Annals of Mathematics and Artificial Intelligence 0 (2007) ?—-? 1

Evolving Objects in Temporal Information Systems

Alessandro Artalé Christine Parerit Stefano Spaccapietfa

* Faculty of Computer Science, Free University of Bolzano, [;
E-mail: artale@inf.unibz.it
Y HEC/ISI, Universié de Lausanne, CH;
E-mail: christine.parent@unil.ch
¢ Database Laboratory, Ecole Polytechniquéderale Lausanne, CH;
E-mail: stefano.spaccapietra@epfl.ch

This paper presents a semantic foundation of temporal conceptualsneed to design
temporal information systems. We consider a modelling language abl@tessdoth times-
tamping and evolution constraints. We conduct a deeper investigationlotiew constraints,
eventually devising a model-theoretic semantics for a full-fledged madebath timestamp-
ing and evolution constraints. The proposed formalization is meant bolrify ¢he meaning
of the various temporal constructors that appeared in the literature giveétarigorous defini-
tion, in the context of temporal information systems, to notions like satisfiglslitysumption
and logical implication. Furthermore, we show how to express temporat@ints using a
subset of first-order temporal logic, i.®LRys, the description logi® LR extended with
the temporal operatorSinceandUntil. We show howDLRs is able to capture the vari-
ous modelling constraints in a succinct way and to perform automateshiagson temporal
conceptual models.

Keywords: Temporal Data Models, Description Logics.
AMS Subject classification:computer science, knowledge representation, database theory

1. Introduction

Most of information modelling research and practice focus on a static view of
the world, describing data as it should be and is day by day. Currentrdzdels and
database systems are meant to capture snapshots of the world, i.e. &m state of
the database, with the next snapshot replacing the previous one. e¥gbetly is well
aware that such an approach only gives a very partial view of the woddlecting
another essential component, its dynamics, i.e. how the world evolves as tis@Espa
Recording the current, past, and possibly predicted future snapstiogsviery first step
towards capturing evolution. This functionality is supported by temporalnmétion
systems. Data warehousing systems, based on keeping aggregatss srigmshots,
have extensively shown that keeping knowledge over time entails the pibgditr ex-
ample, to analyze evolution trends and develop scenarios for the futuch. édalysis
and forecasting are fundamental components of most decision-makicgsges, which
are critical for successfully facing the complexity of today’s activities.edad step in



2 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

capturing evolution is enforcing the rules that govern the evolution of ddides play
a fundamental role to maintain data consistency. In data modelling, evoluticnande
expressed as evolution constraints, allowing to control requested ehamglata and
reject those changes that can be recognized as incorrect (i.e. leadingw state that
is inconsistent with the previous ones) or inappropriate (e.g. changessted at a time
they are not allowed) or detected as suspicious (e.g. resulting in an ansneatdution
that requires additional validation procedures). Further steps to eswahbtion man-
agement are possible, such as, for example, capturing the reasamaifge (why the
change happened), the actors of change (who prompted the chasdejng (when
did it happen), as well as any other information related to the change (ahibls point
becomes like an object of interest from the data management viewpoint).

Knowledge of dynamics is intrinsically related to time awareness. Capturing dy-
namics is grounded in the ability to capture time, as proposed by researcimpor&
databasés Abstracting from many details, the most popular time awareness mechanism
is timestamping. From the evolution management viewpoint, timestamping supports the
first step above, capturing evolution as a sequence of snapshotsalFsmmantics ap-
proaches have extensively discussed timestamping [3,4,12,19,27,40% c¥edr for-
malization of evolution constraints (supporting the second step) is still missisgitd
the fact that in the literature such constraints have largely been advasatesiful for
modelling the behavior of temporal objects [4,21,22,29,31,32,37,35,39,40].

Our research aims at defining a conceptual temporal data model, the sena@ntic
which is formally defined by grounding it on the results of temporal logics. evémn-
tually devise a model-theoretic semantics for a full-fledged conceptual madtteboth
timestamping and evolution constraints. This paper focuses on evolutiotraiotss
more precisely on providing a formal semantics to describe how objectsvolre én
their lifecycle and how they can be related throughout time. The formalizatepoped
here builds on previous efforts to formalize temporal conceptual modeimely, we
rely on a previous work to define th&R model [4], a temporal Extended Entity-
Relationship (EER) model equipped with both a textual and a graphical syntax and
based on a model-theoretic semant&&R., captures timestamping constructors along
with transition constraints. The work reported in this paper extéifdsr with new
functionality (hereinafter defined) for evolutionary modelling, namstigtus classes
generation relationshipandacross-time relationshipsAnother closely related work is
the one of Finger and McBrien [16]. They propose a model-theoretindbrzation for
the ERT model, an EER model with timestamping and across-time relationships (called
H-marked relationships by the authors and introduced in a previous pgpécBrien,
Seltveit and Wrangler [31]). Our proposal modifies the semantics okadnme re-

! Outcomes in this domain include many proposals for modelling tempora| alataa large body of con-
sensus on the fundamental underlying concepts. Readers intereatelyiges of state of art in temporal
modelling and of results achieved in the area are referred to two sU@p$] that still provide valuable
information.

2 EER denotes data models that enrich the standard ER modelling languagsavithks, disjoint and
covering constraints, and full cardinality constraints—with cardinality)(@ssumed by default.



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrivdton Systems 3

lationships as presented in [16] to comply with a crucial modelling requirement, i.e
shapshot reducibility [27].

The advantage of associating a set-theoretic semantics to a languagengyriot o
clarify the meaning of the language’s constructors but also to give a sierdafinition
to relevant modelling notions. In particular, given an interpretation fundbogssign
a set-theoretic semantics to the (temporal) modelling constructors, we are gble to
a rigorous definition of the notions okchema satisfiabilityvhen a schema admits a
non empty interpretation which guarantees that the constraints exprgsezrldchema
are not contradictory (similarly we define the notions of class and relaijgsshtisfia-
bility); subsumptiorbetween classes (relationships) when the interpretations of a class
(relationships) is a subset of the interpretation of another class (relaifpshsvhich
allows to check newsa links; logical implicationwhen a (temporal) constraint is im-
plicitly true in the current schema thus deriving new constraints. In partjcaldhis
paper we stress both the formalization of the constructors and the setaallimgplica-
tions associated to such formalization. The obtained logical implications aeesdignn
agreement with those mentioned in the literature on temporal conceptual mbligss.
each constructor’s formalization (together with its associated logical implicgtizan
be seen as a set of precise rules on the allowed behavior of objectstiaulpa regard-
ing their evolution in time. Even if we do not address specific implementation issues
these rules can be turned into explicit integrity constraints in the form of wrigdes to
be added to the schema specified by the database designer, thus enatfiagkithe
validity of user actions involving object evolution. Since the rules are thaltre$ a
formal characterization we solve what is in our opinion a serious weakofesxisting
modelling approaches, i.e. without a rigorous foundation there is no ggearéhat the
proposed model leads to a sound system.

Finally, as a byproduct of the semantic formalization, we also show how (tef)po
modelling constraints can be equivalently expressed by using a sulfsst-ofder tem-
poral logic, i.e. the temporal description lodgitCRys [5]. DLRys is a combination
of the expressive and decidable description IdDIER (a description logic with n-ary
relationships) with the linear temporal logic with temporal operafinse(S) andUntil
(&) which can be used in front of both classes and relations. The choes@fding
DLR is motivated by its ability to give a logical reconstruction and an extension ef rep
resentational tools such as object-oriented and conceptual data moateks;dased and
web ontology languages [8—11,24]. In this paper, weDg8R,,s both to capture the
(temporal) modelling constructors in a succinct way, and to use reasocimgjgees to
check satisfiability, subsumption and logical implication. We show fafR;,s axioms
capture the above mentioned rules associated with each constructora E@mantics
while logical implications betwee®LRR;,s axioms is a way to derive new rules. The
mapping towards description logics presented in this paper builds on top gbginga
which has been proved correct in [3,4] while complexity results and algwigtiech-
nigues can be found in [5,2,6]. Even if {dlLRys is undecidable this paper addresses
interesting modelling scenarios where subsets of thedliR,,s logic is needed and
where reasoning becomes a decidable problem.



4 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

The paper is organized as follows. Section 2 discusses in more details the main
components for managing the dynamics of data, timestamping and evolutioragmisstr
with a particular emphasis on object migration. Section 3 shows the modellingeequir
ments that lead us in elaborating the rigorous definition of our evolution franke\Bec-
tions 4 and 5 recall the characteristics of MER;,s description logic and thE Ry 1
temporal data model on which we build our proposal. Section 6 presents thedlimg
of timestamping constraints as provided&df . Section 7 discusses the evolution
constraints we address and provides a formal characterization forttgather with a
set of logical implications and the correspond&fRR;,s axioms. Section 8 surveys
the complexity results for reasoning over temporal models showing thainiegson
the full-fledged temporal setting is undecidable and providing usefulasiosnwhere
reasoning becomes decidable. Section 9 concludes the paper.

2. Recording and Controlling Evolution

As stated in the introduction, evolution management requires first to be able to
record the different states of the database over time, second to be abtertmasically
check that each operation resulting in a change conforms to the rulesothegttain
permissible evolutions. In this Section we analyze the supporting technigaebitve
such functionality, i.e. timestamping and evolution constraints. The analysighie at
conceptual modelling level. Implementation aspects are not an issue in this pape

2.1. Timestamping

Timestampings a temporal marking mechanism that, according to some criterion
(e.g. valid time or transaction time [25,41]), positions data relevance on a tileesca
Hereinafter we only consider valid time (i.e. temporal references driyethé appli-
cation view of evolution), which characterizes the vast majority of applicatquire-
ments. Timestamping provides the following functionality:

o Attribute timestamping: Evolution of values.
The most well known aspect of timestamping is its association with attribute values
to keep the evolution of these values in time. For example, timestamping allows
keeping the knowledge that the affiliation attribute for an employep-123has
value “‘University of Pari$ for the period from 10/1969 to 9/1983, thebhiversity of
Dijon” from 10/1983 to 9/1988, therEPFL" from 10/1988 to 2/2010. Timestamped
attributes are also called time-varying attributes. Research on temporahsiesdins
extensively investigated how attribute timestamping can be defined and implemented
using various data models (e.g. relational, entity-relationship).

¢ Object and relationship timestamping: Lifecycle.
Similarly, temporal periods can characterize an object or relationship test@na
whole rather than through its attributes. Here, it is its membership in a class that is
split into periods according to a given classification criterion. For exaregistence



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrivdton Systems 5

of an employee object in thEmployee class can include periods where the object
is an active member of the class (e.g. the employee is currently on payralt), pe
ods where its membership is suspended (e.g. the employee is on temporajy leav
and a period where its membership is disabled (e.g. the employee has leftithe co
pany) [15]. These periods together form tliecycle[37] of the object/relationship
instance in a given class/relationship (more details are given in Section TheE).
lifecycle of an object/relationship instance is a set of time instants corresgptadin
those instants where the instance belongs to the class or relationshipcéssiath
lifecycle are called temporal instances. It is worth stressing that, frormeegs
tual viewpoint, a real world object may simultaneously qualify in the database f
membership into several classes, typically within the same is-a hierarchyPgub.
Carlton can be seen as simultaneously belonging to three classe®ssrthen class,
theEmployee class, and th#anager class) and consequently hold a different lifecy-
cle in each class. For example, the lifecycld?afilas a manager obviously covers a
lifespan included in the one of his lifecycle as an employee, which in turn ibsesu

of his lifespan as a person (the lifespan inclusion is due to the semanticsiefahe
link betweerManager andEmployee and betweelimployee andPerson).

