight than the conjunction of thosastraints).

The claim now follows by taking; = 7. O

The only (slightly) nontrivial step of the proof, which éadally uses the fact that
constraints inC do not have implicates of length one or two, is to prove that
clause implicates of subformulas of “medium” size have “giamriables.

Lemma 4 There existgl > 0 andne > 0 such that w.h.p. (whed@ is a random
instance ofSAT(C) having constraint density) every clause” present in a
refutation of C1(®) that satisfiesl < u(C) < dn also satisfie$C| > nzn.

Proof.

Given a clause”, let = be a subformula of®, having minimal size, such that
E E C. We claim:

Lemma 5 For every constrainf’ of = that contains: — 2 private variables, at
least one of these variables appearsin

Proof. Suppose there exists a constraintof = with at leastk — 2 private
variables such that none of its private variables appea¢s. ilBecause of the
minimality of = there exists an assignmefitthat satisfieE€ \ { D} but does not
satisfyD or C'. SinceD has no implicates of size two, there exists an assignment
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G, that differs fromF only on the private variables dp, that satisfie€. But
sinceC does not contain any of the private variablednfF coincides withG
on variables irC. The conclusion is that does not satisfy’, contradicting the
factthat= = C. O

Now definez (-, -) to be the function from EqLI8) that describes the dependence
of x ony andc. For a constart > 0 to be determined later, define

d = min(inf{x(2/(2k =3+ €),c)|c = csarey }> m)-

SinceSAT(C) has a sharp threshold, the first term of the minimum exprassio
is, like n, strictly greater than zero. Thereforey> 0.

Lemma 6 There exists constamt > 0 such that w.h.p., whe® is a random
instance 08SAT(C) having constraint densityandW C @ is a formula with at
mostdn constraints,J contains at least;n constraints each of which has at
leastk — 2 private variables.

Proof.
To prove Lemm&l6 we first need:

Lemma 7 Lete > 0 be a constant. If” is a formula withe* (F) < 52— then
for every subformula? of I, at least(e/3)|G| constraints ofG' have at least
k — 2 private variables.

Proof. Indeed, since*(G) < ﬁ by an argument similar to the one used
in the proof of Lemmdl2p;(G) > (k — 3 + ¢)|G|. Since constraints i
have arityk, at least(e/3)|G| have more thait — 3 (i.e., at leask — 2) private
variables. d

Returning to the proof of Lemnid 6, chooge- 52— in Lemmall fore > 0
a small enough constant. Because of the definitiod, afhen® is a random
instance oS8 AT(C) having constraint density w.h.p. formulad is (d, y) sparse.

Since|W| < dn, this easily implies the fact that

2

* < ——m
W)= 3+«

Lemmd® follows by applying Lemnia 7 to formul# with . = €/3. Applying
this result and Lemmid 5 to formutaalso concludes the proof of Lemifola 4.

O
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The proof of item 2. of Theorel 3 now follows: since for anyudaK in Cl(®)
we haveu(K) = 1, sinceu(OJ) > nyn and sincd < d < 7, there indeed exists
a clause” such that

w(C) € [dn/2,dn]. (12)

Indeed, letC’ be a clause in the resolution refutation ®fminimal with the
property thatu(C’) > dn. Then at least one clauge of the two involved in
deriving C” satisfies EqI{d1). Applying Lemnfia 4 we infer that the widthCof
is at least);n. Using the size-width connection from[8] completes theobaf
item 2. of Theorerll3.

4.1 Threshold location and discontinuous spines

Molloy [L4] has studied threshold properties of random ¢aist satisfaction prob-
lems, describing a technical property of the constrainfsdledvery well-behavednekss
that is necessary for the existence of a sharp thresholdZdhvye have shown that
Molloy’s well-behavednessondition is actually necessary and sufficient for boolean
constraints (this has been independently proved by Creigimal Daudél[[28]). Thus
we have completely characterized s€tfor which SAT(C) has a sharp threshold.

The well-behavedness condition has implication for theisddvariable ratio of
minimally unsatisfiable formulas: it has to be larger thaiik — 1). Furthermore,
Molloy has shown that if the density of minimally unsatisfeformulas isbounded
away froml/(k — 1) (i.e., it satisfies the conditions of Theorgn 2) then thetioceof
the transition isstrictly larger thanﬁ.

We have seen that the same density condition is sufficientacegtee the disconti-
nuity of the spine and exponential resolution complexitynatural question therefore
arises: is it possible to relate the continuity (or discomity) of the spine to théoca-
tion of the phase transition ?

