
Annals of Mathematics and Artificial Intelligence 0 (2007) ?–? 1

Evolving Objects in Temporal Information Systems

Alessandro Artalea Christine Parentb Stefano Spaccapietrac

a Faculty of Computer Science, Free University of Bolzano, I;
E-mail: artale@inf.unibz.it

b HEC/ISI, Universit́e de Lausanne, CH;
E-mail: christine.parent@unil.ch

c Database Laboratory, Ecole Polytechnique Féd́erale Lausanne, CH;
E-mail: stefano.spaccapietra@epfl.ch

This paper presents a semantic foundation of temporal conceptual models used to design
temporal information systems. We consider a modelling language able to express both times-
tamping and evolution constraints. We conduct a deeper investigation of evolution constraints,
eventually devising a model-theoretic semantics for a full-fledged model with both timestamp-
ing and evolution constraints. The proposed formalization is meant both to clarify the meaning
of the various temporal constructors that appeared in the literature and togive a rigorous defini-
tion, in the context of temporal information systems, to notions like satisfiability, subsumption
and logical implication. Furthermore, we show how to express temporal constraints using a
subset of first-order temporal logic, i.e.DLRUS , the description logicDLR extended with
the temporal operatorsSinceandUntil. We show howDLRUS is able to capture the vari-
ous modelling constraints in a succinct way and to perform automated reasoning on temporal
conceptual models.

Keywords: Temporal Data Models, Description Logics.

AMS Subject classification:computer science, knowledge representation, database theory

1. Introduction

Most of information modelling research and practice focus on a static view of
the world, describing data as it should be and is day by day. Current datamodels and
database systems are meant to capture snapshots of the world, i.e. the current state of
the database, with the next snapshot replacing the previous one. Yet everybody is well
aware that such an approach only gives a very partial view of the world, neglecting
another essential component, its dynamics, i.e. how the world evolves as time passes.
Recording the current, past, and possibly predicted future snapshots isthe very first step
towards capturing evolution. This functionality is supported by temporal information
systems. Data warehousing systems, based on keeping aggregates of past snapshots,
have extensively shown that keeping knowledge over time entails the possibility, for ex-
ample, to analyze evolution trends and develop scenarios for the future. Such analysis
and forecasting are fundamental components of most decision-making processes, which
are critical for successfully facing the complexity of today’s activities. A second step in

2 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

capturing evolution is enforcing the rules that govern the evolution of data.Rules play
a fundamental role to maintain data consistency. In data modelling, evolution rules are
expressed as evolution constraints, allowing to control requested changes to data and
reject those changes that can be recognized as incorrect (i.e. leadingto a new state that
is inconsistent with the previous ones) or inappropriate (e.g. changes requested at a time
they are not allowed) or detected as suspicious (e.g. resulting in an anomalous evolution
that requires additional validation procedures). Further steps to enrichevolution man-
agement are possible, such as, for example, capturing the reasons forchange (why the
change happened), the actors of change (who prompted the change),its timing (when
did it happen), as well as any other information related to the change (whichat this point
becomes like an object of interest from the data management viewpoint).

Knowledge of dynamics is intrinsically related to time awareness. Capturing dy-
namics is grounded in the ability to capture time, as proposed by research on temporal
databases1. Abstracting from many details, the most popular time awareness mechanism
is timestamping. From the evolution management viewpoint, timestamping supports the
first step above, capturing evolution as a sequence of snapshots. Formal semantics ap-
proaches have extensively discussed timestamping [3,4,12,19,27,40]. Yeta clear for-
malization of evolution constraints (supporting the second step) is still missing, despite
the fact that in the literature such constraints have largely been advocatedas useful for
modelling the behavior of temporal objects [4,21,22,29,31,32,37,35,39,40].

Our research aims at defining a conceptual temporal data model, the semantics of
which is formally defined by grounding it on the results of temporal logics. Weeven-
tually devise a model-theoretic semantics for a full-fledged conceptual modelwith both
timestamping and evolution constraints. This paper focuses on evolution constraints,
more precisely on providing a formal semantics to describe how objects can evolve in
their lifecycle and how they can be related throughout time. The formalization proposed
here builds on previous efforts to formalize temporal conceptual models. Namely, we
rely on a previous work to define theERV T model [4], a temporal Extended Entity-
Relationship2 (EER) model equipped with both a textual and a graphical syntax and
based on a model-theoretic semantics.ERV T captures timestamping constructors along
with transition constraints. The work reported in this paper extendsERV T with new
functionality (hereinafter defined) for evolutionary modelling, namelystatus classes,
generation relationshipsandacross-time relationships. Another closely related work is
the one of Finger and McBrien [16]. They propose a model-theoretic formalization for
the ERT model, an EER model with timestamping and across-time relationships (called
H-marked relationships by the authors and introduced in a previous paperby McBrien,
Seltveit and Wrangler [31]). Our proposal modifies the semantics of across-time re-

1 Outcomes in this domain include many proposals for modelling temporal data, and a large body of con-
sensus on the fundamental underlying concepts. Readers interested inanalyses of state of art in temporal
modelling and of results achieved in the area are referred to two surveys[20,26] that still provide valuable
information.

2 EER denotes data models that enrich the standard ER modelling language withISA links, disjoint and
covering constraints, and full cardinality constraints—with cardinality (0,n) assumed by default.

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 3

lationships as presented in [16] to comply with a crucial modelling requirement, i.e.
snapshot reducibility [27].

The advantage of associating a set-theoretic semantics to a language is not only to
clarify the meaning of the language’s constructors but also to give a semantic definition
to relevant modelling notions. In particular, given an interpretation functionto assign
a set-theoretic semantics to the (temporal) modelling constructors, we are able togive
a rigorous definition of the notions of:schema satisfiabilitywhen a schema admits a
non empty interpretation which guarantees that the constraints expressed by the schema
are not contradictory (similarly we define the notions of class and relationships satisfia-
bility); subsumptionbetween classes (relationships) when the interpretations of a class
(relationships) is a subset of the interpretation of another class (relationships) which
allows to check newISA links; logical implicationwhen a (temporal) constraint is im-
plicitly true in the current schema thus deriving new constraints. In particular, in this
paper we stress both the formalization of the constructors and the set of logical implica-
tions associated to such formalization. The obtained logical implications are generally in
agreement with those mentioned in the literature on temporal conceptual models.Thus,
each constructor’s formalization (together with its associated logical implications) can
be seen as a set of precise rules on the allowed behavior of objects, in particular regard-
ing their evolution in time. Even if we do not address specific implementation issues,
these rules can be turned into explicit integrity constraints in the form of trigger rules to
be added to the schema specified by the database designer, thus enabling tocheck the
validity of user actions involving object evolution. Since the rules are the result of a
formal characterization we solve what is in our opinion a serious weakness of existing
modelling approaches, i.e. without a rigorous foundation there is no guarantee that the
proposed model leads to a sound system.

Finally, as a byproduct of the semantic formalization, we also show how (temporal)
modelling constraints can be equivalently expressed by using a subset offirst-order tem-
poral logic, i.e. the temporal description logicDLRUS [5]. DLRUS is a combination
of the expressive and decidable description logicDLR (a description logic with n-ary
relationships) with the linear temporal logic with temporal operatorsSince(S) andUntil
(U) which can be used in front of both classes and relations. The choice ofextending
DLR is motivated by its ability to give a logical reconstruction and an extension of rep-
resentational tools such as object-oriented and conceptual data models, frame-based and
web ontology languages [8–11,24]. In this paper, we useDLRUS both to capture the
(temporal) modelling constructors in a succinct way, and to use reasoning techniques to
check satisfiability, subsumption and logical implication. We show howDLRUS axioms
capture the above mentioned rules associated with each constructor’s formal semantics
while logical implications betweenDLRUS axioms is a way to derive new rules. The
mapping towards description logics presented in this paper builds on top of a mapping
which has been proved correct in [3,4] while complexity results and algorithmic tech-
niques can be found in [5,2,6]. Even if fullDLRUS is undecidable this paper addresses
interesting modelling scenarios where subsets of the fullDLRUS logic is needed and
where reasoning becomes a decidable problem.

4 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

The paper is organized as follows. Section 2 discusses in more details the main
components for managing the dynamics of data, timestamping and evolution constraints,
with a particular emphasis on object migration. Section 3 shows the modelling require-
ments that lead us in elaborating the rigorous definition of our evolution framework. Sec-
tions 4 and 5 recall the characteristics of theDLRUS description logic and theERV T

temporal data model on which we build our proposal. Section 6 presents the modelling
of timestamping constraints as provided inERV T . Section 7 discusses the evolution
constraints we address and provides a formal characterization for themtogether with a
set of logical implications and the correspondentDLRUS axioms. Section 8 surveys
the complexity results for reasoning over temporal models showing that reasoning on
the full-fledged temporal setting is undecidable and providing useful scenarios where
reasoning becomes decidable. Section 9 concludes the paper.

2. Recording and Controlling Evolution

As stated in the introduction, evolution management requires first to be able to
record the different states of the database over time, second to be able to automatically
check that each operation resulting in a change conforms to the rules that constrain
permissible evolutions. In this Section we analyze the supporting techniques toachieve
such functionality, i.e. timestamping and evolution constraints. The analysis is atthe
conceptual modelling level. Implementation aspects are not an issue in this paper.

2.1. Timestamping

Timestampingis a temporal marking mechanism that, according to some criterion
(e.g. valid time or transaction time [25,41]), positions data relevance on a timescale.
Hereinafter we only consider valid time (i.e. temporal references driven by the appli-
cation view of evolution), which characterizes the vast majority of applicationrequire-
ments. Timestamping provides the following functionality:

• Attribute timestamping: Evolution of values.
The most well known aspect of timestamping is its association with attribute values
to keep the evolution of these values in time. For example, timestamping allows
keeping the knowledge that the affiliation attribute for an employeeemp-123has
value “University of Paris” for the period from 10/1969 to 9/1983, then “University of
Dijon” from 10/1983 to 9/1988, then “EPFL” from 10/1988 to 2/2010. Timestamped
attributes are also called time-varying attributes. Research on temporal databases has
extensively investigated how attribute timestamping can be defined and implemented
using various data models (e.g. relational, entity-relationship).

• Object and relationship timestamping: Lifecycle.
Similarly, temporal periods can characterize an object or relationship instance as a
whole rather than through its attributes. Here, it is its membership in a class that is
split into periods according to a given classification criterion. For example,existence

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 5

of an employee object in theEmployee class can include periods where the object
is an active member of the class (e.g. the employee is currently on payroll), peri-
ods where its membership is suspended (e.g. the employee is on temporary leave),
and a period where its membership is disabled (e.g. the employee has left the com-
pany) [15]. These periods together form thelifecycle[37] of the object/relationship
instance in a given class/relationship (more details are given in Section 7.1).The
lifecycle of an object/relationship instance is a set of time instants corresponding to
those instants where the instance belongs to the class or relationship. Instances with
lifecycle are called temporal instances. It is worth stressing that, from a concep-
tual viewpoint, a real world object may simultaneously qualify in the database for
membership into several classes, typically within the same is-a hierarchy (e.g.Paul
Carlton can be seen as simultaneously belonging to three classes, thePerson class,
theEmployee class, and theManager class) and consequently hold a different lifecy-
cle in each class. For example, the lifecycle ofPaul as a manager obviously covers a
lifespan included in the one of his lifecycle as an employee, which in turn is a subset
of his lifespan as a person (the lifespan inclusion is due to the semantics of theis-a
link betweenManager andEmployee and betweenEmployee andPerson).

Timestamping (both as time-varying attributes and lifecycles) is obviously op-
tional, i.e. a data model should allow for both temporal and atemporal modelling con-
structors. Section 6 hereinafter shows how objects, attributes and relationships times-
tamping has been covered inERV T . Coverage of object (and relationship) lifecycle is
theERV T extension we introduce in this paper (see Section 7).