Timestamping (both as time-varying attributes and lifecycles) is obviously op-
tional, i.e. a data model should allow for both temporal and atemporal modellirg co
structors. Section 6 hereinafter shows how objects, attributes and refadpertimes-
tamping has been covered§iRy . Coverage of object (and relationship) lifecycle is
the ERy extension we introduce in this paper (see Section 7).

2.2. Evolution Constraints

Timestamping enriches the static view of data by allowing recording the states of
the database over a period of time. A temporal database (i.e. a databggedouith
timestamps) may indeed be seen as a sequence of snapshots, one pgexsmgfned by
the smallest time granularity. Evolution constraints are imposed on a temporahsata
to control the mechanism that rules dynamic aspects, i.e. what are the plelertiss-
sitions from one state of the database to the next one. Integrity constragesnénal
can be as complex as needed to express rules on application data. Dats encloed
some predefined kinds of static integrity constraints (e.g. uniquenesfcaiemns, car-
dinality constraints) but very rarely include constructs to express dynaomstraints.
On the other hand, during modification operations, SQL triggers providestreict
to compare the new value replacing the existing value, thus enforcing éutieaary
constraint. For full expressiveness, integrity constraint definitiondaggs are usually
grounded on first order logic. In this paper we will show how evolutionstints can
be expressed using a temporal description logic (here we proposeeld the tem-
poral description logi®LRs). In the following, we summarize the main features of
evolution constraints as appeared in the literature.

e Applied to attributes, they are known dgnamic integrity constraintfl3]. One



6

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

example, simply using arithmetic comparison operators, is the constraint that the
value for thesalary attribute of an employee can only increase. A second example is
the constraint that the number of values for a multivalued attribute, e.9ifli®mas

of a person, can only increase over time. In the latter case we say thdtriheta

is expandingmeaning that the deletion of values is not allowed. Dynamic integrity
constraints can be expressediRr thanks to the temporal constructs included in
the model.

o Applied to the lifecycle of an object (relationship instance), evolution caimdt are

referred to astatus constraintsThey rule the permissible evolution of an instance’s
membership in a class/relationships along its lifespan. For example, an olgect th
is an active member of a class may become a disabled member of the clasg, but no
vice versa [15]. The different statuseslieduled, active, suspended, disaptadail
different constraints. For example, in [15] if an object is in the suspéstEus the
values of its attributes within the suspension period can be retrieved bubtche
modified. We further discuss status issues in Section 7.1.

Applied to objects, evolution constraints are referred torassition constraint&nd
usually rule the evolution of an object from being member of a class to being avemb
of another class [22]. For example, an object in $h@dent class may migrate

to become an object of theaculty class or evolve to also become an object of
the Alumnus class. Conversely, an object now in thel1Professor class cannot
become later an object in thesistantProfessor class. The next Section presents
an extensive survey of related works on object migration while Sectionht\@ssa
formalization with a temporal semantics and corresponding axioms in description
logic.

Finally, evolution constraints may be embedded in relationships. Evolutioredela
knowledge may indeed be conveyed through relationships associatecpewifics
evolutionary semantic€seneration relationshipg1] between objects of clagsand
objects of clasB (possibly equal ta) describe the fact that objectsBrare generated

by objects inA. For example, in a company database, the splitting of a department
translates into the fact that the original department generates two (or neweje-
partments. Generation relationships allow backtracking the history of antalyjd

its provenance. Genealogical search is an example of popular baghktyasup-
ported by parenthood relationships holding generation semantics. Clearbnds

are temporal classes, a generation relationship with sauace targeB entails that

the lifecycle of aB object cannot start before the lifecycle of the relatebject. This
particular temporal framework (where related objects do not coexist in titee)ap-
plies to relationships other than generation relationships, for example whémglin

a historian to her favorite historical figure of the past. In our temporatcam,
relationships are referred to asross-time relationship® emphasize the character-
istic feature that they come with no implicit temporal constraints. This contrasts with
most temporal data models, where relationships between temporal classeglimplic
enforce an overlap synchronization constraint, as the rules of theselsratdte that



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrivdton Systems 7

the lifecycle of a relationship must be within the intersection of the lifecycle of the
related objects. While this may indeed correspond to the requirements ofificspe
application, it cannot be stated as true in the general case. In ouraghpration-
ships may link simultaneously existing objects as well as objects whose existence
are disjoint. They may also link a temporal object with an atemporal one. #cros
time relationships may bear temporal constraints. Generation relationshipg can b
understood as an across-time relationship with a particular temporal dohésese
Sections 7.3-7.4 for more details).

2.3. Object Migration

As we stated above, evolution control includes expressing constraimgjeat
migration. In this paper, starting from a temporal set-theoretic semanticsimvata
formally capturing such constraints thus characterizing the notion of objegation
(see Section 7.2). With the generic tetransition constraintave denote the set of
constraints that deal with the various cases of migration. We also introduisia
representation as a link from the source class of the migration to the condiag
target class.

Object migration has been addressed by many authors, in particular feem th
object-oriented database community, maybe as a natural follow up on itsdocaptur-
ing object behavior through methods. In classical object-oriented daapproaches
the generalization hierarchy is static (i.e., objects do not migrate) and ssippdy one
instantiation per real world entity (i.e., the entity is instantiated in the most spec# cla
it belongs to). To introduce more flexibility new modeling constructs and rudes h
been proposed. To model the dynamics of a migration and to sumjpdtitinstantiation
two new kinds of classebase clasandrole class have been introduced. The first ap-
pearance of an object is created in the “base” class, while migration td tlaleses is
captured by new instantiations of the same object in such “role” classgect®lan-
not be deleted in the base class as long as they are still represented irtlassleFor
example, once created as an instance of a ¢lasson, more instances of this object
may be created (in parallel or in some given sequence) as needed id réeses such
asStudent, Employee, Manager, Sportsman, etc. Foundation work on objects and
their roles has been conducted in [36,18] where an object can alsaastiated several
times as different instances of the same role. This allows representingxdmple, a
person who registers twice as a student (in two different institutions29hgn object
can simultaneously migrate to several target classes. The work in [3d}eedrom tra-
ditional static typing of classes and introduces a new approach wherdasges can be
created and deleted dynamically during application execution. In our werkonsider
all multi-instantiation classes as role classes. If a base class is neededapplia-
tion, it can be specified using the expressive power of the temporaiighise logic to
enforce the temporal integrity constraints between a base and a role class.

An additional requirement for role classes is to accept in the same role itlass
stances coming from disjoint classes. For exampl@a®Owner role class may be



8 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

populated with instances coming from either of the two disjoint clagsesson and
Company—both companies and persons may own cars. ddtegory concepin [14]
was proposed to cope with this situation. This requirement is easier to adhiénase
proposals that do not require the existence of a base object class.gs¢28,30]). In
these models the role class concept replaces the object class congepts ©an enter
the database through creation in any of the roles that accept creati@tiopg, and then
move around according to inter-role links (which can be bi-directionabbdapending
on application constraints). This is also our approach.

An alternative to the explicit specification of inter-role links is the definition of
membership predicatesssociated to an object/role class. This allows for the automatic
acquisition of new roles: when an object instance is modified, its new vataem-
pared with the membership predicates and whenever a predicate is satisfiestdnce
is classified as a member of that population [33,34]. Predicates may alsedieedion
demand rather than automatically after a modification. Inference rules magsbeia
ated to each object/role class, specifying which other class may or may poph&ated
by an instance migrating or being generated from this class [36,34,30].

In short, our approach to supporting object migration does not makefube o
notions of base and role classes. To deal with object migration we rely angotal
semantics: objects are identified by OID’s (Objects Identifiers) in a uniguetmugh
their existence but the same OID can belong to different classes atdifféme points.
Such a modelling assumption allows us to capture also migration cases whexeaod
target classes do not belong to the same generalization hierarchy.rifotbethe logic-
based context of our work allows us to use reasoning services (inyartithe instance
checking reasoning service in description logics) on static and dynamic msmbe
predicates to classify an object in different classes at different times.

Another issue concerning object migration is to handle the typing conflicts that
may arise when an object migrates from a class to another class with diffgpémg
constraints. This issue is beyond the scope of this paper and is mentiaeesiiheto
provide the reader with a broader view on object migration. In [32] aptatian process
that automatically solves typing conflicts is specified. In particular each dhject
reference is updated: whenever an object migrates, all referendesm tthe original
class have to be changed to refer to the object in the new class. The ppdetss
may generate new migrations; therefore it needs to be controlled to avaitboreg
update propagation. Similarly, transformation functions associated to migzditis
are proposed in [28] to compute both the new values and the new struatubhe target
instance starting from one or more source instances. On the other haseration of
information for non-conflicting situations (e.g. an attribute that is both in thececand
in the target class) is analyzed in [29].

As another example, [39] focuses on characterizing object migrationrmaue-
der a given set of parameterized transactions rules governing thedatstiate evolution
as a consequence of some manipulation operations. A migration is said todigteon
if it respects a set of specified migration patterns. Three update largy(@geCSL+
and CSL) are analyzed—each one supporting different hypothesbeio data manip-



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrivdton Systems 9

ulation primitives—to formally specify the interrelationship between the languagd
the migration patterns they support. Finally, an extended coverage @atbastics of
object migration can be found in [29].

These last related works mainly deal with languages to manipulate migrating ob-
jects. On the other hand, this paper addresses the semantic foundatibe ttige basic
requirements and constraints for transition modelling. The reader shoalddre that
modelling and specification is just one aspect of object migration: issuésdétama-
nipulation languages are orthogonal to the modelling aspects we deal withidre
beyond the scope of this paper.

3. Modelling Requirements

This Section briefly illustrates the requirements that are frequently adebuate
the literature on temporal data models when dealing with temporal constraints.

e Orthogonality. Temporal constructors should be specified separately and indepen-
dently for classes, relationships, and attributes. Depending on applicatjoire-
ments, the temporal support must be decided by the designer.

e Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual schemas whesddatinto
temporal schemas.

e Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schema, where all teampora
structors are eliminated and the schema is interpreted atemporally. Indegulpfiis
erty specifies that we should be able to fully rebuild a temporal databadaring
from the single snapshots.

These requirements are not so obvious when dealing with evolving obj€hts for-
malization carried out in this paper provides a data model able to respeetrdtpsre-
ments also in presence of evolving objects. In particular, orthogonaligtafinainly
timestamping [37] and our formalization satisfies this principle by introducing tempo
ral marks that could be used to specify the temporal behavior of clagdaisonships,
and attributes in an independent way (see Section 6). Upward compatibitgreap-
shot reducibility [27] are strictly related. Considered together, they allqweserve the
meaning of atemporal constructors. In particular, the meaning of classioatructors
must be preserved in such a way that a designer could either use themebatasdical
databases, or when used in a genuine temporal setting their meaning meessdrwgd

at each instant of time. We enforce upward compatibility by using global timestamp
over legacy constructors (see Section 6). Snapshot reducibility igtaréserve when
dealing with both generation and across-time relationships where involyect abay

not coexist. We enforce snapshot reducibility by a particular treatmergationship
typing (see Sections 7.4,7.3).



