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We will consider the following problem in this paper: Assume that there are n numerical
data {x1,x2,...,%,} (like salaries of n individuals) stored in a database and some subsums of
these numbers are made public or just available for persons not eligible to learn the original
data. Our motivating question is: At most how many of these subsums may be disclosed
such that none of the numbers x;,xz,...,x, can be uniquely determined from these sums.
These types of problems arise in the cases when certain tasks concerning a database are done
by subcontractors who are not eligible to learn the elements of the database, but naturally
should be given some data to fulfill there task. In database theory such examples are called
statistical databases as they are used for statistical purposes and no individual data are
supposed to be obtained using a restricted list of SUM queries. This problem was originally
introduced by [1], originally solved by Miller et al. [7] and revisited by Griggs [4, 5]. It was
shown in [7] that no more than ”','z) subsums of a given set of secure data may be disclosed
without disclosing at least one of the data, which upper bound is sharp as well. To calculate
a subsum, it might need some operations whose number is limited. This is why it is natural
to assume that the disclosed subsums of the original elements of the database will contain
only a limited number of elements, say at most k. The goal of the present paper is to
determine the maximum number of subsums of size at most k& which can be disclosed
without making possible to calculate any of the individual data x;. The maximum is exactly
determined for the case when the number of data is much larger than the size restriction k.
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1. Introduction

The security of statistical databases has been studied for a long time. In this case
the database is only used to obtain statistical information and therefore no individual
data is supposed to be obtained as a result of the performed queries. Of course, the
user is not allowed to query individual records, still, using only statistical types of
queries, it might be possible to make inferences about the individual records. Several
authors investigated earlier the possibility of introducing restriction for the prevention



of database compromise, which include data and response perturbation, data swapping,
random response queries, etc. One of the natural restrictions is to allow only SUM
queries, that is queries which return the sum of the attributes corresponding to a set of
individuals characterized by characteristic formula. For more detailed explanation of
these terms see Denning [2, 3]. In all of these cases it was assumed and will be
assumed throughout the paper as well that outside user or attacker do not have any
further information about the database, only the answers to the SUM queries (e.g., they
do not know about any functional dependency).

Let the database consist of n confidential records, which are real numbers
X1y, X, Introduce the notations [n] = {1,2,...,n} and 2" = {A C [n]}. The user
may choose any subset A of [n] and request the sum ., x;. We say that the database
is compromised if one of the x;’s can be determined from these sums, which are on the
disposal of the user. For example, if |A| = 1, A will consist of one element, whose
value would be obviously disclosed; therefore, only sets of size > 1 are allowed to
choose.

Chin and Ozsoyoglu [1] introduced an Audit Expert mechanism for the pre-
vention of database compromise with SUM queries. Audit Expert will keep track of
which queries it has been previously answered and decline to answer the next query
if it would, together with the previous answers, lead to a compromise of the data-
base. For instance if the first two queries were {1,2} and {2, 3} then {1,3} cannot be
answered as a third query since
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determines x3 (and also xy,x;).

It is easy to see that if the sets A are chosen independently, then the procedure
end rather early with a high probability. This fact justifies the other approach. Here the
set of possible queries is fixed in advance and the problem is to maximize the number
of these queries. Miller et al. [7] determined the maximum number of SUM queries for
this mechanism, which is (L—';—J) For example, in the database below one can ask the
sum of the salaries of the individuals chosen the same number (i = 0, 1,2, 3) of them
from both of the sets {Bush, Carter, Clinton} and {Johnson, Kennedy, Nixon,
R4&:agan}. In such a way one will (:hose7 () % .(3) +({) x () +(;) x (3) + (3) x
(3) =143 x4+3x6+1x4=35= (]) queries. Clearly, the given database and
the one obtained from this one by lowering the salaries of {Bush, Carter, Clinton} by
1,000 and increasing the salaries of {Johnson, Kennedy, Nixon, Reagan} by 1,000 will
give exactly the same answer to these queries and therefore no individual salary can be
exactly calculated from this set of questions (Table 1).