2.2. Evolution Constraints

Timestamping enriches the static view of data by allowing recording the states of
the database over a period of time. A temporal database (i.e. a database equipped with
timestamps) may indeed be seen as a sequence of snapshots, one per instant as defined by
the smallest time granularity. Evolution constraints are imposed on a temporal database
to control the mechanism that rules dynamic aspects, i.e. what are the permissible tran-
sitions from one state of the database to the next one. Integrity constraints ingeneral
can be as complex as needed to express rules on application data. Data models embed
some predefined kinds of static integrity constraints (e.g. uniqueness specifications, car-
dinality constraints) but very rarely include constructs to express dynamicconstraints.
On the other hand, during modification operations, SQL triggers provide a construct
to compare the new value replacing the existing value, thus enforcing an evolutionary
constraint. For full expressiveness, integrity constraint definition languages are usually
grounded on first order logic. In this paper we will show how evolution constraints can
be expressed using a temporal description logic (here we propose the use of the tem-
poral description logicDLRUS). In the following, we summarize the main features of
evolution constraints as appeared in the literature.

• Applied to attributes, they are known asdynamic integrity constraints[13]. One

6 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

example, simply using arithmetic comparison operators, is the constraint that the
value for theSalary attribute of an employee can only increase. A second example is
the constraint that the number of values for a multivalued attribute, e.g. theDiplomas

of a person, can only increase over time. In the latter case we say that the attribute
is expandingmeaning that the deletion of values is not allowed. Dynamic integrity
constraints can be expressed inERV T thanks to the temporal constructs included in
the model.

• Applied to the lifecycle of an object (relationship instance), evolution constraints are
referred to asstatus constraints. They rule the permissible evolution of an instance’s
membership in a class/relationships along its lifespan. For example, an object that
is an active member of a class may become a disabled member of the class, but not
vice versa [15]. The different statuses (scheduled, active, suspended, disabled) entail
different constraints. For example, in [15] if an object is in the suspended status the
values of its attributes within the suspension period can be retrieved but cannot be
modified. We further discuss status issues in Section 7.1.

• Applied to objects, evolution constraints are referred to astransition constraintsand
usually rule the evolution of an object from being member of a class to being member
of another class [22]. For example, an object in theStudent class may migrate
to become an object of theFaculty class or evolve to also become an object of
theAlumnus class. Conversely, an object now in theFullProfessor class cannot
become later an object in theAssistantProfessor class. The next Section presents
an extensive survey of related works on object migration while Section 7.2 shows a
formalization with a temporal semantics and corresponding axioms in description
logic.

• Finally, evolution constraints may be embedded in relationships. Evolution-related
knowledge may indeed be conveyed through relationships associated to a specific
evolutionary semantics.Generation relationships[21] between objects of classA and
objects of classB (possibly equal toA) describe the fact that objects inB are generated
by objects inA. For example, in a company database, the splitting of a department
translates into the fact that the original department generates two (or more)new de-
partments. Generation relationships allow backtracking the history of an object and
its provenance. Genealogical search is an example of popular backtracking, sup-
ported by parenthood relationships holding generation semantics. Clearly,if A andB
are temporal classes, a generation relationship with sourceA and targetB entails that
the lifecycle of aB object cannot start before the lifecycle of the relatedA object. This
particular temporal framework (where related objects do not coexist in time)also ap-
plies to relationships other than generation relationships, for example when linking
a historian to her favorite historical figure of the past. In our temporal approach,
relationships are referred to asacross-time relationshipsto emphasize the character-
istic feature that they come with no implicit temporal constraints. This contrasts with
most temporal data models, where relationships between temporal classes implicitly
enforce an overlap synchronization constraint, as the rules of these models state that

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 7

the lifecycle of a relationship must be within the intersection of the lifecycle of the
related objects. While this may indeed correspond to the requirements of a specific
application, it cannot be stated as true in the general case. In our approach relation-
ships may link simultaneously existing objects as well as objects whose existences
are disjoint. They may also link a temporal object with an atemporal one. Across-
time relationships may bear temporal constraints. Generation relationships can be
understood as an across-time relationship with a particular temporal constraint (see
Sections 7.3-7.4 for more details).

2.3. Object Migration

As we stated above, evolution control includes expressing constraints onobject
migration. In this paper, starting from a temporal set-theoretic semantics, we aim at
formally capturing such constraints thus characterizing the notion of objectmigration
(see Section 7.2). With the generic termtransition constraintswe denote the set of
constraints that deal with the various cases of migration. We also introduce avisual
representation as a link from the source class of the migration to the corresponding
target class.

Object migration has been addressed by many authors, in particular from the
object-oriented database community, maybe as a natural follow up on its focuson captur-
ing object behavior through methods. In classical object-oriented database approaches
the generalization hierarchy is static (i.e., objects do not migrate) and supports only one
instantiation per real world entity (i.e., the entity is instantiated in the most specific class
it belongs to). To introduce more flexibility new modeling constructs and rules have
been proposed. To model the dynamics of a migration and to supportmulti-instantiation
two new kinds of classes,base classandrole class, have been introduced. The first ap-
pearance of an object is created in the “base” class, while migration to “role” classes is
captured by new instantiations of the same object in such “role” classes. Objects can-
not be deleted in the base class as long as they are still represented in a roleclass. For
example, once created as an instance of a classPerson, more instances of this object
may be created (in parallel or in some given sequence) as needed in related classes such
asStudent, Employee, Manager, Sportsman, etc. Foundation work on objects and
their roles has been conducted in [36,18] where an object can also be instantiated several
times as different instances of the same role. This allows representing, forexample, a
person who registers twice as a student (in two different institutions). In [29] an object
can simultaneously migrate to several target classes. The work in [34] deviates from tra-
ditional static typing of classes and introduces a new approach where roleclasses can be
created and deleted dynamically during application execution. In our work we consider
all multi-instantiation classes as role classes. If a base class is needed by anapplica-
tion, it can be specified using the expressive power of the temporal description logic to
enforce the temporal integrity constraints between a base and a role class.

An additional requirement for role classes is to accept in the same role class, in-
stances coming from disjoint classes. For example, aCar-Owner role class may be

8 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

populated with instances coming from either of the two disjoint classes,Person and
Company—both companies and persons may own cars. Thecategory conceptin [14]
was proposed to cope with this situation. This requirement is easier to achievein those
proposals that do not require the existence of a base object class (seee.g. [28,30]). In
these models the role class concept replaces the object class concept. Objects can enter
the database through creation in any of the roles that accept creation operations, and then
move around according to inter-role links (which can be bi-directional or not depending
on application constraints). This is also our approach.

An alternative to the explicit specification of inter-role links is the definition of
membership predicatesassociated to an object/role class. This allows for the automatic
acquisition of new roles: when an object instance is modified, its new values are com-
pared with the membership predicates and whenever a predicate is satisfied the instance
is classified as a member of that population [33,34]. Predicates may also be checked on
demand rather than automatically after a modification. Inference rules may be associ-
ated to each object/role class, specifying which other class may or may not bepopulated
by an instance migrating or being generated from this class [36,34,30].

In short, our approach to supporting object migration does not make use of the
notions of base and role classes. To deal with object migration we rely on a temporal
semantics: objects are identified by OID’s (Objects Identifiers) in a unique way trough
their existence but the same OID can belong to different classes at different time points.
Such a modelling assumption allows us to capture also migration cases where source and
target classes do not belong to the same generalization hierarchy. Furthermore, the logic-
based context of our work allows us to use reasoning services (in particular, the instance
checking reasoning service in description logics) on static and dynamic membership
predicates to classify an object in different classes at different times.

Another issue concerning object migration is to handle the typing conflicts that
may arise when an object migrates from a class to another class with different typing
constraints. This issue is beyond the scope of this paper and is mentioned here only to
provide the reader with a broader view on object migration. In [32] an adaptation process
that automatically solves typing conflicts is specified. In particular each inter-object
reference is updated: whenever an object migrates, all references toit in the original
class have to be changed to refer to the object in the new class. The updateprocess
may generate new migrations; therefore it needs to be controlled to avoid overflowing
update propagation. Similarly, transformation functions associated to migrationpaths
are proposed in [28] to compute both the new values and the new structure for the target
instance starting from one or more source instances. On the other hand, preservation of
information for non-conflicting situations (e.g. an attribute that is both in the source and
in the target class) is analyzed in [29].

As another example, [39] focuses on characterizing object migration patterns un-
der a given set of parameterized transactions rules governing the database state evolution
as a consequence of some manipulation operations. A migration is said to be consistent
if it respects a set of specified migration patterns. Three update languages (SL, CSL+
and CSL) are analyzed—each one supporting different hypotheses on their data manip-

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 9

ulation primitives—to formally specify the interrelationship between the languages and
the migration patterns they support. Finally, an extended coverage of characteristics of
object migration can be found in [29].

These last related works mainly deal with languages to manipulate migrating ob-
jects. On the other hand, this paper addresses the semantic foundation together the basic
requirements and constraints for transition modelling. The reader should beaware that
modelling and specification is just one aspect of object migration: issues related to ma-
nipulation languages are orthogonal to the modelling aspects we deal with andthus are
beyond the scope of this paper.

3. Modelling Requirements

This Section briefly illustrates the requirements that are frequently advocated in
the literature on temporal data models when dealing with temporal constraints.

• Orthogonality. Temporal constructors should be specified separately and indepen-
dently for classes, relationships, and attributes. Depending on applicationrequire-
ments, the temporal support must be decided by the designer.

• Upward Compatibility. This term denotes the capability of preserving the nontem-
poral semantics of conventional (legacy) conceptual schemas when embedded into
temporal schemas.

• Snapshot Reducibility. Snapshots of the database described by a temporal schema
are the same as the database described by the same schema, where all temporal con-
structors are eliminated and the schema is interpreted atemporally. Indeed, thisprop-
erty specifies that we should be able to fully rebuild a temporal database by starting
from the single snapshots.

These requirements are not so obvious when dealing with evolving objects.The for-
malization carried out in this paper provides a data model able to respect these require-
ments also in presence of evolving objects. In particular, orthogonality affects mainly
timestamping [37] and our formalization satisfies this principle by introducing tempo-
ral marks that could be used to specify the temporal behavior of classes,relationships,
and attributes in an independent way (see Section 6). Upward compatibility and snap-
shot reducibility [27] are strictly related. Considered together, they allow topreserve the
meaning of atemporal constructors. In particular, the meaning of classicalconstructors
must be preserved in such a way that a designer could either use them to model classical
databases, or when used in a genuine temporal setting their meaning must be preserved
at each instant of time. We enforce upward compatibility by using global timestamps
over legacy constructors (see Section 6). Snapshot reducibility is hardto preserve when
dealing with both generation and across-time relationships where involved object may
not coexist. We enforce snapshot reducibility by a particular treatment ofrelationship
typing (see Sections 7.4,7.3).