10 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

C—T|L|CN|-C|CinCy | I35FU, R

otc| o clotc| o C|®C| OC| CLUCy| C1SCy
R—T, | RN | R | RiNRy| Ui/n:C|

OtTR| O"R|O"R| OR|@R| OR| RiUR2 | RiSR:

TI(t) = AT
170 = ¢
CNI® C TZ()
(~C)E®) = TZW\ CT®)
(C1 N Co)T0 = i neg®
FFUHIR)TD = {d e THO | #{(dy, ..., dn) € RTW | d; = d} S k}
(CLUC)TO = {de TIO | Fv > t.(d e CF Avw e (¢, v)deCI(w )}
(C18C)TM = {de TIO | Fv < t.(d € CF™) Avw € (v, t).d € T}
(Tn)I(t) C (AI)"
RNT®) C (T,)T®
(—R)*) = (T,,)*\ RT®)
(Ri M R2)*® = R n R
(Ui/n: CYF®) = {(dy,...,dy) € (T,)*D | d; € CTD}
(RiU R)* ™ = {(dy,...,d,) € (T,)F® |
> t({dy, ... dn) € REY Avw € (t,0).(dy,. .., dy) € RF™)
(R1 S R)*® = {(dy,...,d,) € (T,)* t> |
T <t((d1,...,dn> e REW Avw € (v,t).(dy,. .., dn) € RF™)}
(OtR)ZW = {(dy,...,d,) € (T,)E® | 50> 1. <d1,...,dn> € RT()}
(B R = {(dr,....dn) € (To)TD | (d, ..., dn) € RFIF}
(OR)*W = {(dy,...,d,) € (T,)* | Jv < t.{dy,...,d,) € RF™}
(ORI = {(dr,...,dn) € (TR)*D | (i, ..., dn) € RFI7V}

Figure 1. Syntax and semanticSBPLRys.

4. The Temporal Description Logic

The temporal description logiDLRys [5] combines the propositional tempo-
ral logic with Sinceand Until and the (non-temporal) description logizCR [9,7].
DLRys can be regarded as a rather expressive fragment of the firstterdporal logic
L{since, until} (cf. [12,23)).

The basic syntactical types @LR;s areclasses(i.e. unary predicates, also
known asconcept} and n-ary relations of arity > 2. Starting from a set ohtomic
classeqdenoted byCN), a set ofatomic relationg(denoted byRN), and a set ofole
symbolg(denoted byl) we hereinafter define inductively (complex) class and relation
expressions as is shown in the upper part of Figure 1, where the kipastructors
(M,u,U,S) are applied to relations of the same arity,j, k, n are natural numbers,
i < n, andj does not exceed the arity &.

The non-temporal fragment @LR,s coincides withDLR. For both class and
relation expressions all the Boolean constructors are available. Tioticelexpression



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 11

U;/n : C denotes am-ary relation whose argument namé&d (i < n) is of typeC;

if it is clear from the context, we omit and write(U; : C). The projection expres-
sion Hg’“[Uj}R is a generalisation with cardinalities of the projection operator over the
argument named’; of the relationR; the plain classical projection &=![U;]R. It is

also possible to use the pure argument position version of the languagplaging role
symbolsU; with the corresponding position numbérdo show the expressive power of
DLRys we refer to the next Sections whePeLR,s is used to capture various forms
of temporal constraints.

The model-theoretic semantics DILRs assumes a flow of tim& = (7,, <),
where, is a set of time points (or chronons) arda binary precedence relation on
7,, is assumed to be isomorphic (@, <). The language 0DLRys is interpreted in
temporal modelsver 7, which are triples of the forr = (7, A%, Z®)), whereA” is
non-empty set of objects (tlmainof Z) and-Z() aninterpretation functiorsuch that,
for everyt € 7 (in the following the notatiort € 7 is used as a shortcut fore 7,),
every clasg”, and everyn-ary relationR, we haveCZ() ¢ AT andRZ() C (AT)™.
The semantics of class and relation expressions is defined in the lowef pagtire 1,
where(u,v) = {w € T | u < w < v}. For classes, the temporal operators (some
time in the future)® (at the next moment), and their past counterparts can be defined
viald andS: OTC = TUC,HC = LU C, etc. The operator8™ (always in the
future) andO~ (always in the past) are the duals®f- (some time in the future) and
&~ (some time in the past), respectively, ileTC = -OT—=C andO0~C = -0~ —C,
for both classes and relations. The operatdfgat some moment) and its duar (at
all moments) can be defined for both classes and relatiopg@s= C L OTC LUO~C
andO*C = CnotC nO-C, respectively.

A knowledge bases a finite set of DLRys axioms of the formC; © C5 and
Ry C Rs, with Ry andR5 being relations of the same arity. An interpretatidgatisfies
C1 C Cy (R C Ry) if and only if the interpretation of’; (R;) is included in the
interpretation ofC; (Ry) at all time, i.e. I ¢ ¢Z® (R ¢ RIYy for all ¢ e
7. Variousreasoning servicesan be defined ilDLRys. A knowledge basey, is
satisfiableif there is an interpretation that satisfies all the axiom&Zifin symbols,
7 E ¥). A knowledge basey, logically impliesan axiom,C; T Cs (R; C Ry), and
write ¥ |: Cq C Cy (E ): R C RQ), if we haveZ ): Ch C Cy (I ): R C RQ)
whenevelZ | X. In this latter case, the clag (relation R;) is said to besubsumed
by the clas<’; (relation Rs) in the knowledge baskE. A classC is satisfiable, given
a knowledge basg&, if there exists a model of ¥ such thatCZ(t) = ( for some
teT,ie.X £ C C L. ArelationR is satisfiable, given a knowledge base
if there exists a model of X such thatRZ(!) £ () for somet € T,i.e. X - RC L.
Finally, knowledge base satisfiability, class subsumption and relation satisfiedn be
reduced to class satisfiability in the followingway:jc T C L, X = Ci M —-Cy C L,
¥ B 32HU,)R C L for somej < n wheren is the arity of R, respectively.

While DLR knowledge bases are fully able to capture atemporal EER schemas [8—
10]—i.e. given an EER schema there is an equi-satisfidl&® knowledge base—in



12 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

the following Sections we show ho®RLR;,s knowledge bases can capture temporal
EER schemas with both timestamping and evolution constraints.

5. The Temporal Conceptual ModelER 1

In this Section, the temporal EER mod&Rr—which will be the basis to present
our proposal—is briefly introduced (see [3,4] for full detail§)Ry+ supports times-
tamping for classes, attributes, and relationshifd8; - is equipped with both a textual
and a graphical syntax along with a model-theoretic semantics as a temperaiex
of the EER semantics [11]. The formal foundations£@& 1 allowed also to prove a
correct encoding o€ Ry schemas as knowledge bas€iiR s [5,4].

An ERyp schemais atuplél = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T,KEY),
such that:£ is a finite alphabet partitioned into the sefs(classsymbols).4 (attribute
symbols), R (relationship symbols), i/ (role symbols), andD (domain symbols).
ATT is a function that maps a class symbol ¢nto an A-labeled tuple overD,
ATT(C) = (A1 : Dy,..., Ay : D). RELIs a function that maps a relationship symbol
in R to anl{-labeled tuple ove€, REL(R) = (U; : C1,...,Ux : Cy), andk is the
arity of R. cARrRD is a functionC x R x U — N x (N U {oo}) denoting cardinality
constraints. We denote withmIN(C, R, U) andcMAX (C, R, U) the first and second
component ofcARD. In Figure 2,CARD(TopManager,Manages,man) = (1,1). ISA
is a binary relationshipsA C (C x C) U (R x R). ISA between relationships is
restricted to relationships with the same aritga is visualized with a directed arrow,
€.g.Manager ISA Employee in Figure 2.DISJ, COVERare binary relations ove x C,
describing disjointness and covering partitions, respectively, oveoapgof ISA that
share the same superclassisJ is visualized with a circled d” and coveR with a
double directed arrow, e.@Department, InterestGroup are both disjoint and they
coverOrganizationalUnit. The seC is partitioned into: a set® of Snapshot classes
(the S-markedclasses in Figure 2), a séf/ of Mixed classegthe unmarkedclasses
in Figure 2), and a set” of Temporary classefthe T-markedclasses in Figure 2). A
similar partition applies to the s&. s, T are binary relations ove? x .4 containing,
respectively, the snapshot and temporary attributes of a clasS (3emarked attributes
in Figure 2).KEY is a functionKey : C — A, that maps a class symboldhto its key
attribute. Keys are visualized as underlined attributes.

The model-theoretic semantics associated with &, modelling language
adopts thesnapshat representation of abstract temporal databases and temporal con-
ceptual models [12]. Following the snapshot paradigm, the flow of ime (7Z,, <),
where’, is a set of time points (or chronons) ardis a binary precedence relation on
7,, is assumed to be isomorphic to eith&r, <) or (N, <). Thus, standard relational
databases can be regarded as the result of mapping a temporal d&tabagee points
in 7 to atemporal constructors, with the same interpretation of constants ancdhike sa

3 The snapshot model represents the same class of temporal datab#ise so calleiimestampnodel [26,
27] which adds a temporal attribute to each relation [12].



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 13

PaySlipNumber(Integer)

Name(String) O Salary(Integer)
® O
° EmployeeS e ks-fi
mploye R
or ploy Works-forT
org act
(1'n ProjectCode(String) (1 I"I)
| OrganizationalUni& | ManagerT i
ProjectT
1,1
prj

Department | | InterestGrou AreaManagef| | TopManage 2 Manages
| | i f @D

Figure 2. The compan§R v diagram

domain.

Definition 5.1. Ry Semantics)Let X be anERyr schema. Alemporal database
statefor the schem& is a tupleB = (7, ABU AB | B®)), such thatAB is a nonempty
set of abstract objects disjoint froly}; AP, = Up,cp AP is the set of basic domain

values used in the schera and-2®) is a function that for eache T maps:

e Every basic domain symbd); into a seth(t) = A%i.

e Everyclas€ toa setCB1) C AB—thusobjectsare instances of classes.

e Every relationshipR to a setRP®) of /-labeled tuples oveAP—i.e. let R be an
n-ary relationship connecting the clasgés...,C,, REL(R) = (U; : Cy,..., Uy :
Cyp), then,r € RBO) — (r = (U :01,...,Up:0n) AVi € {1,...,n}.0; € CiB(t)).
We adopt the conventionl/; : o1,...,U, : o,) = (01, ...,0,), Whenl{-labels are
clear from the context.

e Every attributeA to a setAB() C AB x AB such that, for eact’ € C, if ATT(C) =
(A1 : Dy,..., Ay : Dy), then,o € CB® — (Vi € {1,...,h},3a;. {0,a;) €
Af(t) AVa;.(o,a;) € Af(t) —a; € AB).