Miller et al. [7] converted the problem to an extremal problem for matrices and
to an extremal problem for subsums of real numbers (see below). Griggs ([4]) observed



Table 1
Sample database.

Name Salary

Bush 250,000
Carter 180,000
Clinton 220,000
Johnson 120,000
Kennedy 100,000
Nixon 140,000
Reagan 160,000

the close correspondence between their problem and the famous Littlewood-Offord
problem ([6]) of combinatorial number theory.

There are many analogous problems, generalizations of the one above. The first
one is the case of relative compromise, when the difference x; — x;(i # j) is deter-
mined from the answered queries. Again, the maximum number of queries which can
be answered without a relative compromise is to be determined. This problem has
been solved in [8] with giving the best construction, as well. We call the attention
of the interested reader to the survey paper [5] of Griggs which shows many of the
similar generalizations and its unifying approach makes easier to understand the
theory.

A natural restriction of the above question is the restriction of the size of the
SUM queries, that is assuming that the sums may involve at most X members. E.g., if
in the above database we only consider SUM queries summing up three data, a
possible scheme of them without compromising the database is to ask the sum of the
salaries of three gentlemen, two chosen from the set {Bush, Carter, Clinton, Johnson,
Kennedy} and one from the set {Nixon, Reagan}. Therefore altogether (3) x (3) = 20
queries are made, and, again, by increasing the salaries of {Bush, Carter, Clinton,
Johnson, Kennedy} and decreasing the salaries of {Nixon, Reagan} with the same
amount shows that no individual data can be gained from this set of statistical queries.

In Section 2 we will carry on a sequence of transformations of the original
problem, most of them repeated (or simply referred to) the transformations done by
Chin and Ozsoyoglu [1], Miller et al. [7] and Griggs [5] to formulate the combinatorial
problem what is needed to be solved here. It is an extremal problem on a family of at
least k-element subsets of an n-element set.

Section 3 is devoted to this combinatorial problem. Theorems 3.1 and 3.7 give
the exact solution if » is large relative to k.

In Section 4, we will answer the original statistical database question. We obtain
the exact maximum number of the SUM queries involving at most k£ data without
compromising the database in the case when the number of data is much larger than
the size k of the restriction.



2. Deriving the combinatorial problems

Let us be given n real numbers {x;,x2,...,x,} (like salaries of n individuals in
the sample database) stored in a database. A possible SUM query is to ask 3, x; for
some A C [n] and we would like to maximize the number of these queries (maybe with
some other side constraints) such that they will not determine any of the original x;’s.
That is we would like to give a family of subsets of X, A= {A,As,...,An},
maximize m, such that the sums {3 ,., x; : 1 <j<m} do not determine any of the
x;’s. Let the characteristic vector of the set A C [n] be a 0,1 vector of dimension n
whose i’th coordinate is 1 iff / € A. The characteristic vector of the one-element {i} is
denoted by ¢; = (0,0,...,1,...,0). Let further x = (xy,...,x,). Using this terminol-
ogy, one can say that the user knows the values v;x(1 <j < m) but cannot determine
the values e;x(1 <i<n) from this information. Of course, the user can calculate the
linear combinations

m n
E /\,‘V,‘X: E )\,‘V; X
i=1 i=1

where A; are arbitrary real numbers. These values are linearly calculable from the
values v;x(1 <i<n). This is where we can get rid of the original real numbers x;,
since the linearly calculable values are exactly

(i )\,‘V,’) X,
i=l

that is the inner products of x and the vectors » ;" | A;v;. The latter ones are the linear
combinations of the characteristic vectors v;(1 <j<m). The set of such vectors is a
subspace V of R”. This subspace is called the subspace spanned by the vectors
vi(l <j<m), and is denoted by (vi,...,V,). Let us formulate these thoughts in a
form of a lemma.

Lemma 2.1. Let x denote the vector {x;,x2,...,x,} and for a given family of SUM
queries with characteristic vectors vi,vs,...,V, consider the vectors v where the
value vx can be linearly calculated from the values v;x. Then these vectors will form a
subspace of the vector space R" equal to (v, va,...,V,).