10 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

C →⊤ | ⊥ | CN | ¬C | C1 ⊓ C2 | ∃≶k[Uj]R |

3
+C | 3

−C | 2
+C | 2

−C |⊕ C | ⊖ C | C1 U C2 | C1 S C2

R →⊤n | RN | ¬R | R1 ⊓ R2 | Ui/n : C |

3
+R | 3

−R | 2
+R | 2

−R |⊕R | ⊖R | R1 U R2 | R1 S R2

⊤I(t) = ∆I

⊥I(t) = ∅
CNI(t) ⊆ ⊤I(t)

(¬C)I(t) = ⊤I(t) \ CI(t)

(C1 ⊓ C2)
I(t) = C

I(t)
1 ∩ C

I(t)
2

(∃≶k[Uj]R)I(t) = { d ∈ ⊤I(t) | ♯{〈d1, . . . , dn〉 ∈ RI(t) | dj = d} ≶ k}

(C1 U C2)
I(t) = { d ∈ ⊤I(t) | ∃v > t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (t, v).d ∈ C

I(w)
1)}

(C1 S C2)
I(t) = { d ∈ ⊤I(t) | ∃v < t.(d ∈ C

I(v)
2 ∧ ∀w ∈ (v, t).d ∈ C

I(w)
1)}

(⊤n)I(t) ⊆ (∆I)n

RNI(t) ⊆ (⊤n)I(t)

(¬R)I(t) = (⊤n)I(t) \ RI(t)

(R1 ⊓ R2)
I(t) = R

I(t)
1 ∩ R

I(t)
2

(Ui/n : C)I(t) = { 〈d1, . . . , dn〉 ∈ (⊤n)I(t) | di ∈ CI(t)}
(R1 U R2)

I(t) = { 〈d1, . . . , dn〉 ∈ (⊤n)I(t) |

∃v > t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (t, v). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(R1 S R2)
I(t) = { 〈d1, . . . , dn〉 ∈ (⊤n)I(t) |

∃v < t.(〈d1, . . . , dn〉 ∈ R
I(v)
2 ∧ ∀w ∈ (v, t). 〈d1, . . . , dn〉 ∈ R

I(w)
1)}

(3+R)I(t) = {〈d1, . . . , dn〉 ∈ (⊤n)I(t) | ∃v > t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊕R)I(t) = {〈d1, . . . , dn〉 ∈ (⊤n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t+1)}

(3−R)I(t) = {〈d1, . . . , dn〉 ∈ (⊤n)I(t) | ∃v < t. 〈d1, . . . , dn〉 ∈ RI(v)}
(⊖R)I(t) = {〈d1, . . . , dn〉 ∈ (⊤n)I(t) | 〈d1, . . . , dn〉 ∈ RI(t−1)}

Figure 1. Syntax and semantics ofDLRUS .

4. The Temporal Description Logic

The temporal description logicDLRUS [5] combines the propositional tempo-
ral logic with Sinceand Until and the (non-temporal) description logicDLR [9,7].
DLRUS can be regarded as a rather expressive fragment of the first-ordertemporal logic
L{since, until} (cf. [12,23]).

The basic syntactical types ofDLRUS are classes(i.e. unary predicates, also
known asconcepts) and n-ary relations of arity ≥ 2. Starting from a set ofatomic
classes(denoted byCN), a set ofatomic relations(denoted byRN), and a set ofrole
symbols(denoted byU) we hereinafter define inductively (complex) class and relation
expressions as is shown in the upper part of Figure 1, where the binaryconstructors
(⊓,⊔,U ,S) are applied to relations of the same arity,i, j, k, n are natural numbers,
i ≤ n, andj does not exceed the arity ofR.

The non-temporal fragment ofDLRUS coincides withDLR. For both class and
relation expressions all the Boolean constructors are available. The selection expression

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 11

Ui/n : C denotes ann-ary relation whose argument namedUi (i ≤ n) is of typeC;
if it is clear from the context, we omitn and write(Ui : C). The projection expres-
sion∃≶k[Uj]R is a generalisation with cardinalities of the projection operator over the
argument namedUj of the relationR; the plain classical projection is∃≥1[Uj]R. It is
also possible to use the pure argument position version of the language by replacing role
symbolsUi with the corresponding position numbersi. To show the expressive power of
DLRUS we refer to the next Sections whereDLRUS is used to capture various forms
of temporal constraints.

The model-theoretic semantics ofDLRUS assumes a flow of timeT = 〈Tp, <〉,
whereTp is a set of time points (or chronons) and< a binary precedence relation on
Tp, is assumed to be isomorphic to〈Z, <〉. The language ofDLRUS is interpreted in
temporal modelsoverT , which are triples of the formI .

= 〈T , ∆I , ·I(t)〉, where∆I is
non-empty set of objects (thedomainof I) and·I(t) aninterpretation functionsuch that,
for everyt ∈ T (in the following the notationt ∈ T is used as a shortcut fort ∈ Tp),
every classC, and everyn-ary relationR, we haveCI(t) ⊆ ∆I andRI(t) ⊆ (∆I)n.
The semantics of class and relation expressions is defined in the lower partof Figure 1,
where(u, v) = {w ∈ T | u < w < v}. For classes, the temporal operators3

+ (some
time in the future),⊕ (at the next moment), and their past counterparts can be defined
via U andS: 3

+C ≡ ⊤ U C, ⊕C ≡ ⊥ U C, etc. The operators2+ (always in the
future) and2− (always in the past) are the duals of3

+ (some time in the future) and
3

− (some time in the past), respectively, i.e.2
+C ≡ ¬3

+¬C and2
−C ≡ ¬3

−¬C,
for both classes and relations. The operators3

∗ (at some moment) and its dual2
∗ (at

all moments) can be defined for both classes and relations as3
∗C ≡ C ⊔3

+C ⊔3
−C

and2
∗C ≡ C ⊓ 2

+C ⊓ 2
−C, respectively.

A knowledge baseis a finite setΣ of DLRUS axioms of the formC1 ⊑ C2 and
R1 ⊑ R2, with R1 andR2 being relations of the same arity. An interpretationI satisfies
C1 ⊑ C2 (R1 ⊑ R2) if and only if the interpretation ofC1 (R1) is included in the
interpretation ofC2 (R2) at all time, i.e. CI(t)

1 ⊆ C
I(t)
2 (RI(t)

1 ⊆ R
I(t)
2), for all t ∈

T . Various reasoning servicescan be defined inDLRUS . A knowledge base,Σ, is
satisfiableif there is an interpretation that satisfies all the axioms inΣ (in symbols,
I |= Σ). A knowledge base,Σ, logically impliesan axiom,C1 ⊑ C2 (R1 ⊑ R2), and
write Σ |= C1 ⊑ C2 (Σ |= R1 ⊑ R2), if we haveI |= C1 ⊑ C2 (I |= R1 ⊑ R2)
wheneverI |= Σ. In this latter case, the classC1 (relationR1) is said to besubsumed
by the classC2 (relationR2) in the knowledge baseΣ. A classC is satisfiable, given
a knowledge baseΣ, if there exists a modelI of Σ such thatCI(t) 6= ∅ for some
t ∈ T , i.e. Σ 6|= C ⊑ ⊥. A relation R is satisfiable, given a knowledge baseΣ,
if there exists a modelI of Σ such thatRI(t) 6= ∅ for somet ∈ T , i.e. Σ 6|= R ⊑ ⊥.
Finally, knowledge base satisfiability, class subsumption and relation satisfiability can be
reduced to class satisfiability in the following way:Σ 6|= ⊤ ⊑ ⊥, Σ |= C1 ⊓ ¬C2 ⊑ ⊥,
Σ 6|= ∃≥1[Uj]R ⊑ ⊥ for somej ≤ n wheren is the arity ofR, respectively.

WhileDLR knowledge bases are fully able to capture atemporal EER schemas [8–
10]—i.e. given an EER schema there is an equi-satisfiableDLR knowledge base—in

12 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

the following Sections we show howDLRUS knowledge bases can capture temporal
EER schemas with both timestamping and evolution constraints.

5. The Temporal Conceptual ModelERV T

In this Section, the temporal EER modelERV T —which will be the basis to present
our proposal—is briefly introduced (see [3,4] for full details).ERV T supports times-
tamping for classes, attributes, and relationships.ERV T is equipped with both a textual
and a graphical syntax along with a model-theoretic semantics as a temporal extension
of the EER semantics [11]. The formal foundations ofERV T allowed also to prove a
correct encoding ofERV T schemas as knowledge base inDLRUS [5,4].

An ERV T schema is a tuple:Σ = (L, REL, ATT, CARD, ISA, DISJ, COVER, S, T, KEY),
such that:L is a finite alphabet partitioned into the sets:C (classsymbols),A (attribute
symbols), R (relationship symbols), U (role symbols), andD (domain symbols).
ATT is a function that maps a class symbol inC to an A-labeled tuple overD,
ATT(C) = 〈A1 : D1, . . . , Ah : Dh〉. REL is a function that maps a relationship symbol
in R to anU-labeled tuple overC, REL(R) = 〈U1 : C1, . . . , Uk : Ck〉, andk is the
arity of R. CARD is a functionC × R × U 7→ N × (N ∪ {∞}) denoting cardinality
constraints. We denote withCMIN(C, R, U) and CMAX(C, R, U) the first and second
component ofCARD. In Figure 2,CARD(TopManager, Manages, man) = (1, 1). ISA

is a binary relationshipISA ⊆ (C × C) ∪ (R × R). ISA between relationships is
restricted to relationships with the same arity.ISA is visualized with a directed arrow,
e.g.Manager ISA Employee in Figure 2.DISJ, COVER are binary relations over2C × C,
describing disjointness and covering partitions, respectively, over a group of ISA that
share the same superclass.DISJ is visualized with a circled “d” and COVER with a
double directed arrow, e.g.Department, InterestGroup are both disjoint and they
coverOrganizationalUnit. The setC is partitioned into: a setCS of Snapshot classes
(the S-markedclasses in Figure 2), a setCM of M ixed classes(the unmarkedclasses
in Figure 2), and a setCT of Temporary classes(theT-markedclasses in Figure 2). A
similar partition applies to the setR. S, T are binary relations overC × A containing,
respectively, the snapshot and temporary attributes of a class (seeS, T marked attributes
in Figure 2).KEY is a function,KEY : C → A, that maps a class symbol inC to its key
attribute. Keys are visualized as underlined attributes.

The model-theoretic semantics associated with theERV T modelling language
adopts thesnapshot3 representation of abstract temporal databases and temporal con-
ceptual models [12]. Following the snapshot paradigm, the flow of timeT = 〈Tp, <〉,
whereTp is a set of time points (or chronons) and< is a binary precedence relation on
Tp, is assumed to be isomorphic to either〈Z, <〉 or 〈N, <〉. Thus, standard relational
databases can be regarded as the result of mapping a temporal databasefrom time points
in T to atemporal constructors, with the same interpretation of constants and the same

3 The snapshot model represents the same class of temporal databases as the so calledtimestampmodel [26,
27] which adds a temporal attribute to each relation [12].

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 13

DepartmentS InterestGroup

OrganizationalUnitS

d

MemberS

(1,n)

org
mbr

EmployeeS

Name(String)

S

PaySlipNumber(Integer)

Salary(Integer)

T

ManagerT

TopManagerAreaManager

Works-forT

(1,n)

act

emp

ProjectT

ProjectCode(String)

Manages
man

(1,1)

prj

(1,1)

Figure 2. The companyERV T diagram

domain.

Definition 5.1. (ERV T Semantics)Let Σ be anERV T schema. Atemporal database
statefor the schemaΣ is a tupleB = (T , ∆B ∪∆B

D, ·B(t)), such that:∆B is a nonempty
set of abstract objects disjoint from∆B

D; ∆B
D =

⋃
Di∈D ∆B

Di
is the set of basic domain

values used in the schemaΣ; and·B(t) is a function that for eacht ∈ T maps:

• Every basic domain symbolDi into a setDB(t)
i = ∆B

Di
.

• Every classC to a setCB(t) ⊆ ∆B—thusobjectsare instances of classes.

• Every relationshipR to a setRB(t) of U-labeled tuples over∆B—i.e. let R be an
n-ary relationship connecting the classesC1, . . . , Cn, REL(R) = 〈U1 : C1, . . . , Un :

Cn〉, then,r ∈ RB(t) → (r = 〈U1 : o1, . . . , Un : on〉 ∧ ∀i ∈ {1, . . . , n}.oi ∈ C
B(t)
i).

We adopt the convention:〈U1 : o1, . . . , Un : on〉 ≡ 〈o1, . . . , on〉, whenU-labels are
clear from the context.

• Every attributeA to a setAB(t) ⊆ ∆B×∆B
D, such that, for eachC ∈ C, if ATT(C) =

〈A1 : D1, . . . , Ah : Dh〉, then,o ∈ CB(t) → (∀i ∈ {1, . . . , h},∃ai. 〈o, ai〉 ∈

A
B(t)
i ∧ ∀ai.〈o, ai〉 ∈ A

B(t)
i → ai ∈ ∆B

Di
).

B is said alegal temporal database stateif it satisfies all of the constraints expressed in
the schema (we don’t report here the semantics for temporal constraints since they will
be discussed in details in the next Sections):

• For eachC1, C2 ∈ C, if C1 ISA C2, then,CB(t)
1 ⊆ C

B(t)
2 .