B is said alegal temporal database staifeit satisfies all of the constraints expressed in

the schema (we don't report here the semantics for temporal constriaicestisey will
be discussed in details in the next Sections):

e Foreach’y,C; € C, if Cy 1SA Cs, then,CP" ¢ ¢5®),

e ForeachRy, R, € R, if Ry ISA Ry, then, RP® ¢ RE®).,
e For each cardinality constraistarRD(C, R, U), then:

o€ CBY — cMIN(C, R, U) < #{r € RB® | r[U] = 0} < cMAX(C, R,U).
e ForC,C4,...,C, €C,if {C1,...,C,} DISIC, then,

Vi€ {1,...,n}.Ci1SAC AY) € {1,...,n}, j #1000 nCPY = .



14 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

e ForC,C4,...,C, €C,if {C4,...,C,} COVERC, then,
Vie{l,...,n}.Ci1saC A CBO =, BV,

e ForeachC' € C, A € Asuchthakey(C) = A, then, A is a snapshot attribute—i.e.
(C, A;) € s—andVa € AB.#{oc CBW | (0,a) € ABW} < 1.

Given such a set-theoretic semantics we are able to rigorously define slewvant mod-
elling notions such as satisfiability, subsumption and derivation of new eamstiby
means of logical implication.

Definition 5.2. Let X be a schemal' € C a class, and? € R a relationship. The
following modelling notions can be defined:

1. C (R) is satisfiableif there exists a legal temporal database stafer 3 such that
CB®) £ ¢ (RB®) +£ (), for somet € T;

2. Y is satisfiablef there exists a legal temporal database skater 3. (B is also said
amodelfor X0);

3. C1 (Ry) is subsumethy C5 (R2) in X if every legal temporal database state ¥is
also a legal temporal database statedpisA C5 (R ISA R3);

4. A schema is logically impliedby a schema over the same signature if every
legal temporal database state ¥ois also a legal temporal database stateXfor

In the following Sections we will show how temporal database st#esupport
defining the semantics of timestamping and then how to extend&Bihr and 5 to
capture evolution constraints.

6. Timestamping

ERyr is able to distinguish betweesnapshotconstructors—i.e. constructors
which bear no explicit specification of a given lifespan [25], which wevey by
assuming a global lifespan (see Section 7.1) associated to each of theicassta
temporaryconstructors—i.e. each of their instances has a limited lifespannbaed
constructors—i.e. their instances can have either a global or a tempaisignee. In
the following, a class, relationship or attribute is called temporal if it is either teanpo
or mixed. The two temporal marks, (snapshot) and (temporary), introduced at the
conceptual level, together with unmarked constructors capture the tendistmattion
between snapshot, temporary and mixed constructors. The semantics ¢amipies)
can now be defined as follows:



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 15

0eCBY v eT.oeCBW) Snapshot O ass

0eCB®) — 3¢ Lt.og CBY) Tenporary d ass

re RB®) — v’ e T re RBW) Snapshot Rel ati onship
re RBO — 3¢ Lty g RBW) Tenmporary Rel ati onship

(0 € CBO A (0,a;) € APYY 5wt € T .(0,a;) € A" Snapshot Attribute
(0 € CBW A0, a;) € APYY 3 £ (0, a;) ¢ APY) Tenporary Attribute

Since mixed constructors do not specify any temporal constraint thepenisad to add a
semantic equation. The semantics for attribute timestamping respeétRthe syntax
where attributes are defined snapshot or temporary only locally, i.e. we.tcldisses
they are attached with. Timestamps for both classes and relationships aneedapy
the followingD LRy s axioms (remember that* is the “at all time” operator while>*
is the “at some time” operator):

C C (O*C) Snapshot C ass

C C (¢*=C) Tenporary C ass

RC (O*R) Snapshot Rel ationship
RC (O*=R) Tenporary Rel ationship

Considering attributes we first remember that they are capturddd® as binary
relationships [8]. For each attributed € A, the following DLR axiom holds:
A C From: T MTo: T. Thus, if (4,C) € sor (A,C) € T then the following
DLRys axioms hold, respectively:

C C —~J[From|(AN<$*—A) Snapshot Attribute
C C —J[From|(O*A) Tenporary Attribute

The distinction between snapshot, temporary and mixed constructors éas be
adopted inERy to avoid overloadingthe meaning of un-marked constructors. In-
deed, the classical distinction between temporal (using a temporal markjemngoral
(leaving the constructor un-marked) constructors may be ambiguous in t@mgef
un-marked constructors. In this classical setting, un-marking is used tel it truly
atemporal constructors (i.e. snapshot classes whose instancegilifeapaays equal to
the whole database lifespan), as well as legacy constructoragffeard compatibility
where the constructor is not marked as temporal because the originahoagéhdid not
support the temporal dimension. The problem is that, due to the interactiondrethe
various components of a temporal model, un-marked constructors carpexgosely
represent temporary constructors. As an example, think cfamvolving a temporary
entity (as superclass) and an un-marked entity (as a subclass). Siasgaed cannot
forecast all the possible interactions between the (temporal) constraiatgivén con-
ceptual schema, this ultimately means that in the classical appatatiporality cannot
be guaranteednd this is true even for the upward compatibility.

ERyr explicitly introduces a snapshot mark to force both atemporality and up-
ward compatibility. As logical implication is formally defined &Ry (see Defini-



16 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

PaySlipNumber(Integer)
Name(String) O Salary(Integer)
0O

E pl eS -
oye: orks-forT

org act
(1’n ProjectCode(String) (1 n)
| OrganizationalUnis | ManagerT i
ProjectT
11
prj

na
| Department " InterestGrous | AreaManagei® || TopManageiT ) Managesr

Figure 3. The company diagram with deductions on timestamps

tion 5.2), missing specifications can be inferred and in particular a set whldm-
plications hold in the case of timestamping. For instance, in Figure Pagsger

is temporary bothAreaManager and TopManager are temporary, too. Because
OrganizationalUnit iS snapshot and partitioned into two sub-clasSepartment
which is snapshot anthterestGroup, the latter should be snapshot, too. As the tem-
porary clasSopManager participates in the relationshianages, then the latter must
be temporary, too. The result of these deductions is given in Figuree34$éor an
exhaustive list of deductions involving timestamps). Note that, when magiitgr
into a relational schema both temporary and un-marked constructors apednago a
relation with added timestamp attributes, while snapshot constructors do ewang
additional time attribute (for full details on tl#&R 1 relational mapping see [1]).

7. Formalizing Evolving Objects

Evolution constraints contribute in modelling the temporal behavior of an object.
This Section discusses in details the aspects of evolutionary modelling thakteviatia
account in our work. We first recall the basic concepts that have jpegosed in the
literature to deal with evolution, and their impact on the resulting conceptugliéaye.
Then we propose a formalization of the basic temporal concepts that dre ot of
advanced conceptual temporal moddifecyclewith four statuses (scheduled, active,
suspended, disabledjansitionsof objects between different classes along their whole
lifecycle; generationand across-timerelationships asserting evolution constraints on
objects linked by temporal relationships. These are genuine extensions §Rihe
model that need to be taken into account in proposing a formalization basechodel-
theoretic semantics and a corresponding set of axioms expressed usitegnoral
description logicDLRys.

We aim both at presenting a formal characterization of the temporal corteptu
modelling constructors for timestamping and evolution, and using the reascayiag
bilities of DLRys to check satisfiability, subsumption and logical implications over



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 17

temporal schemas. The model-theoretic semantics we illustrate here forithes\aro-
lution constraints and the corresponding seD&fR;,s axioms are an extension of the
one developed for the modé&IRy 7, introduced in Section 5. The validity of the pro-
posed formalization is justified by providing a set of logical implications whi@hiar
agreement with the derivations mentioned in the literature on temporal data modelling

7.1. Status Classes

Status[37,15] is a conceptual notion associated to temporal classes as a compo-
nent of the description of the lifecycle of their objects. It records thévewy state of
membership of each object in the class. Following [37], status modelling irclyg&o
four different statuses, and the allowed transitions between them:

e Scheduled. An object is scheduled if the planning of its existence within the class
has to be recorded while its membership in the class will only become effeative (
tive) some time later. For example, if a new project is approved but will natuatél
a later date the given project can be created as a new object Brthject class,
with status scheduled for the valid time interval starting at the date of the agprov
decision and ending at the expected launching date. Each scheduletvadbjeven-
tually become an active object. A scheduled object bears its identity (had)abut
its attribute values do not need to be present. Supporting a scheduledhstatissthe
introduction of a new time type, the decision time [15], and smoothes the phogess
of lifecycle queries.

e Active. The status of an object is active if the object is a full member of the class (and
therefore conforms to its type). For example, a currently ongoing prigj@ct active
member, at time now, of theroject class. Being active entails that the object can
undergo any operation (retrieval, update, deletion, etc.), unless asleespecified
by the application.

e Suspended. This status qualifies objects that exist as members of the class, but
are to be seen as temporarily inactive members of the class. Being inactins mea
that the object cannot undergo some operations. For example, in [1&hamge
to the values of the attributes of an object is allowed in the periods the object is
suspended. An employee taking a temporary leave of absence is an exdnvpke
can be considered as a suspended employee. Only active objects suspbaded.

A suspended object was in the past an active one.

e Disabled. This status is used to specify that the object’'s membership in the class has
expired, meaning that the object is no more accessible in a normal moderaf ope
tion. While logically deleted, disabled objects are kept for some specific afiplic
purposes, e.g. statistical analyses. When the object becomes defingkdyant for
the application, it is killed, rather than disabled, and disappears from ths. cha
disabled object was in the past an active member of the class (an object ¢an
created in the disabled status). It can never again become a non-disebtgaer of
that class (e.g. an expired project cannot be reactivated).



18 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

These four statuses intuitively correspond to a behavior we are familiarinvith
the real world. They are application-independent notions. Their clingisdeen driven
by the abstract view of what an object behavior may be in terms of membenship
class. For specific applications specific classes may be equipped with a sichfaifin
of lifecycle. For example, the lifecycle of a given class may be definedtismduding
the scheduled status, or not including the suspended status. As alreatignad, the
simplest lifecycle consists of a single period with active status (which wouldéease
for atemporal objects, should they be given a lifecycle).

A critical issue is deciding the operational semantics of the statuses. Folltwng
moadification control approach in [15], statuses differ in terms of the dipasathat are
allowed on objects in each status. Obviously active objects are fully opeatiee. they
can undergo any operation. But should modification of suspendedtsljedcnhibited,
as proposed in [15]? What if, for example, while an employee is suspaheéecate-
gorization scheme of the company changes and the suspended emplaygeatifies
for a different category? Should the change be performed for thpeaded employee
as for all other employees, or should the change be stored in some lograjeshfor
this employee and activated only at the moment the employee recovers itsstativse?
The latter policy suggests an analogy between suspended objects aradlgitein a
network system. But in network systems objects in a failing site cannot bevegtrie
while in [15] suspended objects can be retrieved. In summary, we coséysifind an
example where the application requirements include the possibility to updatgeant ob
whatever its status is. Consequently, a generic approach is to leave uplsipeer to
decide which restrictions to a full operational semantics, if any, shouldcteize the
non-active statuses. The manipulation language, in its turn, should includedbssary
operations to perform a change in the status of an object (e.g. creatgeahin a given
status, suspend or disable an active object, activate a scheduledspemded object)
and allow predicates on status of objects in the formulation of a query. Usaligsed-
icates the user can, for example, retrieve the active employees whod@vsispended
at some time in the last three years.

