| NF SY S
RESEARCH
R EPORT

Institut fur Informationssysteme
AG Wissensbasierte Systeme
Technische Universitat Wien
FavoritenstraBe 9-11

A-1040 Wien, Austria

Tel: +43-1-58801-18405
Fax: +43-1-58801-18493
sek@kr.tuwien.ac.at
www.kr.tuwien.ac.at

T

: " i iy

FF L IICITICE
I ANrrarcoraRnce LER
(p T CRPrRECERE £]

INSTITUT FUR INFORMATIONSSYSTEME

ARBEITSGRUPPEWISSENSBASIERTESYSTEME

UPDATING ACTION DOMAIN DESCRIPTIONS

Thomas Eiter Esra Erdem Michael Fink anJSenko

INFSYS RESEARCHREPORT1843-13-08
NOVEMBER 2008

TU

WIEN

INFSYS RESEARCHREPORT
INFSYS RESEARCHREPORT1843-13-08, NbvEMBER 2008

COMPARING ACTION DESCRIPTIONS BASED ON
SEMANTIC PREFERENCES

(PRELIMINARY VERSION, JuLy 1, 2006)

Thomas Eiterand Esra Erdefand Michael Fink and &n Senkd

Abstract. Incorporating new information into a knowledge base is apdrtant problem which has
been widely considered. In this paper, we study the probfemformal framework for reasoning
about action and change, in which action domains are destiiban action language that has a
transition-based semantics. Going beyond previous warks;onsider (i) a richer action language
that allows for non-deterministic, and concurrent actiaswell as the representation of indirect
effects and dependencies between fluents, (ii) more geopdiltes than elementary statements,
and, most importantly, (iii) meta-level knowledge, suchoservations, assertions, or general do-
main properties that remain invariant under change, esptes1 an action query language. For
this setting, we formalize a notion of update of an action diontlescription, relative to a generic
preference relation on action domain descriptions thacseimost preferred solutions. We study
semantic and computational aspects of this notion, wherestablish basic properties of updates
and a decomposition result that gives rise to a divide andwanapproach to computing solutions
under certain conditions. Furthermore, we study the coatjmrtal complexity of decision prob-
lems around computing solutions, both for the genericregtéind for two particular preference
relations, viz. set-inclusion and weight-based prefezei¢hile deciding the existence of solutions
and recognizing solutions are PSPACE-complete problengeineral, the problems fall back into
the polynomial hierarchy under restrictions on the metaileonditions. We finally discuss methods
to compute solutions and approximate solutions (whichedsrd preference). Our results provide
a semantic and computational basis for developing systbeatsricorporate new information into
action descriptions in an action language, in the presehadditional conditions at the meta-level.

Lnstitute of Information Systems, Knowledge-Based Syst&@roup, TU Vienna, Favoritenstrale 9-11, A-1040
Vienna, Austria. Email: (eitefmichael| jan)@kr.tuwien.ac.at

2Faculty of Engineering and Natural Sciences, Sabanci Usitye Orhanli, Tuzla Istanbul 34956, Turkey.
Email: esraerdem@sabanciuniv.edu

Acknowledgements This work was supported by the Austrian Science Fund (FWa)tgP16536-N04 and
the European Commission IST programme grants FET-20008WASP and IST-2001-33123 CologNeT.

This paper is a revised and significantly extended versi@ameliminary paper that appeared Broc. 19th
International Joint Conference on Atrtificial IntelligenfdCAI 2005) pp. 418—-423.