• For eachR1, R2 ∈ R, if R1 ISA R2, then,RB(t)
1 ⊆ R

B(t)
2 .

• For each cardinality constraintCARD(C, R, U), then:
o ∈ CB(t) → CMIN(C, R, U) ≤ #{r ∈ RB(t) | r[U] = o} ≤ CMAX(C, R, U).

• ForC, C1, . . . , Cn ∈ C, if {C1, . . . , Cn} DISJC, then,

∀i ∈ {1, . . . , n}.Ci ISA C ∧ ∀j ∈ {1, . . . , n}, j 6= i.CB(t)
i ∩ C

B(t)
j = ∅.

14 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

• ForC, C1, . . . , Cn ∈ C, if {C1, . . . , Cn} COVERC, then,

∀i ∈ {1, . . . , n}.Ci ISA C ∧ CB(t) =
⋃n

i=1 C
B(t)
i .

• For eachC ∈ C, A ∈ A such thatKEY(C) = A, then,A is a snapshot attribute–i.e.
〈C, Ai〉 ∈ S— and∀a ∈ ∆B

D.#{o ∈ CB(t) | 〈o, a〉 ∈ AB(t)} ≤ 1.

Given such a set-theoretic semantics we are able to rigorously define some relevant mod-
elling notions such as satisfiability, subsumption and derivation of new constraints by
means of logical implication.

Definition 5.2. Let Σ be a schema,C ∈ C a class, andR ∈ R a relationship. The
following modelling notions can be defined:

1. C (R) is satisfiableif there exists a legal temporal database stateB for Σ such that
CB(t) 6= ∅ (RB(t) 6= ∅), for somet ∈ T ;

2. Σ is satisfiableif there exists a legal temporal database stateB for Σ (B is also said
amodelfor Σ);

3. C1 (R1) is subsumedby C2 (R2) in Σ if every legal temporal database state forΣ is
also a legal temporal database state forC1 ISA C2 (R1 ISA R2);

4. A schemaΣ′ is logically impliedby a schemaΣ over the same signature if every
legal temporal database state forΣ is also a legal temporal database state forΣ′.

In the following Sections we will show how temporal database states,B, support
defining the semantics of timestamping and then how to extend bothERV T andB to
capture evolution constraints.

6. Timestamping

ERV T is able to distinguish betweensnapshotconstructors—i.e. constructors
which bear no explicit specification of a given lifespan [25], which we convey by
assuming a global lifespan (see Section 7.1) associated to each of their instances—
temporaryconstructors—i.e. each of their instances has a limited lifespan—ormixed
constructors—i.e. their instances can have either a global or a temporary existence. In
the following, a class, relationship or attribute is called temporal if it is either temporary
or mixed. The two temporal marks,S (snapshot) andT (temporary), introduced at the
conceptual level, together with unmarked constructors capture the temporaldistinction
between snapshot, temporary and mixed constructors. The semantics of timestamping
can now be defined as follows:

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 15

o∈CB(t) → ∀t′∈T .o∈CB(t′) Snapshot Class
o∈CB(t) → ∃t′ 6= t.o 6∈CB(t′) Temporary Class
r∈RB(t) → ∀t′∈T .r∈RB(t′) Snapshot Relationship
r∈RB(t) → ∃t′ 6= t.r 6∈RB(t′) Temporary Relationship

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∀t′ ∈ T .〈o, ai〉 ∈ A

B(t′)
i Snapshot Attribute

(o ∈ CB(t) ∧ 〈o, ai〉 ∈ A
B(t)
i) → ∃t′ 6= t.〈o, ai〉 6∈ A

B(t′)
i Temporary Attribute

Since mixed constructors do not specify any temporal constraint there is no need to add a
semantic equation. The semantics for attribute timestamping respects theERV T syntax
where attributes are defined snapshot or temporary only locally, i.e. w.r.t. the classes
they are attached with. Timestamps for both classes and relationships are captured by
the followingDLRUS axioms (remember that2∗ is the “at all time” operator while3∗

is the “at some time” operator):

C ⊑ (2∗C) Snapshot Class
C ⊑ (3∗¬C) Temporary Class
R ⊑ (2∗R) Snapshot Relationship
R ⊑ (3∗¬R) Temporary Relationship

Considering attributes we first remember that they are captured inDLR as binary
relationships [8]. For each attribute,A ∈ A, the following DLR axiom holds:
A ⊑ From : ⊤ ⊓ To : ⊤. Thus, if 〈A, C〉 ∈ S or 〈A, C〉 ∈ T then the following
DLRUS axioms hold, respectively:

C ⊑ ¬∃[From](A ⊓ 3
∗¬A) Snapshot Attribute

C ⊑ ¬∃[From](2∗A) Temporary Attribute

The distinction between snapshot, temporary and mixed constructors has been
adopted inERV T to avoid overloadingthe meaning of un-marked constructors. In-
deed, the classical distinction between temporal (using a temporal mark) andatemporal
(leaving the constructor un-marked) constructors may be ambiguous in the meaning of
un-marked constructors. In this classical setting, un-marking is used to model both truly
atemporal constructors (i.e. snapshot classes whose instances lifespan is always equal to
the whole database lifespan), as well as legacy constructors (forupward compatibility)
where the constructor is not marked as temporal because the original datamodel did not
support the temporal dimension. The problem is that, due to the interaction between the
various components of a temporal model, un-marked constructors can even purposely
represent temporary constructors. As an example, think of anISA involving a temporary
entity (as superclass) and an un-marked entity (as a subclass). Since a designer cannot
forecast all the possible interactions between the (temporal) constraints ofa given con-
ceptual schema, this ultimately means that in the classical approachatemporality cannot
be guaranteedand this is true even for the upward compatibility.

ERV T explicitly introduces a snapshot mark to force both atemporality and up-
ward compatibility. As logical implication is formally defined inERV T (see Defini-

16 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

DepartmentS InterestGroupS

OrganizationalUnitS

d

MemberS

(1,n)

org
mbr

EmployeeS

Name(String)

S

PaySlipNumber(Integer)

Salary(Integer)

T

ManagerT

TopManagerTAreaManagerT

Works-forT

(1,n)

act

emp

ProjectT

ProjectCode(String)

ManagesT
man

(1,1)

prj

(1,1)

Figure 3. The company diagram with deductions on timestamps

tion 5.2), missing specifications can be inferred and in particular a set of logical im-
plications hold in the case of timestamping. For instance, in Figure 2, asManager

is temporary bothAreaManager and TopManager are temporary, too. Because
OrganizationalUnit is snapshot and partitioned into two sub-classes,Department

which is snapshot andInterestGroup, the latter should be snapshot, too. As the tem-
porary classTopManager participates in the relationshipManages, then the latter must
be temporary, too. The result of these deductions is given in Figure 3 (see [4] for an
exhaustive list of deductions involving timestamps). Note that, when mappingERV T

into a relational schema both temporary and un-marked constructors are mapped into a
relation with added timestamp attributes, while snapshot constructors do not need any
additional time attribute (for full details on theERV T relational mapping see [1]).

7. Formalizing Evolving Objects

Evolution constraints contribute in modelling the temporal behavior of an object.
This Section discusses in details the aspects of evolutionary modelling that we take into
account in our work. We first recall the basic concepts that have beenproposed in the
literature to deal with evolution, and their impact on the resulting conceptual language.
Then we propose a formalization of the basic temporal concepts that are atthe root of
advanced conceptual temporal models:lifecyclewith four statuses (scheduled, active,
suspended, disabled);transitionsof objects between different classes along their whole
lifecycle; generationand across-timerelationships asserting evolution constraints on
objects linked by temporal relationships. These are genuine extensions to theERV T

model that need to be taken into account in proposing a formalization based on a model-
theoretic semantics and a corresponding set of axioms expressed using the temporal
description logicDLRUS .

We aim both at presenting a formal characterization of the temporal conceptual
modelling constructors for timestamping and evolution, and using the reasoningcapa-
bilities of DLRUS to check satisfiability, subsumption and logical implications over

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 17

temporal schemas. The model-theoretic semantics we illustrate here for the various evo-
lution constraints and the corresponding set ofDLRUS axioms are an extension of the
one developed for the modelERV T , introduced in Section 5. The validity of the pro-
posed formalization is justified by providing a set of logical implications which are in
agreement with the derivations mentioned in the literature on temporal data modelling.

7.1. Status Classes

Status[37,15] is a conceptual notion associated to temporal classes as a compo-
nent of the description of the lifecycle of their objects. It records the evolving state of
membership of each object in the class. Following [37], status modelling includes up to
four different statuses, and the allowed transitions between them:

• Scheduled. An object is scheduled if the planning of its existence within the class
has to be recorded while its membership in the class will only become effective (ac-
tive) some time later. For example, if a new project is approved but will not start until
a later date the given project can be created as a new object in theProject class,
with status scheduled for the valid time interval starting at the date of the approval
decision and ending at the expected launching date. Each scheduled object will even-
tually become an active object. A scheduled object bears its identity (has an oid), but
its attribute values do not need to be present. Supporting a scheduled statusavoids the
introduction of a new time type, the decision time [15], and smoothes the processing
of lifecycle queries.

• Active. The status of an object is active if the object is a full member of the class (and
therefore conforms to its type). For example, a currently ongoing projectis an active
member, at time now, of theProject class. Being active entails that the object can
undergo any operation (retrieval, update, deletion, etc.), unless otherwise specified
by the application.

• Suspended. This status qualifies objects that exist as members of the class, but
are to be seen as temporarily inactive members of the class. Being inactive means
that the object cannot undergo some operations. For example, in [15] nochange
to the values of the attributes of an object is allowed in the periods the object is
suspended. An employee taking a temporary leave of absence is an exampleof what
can be considered as a suspended employee. Only active objects can besuspended.
A suspended object was in the past an active one.

• Disabled. This status is used to specify that the object’s membership in the class has
expired, meaning that the object is no more accessible in a normal mode of opera-
tion. While logically deleted, disabled objects are kept for some specific application
purposes, e.g. statistical analyses. When the object becomes definitely irrelevant for
the application, it is killed, rather than disabled, and disappears from the class. A
disabled object was in the past an active member of the class (an object cannot be
created in the disabled status). It can never again become a non-disabledmember of
that class (e.g. an expired project cannot be reactivated).

18 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

These four statuses intuitively correspond to a behavior we are familiar within
the real world. They are application-independent notions. Their choicehas been driven
by the abstract view of what an object behavior may be in terms of membershipinto a
class. For specific applications specific classes may be equipped with a simplified form
of lifecycle. For example, the lifecycle of a given class may be defined as not including
the scheduled status, or not including the suspended status. As already mentioned, the
simplest lifecycle consists of a single period with active status (which would bethe case
for atemporal objects, should they be given a lifecycle).

A critical issue is deciding the operational semantics of the statuses. Followingthe
modification control approach in [15], statuses differ in terms of the operations that are
allowed on objects in each status. Obviously active objects are fully operational, i.e. they
can undergo any operation. But should modification of suspended objects be inhibited,
as proposed in [15]? What if, for example, while an employee is suspended the cate-
gorization scheme of the company changes and the suspended employee now qualifies
for a different category? Should the change be performed for the suspended employee
as for all other employees, or should the change be stored in some log of changes for
this employee and activated only at the moment the employee recovers its activestatus?
The latter policy suggests an analogy between suspended objects and site failure in a
network system. But in network systems objects in a failing site cannot be retrieved,
while in [15] suspended objects can be retrieved. In summary, we could always find an
example where the application requirements include the possibility to update an object
whatever its status is. Consequently, a generic approach is to leave up to thedesigner to
decide which restrictions to a full operational semantics, if any, should characterize the
non-active statuses. The manipulation language, in its turn, should include thenecessary
operations to perform a change in the status of an object (e.g. create an object in a given
status, suspend or disable an active object, activate a scheduled or a suspended object)
and allow predicates on status of objects in the formulation of a query. Using such pred-
icates the user can, for example, retrieve the active employees who have been suspended
at some time in the last three years.