A similar difficult issue is to decide to what extent, if any, the status of objects
constrains the relationships holding between those objects. Most data molgedtiav
creation of relationships between objects in the active status at the time thensigtio
is created. Our discussion on across-time relationships shows howat/aptiications
may require the capability to involve also suspended/scheduled/disablexisaibj¢he
creation of a new relationship (see Sections 7.4,7.3). Thus, unless exphbityted,
objects can get involved in the creation of new relationships whatever thisss.

To conclude this discussion on statuses, it is worth noticing that application-
oriented lifecycles are frequently found and may be organized usingathe secha-
nism as for the application-independent lifecycle. For example, in a smggpmpany
objects in a clasBrder can be categorized as standing-order, registered-order, order-in
process, billed-order, paid-order, order-in-delivery, delideveder. The designer could
then specify the transition between these "statuses”, together with thesponding
transition rules, and let the system enforce the consistency of ordetatien with the



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 19

)

[Exists-C| [Disabled-C

Scheduled-C | | cCT | | Suspended-C

Figure 4. Status classes.

stated constraints. It would be worth investigating the possibility to devisenaafam
that handles the definition and management of application lifecycles in a simyjaasva
it handles the predefined lifecycle we discussed above. But this is Bekierscope of
this paper. Notice that, conversely, having application-independentdifscassociated
to objects and monitored by the system has a definite advantage it allows retying
standard operators (e.g. activate, suspend, reactivate, disald&gtics manipulation.

Formalization. Let C' be a temporal (i.e. temporary or mixed) class. We capture
status transition of membership @ by associating t@' the following status classes
Scheduled-C, Suspended-C, Disabled-C. In particular, status classes are represented
by the hierarchy of Figure 4 (whe@ may also be mixed) that classifiésinstances
according to their actual status. To preserve upward compatibility we dexpdititly
introduce an active class, but assume by default that the name of thésddfsdenotes
the set of active objects, i.Active-C = C. We can assume that the status classes are
created automatically by the system each time a class is declared temporad&gigs;

ers and users are forced neither to introduce nor to manipulate statuesclabsy only
have to be aware of the different statuses in the lifecycle of an object. tNatesince
membership of objects into shapshot classes is global, i.e. objects ars alotag, the
notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-ho@ictss
and then prove that such constraints capture the evolving behaviortas stasses as
described in the literature [37,15]. First of all, disjointness erdconstraints between
statuses of a class can be described iRy as illustrated in Figure 4, whereop
is supposed to be a snapshot class which represents the univebstrateobjects (i.e.
TopB®) = APB). Other than hierarchical constraints, the intended semantics of status
classes induces the following rules that are related to their temporal behavio

(ExisTs) Existence persists until Disabled.

0 € Exists-CBU) — vt/ > t.(o € Exists-CB) v o e Disabled-CB(t/))
(DisaB1) Disabled persists.

0 € Disabled-CB(!) — V#' > t.0 € Disabled-CB(*)



20 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

(DisaB2) Disabled was Active in the past.
0 € Disabled-CB!) — J¢' < t.0 € cBE)
(SuspP) Suspended was Active in the past.
0 € Suspended-CB(®) — I’ < t.0 e cBH)
(ScH1) Scheduled will eventually become Active.
0 € Scheduled-C8®) — 3t > t.0 € cB1)
(ScH2) Scheduled can never follow Active.
0e B V' > t.o & Scheduled-cB()

As an example of a rule expressing the semantics associated to the differ@ises,

the following rule formally expresses the suggestion from [15] to make angdable

the attributes of suspended objects, the unchangeability starting at the tinré thsta
object becomes suspended. L& ean attribute of a clas§' then:

(FREEZ) Freezing attributes of suspended classes.
0 € Suspended-CB8(") A (0,a) € AB®) (0,a) € AB(t—1)

DLRys axioms are able to fully capture the hierarchical constraints of Figuree44$e
for more details). Moreover, the above semantic equations are capiutieel following
set of DLRy s axioms:

(EXISTS) Exists-C C O1(Exists-C LI Disabled-C)
(DisAB1)Disabled-C = O™ Disabled-C
(DisaB2)Disabled-C = &~C

(SusP) Suspended-CLC &7C

(ScH1) Scheduled-CC &TC

(ScH2) CLC Ot—-Scheduled-C

We denote with,; the above set of axioms together with (i€ R;,s axioms that cap-
ture the hierarchy of Figure 4. On the other hand, the axiom that capghe@shibition
to update suspended objects is:

(FREE2) Suspended-C C —J[From|(AM © —A)

As a consequence of the above formalization, scheduled and disalilesicdéesses can
be true only for a single interval, while active and suspended classd®thfor set of
intervals (i.e. an object can move many times back and forth from active peisded
status and vice versa). In particular, the following set of new rules eatelived.

Proposition 7.1. (Status Classes: Logical Implications§iven the set of axiom&,;
that formalize status classes, the following logical implications hold (each impliciatio
described by a natural language sentence and the correspddiRg.s logical impli-
cation):

(DisaB3) Disabled will never become active anymore.
Y = Disabled-C C OF—C



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 21

(ScH3) Scheduled persists until active.
Y st | Scheduled-C C Scheduled-CU C

(ScH4) Scheduled cannot evolve directly to Disabled.
Yst = Scheduled-C C @ —Disabled-C

Proof

(DIsAB3) X4 = Disabled-C C OF—C
Leto € Disabled-C5(*) then, by (DsAB1), V¢’ > tg.0 € Disabled-C5(*). Since
Disabled-C is disjoint fromc, thenV¢' > tg.o ¢ CB(t'),

(SCH3) X4 = Scheduled-C C Scheduled-CU C
Let o € Scheduled-CB(t0) theno € Exists-CB(t) and, by (£H1), 3t; > tg.0 €
CBM), Let assume thaty = min{t € T | t > to ando € CB®}. Now, by
(EXISTS), Vt'.tg < t' < t1.0 € (Exists-C LI Disabled-C)?®"). On the other hand,
by (DiIsAB3), o € Disabled-C5(t), By the “min” choice oft;, o ¢ CB(*) and also
0 & Suspended-CB(), ThusVt' .ty < t’ < t;.0 € Scheduled-CB(t).
Together with axiom (8H2), we can also conclude th&theduled-C is true just on
a single interval.

(ScH4) X, E Scheduled-C C & —Disabled-C
Let 0 € Scheduled-CB(*o) then by (®H1), 3t; > tg.0o € CBH). Thus, by
(DisAB3), 0 ¢ Disabled-CB(tot+1),

a

Status classes are central in describing the evolutionary behavior aft@biin
the following we show the adequacy of the semantics associated to statussdiass
describe) the behavior of temporal classes involvedsn relationshipsp) the notion
of lifespanof an object. In the next Section status classes will be used to meyel:
the object migration between classésthe relationships that involve objects existing at
different times (both generation and across-time relationships).

Isa vs. status.When anisA relationship is specified between two temporal classes, say
Bisa A, some rules have to be obeyed to guarantee consistency between thefsteus
object in the subclas$3, and its status in the superclagls, These common sense rules
follow from the perception that being in a subclass represents a “suiydche object
pursues while continuing its “activity” in the superclass. Thus, the levedabivity

in the superclass must be higher than or equal to the level of activity in theass.
Being activeis a higher level of activity as beinguspendedwhich in turn is a higher
level of activity than beinglisabled This is expressed by constraimgn1-3 andiSAS
below between the respective status classes. Similarlgdieduledstatus expresses a
plannedexistencei.e. a lower level of existence than being currently in existence: hence
constraintisa4.

(1Isal) Objects active ilB must be active im.
BC A



22 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

(1IsA2) Objects suspended B must be either suspended or activedn
Suspended-B L Suspended-ALIA

(1IsA3) Objects disabled iB must be either disabled, suspended or activd.in
Disabled-B L Disabled-A Ll Suspended-ALJ A

(1sA4) Objects scheduled iB must exist inA.
Scheduled-B C Exists-A

(1IsAb) Objects disabled im, and active inB in the past, must be disabled i
Disabled-A1 <7 B C Disabled-B

The formalization of status classes provided above is not sufficient t@gles
properties (SA1-5)Y*. We need to further assume that the system behaves undenthe
poral ISA assumptionEach time ansA between two temporal classes holdsi6A A),
then ansA between the respective existence status clagsgs{s-B ISA Exists-A) iS
automatically added by the system. The tempasal assumption is thus captured by
the following set of axiomsXsa = {B C A,Exists-B C Exists-A}. Now, we are
able to prove that pointsgA1-5) above are entailed by the semantics associated to status
classes under the temporah assumption.

Proposition 7.2. (Status Classes VsisA: Logical Implications) Let A, B be two
temporal classes such thatsa A, then properties$A1-5) are valid logical implications
under thetemporalisA assumption

(1sal) Objects active ilB must be active im.
YstUXisa FBEA

(1sA2) Objects suspended iB must be either suspended or activedn
Y5t UXsa | Suspended-B C Suspended-A LI A

(1sA3) Objects disabled iB must be either disabled, suspended or activd in
Y5t UX|sa [ Disabled-B C Disabled-A Ll Suspended-A LI A

(1sa4) Objects scheduled iB must exist inA.
Y5t UX|sa E Scheduled-B C Exists-A

(1sa5) Objects disabled i, and active inB in the past, must be disabled i
Y5t UX|sa | Disabled-AM <O~ B L Disabled-B

Proof

(1sal) Obviously true sincd31SA A holds inXsa, and bothA, B are considered active.

(1sA2) Leto € Suspended-BB(") sinceSuspended-B ISAExists-B, and (by temporal
ISA assumptionExists-B ISA Exists-A, then,o € Exists-AB(0). On the other
hand, by (3sP), 3t; < tg.o € BB and thenp € AB(1), Then, by ($H2),
o¢ Scheduled-AB()  Thus, due to the disjoint covering constraint between active,
scheduled and suspended classes, eitlerd5() or o € Suspended-AB(t),

(1sA3) Leto € Disabled-B2(™) then, by (DSAB2),3t; < tg.o € BB(t), By Bisa A
and A ISA Exists-A, then,o € Exists-AB(1), By (ExisTs) and the disjointness

4We let the reader check that points 2,4 and 5 are not necessarily true.



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 23

between existing and disabled classes, there are only two possibilities aingaims
to > t1:

1. 0 € Exists-AB(0) and thus, by (6H2), 0 € AB0) or g € Suspended-AB(tO);
or

2. 0 € Disabled-AB(t0),

(1sA4) Leto € Scheduled-BB(0) then,o € Exists-BB(*0), Thus, by the temporasa
assumptiony € Exists-AB(0)  As a further logical implication, it also follows that
objects scheduled iB cannot be disabled iA.