The original problem now is reduced to the following one: Find the maximum
number of distinct 0,1 vectors vy,...,V, of dimension n in such a way that e; ¢
(V1,V2,...,V,) holds for every 1 <i<n.

We were here emphasizing that only the linear operations are considered during
the trials of finding individual values. The user may, of course use other (say



polynomial) operations over the results of the SUM queries, or of the vectors
Vi,V2,...,Vy, but it does not help much. The maximum number m will be determined
under the weaker condition when linear operations are only allowed. However, we will
show that this is sufficient, one can construct this many vectors in such a way that no
calculation (linear, polynomial, or any) can determine the e;’s from them. The method
is easy: We will give two sets of data, returning the same answer for each of the given
SUM queries, but differing from each other in each single entry.

Here we slightly change our viewpoint: Instead of the sequence of the SUM
queries we will consider the subspace V spanned by the characteristic vectors. The
question regarding the maximum number of queries satisfying a certain property is
equivalent to the question of finding the maximum number of the 0,1 vectors
(satisfying the additional property) of a subspace V not containing any of the unit
vectors e;.

The following further reduction steps of the problem are originally due to Chin
and Ozsoyoglu [1].

Lemma 2.2 (Chin and Ozsoyoglu [1]). f VC R", ¢, ¢V I1<i<n, dmV<n-—1,
then there is a subspace W O V such that dimW =n—1,e, ¢ W I <i<n.

Since any 7 (full) dimensional space would contain all unit vectors e;, we may
suppose that the subspace V giving the maximum possible number of allowed queries
is n — 1 dimensional. Take a basis by, by,...,b,_; and the matrix with these rows.
Using the standard Gauss-elimination the matrix can be brought in the following form:

1 0 0 aj
0 1 0 a
00 1 ap—1

Of course, these rows form another basis. Therefore none of the a;’s are equal to 0 due
to the fact that the unit vectors are not in V.

We have to maximize the number of 0,1 vectors (satisfying an additional
condition) in V, that is among the linear combinations of the rows of the matrix
above. It is easy to see that the only linear combinations of the rows of this matrix
yielding 0,1 vectors are those with coefficients 0 and 1. That is it is sufficient to look at
the subsums of these rows. Take a subset A C [z — 1] of the rows and add these rows.

The first n — 1 coordinates will trivially be 0’s and 1’s. However the last coordinate,
2 _ica @i can be different from 0 and 1. Therefore, we have to maximize the number of
sums ) ., a; which are either 0’s or 1°s, where As are an arbitrary subsets of [n — 1].
Let us introduce a, = —1 and now consider the sums > icp @i = 0 where the B’s are
subsets of [n] = {1,2,...,n}. There is a natural one-to-one correspondence between



these two sets of sums. (B = A U {n} if the sum for A is 1, and B = A otherwise.) Our
original question

Problem 1. Determine the maximum possible number of SUM queries over a set of n
records without compromising the database.

is now reduced to the following one:

Problem 2. Given a set of n real numbers {a,,as,...,a,}, none of them being equal
to 0, determine the maximum number of sums ) ., a; = 0 where the B’s are subsets
of [n].

Let us remark that when we allow an arbitrary a,, not only —1, we weaken our
assumptions, that is, we might have enlarged the searched maximum (however, it was
shown not to be the case, the upper bound proved on the question of Problem 2 can be
reached by a construction in case of Problem 1 as well).

Assuming additional condition(s) concerning the SUM queries require careful
investigation, since the condition(s) might be changed by the transformation leading
to Problem 2 from Problem 1. In our present case, however, we are lucky: The
number of 1’s in the resulting 0,1 vector is equal to |B|. Therefore if the additional
condition is a size constraint then the transformation from Problem 1 to Problem 2 is
still working.