A similar difficult issue is to decide to what extent, if any, the status of objects
constrains the relationships holding between those objects. Most data models only allow
creation of relationships between objects in the active status at the time the relationship
is created. Our discussion on across-time relationships shows however that applications
may require the capability to involve also suspended/scheduled/disabled objects in the
creation of a new relationship (see Sections 7.4,7.3). Thus, unless explicitlyinhibited,
objects can get involved in the creation of new relationships whatever their status is.

To conclude this discussion on statuses, it is worth noticing that application-
oriented lifecycles are frequently found and may be organized using the same mecha-
nism as for the application-independent lifecycle. For example, in a supplying company
objects in a classOrder can be categorized as standing-order, registered-order, order-in-
process, billed-order, paid-order, order-in-delivery, delivered-order. The designer could
then specify the transition between these ”statuses”, together with the corresponding
transition rules, and let the system enforce the consistency of orders’ evolution with the

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 19

Top S

Exists-C

Scheduled-C

Disabled-C

C T Suspended-C

d

d

Figure 4. Status classes.

stated constraints. It would be worth investigating the possibility to devise a formalism
that handles the definition and management of application lifecycles in a similar way as
it handles the predefined lifecycle we discussed above. But this is beyond the scope of
this paper. Notice that, conversely, having application-independent lifecycles associated
to objects and monitored by the system has a definite advantage it allows relyingon
standard operators (e.g. activate, suspend, reactivate, disable) for status manipulation.

Formalization. Let C be a temporal (i.e. temporary or mixed) class. We capture
status transition of membership inC by associating toC the following status classes:
Scheduled-C, Suspended-C, Disabled-C. In particular, status classes are represented
by the hierarchy of Figure 4 (whereC may also be mixed) that classifiesC instances
according to their actual status. To preserve upward compatibility we do notexplicitly
introduce an active class, but assume by default that the name of the classitself denotes
the set of active objects, i.e.Active-C ≡ C. We can assume that the status classes are
created automatically by the system each time a class is declared temporal. Thus,design-
ers and users are forced neither to introduce nor to manipulate status classes. They only
have to be aware of the different statuses in the lifecycle of an object. Notethat, since
membership of objects into snapshot classes is global, i.e. objects are always active, the
notion of status classes does not apply to snapshot classes.

To capture the intended meaning of status classes, we define ad-hoc constraints
and then prove that such constraints capture the evolving behavior of status classes as
described in the literature [37,15]. First of all, disjointness andISA constraints between
statuses of a classC can be described inERV T as illustrated in Figure 4, whereTop
is supposed to be a snapshot class which represents the universe of abstract objects (i.e.
TopB(t) ≡ ∆B). Other than hierarchical constraints, the intended semantics of status
classes induces the following rules that are related to their temporal behavior:

(EXISTS) Existence persists until Disabled.
o ∈ Exists-CB(t) → ∀t′ > t.(o ∈ Exists-CB(t′) ∨ o ∈ Disabled-CB(t′))

(DISAB1) Disabled persists.
o ∈ Disabled-CB(t) → ∀t′ > t.o ∈ Disabled-CB(t′)

20 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

(DISAB2) Disabled was Active in the past.
o ∈ Disabled-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SUSP) Suspended was Active in the past.
o ∈ Suspended-CB(t) → ∃t′ < t.o ∈ CB(t′)

(SCH1) Scheduled will eventually become Active.
o ∈ Scheduled-CB(t) → ∃t′ > t.o ∈ CB(t′)

(SCH2) Scheduled can never follow Active.
o ∈ CB(t) → ∀t′ > t.o 6∈ Scheduled-CB(t′)

As an example of a rule expressing the semantics associated to the differentstatuses,
the following rule formally expresses the suggestion from [15] to make unchangeable
the attributes of suspended objects, the unchangeability starting at the time instant the
object becomes suspended. LetA an attribute of a classC then:

(FREEZ) Freezing attributes of suspended classes.
o ∈ Suspended-CB(t) ∧ 〈o, a〉 ∈ AB(t) → 〈o, a〉 ∈ AB(t−1)

DLRUS axioms are able to fully capture the hierarchical constraints of Figure 4 (see [4]
for more details). Moreover, the above semantic equations are captured by the following
set ofDLRUS axioms:

(EXISTS) Exists-C ⊑ 2
+(Exists-C ⊔ Disabled-C)

(DISAB1)Disabled-C ⊑ 2
+Disabled-C

(DISAB2)Disabled-C ⊑ 3
−C

(SUSP) Suspended-C ⊑ 3
−C

(SCH1) Scheduled-C ⊑ 3
+C

(SCH2) C ⊑ 2
+¬Scheduled-C

We denote withΣst the above set of axioms together with theDLRUS axioms that cap-
ture the hierarchy of Figure 4. On the other hand, the axiom that capturesthe inhibition
to update suspended objects is:

(FREEZ) Suspended-C ⊑ ¬∃[From](A ⊓⊖¬A)

As a consequence of the above formalization, scheduled and disabled status classes can
be true only for a single interval, while active and suspended classes canhold for set of
intervals (i.e. an object can move many times back and forth from active to suspended
status and vice versa). In particular, the following set of new rules can be derived.

Proposition 7.1. (Status Classes: Logical Implications)Given the set of axiomsΣst

that formalize status classes, the following logical implications hold (each implication is
described by a natural language sentence and the correspondingDLRUS logical impli-
cation):

(DISAB3) Disabled will never become active anymore.
Σst |= Disabled-C ⊑ 2

+¬C

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 21

(SCH3) Scheduled persists until active.
Σst |= Scheduled-C ⊑ Scheduled-C U C

(SCH4) Scheduled cannot evolve directly to Disabled.
Σst |= Scheduled-C ⊑ ⊕¬Disabled-C

Proof

(DISAB3) Σst |= Disabled-C ⊑ 2
+¬C

Let o ∈ Disabled-CB(t0), then, by (DISAB1), ∀t′ > t0.o ∈ Disabled-CB(t′). Since
Disabled-C is disjoint fromC, then∀t′ > t0.o 6∈ CB(t′).

(SCH3) Σst |= Scheduled-C ⊑ Scheduled-C U C

Let o ∈ Scheduled-CB(t0), theno ∈ Exists-CB(t0) and, by (SCH1), ∃t1 > t0.o ∈
CB(t1). Let assume thatt1 = min{t ∈ T | t > t0 and o ∈ CB(t)}. Now, by
(EXISTS), ∀t′.t0 < t′ < t1.o ∈ (Exists-C ⊔ Disabled-C)B(t′). On the other hand,
by (DISAB3), o 6∈ Disabled-CB(t′). By the “min” choice oft1, o 6∈ CB(t′) and also
o 6∈ Suspended-CB(t′). Thus,∀t′.t0 < t′ < t1.o ∈ Scheduled-CB(t′).
Together with axiom (SCH2), we can also conclude thatScheduled-C is true just on
a single interval.

(SCH4) Σst |= Scheduled-C ⊑ ⊕¬Disabled-C
Let o ∈ Scheduled-CB(t0), then by (SCH1), ∃t1 > t0.o ∈ CB(t1). Thus, by
(DISAB3), o 6∈ Disabled-CB(t0+1).

2

Status classes are central in describing the evolutionary behavior of objects. In
the following we show the adequacy of the semantics associated to status classes to
describe:a) the behavior of temporal classes involved inISA relationships;b) the notion
of lifespanof an object. In the next Section status classes will be used to model:c)
the object migration between classes;d) the relationships that involve objects existing at
different times (both generation and across-time relationships).

Isa vs. status.When anISA relationship is specified between two temporal classes, say
B ISAA, some rules have to be obeyed to guarantee consistency between the statusof the
object in the subclass,B, and its status in the superclass,A. These common sense rules
follow from the perception that being in a subclass represents a “sub-activity” the object
pursues while continuing its “activity” in the superclass. Thus, the level ofactivity
in the superclass must be higher than or equal to the level of activity in the subclass.
Being active is a higher level of activity as beingsuspended, which in turn is a higher
level of activity than beingdisabled. This is expressed by constraintsISA1-3 andISA5
below between the respective status classes. Similarly, thescheduledstatus expresses a
plannedexistence, i.e. a lower level of existence than being currently in existence: hence
constraintISA4.

(ISA1) Objects active inB must be active inA.
B ⊑ A

22 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

(ISA2) Objects suspended inB must be either suspended or active inA.
Suspended-B ⊑ Suspended-A ⊔ A

(ISA3) Objects disabled inB must be either disabled, suspended or active inA.
Disabled-B ⊑ Disabled-A ⊔ Suspended-A ⊔ A

(ISA4) Objects scheduled inB must exist inA.
Scheduled-B ⊑ Exists-A

(ISA5) Objects disabled inA, and active inB in the past, must be disabled inB.
Disabled-A ⊓ 3

−B ⊑ Disabled-B

The formalization of status classes provided above is not sufficient to guarantee
properties (ISA1-5)4. We need to further assume that the system behaves under thetem-
poral ISA assumption: Each time anISA between two temporal classes holds (B ISA A),
then anISA between the respective existence status classes (Exists-B ISA Exists-A) is
automatically added by the system. The temporalISA assumption is thus captured by
the following set of axioms:ΣISA = {B ⊑ A, Exists-B ⊑ Exists-A}. Now, we are
able to prove that points (ISA1-5) above are entailed by the semantics associated to status
classes under the temporalISA assumption.

Proposition 7.2. (Status Classes Vs.ISA: Logical Implications) Let A, B be two
temporal classes such thatB ISAA, then properties (ISA1-5) are valid logical implications
under thetemporalISA assumption.

(ISA1) Objects active inB must be active inA.
Σst ∪ ΣISA |= B ⊑ A

(ISA2) Objects suspended inB must be either suspended or active inA.
Σst ∪ ΣISA |= Suspended-B ⊑ Suspended-A ⊔ A

(ISA3) Objects disabled inB must be either disabled, suspended or active inA.
Σst ∪ ΣISA |= Disabled-B ⊑ Disabled-A ⊔ Suspended-A ⊔ A

(ISA4) Objects scheduled inB must exist inA.
Σst ∪ ΣISA |= Scheduled-B ⊑ Exists-A

(ISA5) Objects disabled inA, and active inB in the past, must be disabled inB.
Σst ∪ ΣISA |= Disabled-A ⊓ 3

−B ⊑ Disabled-B

Proof

(ISA1) Obviously true sinceB ISAA holds inΣISA, and bothA, B are considered active.
(ISA2) Let o ∈ Suspended-BB(t0), sinceSuspended-B ISAExists-B, and (by temporal

ISA assumption)Exists-B ISA Exists-A, then,o ∈ Exists-AB(t0). On the other
hand, by (SUSP), ∃t1 < t0.o ∈ BB(t1), and then,o ∈ AB(t1). Then, by (SCH2),
o 6∈ Scheduled-AB(t0). Thus, due to the disjoint covering constraint between active,
scheduled and suspended classes, eithero ∈ AB(t0) or o ∈ Suspended-AB(t0).

(ISA3) Let o ∈ Disabled-BB(t0), then, by (DISAB2),∃t1 < t0.o ∈ BB(t1). By B ISA A
andA ISA Exists-A, then,o ∈ Exists-AB(t1). By (EXISTS) and the disjointness

4 We let the reader check that points 2,4 and 5 are not necessarily true.

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 23

between existing and disabled classes, there are only two possibilities at pointin time
t0 > t1:

1. o ∈ Exists-AB(t0), and thus, by (SCH2), o ∈ AB(t0) or o ∈ Suspended-AB(t0);
or

2. o ∈ Disabled-AB(t0).

(ISA4) Let o ∈ Scheduled-BB(t0), then,o ∈ Exists-BB(t0). Thus, by the temporalISA

assumption,o ∈ Exists-AB(t0). As a further logical implication, it also follows that
objects scheduled inB cannot be disabled inA.