Copyright(© 2008 by the authors

INFSYS RR 1843-13-08 I

Contents
1 Introduction 1
2 Preliminaries 4
2.1 Transition Diagrams e 4
2.2 Action Description Languages o i e e e e e e e e e 4
2.3 Action QUENES e 5
231 EXamples e e
3 Problem Description 8
3.1 Examples 9
4 Properties of Updates 11
4.1 BasicUpdate Properties. e e 11
4.2 Disjoint Factorization e e 13
5 Complexity Analysis 17
5.1 GenericUpperBounds e 18
5.2 QueryEntailment e e i 19
5.3 Solution EXistence e 21
5.4 SolutionChecking e e e 22
6 Computing Solutions 23
6.1 General Algorithms 23
6.2 Near-Solutions 24
7 Discussion 28
7.1 RelatedWork e 28
7.2 Natureof Change e e 31
7.3 Repair of Action Descriptions e e 31
8 Conclusion 32
A Proofs for Section 5 33

Proofs for Section 6 40

INFSYS RR 1843-13-08 1

1 Introduction

As we live in a world where knowledge and information is in flux, updatingMedge bases is an important
issue that has been widely studied in the area of knowledge represemtaticaasoning, (see e.g. [61, 11,
18, 56] and references therein). However, the problem is far fraialtand many different methods have
been proposed to incorporate new information, be it affirmative or pitdl@pwhich are based on different
formal and philosophical underpinnings, cf. [61, 36, 52]. It appdiaat there is no general purpose method
that would work well in all settings, which is partly due to the fact that an tgodeethod is also dependent
to some extent on the application domain.

In particular, in reasoning about actions and change, the dynamicity ofdfé is a part of the domain
theory, and requires special attention in update methods. For variotsaahps to formal action theories,
including the prominent situation calculus, event calculus, and action Ilgagufat emerged from the
research on non-monotonic reasoning, the problem of change haw/lukdy studied and different methods
have been proposed (see [58] for background and refereame§ection 7.1 for a more detailed discussion).

To give a simple example, consider an agent having the following knowlddge, about a TV with
remote control:

(TV1) If the power is off, pushing the power button on the TV turns the groon.
(TV2) If the power is on, pushing the power button on the TV turns the pofie
(TV3) The TV is on whenever the power is on.

(TV4) The TV is off whenever the power is off.

Now assume that the agent does not know how a remote control workssfegloes not know the effect of
pushing the power button on the remote control). Suppose that later slmsab&following information,
Kgrc, about remote controls:

(RC1) If the power is on and the TV is off, pushing the power button ondh®te control turns the TV on.

(RC2) If the TV is on, pushing the power button on the remote control tue3 thoff.

The task is now to incorporate this new knowledge into the current knoeledgei'y . In this partic-
ular case, this seems unproblematic, as upon simply addingto Ky the resulting stock of knowledge
is consistent; in general, however, it might be inconsistent, and a majorisssoe to overcome this incon-
sistency.

In order to formally study this problem, we describe domains of actions, liké'théomain above, in
a fragment of the action languagdg27], by “causal laws.” For instance, the direct effect of the actibn o
pushing the power button on the TV, stated in (TV1) is described by thalkaus

causedPowerON after PushPBry A = PowerON, ()

which expresses that this action, representedbsh PB 1y, causes the value of the flueRbwerON to
change from false to true; the indirect effect of this action that is state@W8)(is described by the causal
law

causedTvON if PowerON, (2)

2 INFSYS RR 1843-13-08

{PushPBRc} {PuShPBTv} {PushPBRc}

{ @ {PushPBry, PushPBrc) 4
/—\

PowerON —PowerON
TvON -TvON

{PushPBTV, PushPBRc}
{PUShPBTv}

Figure 1: A transition diagram

which expresses that if the flueRowerON is caused to be true, then the fluértON is caused to be
true as well. Then, if we add the causal laws fog~ to those forK 7y, the resulting action description is
consistent according to the semantics of action lang@ag&he meaning of an action description can be
represented by a “transition diagram”—a directed graph whose nodespond to states and whose edges
correspond to action occurrences; Figure 1 below shows an example.)