Let us formulate it for our case. The main question of the present paper,

Problem 3. Determine the maximum possible number of SUM queries containg at
most k records from a set of n records without compromising the database.

is reduced to the following one:

Problem 4. Given a set of n real numbers {a,,da,...,a,}, none of them being equal
to 0, determine the maximum number of sums >, ,a; = 0 where B C [n], |B| <k.

Let us remark that with the step when we allowed an arbitrary a,, not only —1,
we weakened our assumptions once more, that is, we might have enlarged the searched
maximum.

Denote the family of B’s in question by B = {By,B,,...,B,} where
Ziij a; = 0. Separate the a@;’s according to their signs. Define X; = {i: a; > 0}
and X, = {i: a; < 0}. Since none of the a;’s is zero, [n] =X, UX; is a partition.
Observe that the sets B; have the property

B;NX, 7&@1 BI'OXZ#@: (1)



since the sum of all negative or all positive numbers cannot be equal to zero. (Let us
not here that in theory it would be possible that both B; N X; and B; N X, are empty,
when B; is empty. This corresponds to the case of the empty sum which is always
‘disclosed.” For technical reasons we exclude it from B, decreasing the number of
possible sums by one.)

If we consider two members B, and B, of B, then Z,-GB] a4 =3 icp, =0

implies 3 icp, _p, @i = — Xiep s, % = Xics, 5, % Therefore

By — B> C X and B, — By C X, cannot simultaneously hold. (ii)

Definition 2.3. Let [1] = X, U X, be a partition. We say that a family B C 21"l is non-
difference-separated, or shortly nodifsep with respect to the partition X; UX, if its
members satisfy (i) and every pair of its members satisfies (ii).

In this way we obtained a further weakened variant of our Problem 3.

Problem 5. Determine M(n,k) = max |B| under the conditions B C 2!, B e B
implies |B| <k, and B is nodifsep with respect to a non-trivial partition of [#].

This purely combinatorial problem is formulated for families of subsets. The goal
of the next section is to solve this problem for the case n(k) < n, that is when 7 is large
relative to k. In case of combinatorial problems #(k) usually denotes some (calculable)
constant which depends only on k£ and in many times the obtained results (for a
parameter n) is valid only if n > n(k). The evaluation of the exact value of n(k) is
usually omitted, since theoretically we only are interested in the fact that the result is
valid for big enough »’s (that is, almost always).

3. The combinatorial theorems

We introduce the notation

L {F: Fea |F|<k}.
(0)

Let M(ny,ny, k) be the maximum analogous to M(n, k) for the case when the partition
sizes are fixed. That is, fix the partition X; U X, = [n] with sizes |X;| = ny, |Xa| = na.
Suppose that k < n; + ny. Then M(ny, ny, k) is the maximum size of a family F such
that 7 C (L”]A , and F is nodifsep with respect to the partition X; UX, = [n].



Our first theorem determines this maximum up to a certain extent.

Theorem 3.1. Let 2 <k <n; + n;. Then

M(my, np, k) = maxi ("‘) (j;) (3.1)

= \U

where the maximum is taken for all integers 1 <r,0 <1 <...<i,<m,0<j; <
... < jr < mp satisfying i, + j, <k.

The proof is based on an easy lemma. Fix a permutation 7; of the elements of
Xi(i=1,2). A set G; CX; is called an initial segment if it consists of the first |G|
elements of X; with respect to 7;. The set G C [n] is called a combined initial segment
if both G N X, and G N X, are initial segments. Let A(n;, 7, k) denote the right hand
of (3.1).

Lemma 3.2. Let the nodifsep family (with respect to the partition X; UX; = [n]) G C
(L”{) consist of combined initial segments with respect to some fixed permutations

Ty, 2. Then
ny Ho
<A k 3.2
> (6mx1) (o) <At e

Geg

holds.