(ISA5) Let o ∈ Disabled-AB(t0) and o ∈ BB(t1) for some t1 < t0, then, o ∈
Exists-BB(t1). By (EXISTS) and the disjointness between existing and disabled
classes, there are only two possibilities at timet0 > t1: eithero ∈ Exists-BB(t0)

or o ∈ Disabled-BB(t0). By absurd, leto ∈ Exists-BB(t0), then by tempo-
ral ISA assumption,o ∈ Exists-AB(t0), which contradicts the assumption that
o ∈ Disabled-AB(t0).

2

Temporal applications often use concepts that are derived from the notion of object
statuses, e.g. thelifespanof a temporal object or itsbirth anddeathinstants. These con-
cepts are supported through methods in object-oriented DBMS. Hereinafter we provide
formal definitions for these concepts.

Lifespan and related notions. The lifespan of an object w.r.t. a class describes the
temporal instants5 where the object can be considered a member of the class. The lifes-
pan concept together with the notion of status classes support the definitionof temporal
constraints between objects (see Section 7.3). With the introduction of status classes
we can distinguish between the following notions: EXISTENCESPANC , L IFESPANC ,
ACTIVESPANC , BEGINC , BIRTHC and DEATHC . They are functions which depend on
the object membership to the status classes associated to a temporal classC.

The existencespanof an object describes the temporal instants where the object
is either a scheduled, active or suspended member of a given class. More formally,
EXISTENCESPANC : ∆B → 2T , such that:

EXISTENCESPANC(o) = {t ∈ T | o ∈ Exists-CB(t)}

The lifespanof an object describes the temporal instants where the object is an active
or suspended member of a given class (thus, LIFESPANC(o) ⊆ EXISTENCESPANC(o)).
More formally, LIFESPANC : ∆B → 2T , such that:

L IFESPANC(o) = {t ∈ T | o ∈ CB(t) ∪ Suspended-CB(t)}

5 Note that the semantics ofERV T allows for set of intervals—usually mentioned as temporal elements in
the literature—as generic lifespan of an object.

24 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Theactivespanof an object describes the temporal instants where the object is an active
member of a given class (thus, ACTIVESPANC(o) ⊆ L IFESPANC(o)). More formally,
ACTIVESPANC : ∆B → 2T , such that:

ACTIVESPANC(o) = {t ∈ T | o ∈ CB(t)}

The functions BEGINC and DEATHC associate to an object the first and the last appear-
ance, respectively, of the object as a member of a given class, while BIRTHC denotes
the first appearance as an active object of that class. More formally, BEGINC , BIRTHC ,
DEATHC : ∆B → T , such that:

BEGINC(o) = min(EXISTENCESPANC(o))
BIRTHC(o) = min(ACTIVESPANC(o)) ≡ min(L IFESPANC(o))
DEATHC(o) = max(L IFESPANC(o))

We could still speak of existencespan, lifespan or activespan for snapshot classes, but
in this case EXISTENCESPANC(o) ≡ L IFESPANC(o) ≡ ACTIVESPANC(o) ≡ T . Fur-
thermore, BEGINC(o) = BIRTHC(o) = −∞, and DEATHC(o) = +∞ either whenC is a
snapshot class or in cases of instances existing since ever and/or livingforever.

7.2. Transition

A database object represents a real world object seen as a member of theclass the
object belongs to. As the real world evolves, the same real world object may lose its
quality as a member of the class and may acquire other or additional membershipsin
other classes defined in the database. For example, there are formalisms allowing John
to be simultaneously represented as a member of the classEmployee and as a member of
the classTennisPlayer, and later to become a member of the classManager. In other
words, objects can dynamically show up and move around through the classes defined
in a schema.

Transitionconstraints [22,37] bear specific transition semantics. They have been
introduced to model the phenomenon calledobject migration. A transition records ob-
jects migrating from asourceclass to atarget class. At the schema level, it expresses
that the instances of the source class maymigrate into the target class. Two types of
transitions have been considered:dynamic evolution, when objects cease to be instances
of the source class to become instances of the target class, anddynamic extension, when
the creation of the target instance does not force the removal of the source instance. For
example, considering the company schema (Figure 3), if we want to recorddata about
the promotion of area managers into top managers we can specify a dynamic evolution
from the classAreaManager to the classTopManager. We can also record the fact that
a mere employee becomes a manager by defining a dynamic extension from the class
Employee to the classManager (see Figure 5).

Finally, transitions are particularly relevant in the case ofnot directly instantiable
classes. A class is said not directly instantiable if creation of objects with a newoid
is not allowed in the class. In this case, transition constraints define the trajectory of

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 25

EmployeeS

ManagerT

TopManagerTAreaManagerT

DEV

DEX

Figure 5. Transitions employee-to-manager and area-to-top manager

objects in time and consequently rule the object’s evolution as far as existencein a not
directly instantiable class is concerned.

Regarding the graphical representation, as illustrated in Figure 5, we usea dashed
arrow pointing to the target class and labeled with eitherDEX or DEV denoting dynamic
extension and evolution, respectively.

Formalization. Specifying a transition between two classes means that:a) We want to
keep track of such migration;b) Not necessarily all the objects in the source or in the
target participate in the migration;c)When the source class is a temporal class, migration
only involves active or suspended objects—thus, neither disabled nor scheduled objects
can take part in a transition.

In the following, we present a formalization that satisfies the above requirements.
Notice that transitions are constrained by the fact that they consider singleobjects. For-
malizing dynamic transitions as relationships would result in binary relationships linking
the same migrating object twice, once as an instance in the source class and once as an
instance in the target class. Rather than defining a relationship type with an equality
constraint on the identity of the linked instances, we represent transitions by introducing
a new class denoted by eitherDEXC1,C2

or DEVC1,C2
for dynamic extension and evolu-

tion, respectively. More formally, in case of adynamic extensionbetween classesC1, C2

the following semantic equation holds:

o ∈ DEX
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1
B(t)) ∧ o 6∈ C2

B(t) ∧ o ∈ C
B(t+1)
2)

And the equivalentDLRUS axiom is:

(DEX) DEXC1,C2
⊑ (Suspended-C1 ⊔ C1) ⊓ ¬C2 ⊓⊕C2

In case of adynamic evolutionbetween classesC1, C2 the source object cannot remain
active in the source class. Thus, the following semantic equation holds:

o ∈ DEV
B(t)
C1,C2

→ (o ∈ (Suspended-C1B(t) ∪ C1
B(t)) ∧ o 6∈ C2

B(t) ∧

o ∈ C
B(t+1)
2 ∧ o 6∈ C

B(t+1)
1)

And the equivalentDLRUS axiom is:

26 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

(DEV) DEVC1,C2
⊑ (Suspended-C1 ⊔ C1) ⊓ ¬C2 ⊓⊕ (C2 ⊓ ¬C1)

Finally, we formalize the case where the source (C1) and/or the target (C2) totally par-
ticipate in a dynamic extension/evolution (at schema level we add mandatory cardinality
constraints onDEX/DEV links):

o∈C
B(t)
1 → ∃t′ > t.o∈DEX

B(t′)
C1,C2

Source Total Transition

o∈C
B(t)
2 → ∃t′ < t.o∈DEX

B(t′)
C1,C2

Target Total Transition

o∈C
B(t)
1 → ∃t′ > t.o∈DEV

B(t′)
C1,C2

Source Total Evolution

o∈C
B(t)
2 → ∃t′ < t.o∈DEV

B(t′)
C1,C2

Target Total Evolution

The above cases are captured by the followingDLRUS axioms, respectively:

(STT) C1 ⊑ 3
+DEXC1,C2

Source Total Transition
(TTT) C2 ⊑ 3

−DEXC1,C2
Target Total Transition

(STE) C1 ⊑ 3
+DEVC1,C2

Source Total Evolution
(TTE) C2 ⊑ 3

−DEVC1,C2
Target Total Evolution

Note that, either (TTT) or (TTE) are appropriate constraints to describe the behavior
of not directly instantiable classes. An interesting set of consequences of the above
proposed modelling of dynamic transitions are shown in the following proposition.

Proposition 7.3. (Transition: Logical Implications) Let Σtr = {(DEV),(DEX)}, then
the following logical implications hold:

1. The classesDEXC1,C2
and DEVC1,C2

are temporary classes; actually, they hold at
single time points.
Σst ∪ Σtr |= DEXC1,C2

⊑ ⊕¬ DEXC1,C2
⊓⊖¬DEXC1,C2

Σst ∪ Σtr |= DEVC1,C2
⊑ ⊕¬ DEVC1,C2

⊓⊖¬DEVC1,C2

2. Objects in the classesDEXC1,C2
andDEVC1,C2

cannot be disabled asC2.
Σst ∪ Σtr |= DEXC1,C2

⊑ ¬Disabled-C2
Σst ∪ Σtr |= DEVC1,C2

⊑ ¬Disabled-C2

3. The target classC2 cannot be snapshot (it becomes temporary in case of bothTTT

andTTE constraints).
Σst ∪ Σtr |= DEXC1,C2

⊑ 3
∗[C2 ⊓ (3+¬C2 ⊔ 3

−¬C2)]

4. As a consequence of dynamic evolution, the source class,C1, cannot be snapshot
(and it becomes temporary in case ofSTE constraints).
Σst ∪ Σtr |= DEVC1,C2

⊑ 3
∗[C1 ⊓ (3+¬C1 ⊔ 3

−¬C1)]

5. Dynamic evolution cannot be specified between a class and one of its sub-classes.
Σst ∪ Σtr ∪ {C2 ⊑ C1} |= DEVC1,C2

⊑ ⊥

6. Dynamic extension between disjoint classes logically implies Dynamic evolution.
Σst ∪ Σtr ∪ {C1 ⊑ ¬C2} |= DEXC1,C2

⊑ DEVC1,C2

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 27

Proof

1. Σst ∪ Σtr |= DEXC1,C2
⊑ ⊕¬ DEXC1,C2

⊓⊖¬DEXC1,C2
(similar for DEVC1,C2

)

Indeed, leto ∈ DEX
B(t)
C1,C2

, then, from (DEX), o 6∈ C
B(t)
2 ando ∈ C

B(t+1)
2 , thuso 6∈

DEX
B(t+1)
C1,C2

ando 6∈ DEX
B(t−1)
C1,C2

. Note that, the timet such thato ∈ DEX
B(t)
C1,C2

records
when the transition event happens. Similar considerations apply forDEVC1,C2

.

2. Σst ∪ Σtr |= DEXC1,C2
⊑ ¬Disabled-C2 (similar for DEVC1,C2

)
Indeed, from (DEX), DEXC1,C2

⊑ ⊕C2, i.e. objects inDEXC1,C2
are active in

C2 starting from the next point in time, then by property (DISAB3), DEXC1,C2
⊑

¬Disabled-C2. The same holds forDEVC1,C2
.

3. Σst ∪ Σtr |= DEXC1,C2
⊑ 3

∗[C2 ⊓ (3+¬C2 ⊔ 3
−¬C2)]

Indeed, from (DEX), DEXC1,C2
⊑ ¬C2 ⊓⊕ C2 (the same holds forDEVC1,C2

).

4. Σst ∪ Σtr |= DEVC1,C2
⊑ 3

∗[C1 ⊓ (3+¬C1 ⊔ 3
−¬C1)]

Indeed, from (DEV), an object evolving fromC1 to C2 ceases to be a member of
C1.

5. Σst ∪ Σtr ∪ {C2 ⊑ C1} |= DEVC1,C2
⊑ ⊥

Indeed, from (DEV), DEVC1,C2
⊑ ⊕ (C2 ⊓ ¬C1) which contradictsC2 ⊑ C1.

6. Σst ∪ Σtr ∪ {C1 ⊑ ¬C2} |= DEXC1,C2
⊑ DEVC1,C2

Let o ∈ DEX
B(t)
C1,C2

, then, from (DEX), o ∈ C
B(t+1)
2 , and, sinceC1 ⊑ ¬C2, o 6∈

C
B(t+1)
1 . Thus,o ∈ DEV

B(t)
C1,C2

.