(1sA5) Let 0 € Disabled-AB(0) ando e BB*) for somet; < to, then,o €
Exists-BB("). By (ExisTs) and the disjointness between existing and disabled
classes, there are only two possibilities at titge> t;: eithero € Exists-BB(t0)
or o € Disabled-B5(), By absurd, leto € Exists-B5(0), then by tempo-
ral ISA assumption,o € Exists-AB(*) which contradicts the assumption that
0 € Disabled-AB(*0),

a

Temporal applications often use concepts that are derived from thenrudtidject
statuses, e.g. tHgespanof a temporal object or itbirth anddeathinstants. These con-
cepts are supported through methods in object-oriented DBMS. Hereinafterovide
formal definitions for these concepts.

Lifespan and related notions. The lifespan of an object w.r.t. a class describes the
temporal instanfswhere the object can be considered a member of the class. The lifes-
pan concept together with the notion of status classes support the defafitemporal
constraints between objects (see Section 7.3). With the introduction of statse<
we can distinguish between the following notionsxIETENCESPAN¢, LIFESPANC,
ACTIVESPANg, BEGING, BIRTH and DEATH. They are functions which depend on
the object membership to the status classes associated to a temporél.class

The existencespanf an object describes the temporal instants where the object
is either a scheduled, active or suspended member of a given clase fiMorally,
EXISTENCESPANC : AB — 27 such that:

EXISTENCESPANG(0) = {t € T | 0 € Exists-CB(1)}

The lifespanof an object describes the temporal instants where the object is an active
or suspended member of a given class (thuseSPANc(0) C EXISTENCESPAN( (0)).
More formally, LIFESPAN¢ : AB — 97 such that:

LIFESPANG(0) = {t € T | 0 € ¢B® U Suspended-cB(")}

® Note that the semantics 6fR 1 allows for set of intervals—usually mentioned as temporal elements in
the literature—as generic lifespan of an object.



24 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

Theactivesparof an object describes the temporal instants where the object is an active
member of a given class (thuscAIVESPAN-(0) C LIFESPAN¢(0)). More formally,
ACTIVESPAN: : AB — 27 such that:

ACTIVESPANG(0) = {t € T | 0 € cBM1}

The functions BEGINc and DEATH associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given class, wiRleHB denotes
the first appearance as an active object of that class. More form@&Ng:, BIRTH(,
DEATH( : AB — 7T, such that:

BEGIN¢(0) = min(EXISTENCESPANG(0))
BIRTHc(0) = min(ACTIVESPANC(0)) = min(LIFESPANG(0))
DEATH¢ (0) = max(LIFESPANG(0))

We could still speak of existencespan, lifespan or activespan fosboaplasses, but
in this case EISTENCESPAN(0) = LIFESPAN¢(0) = ACTIVESPANG(0) = 7. Fur-
thermore, BEGINg(0) = BIRTHe(0) = —o0, and DEATHe (0) = oo either whenC' is a
shapshot class or in cases of instances existing since ever and/offdikéngr.

7.2. Transition

A database object represents a real world object seen as a membeclasththe
object belongs to. As the real world evolves, the same real world objectiaosa its
quality as a member of the class and may acquire other or additional membenships
other classes defined in the database. For example, there are formalismisgaliohn
to be simultaneously represented as a member of themiadsyee and as a member of
the clasSennisPlayer, and later to become a member of the cléssager. In other
words, objects can dynamically show up and move around through the<sldsEned
in a schema.

Transitionconstraints [22,37] bear specific transition semantics. They have been
introduced to model the phenomenon caltdgject migration A transition records ob-
jects migrating from aourceclass to aargetclass. At the schema level, it expresses
that the instances of the source class magrate into the target class. Two types of
transitions have been considergignamic evolutiopwhen objects cease to be instances
of the source class to become instances of the target clasdynanhic extensiqrwhen
the creation of the target instance does not force the removal of theesimstance. For
example, considering the company schema (Figure 3), if we want to rdatasicabout
the promotion of area managers into top managers we can specify a dynahitogev
from the clas\reaManager to the clasSopManager. We can also record the fact that
a mere employee becomes a manager by defining a dynamic extension frolasthe ¢
Employee t0 the clas$lanager (see Figure 5).

Finally, transitions are particularly relevant in the casaaff directly instantiable
classes. A class is said not directly instantiable if creation of objects with aoiew
is not allowed in the class. In this case, transition constraints define thetargjed



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 25

EmployeeS |— 1

|
DEX

|
ManagerT |« {

AreaManagei | | TopManageim
I

- ——-DEV ———
Figure 5. Transitions employee-to-manager and area-to-top manager

objects in time and consequently rule the object’s evolution as far as existeacet
directly instantiable class is concerned.

Regarding the graphical representation, as illustrated in Figure 5, wee desshed
arrow pointing to the target class and labeled with eithex or DEV denoting dynamic
extension and evolution, respectively.

Formalization. Specifying a transition between two classes means #)atfe want to
keep track of such migratiorn) Not necessarily all the objects in the source or in the
target participate in the migration) When the source class is atemporal class, migration
only involves active or suspended objects—thus, neither disabled nedsied objects
can take part in a transition.

In the following, we present a formalization that satisfies the above reneirts.
Notice that transitions are constrained by the fact that they consider singlets. For-
malizing dynamic transitions as relationships would result in binary relationshksdin
the same migrating object twice, once as an instance in the source classcarasan
instance in the target class. Rather than defining a relationship type withuatitgq
constraint on the identity of the linked instances, we represent transityangducing
a new class denoted by eitheEX, ¢, Or DEV¢, ¢, for dynamic extension and evolu-
tion, respectively. More formally, in case otignamic extensiobetween classes;, Co
the following semantic equation holds:

o€ DExggf)CQ — (0 € (Suspended-C;2®) Ui BOY A0 & CBH Ao € Cf(t“))

And the equivalenDLRys axiom is:

(DEX) DEX¢,,c, T (Suspended-Cy LICy) M —Cy M D Co

In case of alynamic evolutiometween classes;, C5 the source object cannot remain
active in the source class. Thus, the following semantic equation holds:

o€ DEVlégt’)C2 — (0 € (Suspended-C;3(1) U C BV Ao & B0 A

o€ CzB(t+1) Ao ClB(t+1))
And the equivalenD LRy s axiom is:



26 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

(DEV) DEV¢,,c, T (Suspended-Cy LICy) MM —Co M@ (Co M -Ch)

Finally, we formalize the case where the sour€g)(and/or the target(s) totally par-
ticipate in a dynamic extension/evolution (at schema level we add mandatdipaldy
constraints oEX/DEV links):

Oecf(t) — 3t > t.oEDExggtlgj2 Source Total Transition

oeCQB(t) O < t.oeDEngt’/c)Q Target Total Transition

oeCf(t) — 3 > t.oEDEvlégtg2 Source Total Evol ution
B(t)

— 3t < t.oeoEvlégfg{2 Target Total Evolution

The above cases are captured by the followihgR;,s axioms, respectively:

(STT) C1 C OTDEX(y.0 Source Total Transition
(TTT) C2 C O7DEX(y 0 Target Total Transition
(STE) C1 C OfDEVe, 0 Source Total Evol ution

(TTE) C32 C OTDEVE, 0 Target Total Evolution

Note that, either (TT) or (TTE) are appropriate constraints to describe the behavior
of not directly instantiable classes. An interesting set of consequeridbe above
proposed modelling of dynamic transitions are shown in the following propuositio

Proposition 7.3. (Transition: Logical Implications) Let ¥;, = {(DeV),(DEX)}, then
the following logical implications hold:

1. The classe®EXc, ¢, andDEV(, ¢, are temporary classes; actually, they hold at
single time points.
Yt UXy = DEXcy 0 T @ — DEX(y 0, 11O —DEX(, 0
Yt UXy = DEVe, 0 & @~ DEV(, ¢, 1O ~DEV(, ¢y

2. Objects in the classasEXc, ¢, andDEV¢, ¢, cannot be disabled aS;.
DR UD I ): DEXcy,0, C —Disabled-C,
DR ED I ): DEV¢, ., C —Disabled-C,

3. The target clasg€’, cannot be snapshot (it becomes temporary in case of both
and TTE constraints).
Yt U D ): DEXc;,Cs C 0*[02 M (<>+_‘CQ L <>_—|CQ)]

4. As a consequence of dynamic evolution, the source dass;annot be snapshot
(and it becomes temporary in caseSafe constraints).
Yot Uy ): DEVe, 0o T Q*[Cl M (<>+—|Cl U <>_—|Cl)]

5. Dynamic evolution cannot be specified between a class and one of itdesmdes.
Est U Etr U {CQ C Cl} ): DEVC1,6'2 C 1

6. Dynamic extension between disjoint classes logically implies Dynamic evolution
Yt UXy U{C) T ~Cs} = DEX¢y 0 T DEVE, 0



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 27

Proof

1. ¥ UXy = DEXc, 0y & @ 7 DEX¢y ¢, 1O “DEX¢, ¢, (Similar for DEVe, )

Indeed, leb € DEX(.'1,,, then, from (DEX), 0 ¢ C " ando € Cy ™Y, thuso ¢

pEXg ') ando ¢ DEXg. . Note that, the time such thab € DEXg, 1, records

when the transition event happens. Similar considerations appbes, ¢, .

2. ¥4 Uy, = DEX(,, 0, T —Disabled-C, (similar for DEV¢, )
Indeed, from ([EX), DEXc,.c, T @ Cy, i.e. objects inDEX¢, ¢, are active in
C, starting from the next point in time, then by propertyi$@B3), DEXc, ¢, T
—Disabled-C,. The same holds fawEve, ¢, .

3. X4UXy E DEX¢cy,00 & O*[Co (<>+—\CQ LS =0s)]
Indeed, from ([EX), DEXc, ¢, & —Co M@ Cy (the same holds favEve, ¢,).

4. Yo Uy | DEVe, o, £ OF[C1 M (OT0 U O™ 0]
Indeed, from (EV), an object evolving fronC; to C, ceases to be a member of
Ci.

5 YUYy U {CQ C Cl} ): DEV¢y,cs cC L
Indeed, from ([EV), DEVc, ¢, T @ (C2 M =CY) which contradicts™s T C.

6. Xg UXy, U{C) C ~Cq} = DEX(, ¢, C DEVE, ¢,

Leto € DEXg\'),, then, from (IEX), 0 € C5'*", and, sinceC; C —Cs, 0 ¢

CP*). Thus,o € bEVE),.

7.3. Across-Time Relationships

Across-Timeelationships [40,31,37] describe relationships between objects that
may not coexist at the same time and possibly not at the time the relationship is as-
serted. The conceptual model MADS [37,38] allows $gnchronizatiorrelationships
to specify temporal constraints (Allen temporal relations) between the lifiesfdanked
objects.Historical marksare used in the ERT model [31] to express a relationship be-
tween objects not existing at the same time (both past and future historicad avark
introduced).

There are many examples of these relationships (see Figure 6). Cofmigsam-
ple, a relationshiBiography between an author and a famous person already dead, or
the relationshirandparent that holds even if the grandparent passed away before the
grandchild was born or the grandchild is not yet born. Consideringdhgpany schema
(Figure 3), the relationshigorks-for is an across-time relationship if company rules
allow assigning an employee to a project before its official launching, anffleyees
may keep on working on a project after its official closure.