Proof. Let G,H be distinct members of G. Then the nodifsep property implies that
the inequalities |G NX,|<|HNX;| and |GNX,|=|HNX;| cannot both simulta-
neously hold, since they would imply H — G C X; and G — H C X;. The same can be
said about the pair of inequalities |G N X;| = |H NX,| and |G N X,| < |H N X;|. Conse-
quently, either

IGNXi| < |[HNX;| and |GNXs| < |HNX,| (3.3)

or

IGNX1| > |HNX,| and |GNX,| > |HNX,| (3.4)

must hold.

Let |G| = r and suppose 1 < r. Choose a member G € G. Since G is a combined
initial segment, the sizes i = |G N X,|,j = |G N X;| uniquely determine it, that is the
members G can be determined by the pairs (i,/). If (i1,/1) and (i, /) are two such
pairs then either i} < i,j; < jp or i} > ip,j; > j» must hold by (3.3) and (3.4). Index
the members of G in such a way that 0 < i; < ... <i,0 <j; <... <, holds. Here
the inequality 0 < comes from property (i). i, < ny,j, < ny are trivial. Since the sets G



are not larger than &, i, + j, <k also holds, the conditions on the sum on the left hand
side of (3.2) coincide with the conditions in the definition of A(ny, ny, k), proving the
statement. O

Proof of Theorem 3.1.  Suppose that F satisfies the conditions of the theorem (that is,
FC :Jk)’ and F is nodifsep with respect to the partition X; U X, = []) and consider

the sum
2 (IF r’:lx1 1) (|F :wzx2|) (3.5)

1,2,

where 7y, m run over all permutations of X1,X>, respectively, and F is a combined
initial segment with respect to these permutations. This sum will be calculated in two
different ways.

Calculate first

7;2 (lF r’:lxll) (IF :12X2|) (3.6)

for a fixed F. The number of permutations 7, where F N X, is an initial segment in X,
is [F N Xy |!(n; — |F N Xy |)!. Similarly, the number of permutations 7, where F N X, is
an initial segment in X is |F N Xs|!(n; — |[F N X;|)!. Therefore the number of pairs
71, ™2 Where F' is a combined initial segment is [F N Xy |!(ny — [F N X, )!|F N X, |!(ny —
|F N X,|)!. For fixed F the summands in (3.6) are constants, therefore (3.6) is equal to

F O X |1y — F O X0 )F O Xo ! (np — |me2|)!(|F;;(I|) (w&l) = mn).

Hence (3.5), calculating in this order, is

55 (roix) (o) = et .

1,72
Fix now a pair of permutations. The members of F which are combined initial
segments with respect to these permutations satisfy the conditions of Lemma 3.2,

therefore
T e by
= \IFNnXi|/\IFNX,]|

can be upper-bounded by A(ny, 1, k) and since the number of pairs of permutations is
ni!ny!, we obtain

¥ (’F f:lel) (IF 22X2|) < miny!A(ny, o, k). (3.8)

T, F



The comparison of (3.7) and (3.8) results in the inequality
|.7"|n1 !n2I <n II’LQ!A(I’ll, na, k),

proving the difficult part of (3.1).

It remains to show that there is an F of size A(n,na, k), satisfying the
conditions of the theorem. Take the integers 1 <r,0 <i; < ... <i,<n;,0<j; <...
< jr <ny, (i, +j- < k) providing the maximum in A(ny,nz, k). The family consisting
of all sets F satisfying |F NX;| = i, |F N X2| = j¢ for some 1 <{<r. It obviously
meets all the requirements of the theorem and its size is really A(ny,nz, k). i

Now we will show that i, +j, =k can be supposed in the definition of
A(ny,n, k) if k <2 that is, there is always a parameter set with i, + j, = k and
Ty () (;!g) = A(ny,na,k). It will be shown by increasing (’,-’r') ('J') if i, +j, < k.
Indeed, 2 =41 >k > i, + j, implies i, < 2! or j. < %1 and thus at least one of i,
and j. can be increased by one without decreasing 3 ,_, (',.’; ('J’;) = A(ny,np, k).