At first this does not seem to be possible: we have alreadyuenered two prob-
lems that fail to satisfy the sufficient condition for a distiauous spine, random 2-
SAT, for which the transition has been proven to be of secaddrd{], and random
1-in-k-SAT, for which a similar result hold5[19]. Both have a threkl location strictly
higher than Molloy’s lower bound ogﬁ However, the most natural specification
of the random model for the two problems involves applyingstmaints on both vari-
ables and their negations. For both problems the actuatidocaf the threshold is
twicethe value given by Theorem 3 in_[14], at clause/variablmrgitﬁ—l). This sug-
gests that the following tempting intuitive picture miglet &ccurate, at least in a more
restricted setting:

1. Problems with a continuous spine are “2-SAT-like”, andeha phase transition

. . 2
at constraint density;°"* = BT

2. Problems with a discontinuous spine have a phase tramiitated at constraint
densityc > ¢fo™.

14



To obtain results that partly support the intuition above, lmave to modify the
random model from Definitiol 2 to allow negated variables.

Definition 10 LetC be a set of constraint templates. Tdlesure ofC, denoted’ is the
set of constraints

C={C(af,...,a5*) | C € Candey,... e € {£1}}, (12)

where for a variabler; we definer! := z;, z;' :=7;.

SetC is goodif |C| = |C|2*, that is all elements on the right hand side of Eql (12)
are distinct.

Definition 11 LetC be a good set of constraint templates. Denot& Ay ("°#) (C) the
version ofSAT(C) that generates a random formula by the following process:

1. Select, uniformly at random and with replacementyyperedges of the complete
k-uniform hypergraph om variables.

2. For each hyperedge choose a random ordering, of the variables involved in
it.

3. Independently with probability 1/2 negate each variadgearing ino..

4. Choose a random constraint template frérand apply it to the ordered list of
literals in o,.

It is easy to see that problems suchkaSAT and 1-ink-SAT can be expressed
using the framework of Definitioi11. The following resultosts that the intuition
connecting the discontinuity of the spine, resolution ctaxity and the location of the
phase transition does indeed have merit: a strenghtenitfteaondition guarantee-
ing the existence of a discontinuous spine and exponeesalution complexity also
implies that the satisfiability threshold is located at areghigher tham{°"*:

Theorem 4 LetC be a good set such that

1. SAT™¢®)(C) has a sharp threshold (the result in[27] can be easily addite
completely characterize such séfs

2. There exists > 0 such that, for every minimally unsatisfiable formuftavhose
constraints are drawn from template gktthe ratio of the number of constraints
in F' to the number of distinct literals (variables and negatedatsies) appear-

ing in F is at least; <.

Then

1. There is a constant > 0 such that random instances BAAT("°#)(C) with
m = cn, wherec < ﬁ(l + 0), are satisfiable with probability — o(1).

2. ProblemSAT (¢#) (C) has a discontinuous spine and exponential resolution com-
plexity.
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Proof.

1. SinceSAT*8)(C) has a sharp threshold, it is sufficient to show that thereseais
fixed constant > 0 such that the probability that a random formula is satiséiabl
is at least;.

Supposen = cn with ¢ = ﬁ(l + 0), with § > 0 small enough. Define
random modeSAT{"*®) (C) that is a variant 08 AT ") () as follows:

(a) Choose a randokruniform hypergrapti with m edges on the vertex set
(of cardinality2n) consisting ofvariables and negated variables

(b) Forevery edge € H create a random permutation of its elements.
(c) Apply a random constraint template@rto variables in the ordered list.

This model differs from the random mod&AT®®)(C) in that it allows for
constraints that include/atuple of literals involving two opposite literals.

Define W to be the event that formulk& contains some clause involving two
opposite literals. It is easy to see that the expected nuofterch clauses in a
random formula® is constant. Therefore, with positive probability> 0 in a
random formula generated accordingStaT "®(C), the bad event” will not
happen.

Let Z denote the event that a random formula with= cn clauses generated
according to the random mod@A T ¢ (C) is satisfiable.

Then the probability that a random formuladAT (8 (C) is satisfiable is equal
to Pr[Z|W]. To show that this is bounded away from zero it is enough tegro
thatPr[Z] =1 — o(1).

The k-uniform hypergraph on thzn nodes (variables and their negations) corre-
sponding to choosing a random instancSAtFé“eg) (C) is a randomk-uniform
hypergraph. Thus we want to show that a formula generateddtycfioosing
such a randonm-uniform hypergrapti, and then applying a random constraint
template fronC on the given literals is w.h.p. satisfiable.

The proof of this is entirely similar to a step in the proof ob\by’s Theorem 3
in [14], and amounts to showing that w.h.p. the hypergrAptioes not contain
any hypergraph of high density, corresponding to the faadtrtiinimally unsatis-
fiable subformulas have clause/variable density at least1 + €). Rather than
repeating an argument that is presented in detail in thampeye refer the reader
to [14].

2. SinceC is good, one can simply apply TheorEm BT (C), which is equivalent
to problemSAT(™8) ().

O
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5 Beyond random satisfiability: comparing the behav-
lor of the backbone and spine

In this section we investigate empirically the continuifittee backbone for two graph
problems, random three coloring (3-COL) and the graph kitpar problem (GBP).
Both can be phrased as decision or as optimization problentse same manner as
k-SAT and MAX-k-SAT.