2

7.3. Across-Time Relationships

Across-Timerelationships [40,31,37] describe relationships between objects that
may not coexist at the same time and possibly not at the time the relationship is as-
serted. The conceptual model MADS [37,38] allows forsynchronizationrelationships
to specify temporal constraints (Allen temporal relations) between the lifespan of linked
objects.Historical marksare used in the ERT model [31] to express a relationship be-
tween objects not existing at the same time (both past and future historical marks are
introduced).

There are many examples of these relationships (see Figure 6). Consider, for exam-
ple, a relationshipBiography between an author and a famous person already dead, or
the relationshipGrandparent that holds even if the grandparent passed away before the
grandchild was born or the grandchild is not yet born. Considering the company schema
(Figure 3), the relationshipWorks-for is an across-time relationship if company rules
allow assigning an employee to a project before its official launching, or if employees
may keep on working on a project after its official closure.

This Section formalizes across-time relationships with the aim of preserving the
snapshot reducibility of the resulting model. Let us consider a concrete example. Let

28 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Person AuthorBiography
P =

(a)

Person Grandparent
P,=

gparent

F,=

gchild

(0,4)

(b)

Employee Works-for T Project
(1,n)

=

(c)

Figure 6. Across-Time Relationships

Biography be an across-time relationship linking the author of a biography with a fa-
mous person no more in existence. Snapshot reducibility says that if there isan instance
(say,bio = 〈Tulard, Napoleon〉) of the Biography relationship at timet0 (Tulard
wrote a bio on Napoleon in 1984), then, the projection ofBiography at timet0 (1984
in our example) must contain the pair〈Tulard, Napoleon〉. Now, while Tulard is a
member of the classAuthor in 1984, we cannot say thatNapoleon is an active member
of the classPerson in 1984. Our formalization of across-time relationships proposes
the use of status classes to preserve snapshot reducibility. The biography example can
be solved by asserting thatNapoleon is a member of theDisabled-Person class in
1984—i.e. the disabled status associated to the classPerson.

At the conceptual level, we mark relationship roles withP,=,S,F (standing for Past,
Now, Suspended and Future, respectively). The role’s mark expresses that the class
typing the role participates in the relationship as disabled, active, suspend or scheduled.
Furthermore, we allow to freely compose the marks, e.g.〈P,=〉 denotes a role to a past or
current object—i.e the class participates as either disabled or active—while〈F,=〉 stands
for a role to a future or current object (see Figure 6).

Remark 7.4. Note that, across-time relationships represent a generalization of the clas-
sical notion of relationships. They do not impose any temporal constraint on the involved
objects allowing to capture a simplified version of the synchronization relationships in-
troduced in MADS [38]. In particular, if no mark is explicitly stated on a relationship’s
role (as in the case of the role restricted toProject in Figure 6.c) we implicitly as-
sume the compound mark〈P,=,S,F〉—said full-crossmark. This assumption changes
the semantics for relationships as given in Section 5. We assume, by default,that for
each relationship’s role the full-cross semantics holds (see the formal definition below).
This new semantics for relationships maintains the compositionality of the language. In
particular, to force a relationship to hold on an active class we need to add the 〈=〉 mark

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 29

(as in the case of the role restricted toEmployee in Figure 6.c). Furthermore, cardinality
constraints apply to a participating class in every status as specified by the corresponding
role mark. For example, from Figure 6.b, each active or scheduled person can have at
most four grandparents.

Formalization. Let R be a relationship, then, the semantics of marking theU1-labeled
role of the relationship is (we report the semantics for the single marks and thefull-cross
compound mark, the other compound marks are just the disjunction of the singleones):

〈o1, o2〉 ∈ RB(t) → o1 ∈ C1
B(t) Now 〈=〉

〈o1, o2〉 ∈ RB(t) → o1 ∈ Disabled-C1B(t) Past〈P〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ Scheduled-C1B(t) Future〈F〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ Suspended-C1B(t) Suspended〈S〉
〈o1, o2〉 ∈ RB(t) → o1 ∈ (Exists-C1 ⊔ Disabled-C1)B(t) Full-Cross〈P,=,S,F〉

The correspondingDLRUS axioms are:

R ⊑ U1 : C1 Now 〈=〉
R ⊑ U1 : Disabled-C1 Past〈P〉
R ⊑ U1 : Scheduled-C1 Future〈F〉
R ⊑ U1 : Suspended-C1 Suspended〈S〉
R ⊑ U1 : (Exists-C1 ⊔ Disabled-C1) Full-Cross〈P,=,S,F〉

We say that a role in an across-time relationship isstrict historical if its mark does
not contain the〈=〉 mark (e.g.〈P,F〉 is strict historical while〈P,=〉 is not). The following
Proposition shows how timestamping interacts with across-time relationships.

Proposition 7.5. (Across-Time: Logical Implications)The following logical implica-
tions hold as a consequence of the across-time semantics.

1. If a relationship,R, has at least one strict historical role, then it is a temporary
relationship.
Σst ∪ {R ⊑ Ui : (Disabled-Ci ⊔ Scheduled-Ci ⊔ Suspended-Ci)} |= R ⊑
3

+¬R ⊔ 3
−¬R

2. If a relationship,R, is snapshot then all the historical marks must contain the〈=〉
mark (i.e.R does not have strict historical roles).

3. If a relationship,R, has a strict historical role to a classC1, then theC1 class cannot
be snapshot. Moreover, if the participation forC1 is total, the class is temporary.
Σst ∪ {R ⊑ U1 : (Disabled-C1 ⊔ Scheduled-C1 ⊔ Suspended-C1)} |= R ⊑ U1 :
3

∗[C1 ⊓ (3+¬C1 ⊔ 3
−¬C1)]

Proof

1. Σst ∪ {R ⊑ Ui : (Disabled-Ci ⊔ Scheduled-Ci ⊔ Suspended-Ci)} |= R ⊑
3

+¬R ⊔ 3
−¬R

30 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Let r = 〈o1, . . . , oi, . . . , on〉 ∈ RB(t). Then, one of the following cases hold:

i) oi ∈ Disabled-CB(t)
i and, by (DISAB2), ∃t1 < t s.t. oi ∈ C

B(t1)
i ; ii)

oi ∈ Scheduled-CB(t)
i and, by (SCH1), ∃t1 > t s.t. oi ∈ C

B(t1)
i ; iii) oi ∈

Suspended-CB(t)
i and, by (SUSP), ∃t1 < t s.t. oi ∈ C

B(t1)
i . Then,∃t1 6= t s.t.

oi ∈ C
B(t1)
i , thus〈o1, . . . , oi, . . . , on〉 6∈RB(t1).

2. Direct consequence of the above point.

3. Σst ∪ {R ⊑ U1 : (Disabled-C1 ⊔ Scheduled-C1 ⊔ Suspended-C1)} |= R ⊑ U1 :
3

∗[C1 ⊓ (3+¬C1 ⊔ 3
−¬C1)]

Let r = 〈o1, . . . , oi, . . . , on〉 ∈ RB(t). Then,o1 ∈ (Disabled-C1⊔Scheduled-C1⊔

Suspended-C1)B(t), and, by the disjointness constraints inΣst, o1 6∈ C
B(t)
1 . On the

other hand, similarly to point 1,∃t1 6= t s.t.o1 ∈ C
B(t1)
1 .

2

7.4. Generation Relationships

Generationrelationships [37,21,35] represent processes that lead to the emergence
of new objectsstarting from a set of existing objects. In their most generic form, a gener-
ation relationship can have a collection of objects as source and a collection of objects as
target. For example (see Figure 7), assuming an organization remodels its departments,
it may be that an existing department is split into two new departments, while two exist-
ing departments are merged into a single new department and three existing departments
are reorganized as two new departments. Cardinality constraints can be added to specify
the cardinality of sets involved in a generation. For example, if we want to record the
fact that a group of managers proposes at most one new project at a timea generation
relationship fromManager toProject can be defined with the cardinality “at most one”
on the manager side.

Depending whether the source objects are preserved (as member of the source
class) or disabled by the generation process, we distinguish betweenproductionand
transformationrelationships, respectively. Managers creating projects is an example
of the former, while departmental reorganization is an example of the latter. Atthe
conceptual level we introduce two marks for generation relationships:GP for production
andGT for transformation relationships, and an arrow pointing to the target class (see
Figure 7).

Formalization. We model generation as binary relationships connecting a source class
to a target one:REL(R) = 〈source : C1, target : C2〉. The semantics ofproduction
relationships, R, is described by the following equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C

B(t+1)
2)

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 31

Department ReOrganize GT

Manager Propose GP Project
(0,1)

Figure 7. Production and transformation generation relationships.

Thus, objects active in the source class produce objects active in the target class at the
next point in time. A production relationship is a special case of across-time relationship
with an 〈=〉 mark on the source role and an〈F〉 mark on the target role. As for across-
time relationships, the use of status classes allows us to preserve snapshotreducibility.
Indeed, for each pair of objects,〈o1, o2〉, belonging to a generation relationshipso1 is
active in the source whileo2 is scheduled in the target. TheDLRUS axiom capturing
the production semantics is:

(PROD) R ⊑ source : C1 ⊓ target : (Scheduled-C2 ⊓⊕C2)

The case oftransformationis captured by the following semantic equation:

〈o1, o2〉 ∈ RB(t) → (o1 ∈ C
B(t)
1 ∧ o1 ∈ Disabled-C1B(t+1) ∧

o2 ∈ Scheduled-C2B(t) ∧ o2 ∈ C
B(t+1)
2)

Thus, objects active in the source generate objects active in the target atthe next point
in time while the source objects cease to exist as member of the source. As for produc-
tion relationships, transformations are special cases of across-time relationships. The
DLRUS axiom capturing the transformation semantics is:

(TRANS) R ⊑ source : (C1⊓⊕ Disabled-C1)⊓target : (Scheduled-C2⊓⊕C2)

Proposition 7.6 (Generation: Logical Implications).The following logical implica-
tions hold as a consequence of the generation semantics:

1. A generation relationship,R, is temporary; actually, it is instantaneous.
Σst ∪ {(PROD)} |= R ⊑ 2

+¬R ⊓ 2
−¬R

Indeed, let〈o1, o2〉 ∈ RB(t), then, sinceo2 6∈ Scheduled-CB(t+1)
2 , then〈o1, o2〉 6∈

RB(t+1). Since,o2 6∈ C
B(t)
2 , then〈o1, o2〉 6∈ RB(t−1).

2. The target class,C2, cannot be snapshot. Moreover, if the participation forC2 is
total, the class is temporary.
Σst ∪ {(PROD)} |= R ⊑ target :3∗[C2 ⊓ (3+¬C2 ⊔ 3

−¬C2)]

Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 6∈ C
B(t)
2 ando2 ∈ C

B(t+1)
2 .

3. Objects participating as target cannot be disabled.

32 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

Σst ∪ {(PROD)} |= R ⊑ target :¬Disabled-C2
Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 ∈ C

B(t+1)
2 . Thuso2 6∈ Disabled-CB(t)

2 .

4. If R is a transformation relationship, then,C1 cannot be snapshot. Moreover, if the
participation forC1 is total, the class is temporary.
Σst ∪ {(TRANS)} |= R ⊑ source :3∗[C1 ⊓ (3+¬C1 ⊔ 3

−¬C1)]
Indeed, objects inC1 that participate inR will be disabled at the next point in time.

Proof

1. Σst ∪ {(PROD)} |= R ⊑ 2
+¬R ⊓ 2

−¬R

Indeed, let〈o1, o2〉 ∈ RB(t), then, sinceo2 6∈ Scheduled-CB(t+1)
2 , then〈o1, o2〉 6∈

RB(t+1). Since,o2 6∈ C
B(t)
2 , then〈o1, o2〉 6∈ RB(t−1).

2. Σst ∪ {(PROD)} |= R ⊑ target :3∗[C2 ⊓ (3+¬C2 ⊔ 3
−¬C2)]

Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 6∈ C
B(t)
2 ando2 ∈ C

B(t+1)
2 .

3. Σst ∪ {(PROD)} |= R ⊑ target :¬Disabled-C2
Indeed, let〈o1, o2〉 ∈ RB(t), then,o2 ∈ C

B(t+1)
2 . Thuso2 6∈ Disabled-CB(t)

2 .