As far as action languages, as in [26], are concerned, the updddiempravas studied to a remarkably
little extent. For the basic action languagle(see [26]), which is far less expressive th@nthe update
problem has been considered, e.g., in [41, 44]. Both works focuseghdates that consist of elementary
statements (i.e., essentially facts) over time, and presented specific updatdsnibusing on the contents
of the knowledge base.

In the present paper, we address the update problem from a monalgeeespective. For instance,
action domains are described in a much richer language, and updatep@asented in terms of a set of
arbitrary causal laws. Furthermore, meta-level knowledge about ttieydar domain, such as assertions
obtained from observations (as in [41, 44], simply facts, but possibty @&lsnore complex form such as
transitions), or general properties of the domain (integrity constraints)rtiggnt not be expressible in the
formal action language per se, could be taken into account for updagmgivibn action domain description.

For example, for the effective use of the TV system in the above scenledollowing condition is
desired to hold:

(C) Pushing the power button on the remote control is always possible.

If Krc is simply added td<yy, then condition (C) is not satisfied: when the power and the TV are on,
pushing the power button on the remote control is not possible, since @&@2{JTV3) contradict. The
guestion is then how the agent can updatg, by incorporatingK r¢ relative to (C). Furthermore, as
condition (C) is not expressible in the action languégéhe question is also how to formally represent (C)
and similar meaningful conditions.

Motivated by these questions, we consider a generic framework forpgaating new causal laws into
an existing action description, that takes meta-level knowledge into acé@uninain contributions can be
summarized as follows:

(1) We introduce a formal notion of action update probleprwhich is, given action descriptions and
I,and a seC of conditions, to determine a (possibly new) action descripfddmhich incorporateg into
D. While D and! are in (a canonical subset @f) we describe conditions like (C) by “queries” in aation
guery languaggesimilar to the one in [26]. For instance, the condition (C) above can beideddn this

INFSYS RR 1843-13-08 3

language by the query
ALWAYS executable { PushPBgr¢ }. 3)

In a more fine-grained treatmenk) is split into an unmodifiable part,,, and a modifiable partD,,,
while C' is split into obligatory conditions’,,, (which must hold under all circumstances) and preference
conditions,C), (which ideally should hold, but might be violated).

A solution to an action update problem is then defined in terms of an actiontesti)’ that consists of

and statements from» such thaiC, is satisfied; as, in general, different candidafBsare possible, we use

a (strict)preference relatior - over action descriptiofsn order to discriminate amongst alternatives and
to single out a most preferable candidateas the result. Here the subscripindicates that the preference
relation is possibly dependent on the éétof conditions. Such a preference relation can be defined in
different ways, in terms of syntactic conditions (e.g., the set of causal ilm&n action description), or
semantic conditions (e.g., number of conditions fulfilled by an action descrjption

(2) We investigate semantic properties of action updates, and establish asim@foperties regarding
solution preference, and special forms of updates, which serve tasfaeghe suitability of the notions
proposed. We furthermore determine conditions under which computinguiosoto an action update
problem can be structurally decomposed, such that a divide-and:eoagproach becomes feasible. In
particular, this is possible if the action description and the conditions canlibénsp disjoint parts that
interfere in a benign way, and if the preference ordering can befgithcdecomposed along this split.

(3) We study the computational complexity of the action update problem, wreeoemsider the generic
setting (making some assumptions about the cost of deciding whether thidawd are satisfied by an
action descriptionD, denotedD | C, and whethelD - D’ holds givenD and D’), as well as some
natural instances. Among the latter are those where the preferencerretatics ordinary set-inclusion
and where it is weight-based relative to satisfied conditions. Under thenpsien that testing) = C
andD C¢ D’ is feasible in polynomial space, deciding the existence of some solution tdian apdate
problem turns out to bBSPACE-complete in general, and also verifying a given solution candidate has this
complexity. However, the complexity of both problems falls back into the polynamgaérchy, if deciding
D = CandD ¢ D' is located there, and is located at most one level higher up there; we hecall
that deciding the consistency of an action descriptio@ is intractable in general (andP-complete for
the canonical fragment of our concern). Given that thefest C andD ¢ D’ is polynomial, deciding
solution existence iNP-complete and thus not harder than the consistency problem, and renggaiz
given solution is only mildly harder.