We consider a large number of instances of random graphzesf gp ton = 1024
and over a range of mean degree values near the thresholdeaEbrinstance we
determine the backbone fractign

Culberson and Gent[l6] have shown experimentally that 08 spine frac-
tion fs., as defined in Definitiofl4, exhibits a discontinuous tramsitTo be consis-
tent with this study, we use the backbone fractfgn, from the same definition. We
employ a rapid heuristic calleeiktremal optimizatiorf2d]. Although an incomplete
procedure, numerical studi€s [21] as well as testbed cdsgrer with an exact algo-
rithm [23], have shown that extremal optimization yieldsexellent approximation
of fp. around the critical region (seE_[20] for further discussiothat, we believe,
convincingly support this assertion). Fig. 1 shofys, as a function of mean degree.

Culberson and Gent have speculated that at the 3-COL tHesdlthough their
spine is discontinuous, the backbone mightbatinuous The results in Fig. 1la sug-
gest otherwise. For 3-COlf;z, does not appear to vanish above the threshold, indi-
cating a discontinuous largebackbonel[2]1].

We next study the graph bipartion problem (GBP):

Definition 12 GBP is the following decision problem. Given a (not necelsaon-
nected) graph with n vertices,n being an even number, determine whether it can be
partitioned into two edge-disjoint sets having2 vertices each.

This problem cannot, strictly speaking, be cast in the sefupndom constraint satis-
faction problems from Definitiod 2, since not every partitaf vertices of7 is allowed.

It can be cast to a satisfiability problem (with variablesoassted to nodes, values as-
sociated to each partition and constraimt= 3" associated to the edge between the
corresponding vertices) but we must add the additionalirement thatll satisfying
assignments contain an equal number of ones and z&hass the complexity-theoretic
observations of Sectidd 4 do not automatically apply to ite #n, however, give a
“DPLL-like” class of algorithms for GBP, so the the hope otaibing results similar
to the previous ones is not so far-fetched.

Let us investigate the continuity of the backbone/spinesatite model in Defini-
tion[4. Itis easy to see that the constraint-based sfing~) of a GBP instance?
contains all edges belonging to a connected componentefaiger tham /2. Since
the GBP threshold takes place where the giant componentissctarger tham/2,
fs. is discontinuous there. On the other hand, the backbongdrags. (Fig. 1b)
appears to remain continuous, vanishing at larga both sides of the threshold.

We have noted earlier that the discontinuityf@f. is a stronger property than the
discontinuity of fg. Thus for 3-COL it follows that the variable-based backbane
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discontinuous as well. By contrast, it is not clear for GBPettier the variable-based
backbone is continuous: our preliminary experimentaleva is as yet inconclusive.

The results in Fig. 1b suggest that the spine and the backtamdehave dif-
ferently at the threshold, though they do not yet addresgjtiestion of whether the
spine’s discontinuity really has computational implica for the decision problem’s
complexity. After all, unlike 3-COL, GBP can easily be sahia polynomial time by
dynamic programming. This situation is similar to that of REAT, where a poly-
nomial algorithm exists but the complexity césolution proofs/DPLL algorithmis
exponential. The class of “DPLL-like” algorithms that casiv® GBP can no longer
be simulated in a straightforward mannerregolution proofshowever it can be sim-
ulated using proof systenfges(k) that are extensions of resolutidn{24]. Some of the
hardness results for resolution extend to these more polyardof systems, and in
[28] we investigate the extent to which our present resydfgyato this class of proof
systems. These preliminary results imply that, indeed dikeontinuity of the spine
doeshave computational implications for GBP.

6 Discussion

We have shown that the existence of a discontinuous spineandom satisfiability
problem is often correlated with 2{2(") peak in the complexity of resolution/DPLL
algorithms at the transition point. The underlying reasothat the two phenomena
(the jump in the order parameter and the resolution comfylésiver bound) have
common causes.

The example of randorh-XOR-SAT shows that a general connection between a
first-order phase transition and the complexity of the ulyiteg decision problems is
hopeless: Ricci-Tersenghi et dll [3] have presented a iyameaus argument using the
replica method that shows that this problem has a first-qstlase transition, and the
following weaker result is a direct consequence of Thedidem 3

Proposition 2 Randonk-XOR-SATE > 3, has a discontinuous spine.

However, our results, as well as work in progress mentiobeg&, suggest that the
continuity/discontinuity of the spine is a predictor foetbomplexity of therestricted
classe®of decision algorithms that can be simulated by “resolutike” proof systems.
Furthermore, experimental evidence in the previous sestiggests that the backbone
and the spine do not always behave similarly. Our analysigates that the spine,
rather than the backbone, is the order parameter to corisiderdying the complexity
of combinatorial problems.
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Figure 1: Plot of the estimated constraint-based backb@etién fz., on random
graphs, as a function of mean degreeFor 3-COL, the systematic error based on
benchmark comparisons with random graphs is negligiblepeoed to the statistical
error bars; for GBPfg,. is found by exact enumeration. The threshalds 4.70 for
3-COL andc = 21n 2 for GBP are shown by dashed lines.
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