4. Σst ∪ {(TRANS)} |= R ⊑ source :3∗[C1 ⊓ (3+¬C1 ⊔ 3
−¬C1)]

Indeed, objects inC1 that participate inR will be disabled at the next point in time.

2

Note that theDepartment class that is both the source and target of a transforma-
tion relationship (Figure 7) can no longer be snapshot (as it was in Figure3) and must be
changed to temporary. This is an example of inconsistency checking that anautomated
reasoner could perform to avoid inconsistent classes in a temporal schema. Furthermore,
as a consequence of this new timestamp for theDepartment class,InterestGroup is
now a genuine mixed class (compare Figure 2 with Figure 3).

8. Complexity of Reasoning on Temporal Models

As this paper shows, the temporal description logicDLRUS is able to fully cap-
ture temporal schemas with both timestamping and evolution constraints. Reasoning
overDLRUS knowledge bases, i.e checking satisfiability, subsumption and logical im-
plications, turns out to be undecidable [5]. The main reason for this is the possibility to
postulate that a binary relation does not vary in time. Note that, showing that temporal
schemas can be mapped intoDLRUS axioms does not necessarily imply that reasoning
over temporal schemas is an undecidable problem. Unfortunately, [2] shows that the
undecidable Halting Problem can be encoded as the problem of class satisfiability w.r.t.

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 33

a temporal schema with, among the others, the following constructs: disjoint and cov-
ering constraints, sub-relationships, timestamping on both classes and relationships, and
evolution constraints.

On the other hand, the fragment,DLR−
US , of DLRUS deprived of the ability to

talk about temporal persistence ofn-ary relations, forn ≥ 2, is decidable. Indeed,
reasoning inDLR−

US is an EXPTIME-complete problem [5]. This result gives us an
useful scenario where reasoning over temporal schemas becomes decidable. In partic-
ular, if we forbid timestamping for relationships (i.e. relationships are just unmarked)
reasoning on temporal models with just class timestamping but full evolution constraints
can be reduced to reasoning overDLR−

US . The problem of reasoning in this setting is
complete for EXPTIME since the EXPTIME-complete problem of reasoning with ALC
knowledge bases can be captured by such schemas [8].

We maintain decidability also by allowing full timestamping (i.e. timestamping for
relationships, attributes and classes) but dropping evolution constraints.This is the basic
temporal conceptual modelling scenario where temporal marks allow to distinguish be-
tween temporary and global constructs. A complete and decidable reasoning procedure
for reasoning over timestamping is provided in [6]. This scenario is decidable since it is
possible to encode temporal schemas without evolution constraints by using acombina-
tion between the description logicDLR and the epistemic modal logicS5 (see [6] for
the exact mapping). Reasoning overDLRS5 has been recently proved to be decidable
and 2-EXPTIME-complete [6] by extending a previous result on the logicALCS5 [17].

Other interesting scenarios under investigation are the cases where the temporal
expressivity is maintained in its full capability (i.e. both full timestamping and evolution
constraints) but some of the classical EER constructs are dropped. In particular, we
claim that by dropping isa between relationships and/or partitioning constraints we could
regain decidability in the full temporal scenario.

9. Conclusions

In this paper we proposed a formalization of the various modelling constructors
that support the design of temporal DBMS with particular attention to evolution con-
straints. The formalization, based on a model-theoretic semantics, has been developed
with the aim to preserve three fundamental modelling requirements: Orthogonality, Up-
ward Compatibility and Snapshot Reducibility. The introduction of status classes, which
describe the evolution in the membership of an object in a temporal class, allowed us
to maintain snapshot reducibility when characterizing both generations and across-time
relationships. The formal semantics clarified the meaning of the language’s construc-
tors and also gave a rigorous definition to relevant modelling notions like: satisfiability
of schemas, classes and relationships; subsumption for both classes andrelationships;
logical implication. Furthermore, for each constructor we presented its formalization
together with the associated set of logical implications.

Finally, we have been able to show how temporal schemas can be equivalently

34 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

expressed using a subset of first-order temporal logic, i.e.DLRUS , the description
logic DLR extended with the temporal operatorsSinceandUntil. Overall, we obtained
a temporal conceptual model that preserves well established modelling requirements,
equipped with a model-theoretic semantics where each constructor can be seen as a set
of precise rules, and with the possibility to perform automated reasoning by mapping
temporal schemas into temporal description logic knowledge bases.

References

[1] B. Ahmad. Modeling bi-temporal databases. Master’s thesis, UMIST Department of Computation,
UK, 2003.

[2] A. Artale. Reasoning on temporal conceptual schemas with dynamicconstraints. In11th Int. Sympo-
sium on Temporal Representation and Reasoning (TIME04). IEEE Computer Society, 2004. Also in
Proc. of the 2004 Int. Workshop on Description Logics (DL’04).

[3] A. Artale and E. Franconi. Temporal ER modeling with description logics. InProc. of the Int. Conf.
on Conceptual Modeling (ER’99). Springer-Verlag, November 1999.

[4] A. Artale, E. Franconi, and F. Mandreoli. Description logics for modelling dynamic information. In
Jan Chomicki, Ron van der Meyden, and Gunter Saake, editors,Logics for Emerging Applications of
Databases. Lecture Notes in Computer Science, Springer-Verlag, 2003.

[5] A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal description logic for reasoning
about conceptual schemas and queries. In S. Flesca, S. Greco, N.Leone, and G. Ianni, editors,
Proceedings of the 8th Joint European Conference on Logics in ArtificialIntelligence (JELIA-02),
volume 2424 ofLNAI, pages 98–110. Springer, 2002.

[6] Alessandro Artale, Carsten Lutz, and David Toman. A description logic of change. InInt. Joint
Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, Jan 2007.

[7] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2002.

[8] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1–2):70–118, 2005.

[9] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability ofquery containment under
constraints. InProc. of the 17th ACM SIGACT SIGMOD SIGART Sym. on Principles of Database
Systems (PODS’98), pages 149–158, 1998.

[10] D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data modeling. In
J. Chomicki and G. Saake, editors,Logics for Databases and Information Systems. Kluwer, 1998.

[11] D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-basedrepresentation formalisms.J. of
Artificial Intelligence Research, 11:199–240, 1999.

[12] J. Chomicki and D. Toman. Temporal logic in information systems.In J. Chomicki and G. Saake,
editors,Logics for Databases and Information Systems, chapter 1. Kluwer, 1998.

[13] M. A. Pacheco e Silva. Dynamic integrity constraints definition and enforcement in databases: A
classification framework. InProc. of the IFIP TC11 Working Group 11.5, First Working Conf. on
Integrity and Internal Control in Information Systems, pages 65–87, London, UK, 1997. Chapman &
Hall, Ltd.

[14] Ramez Elmasri, James A. Weeldreyer, and Alan R. Hevner. The category concept: An extension to
the entity-relationship model.Data & Knowledge Engeneering, 1(1):75–116, 1985.

[15] O. Etzion, A. Gal, and A. Segev. Extended update functionality in temporal databases. In O. Etzion,
S. Jajodia, and S. Sripada, editors,Temporal Databases - Research and Practice, Lecture Notes in
Computer Science, pages 56–95. Springer-Verlag, 1998.

[16] M. Finger and P. McBrien. Temporal conceptual-level databases. In D. Gabbay, M. Reynolds, and

A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems 35

M. Finger, editors,Temporal Logics – Mathematical Foundations and Computational Aspects, pages
409–435. Oxford University Press, 2000.

[17] D. Gabbay, A.Kurucz, F. Wolter, and M. Zakharyaschev.Many-dimensional modal logics: theory and
applications. Studies in Logic. Elsevier, 2003.

[18] Georg Gottlob, Michael Schrefl, and Brigitte Röck. Extending object-oriented systems with roles.
ACM Transaction on Information Systems, 14(3):268–296, 1996.

[19] H. Gregersen and J.S. Jensen. Conceptual modeling of time-varying information. Technical Report
TimeCenter TR-35, Aalborg University, Denmark, 1998.

[20] H. Gregersen and J.S. Jensen. Temporal Entity-Relationship models – a survey.IEEE Transactions
on Knowledge and Data Engineering, 11(3):464–497, 1999.

[21] R. Gupta and G. Hall. An abstraction mechanism for modeling generation. In Proc. of ICDE’92,
pages 650–658, 1992.

[22] G. Hall and R. Gupta. Modeling transition. InProc. of ICDE’91, pages 540–549, 1991.
[23] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order temporal logics.

Annals of Pure and Applied Logic, 106:85–134, 2000.
[24] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making

of a web ontology language.Journal of Web Semantics, 1(1):7–26, 2003.
[25] C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes, and S. Jajodiaet al. The Consensus Glossary of

Temporal Database Concepts. In O. Etzion, S. Jajodia, and S. Sripada, editors,Temporal Databases -
Research and Practice, pages 367–405. Springer-Verlag, 1998.

[26] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE Transactions on Knowledge and
Data Engineering, 111(1):36–44, 1999.

[27] C. S. Jensen, M. Soo, and R. T. Snodgrass. Unifying temporaldata models via a conceptual model.
Information Systems, 9(7):513–547, 1994.

[28] Yahiko Kambayashi and Zhiyong Peng. Object deputy model andits applications. InProc. of the 4th
Int. Conf. on Database Systems for Advanced Applications (DASFAA), pages 1–15. World Scientific
Press, 1995.

[29] Qing Li and Guozhu Dong. A framework for object migration in object-oriented databases.Data &
Knowledge Engeneering, 13(3):221–242, 1994.

[30] Qing Li and Frederick H. Lochovsky. Adome: An advanced object modeling environment.IEEE
Transactions on Knowledge and Data Engineering, 10(2):255–276, 1998.

[31] P. McBrien, A.H. Seltveit, and B. Wangler. An Entity-Relationship model extended to describe his-
torical information. InProc. of CISMOD’92, pages 244–260, Bangalore, India, 1992.

[32] Alberto O. Mendelzon, Tova Milo, and Emmanuel Waller. Object migration. InProc. of the 13th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS94), pages
232–242, New York, NY, USA, 1994. ACM Press.

[33] Erik Odberg. Category classes: flexible classification and evolutionin object-oriented databases.
In Proc. of the 6th Int. Conf. on Advanced information systems engineering(CAiSE94), LNCS 881,
pages 406–420, Secaucus, NJ, USA, 1994. Springer-Verlag New York, Inc.

[34] Mike P. Papazoglou, Bernd J. Kramer, and Athman Bouguettaya.On the representation of objects
with polymorphic shape and behaviour. InInt. Conf. on Conceptual Modeling / the Entity Relationship
Approach, LNCS 881, pages 223–240, 1994.

[35] C. Parent, S. Spaccapietra, and E. Zimanyi. The MurMur project:Modeling and querying multi-
representation spatio-temporal databases.Information Systems, 31(8):733–769, 2006.

[36] B. Pernici. Objects with roles. InProc. of the ACM SIGOIS and IEEE CS TC-OA conference on Office
information systems, pages 205–215, New York, NY, USA, 1990. ACM Press.

[37] S. Spaccapietra, C. Parent, and E. Zimanyi. Modeling time from a conceptual perspective. InInt.
Conf. on Information and Knowledge Management (CIKM98), 1998.

[38] S. Spaccapietra, C. Parent, and E. Zimanyi.Conceptual Modeling for Traditional and Spatio-
Temporal Applications—The MADS Approach. Springer, 2006.

36 A. Artale, C. Parent, S. Spaccapietra / Evolving Objects in Temporal Information Systems

[39] Jianwen Su. Dynamic constraints and object migration.Theoretical Computer Science, 184(1-2):195–
236, 1997.

[40] C. Theodoulidis, P. Loucopoulos, and B. Wangler. A conceptualmodelling formalism for temporal
database applications.Information Systems, 16(3):401–416, 1991.

[41] Wikipedia. Wikipedia, the free encyclopedia. Temporal Databases. see
http://en.wikipedia.org/wiki/Temporal_database.