This Section formalizes across-time relationships with the aim of preserving the
snapshot reducibility of the resulting model. Let us consider a concreiape. Let



28 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

(©

gchild
F=

(0,9)
QF;a_r ent

(b)

[Ferson]— (i

(@

Figure 6. Across-Time Relationships

Biography be an across-time relationship linking the author of a biography with a fa-
mous person no more in existence. Snapshot reducibility says that if treréristance
(say,bio = (Tulard,Napoleon)) of the Biography relationship at time, (Tulard
wrote a bio on Napoleon in 1984), then, the projectioBddgraphy at timet, (1984

in our example) must contain the pdifulard, Napoleon). Now, while Tulard is a
member of the classuthor in 1984, we cannot say thBtpoleon is an active member

of the classPerson in 1984. Our formalization of across-time relationships proposes
the use of status classes to preserve snapshot reducibility. The iggeample can

be solved by asserting thitpoleon is a member of th®isabled-Person class in
1984—i.e. the disabled status associated to the Blkasson.

At the conceptual level, we mark relationship roles viath,S,F (standing for Past,
Now, Suspended and Future, respectively). The role’s mark esggebat the class
typing the role participates in the relationship as disabled, active, suspsotexuled.
Furthermore, we allow to freely compose the marks, &) denotes a role to a past or
current object—i.e the class participates as either disabled or active—{Whi)estands
for a role to a future or current object (see Figure 6).

Remark 7.4. Note that, across-time relationships represent a generalization of the clas-
sical notion of relationships. They do notimpose any temporal constrathieanvolved
objects allowing to capture a simplified version of the synchronization rel&ijosin-
troduced in MADS [38]. In particular, if no mark is explicitly stated on a reladiuip’s

role (as in the case of the role restrictedPtmoject in Figure 6.c) we implicitly as-
sume the compound maxle,=,S,F)—said full-crossmark. This assumption changes
the semantics for relationships as given in Section 5. We assume, by défatfipr

each relationship’s role the full-cross semantics holds (see the formaitidefibelow).

This new semantics for relationships maintains the compositionality of the langmage
particular, to force a relationship to hold on an active class we need to add)tmark



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 29

(as in the case of the role restrictedtigployee in Figure 6.c). Furthermore, cardinality
constraints apply to a participating class in every status as specified byrtbspanding
role mark. For example, from Figure 6.b, each active or scheduledmpeen have at
most four grandparents.

Formalization. Let R be a relationship, then, the semantics of markinglfihdabeled
role of the relationship is (we report the semantics for the single marks afudltceoss
compound mark, the other compound marks are just the disjunction of the simegi

<01,02> S RB(t) — 01 € ClB(t) Now <=>

(01,09) € RB® — 0, € Disabled-C{5") Past(P)

(01,09) € RB® — o) € Scheduled-C,5") Future(F)

(01,00) € RB® — 0, € Suspended-C,5() SuspendedS)
(t)

(01,09) € RB®) — o) € (Exists-Cy LI Disabled-C;)B®) Full-Cross(P=,S,F)

The correspondin® L R;,s axioms are:

RC U :Cy Now (=)

R C U, : Disabled-C4 Past(P)

R C U; : Scheduled-Cy Future(F)

R C U, : Suspended-Cy SuspendedS)

R C U; : (Exists-Cy LI Disabled-Cy) Full-Cross(P,=,S,F)

We say that a role in an across-time relationshigtigt historicalif its mark does
not contain the=) mark (e.g.(P,F) is strict historical whilg{P,=) is not). The following
Proposition shows how timestamping interacts with across-time relationships.

Proposition 7.5. (Across-Time: Logical Implications)The following logical implica-
tions hold as a consequence of the across-time semantics.

1. If a relationship, R, has at least one strict historical role, then it is a temporary
relationship.
Yst U{R C U, : (Disabled-C; LI Scheduled-C; LI Suspended-C;)} = R C
OCT—RUC™ =R

2. If a relationship, R, is snapshot then all the historical marks must contain (thie
mark (i.e. R does not have strict historical roles).

3. Ifarelationship,R, has a strict historical role to a clags;, then the’; class cannot
be snapshot. Moreover, if the participation fOf is total, the class is temporary.
Yt U{R C U; : (Disabled-C; L Scheduled-C; LI Suspended-C;)} E R C Uy:
0*[01 M (Q+—|Cl L <>__‘Cl)]

Proof

1. ¥4 U{R C U; : (Disabled-C; LI Scheduled-C; Ll Suspended-C;)} = R C
OT—RUCO =R



30 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

Letr = (o1,...,04...,0,) € RB®. Then, one of the following cases hold:
i) 0 € Disabled-cf(t) and, by (DsAB2), dt; < t s.t. o; € CZ.B(“); i7)

0; € Scheduled-C-™ and, by ($H1), It; > ¢ st. o; € C°U); i) o; €

Suspended-clf(t) and, by (%)sp), Jt; < t s.t. o; € Cf(“). Then,3t; # t s.t.
0; € CP™ thus(or,... 01, ..., 0n) & RB®),

2. Direct consequence of the above point.

3. X5t U{R C U, : (Disabled-C; LI Scheduled-C; LI Suspended-C1)} = R C U;:
O* [Cl 1 (<>+—|Cl (] <>__|01)]
Letr = (o1,...,0;,...,0,) € RB®_ Then,o, € (Disabled-C;LIScheduled-C;L

Suspended-C;)5®, and, by the disjointness constraintsig, o; ¢ C-"). On the

other hand, similarly to point Ht; # t s.t.oy € Cf(tl).

7.4. Generation Relationships

Generatiorrelationships [37,21,35] represent processes that lead to the emergenc
of new objectstarting from a set of existing objects. In their most generic form, a gener-
ation relationship can have a collection of objects as source and a collettibjeots as
target. For example (see Figure 7), assuming an organization remodelgéatsnaents,
it may be that an existing department is split into two new departments, while twe exis
ing departments are merged into a single new department and three existngraays
are reorganized as two new departments. Cardinality constraints caddxbtadspecify
the cardinality of sets involved in a generation. For example, if we want turdebe
fact that a group of managers proposes at most one new project at a tjgreeration
relationship fromManager to Project can be defined with the cardinalitat'most oné
on the manager side.

Depending whether the source objects are preserved (as member afutice s
class) or disabled by the generation process, we distinguish befveduactionand
transformationrelationships, respectively. Managers creating projects is an example
of the former, while departmental reorganization is an example of the lattetheAt
conceptual level we introduce two marks for generation relations@pdor production
andGT for transformation relationships, and an arrow pointing to the target cdags (
Figure 7).

Formalization. We model generation as binary relationships connecting a source class
to a target oneReL(R) = (source : (4, target : C2). The semantics gfroduction
relationships R, is described by the following equation:

<01702> S RB(t) — (01 S C]l-g(t) Aoy € SChedU.led'CQB(t) Aoy € C2B(t+1))



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 31

02 Frepese G —>——{Feejet]

l

ReOrganize GT

Figure 7. Production and transformation generation relationships.

Thus, objects active in the source class produce objects active in tie¢ ¢hags at the
next point in time. A production relationship is a special case of across-tilaganship
with an (=) mark on the source role and &R) mark on the target role. As for across-
time relationships, the use of status classes allows us to preserve srapishudbility.
Indeed, for each pair of object&, 02), belonging to a generation relationshipsis
active in the source while; is scheduled in the target. TH2LR;,s axiom capturing
the production semantics is:

(PROD) R C source : (' MNtarget : (Scheduled-Cy 1 Cy)

The case ofransformationis captured by the following semantic equation:

(01,00) € RB® — (0, € CPY A 0, € Disabled-c;5(+D) A
09 € Scheduled-C,B1 A oy € CHITY)

Thus, objects active in the source generate objects active in the tathetragxt point
in time while the source objects cease to exist as member of the source. Aedacpg
tion relationships, transformations are special cases of across-timenshatis. The
DLRys axiom capturing the transformation semantics is:

(TRANS) R C source:(C}M® Disabled-Cy)Mtarget: (Scheduled-CoMd Cy)

Proposition 7.6 (Generation: Logical Implications)The following logical implica-
tions hold as a consequence of the generation semantics:

1. A generation relationshipk, is temporary; actually, it is instantaneous.
Y U{(PROD)} E RC O"=RMNO =R
Indeed, leto;, 05) € RB®, then, sinces ¢ Scheduled-Co "™ then(oy, 0s) ¢
RB(+D)  Sinceo, ¢ Cf(t), then(oy, 03) ¢ RB(-1),

2. The target class(>, cannot be snapshot. Moreover, if the participation € is
total, the class is temporary.
Y U{(PROD)} = R C target: O*[Cy M (OT=Cy LU O™ ()]
Indeed, let(oy, 02) € RB®, then,o, ¢ C5 andoy € BT,

3. Objects participating as target cannot be disabled.



32 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

Yst U{(PROD)} = R C target:—Disabled-Cs
Indeed, let(oy, 02) € RB®, then,o, € C5™) Thuso, ¢ Disabled-C5\™,

4. If Ris a transformation relationship, ther; cannot be snapshot. Moreover, if the
participation forC is total, the class is temporary.
Yt U{(TRANS)} E R C source: O*[C M (OT=Cy U O™ =CY)]
Indeed, objects it; that participate ink will be disabled at the next point in time.

Proof

1. ¥4 U{(PROD)} E RC O"=RMO =R
Indeed, let(o;, 05) € RB® then, sinces ¢ Scheduled-Cs "™ then(oy, 05) ¢
RBU+D) . Sinceos ¢ C2Y, then(oy, 05) ¢ RBED.

2. Y5t U{(PROD)} = R C target : O*[Co M (OT=Co LI O™ =Ch))]
Indeed, letlo1, 02) € RE®, then,o, ¢ Cé?(t) ando, € Cf(tﬂ).

3. X5t U{(PROD)} = R C target:—Disabled-Cs
Indeed, let(oy, 02) € RB®, then,o, € C5“™) Thuso, ¢ Disabled-C5\™,

4. 3 U{(TRANS)} = R C source: O*[C M (OT=Cy U O™ -CY))]
Indeed, objects iw; that participate ink will be disabled at the next point in time.

a

Note that thebepartment class that is both the source and target of a transforma-
tion relationship (Figure 7) can no longer be snapshot (as it was in F3jared must be
changed to temporary. This is an example of inconsistency checking tiaat@mated
reasoner could perform to avoid inconsistent classes in a temporahackarthermore,
as a consequence of this new timestamp foDdeartment class,InterestGroup is
now a genuine mixed class (compare Figure 2 with Figure 3).

8. Complexity of Reasoning on Temporal Models

As this paper shows, the temporal description IdBI€R;,s is able to fully cap-
ture temporal schemas with both timestamping and evolution constraints. Regsonin
overDLRys knowledge bases, i.e checking satisfiability, subsumption and logical im-
plications, turns out to be undecidable [5]. The main reason for this is talplity to
postulate that a binary relation does not vary in time. Note that, showing thabtamp
schemas can be mapped iRER;,s axioms does not necessarily imply that reasoning
over temporal schemas is an undecidable problem. Unfortunately, [issthat the
undecidable Halting Problem can be encoded as the problem of classbdiigfv.r.t.