Let us sketch the rest of the content of the present section. In the sequel we will
assume that — as in Theorem 3.7 — n is large enough compared to k. In particular,
n=2k and so, by the previous comment, i, + j. = k may be assumed, and so, the term
(',?") (72 in the sum A(ny, np, k) can be chosen to be equal to constant times n*. On the
other hand, all other terms are O(n*~2). That is, the dominating term is of the form

% k’ﬁ-,)- We will maximize this quantity as a function of »n; and i, for large n. It will
turn out that one of i, and j, = k — i, is 1, that is there is no other term in A(ny, ny, k).

The proof is broken into lemmas.

Lemma 3.3. Suppose 1 <i < {,i<n;,{—i<n—n; Then

Proof. Compare two consecutive expressions:

(ni)(n—nl)< n 4+ 1 n—n — 1
i/Ne—i) TN\ i E-i )
After carrying out the possible cancellations

(n—n)(m —i+1)<(m+1)(n—n —€+1)



is obtained what is equivalent to

Hence

() (e27)

takes on its maximum (with fixed { and ¢) at
(n+1)i
7 .

Lemma 3.4. Suppose 0 < £ <i<{— 1. Then there is a constant np(£) depending on
¢ < n only, such that if ng (é) < n then

(1) (- ) « (1) (e,

i —j (i+1) f—3—1

O

where the last binomial coefficient is understood to be 1 when i = ¢ — 1.

Proof. Since |x] differs from x by at most one, 1 [(”“)‘J tends to 4 when n tends to
infinity. The same is true for L”H -1, L(”'H | —2,. Therefore

!n+l!r o\
lim — (l‘ J) (i) i
n—oo pf i £) il

We can obtain the following limits in the same way.

i L [(rH—lL(f%I)J hs g i+1 1
n—oo pitl i+1 4 (i+1)°
lim 1 (n- [(n?)iJ Y i B,
n—o0o ng_ e—i g (E——I)' ’

1 i — L('I_HW-H)J E—l—l £—i—1 1
lim L =|—)—— —_—
n—oo pl=i-1 b—i—1 i (L—i—1)




To prove the lemma we have to see that the limit of the left hand side of (3.9) divided
by # is less than the same for the right hand side of (3.9):

(!E)zl' (EE")M(E_I,-); i

B R L R = g 351 1
] (i+ 1) ] (=i-11"

An equivalent inequality is
i\ fe—-i-1\*""
< ’
)< )
£=L holds

Here the assumptions of the lemma imply i > ¢ — i — 1. Therefore h+l < =t
and the inequality above contains a higher power of the smaller quantity. o

Remark. This lemma seems to be true for small values of », too, but we have
technical difficulties to prove it.

The information what is really needed from Lemmas 3.3 and 3.4 is collected in
the following lemma.

Lemma 3.5. Suppose that 2<i<k—2,i<n;,k—i<n—n;. Then there is a
constant ng(k) depending on k only, such that if ny(k) <n then

(nll) (nk—-_nil) < (L(:l)fk;)J) (n B [W;QMJ ) 10

On the other hand, if k — 1<n;,1 < n— n then

(kTJ(”—”')‘g([%J)(’?— {WJ) (3.11)

Finally,

k—2 2

(1440 - eie=y

(ltea)) (- 2



We need somewhat more than the last inequality, namely that the largest one of
these products of binomial coefficients really stands out of the other ones, that is the
last inequality is strict, the two sides are apart from each other by a difference equal to
a positive constant times n*. This is expressed by the following lemma, it can be
proved by elementary calculus.

(Wf%f%)(”_[w+1¥k—UJ)

is asymptotically equal to

Lemma 3.6.

; S T
k __ k
c1(k)n* = G Tt

(n+1)(k—2) _ | (n+1)(k=2)
()

_ F sl
T (k—2)! kk

where c2(k) < ¢;(k) holds for 4 < k.

is asymptotically equal to

ca(k)n*

Note that Lemma 3.6 defines two constants ¢; (k) > ¢, (k) for 4 < k which will be
used below. Now we are ready to formulate the main statement of this section which
answers Problem 5 for large n.

Theorem 3.7. Suppose 4 < k. Then there is a constant n; (k) depending on k only such
that if n;(k) < n, then

oy = (L) (o [ ey

Proof. Observe that

M(n, k) = max M(ny,n— ny,k).

I <n<n

Consider a choice of n; giving the maximum here and then a choice of the parameters
Pyilyooyipj1y .-, jr giving the maximum in Theorem 3.1. (i, +j, = k is supposed.)
Two cases will be distinguished.



Case 1: One of i, and j,., say the latter one is 1. Then r = 1, the sum in Theorem
3.1 is consists of only one term. This only term is upper-bounded by (3.11), proving
the theorem in this case.

Case 2: 2<i,,j, <k — 2. In this case (3.10) gives an upper estimate on

ny n—n
i k—i, )
k

This upper bound is asymptotically equal to cy(k)n*. Since iy +j1 <ir+j2
< ... < i1 +j—1 <k —2, the sum of all other terms in Theorem 3.1 are O(n*?),
consequently the total sum is c,(k)n*, asymptotically. For large n this is smaller than

(L‘L;‘—?";—”J)(n_l(n+1)k(k—1)D

which is asymptotically c; (k)n*. m]

4. Answer to the database question

Theorem 4.1. Let 4 <k and n be integers, where # is large relative to k : n;(k) <n.
The maximum number of SUM queries involving at most k data of the n numerical

data is
-l o

Proof. Problem 3 in Section 2 raises the question of the present theorem. Problem 3
is there reduced to Problem 5 with a weaker condition. Therefore the upper bound of
Theorem 3.7 answering Problem 5 is an upper bound for Problem 3, too. We only have
to show that the bound is sharp here, too. That is, one can construct a family of SUM
queries (over properly chosen set of numbers) of this size with the given properties.

Let us consider # equal real numbers and divide them into two parts: B of size
‘_("L‘)k“_—” and B, of size (n— (D) | Take all subsums of these numbers of &
elements such that k — 1 are chosen from set By and 1 from set B,. The sets really
have size k, their number is equal to (4.1). We only have to show that knowing the
answer to these queries it does not determine any of the individual data.

Now increase all of the elements of B; by 1 and decrease all of the elements of
B; by k — 1. The answers to these queries are the same in both of cases, that is these
answers do not disclose any of the values x;’s. O



5. Concluding remarks

The restriction to the validity of Theorem 4.1 that n is relatively large is not
essential from the practical point of view. In the real situations the total number of
numerical data is huge, the restriction on the size of a query makes sense only when it
is really limited, that is, & is much smaller than », as we assume.

It is not true however from the mathematical point of view, the ratio of # and k
plays important role. Further work is needed in this direction. Some easy calculations,
completing our proofs, can give the value of n;(k) is in Theorem 3.7. It is, however,
very far from the real necessary bound. Still, if » and k are close to each other, the
statement of Theorem 4.1 is not true. It is known [7] that

M n) = (LJ) g :i(ﬂ)(uj— ,-) Zi([ ) (% )

where the right hand side equation is given by the following construction (showing, at
least, that M(n,n)?(tgj) — 1): Consider again n equal numbers, divided into two
groups, By and B of sizes |5] and [4], respectively. Take all subsums of these
numbers of 2i elements such that i are chosen from both of these sets. Knowing the
answer to these queries does not determine any of the individual data, since by
increasing all of the elements of B; by 1 and decreasing all of the elements of By by 1,
the answers to these queries will remain the same.

It is expected that this construction will remain the best if # is not much larger
than & (suppose for convenience that k is even):

k
2

iy =3 (1) (#),

i=1

For example, we have the following examples: M(20, 6) = ()3, but M(12,6) =
OO +OO + (O =661 > 504 = ().

Let us mention that in practical situations the restriction on the possible sums does
not necessarily come in the form of a ‘size <k.’ The restriction comes in some other
form (like only at most one datum may be asked for a large group data), what may
imply the restriction on the size. Then not all of the sums containing at most k data can
be disclosed, our results give only an upper bound which is not tight in general.
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