A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 33

a temporal schema with, among the others, the following constructs: disjartan
ering constraints, sub-relationships, timestamping on both classes anchigis and
evolution constraints.

On the other hand, the fragmeMLR,, s, of DLRys deprived of the ability to
talk about temporal persistence wfary relations, forn > 2, is decidable. Indeed,
reasoning iNMDLR,,s is an EXPTIME-complete problem [5]. This result gives us an
useful scenario where reasoning over temporal schemas beconndshbdcIn partic-
ular, if we forbid timestamping for relationships (i.e. relationships are just vkeda
reasoning on temporal models with just class timestamping but full evolutiotraoris
can be reduced to reasoning of®£R,;,s. The problem of reasoning in this setting is
complete for EXPTIME since the EXPTIME-complete problem of reasoniitig W.LC
knowledge bases can be captured by such schemas [8].

We maintain decidability also by allowing full timestamping (i.e. timestamping for
relationships, attributes and classes) but dropping evolution constreimsds the basic
temporal conceptual modelling scenario where temporal marks allow to distinige-
tween temporary and global constructs. A complete and decidable reggwooedure
for reasoning over timestamping is provided in [6]. This scenario is deledatce it is
possible to encode temporal schemas without evolution constraints by usimgéna-
tion between the description logieLR and the epistemic modal log®5 (see [6] for
the exact mapping). Reasoning o¥2£R g5 has been recently proved to be decidable
and 2-EXPTIME-complete [6] by extending a previous result on the 18gi€ ¢5 [17].

Other interesting scenarios under investigation are the cases where th@aemp
expressivity is maintained in its full capability (i.e. both full timestamping and evaiutio
constraints) but some of the classical EER constructs are droppedartioutar, we
claim that by dropping isa between relationships and/or partitioning cortstreéncould
regain decidability in the full temporal scenario.

9. Conclusions

In this paper we proposed a formalization of the various modelling constsucto
that support the design of temporal DBMS with particular attention to evolution ¢
straints. The formalization, based on a model-theoretic semantics, haséestoped
with the aim to preserve three fundamental modelling requirements: Orthidgoda-
ward Compatibility and Snapshot Reducibility. The introduction of status dassgech
describe the evolution in the membership of an object in a temporal class, allsve
to maintain snapshot reducibility when characterizing both generationscamsbatime
relationships. The formal semantics clarified the meaning of the languamessrac-
tors and also gave a rigorous definition to relevant modelling notions likefightiisy
of schemas, classes and relationships; subsumption for both classedaiwships;
logical implication. Furthermore, for each constructor we presented itsalaration
together with the associated set of logical implications.

Finally, we have been able to show how temporal schemas can be eqthwalen



34 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

expressed using a subset of first-order temporal logic, DERs, the description
logic DLR extended with the temporal operat@imceandUntil. Overall, we obtained
a temporal conceptual model that preserves well established modellingeragnts,
equipped with a model-theoretic semantics where each constructor caarbassa set
of precise rules, and with the possibility to perform automated reasoning ppinta
temporal schemas into temporal description logic knowledge bases.

References

[1] B. Ahmad. Modeling bi-temporal databases. Master’s thesis, UMD8partment of Computation,
UK, 2003.

[2] A. Artale. Reasoning on temporal conceptual schemas with dyneomistraints. Irl1th Int. Sympo-
sium on Temporal Representation and Reasoning (TIMHBEE Computer Society, 2004. Also in
Proc. of the 2004 Int. Workshop on Description Logics (DL'04).

[3] A. Artale and E. Franconi. Temporal ER modeling with description Isgia Proc. of the Int. Conf.
on Conceptual Modeling (ER’99%pringer-Verlag, November 1999.

[4] A. Artale, E. Franconi, and F. Mandreoli. Description logics for raltidg dynamic information. In
Jan Chomicki, Ron van der Meyden, and Gunter Saake, editogics for Emerging Applications of
DatabasesLecture Notes in Computer Science, Springer-Verlag, 2003.

[5] A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temapdescription logic for reasoning
about conceptual schemas and queries. In S. Flesca, S. Gret@ohke, and G. lanni, editors,
Proceedings of the 8th Joint European Conference on Logics in Artificialligence (JELIA-02)
volume 2424 ol NAl, pages 98-110. Springer, 2002.

[6] Alessandro Artale, Carsten Lutz, and David Toman. A descriptioitlo§change. Inint. Joint
Conference on Atrtificial Intelligence (IJCAI-QHlyderabad, India, Jan 2007.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. tEl-8ghneider, editorsDescription
Logic Handbook: Theory, Implementation and ApplicatioBambridge University Press, 2002.

[8] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo.oRiegson UML class diagrams.
Artificial Intelligence 168(1-2):70-118, 2005.

[9] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidabilityuefry containment under
constraints. IrProc. of the 17th ACM SIGACT SIGMOD SIGART Sym. on Principles oftiaata
Systems (PODS’'98pages 149-158, 1998.

[10] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics fonaeptual data modeling. In
J. Chomicki and G. Saake, editotsgics for Databases and Information SysteKisiwer, 1998.

[11] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-basgatesentation formalisms). of
Artificial Intelligence Researgii1:199-240, 1999.

[12] J. Chomicki and D. Toman. Temporal logic in information systedmsJ. Chomicki and G. Saake,
editors,Logics for Databases and Information Systeotapter 1. Kluwer, 1998.

[13] M. A. Pacheco e Silva. Dynamic integrity constraints definition andmeiment in databases: A
classification framework. IfProc. of the IFIP TC11 Working Group 11.5, First Working Conf. on
Integrity and Internal Control in Information Systeppages 65-87, London, UK, 1997. Chapman &
Hall, Ltd.

[14] Ramez Elmastri, James A. Weeldreyer, and Alan R. Hevner. &tegory concept: An extension to
the entity-relationship modeData & Knowledge Engeneering(1):75-116, 1985.

[15] O. Etzion, A. Gal, and A. Segev. Extended update functionality in teaiplatabases. In O. Etzion,
S. Jajodia, and S. Sripada, editofgmporal Databases - Research and Pragcticecture Notes in
Computer Science, pages 56-95. Springer-Verlag, 1998.

[16] M. Finger and P. McBrien. Temporal conceptual-level database D. Gabbay, M. Reynolds, and



[17]
(18]
[19]
(20]
[21]

[22]
(23]

[24]

(25]

(26]
[27]

(28]

[29]
(30]
(31]

[32]

(33]

(34]

(35]
(36]
[37]

(38]

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems 35

M. Finger, editorsTemporal Logics — Mathematical Foundations and Computational Aspemtes
409-435. Oxford University Press, 2000.

D. Gabbay, A.Kurucz, F. Wolter, and M. Zakharyaschdany-dimensional modal logics: theory and
applications Studies in Logic. Elsevier, 2003.

Georg Gottlob, Michael Schrefl, and Brigitteéd8k. Extending object-oriented systems with roles.
ACM Transaction on Information Systemd(3):268—296, 1996.

H. Gregersen and J.S. Jensen. Conceptual modeling of tigagganformation. Technical Report
TimeCenter TR-35, Aalborg University, Denmark, 1998.

H. Gregersen and J.S. Jensen. Temporal Entity-Relationshdelse a surveylEEE Transactions
on Knowledge and Data Engineerintl(3):464—-497, 1999.

R. Gupta and G. Hall. An abstraction mechanism for modeling génaraln Proc. of ICDE'92
pages 650-658, 1992.

G. Hall and R. Gupta. Modeling transition. Rroc. of ICDE’9], pages 540-549, 1991.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidablgrrants of first-order temporal logics.
Annals of Pure and Applied Logi¢06:85-134, 2000.

I. Horrocks, P.F. Patel-Schneider, and F. van HarmelenmF8b6llQ and RDF to OWL: The making
of a web ontology languagdournal of Web Semantic$(1):7—-26, 2003.

C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes, and S. Jagidih The Consensus Glossary of
Temporal Database Concepts. In O. Etzion, S. Jajodia, and S. Srghittais, Temporal Databases -
Research and Practicpages 367—405. Springer-Verlag, 1998.

C. S.Jensen and R. T. Snodgrass. Temporal data managéiteh Transactions on Knowledge and
Data Engineering111(1):36—44, 1999.

C. S. Jensen, M. Soo, and R. T. Snodgrass. Unifying tempatal models via a conceptual model.
Information System®(7):513-547, 1994.

Yahiko Kambayashi and Zhiyong Peng. Object deputy modeitarapplications. IProc. of the 4th
Int. Conf. on Database Systems for Advanced Applications (DASBa&g¢s 1-15. World Scientific
Press, 1995.

Qing Li and Guozhu Dong. A framework for object migration in altjeriented databaseBata &
Knowledge Engeneering3(3):221-242, 1994.

Qing Li and Frederick H. Lochovsky. Adome: An advanced objmodeling environmentlEEE
Transactions on Knowledge and Data Engineerib@(2):255-276, 1998.

P. McBrien, A.H. Seltveit, and B. Wangler. An Entity-Relationship mlogiktended to describe his-
torical information. InProc. of CISMOD’92 pages 244—-260, Bangalore, India, 1992.

Alberto O. Mendelzon, Tova Milo, and Emmanuel Waller. Object w@iign. InProc. of the 13th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of DatabasterSy (PODS94)pages
232-242, New York, NY, USA, 1994. ACM Press.

Erik Odberg. Category classes: flexible classification and evolutiorbject-oriented databases.
In Proc. of the 6th Int. Conf. on Advanced information systems engine@ZIAEE94) LNCS 881,
pages 406420, Secaucus, NJ, USA, 1994. Springer-Verlag ey Ivic.

Mike P. Papazoglou, Bernd J. Kramer, and Athman Bouguett@mthe representation of objects
with polymorphic shape and behaviour.lin. Conf. on Conceptual Modeling / the Entity Relationship
Approach LNCS 881, pages 223-240, 1994.

C. Parent, S. Spaccapietra, and E. Zimanyi. The MurMur projelddeling and querying multi-
representation spatio-temporal databasgfermation System81(8):733-769, 2006.

B. Pernici. Objects with roles. IRroc. of the ACM SIGOIS and IEEE CS TC-OA conference on Office
information systemgages 205-215, New York, NY, USA, 1990. ACM Press.

S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time fromnaegiual perspective. Imt.
Conf. on Information and Knowledge Management (CIKM98p8.

S. Spaccapietra, C. Parent, and E. Zimany@onceptual Modeling for Traditional and Spatio-
Temporal Applications—The MADS Approa&pringer, 2006.



36 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporatrirdtion Systems

[39] Jianwen Su. Dynamic constraints and object migrafidreoretical Computer SciencE84(1-2):195—
236, 1997.

[40] C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptuadelling formalism for temporal
database applicationtnformation Systemd4.6(3):401-416, 1991.

[41] Wikipedia. Wikipedia, the free encyclopedia. Temporal Databases see
http://en.w ki pedi a. org/ wi ki / Tenpor al _dat abase.