(4) Finally, we discuss methods for computing solutions and “near-solutishi&h approximate them,
by disregarding solution preference. As for solutions, we focus timskision and one particular weight-
based comparison, as preference relatimps which use an oracle for near-solutions. For near-solutions,
we present a method that reduces the problem into reasoning over andesription that is constructed
from the problem input; here, answering action queries can be exploitedttgiven candidates.

Our results go significantly beyond previous results in the literature (set®8€&.1), and provide a
semantic and computational basis for developing systems that incorpovatefoamation into action de-
scriptions in an action language, in the presence of further conditiongahnabe formally expressed at

That is,C¢ is irreflexive and transitive.

4 INFSYS RR 1843-13-08

the meta-level, and thus cleanly be separated from the action descriptian @tjéct level. Our generic
framework can be instantiated to different settings, which reflect diffentuitions or criteria for solution
preference. It thus provides a flexible tool for modeling action update.a Ayproduct of our research,
we also obtain decomposition results of action descriptions that emerge emiakcases of action update
instances, which are interesting in their own right.

The rest of this paper is structured as follows. In the next section, wéder preliminaries about
transition diagrams, action languages, and actions queries as needked fooblem setting. After that,
we define in Section 3 the update problem in a generic framework and bnéfhduce a syntactic and
a semantic instance of it. In Section 4, we study some semantic propertiesatésipacluding possible
decompositions. After that, we turn to computational issues. In Section Havaaterize the computational
complexity of problems around updates, and in Section 6 we provide algorftmeemputing updates.
After a discussion of related work and further aspects of the problenedtid® 7, we conclude with a
summary and issues for further research.

2 Preliminaries

2.1 Transition Diagrams

We start with gpropositional) action signaturthat consists of a s@t of fluent names, and a sAtof action
names. Aractionis a truth-valued function oA, denoted by the set of action names that are mapped to
A (propositional) transition diagranof an action signaturé€ = (F, A) consists of a sef of states a
functionV : F x S — {f,t}, and a subseR C S x 24 x S of transitions We say thal/ (P, s) is thevalue
of P in s. The states’ such that(s, A, s’) € R are the possibleesults of the executioof the actionA in
the states. We say thatd is executablén s, if at least one such statéexists.

A transition diagram can be thought of as a labeled directed graph. Etaigs is represented by a
vertex labeled with the functio® — V' (P, s) from fluent names to truth values. Every trigle A, s’) € R
is represented by an edge leading freno s’ and labeledd. An example of a transition diagram is shown
in Figure 1.

2.2 Action Description Languages

We consider the prime subset of the action description lang@idgé] that consists of two kinds of expres-
sions (calleccausal law$: static lawsof the form

causedl if G, (4)

wherel is a literal (an expression of the forfor =P, whereP is a fluent name) an@' is a propositional
combination of fluent names, axdgnamic lawsf the form

causedL if G after H, (5)

whereL andG are as above, anll is a propositional combination of fluent names and action names. In (4)
and (5) the parif G can be dropped itz is True.

An action descriptionis a set of causal laws. For instance, the knowledge base about astarnsy,
of the agent in the previous section, can be described by causal lawgine 2. An expression of the form

inertial Lq,..., L

INFSYS RR 1843-13-08 5

causedPowerON after PushPBpy A = PowerON
caused—-PowerON after PushPBry N PowerON
causedTvON if PowerON

caused—TvON if =PowerON

inertial PowerON ,—~PowerON, TvON,—~TvON

Figure 2: An action description fakpy

causedTvON after PushBrc N PowerON A —=TvON
caused—TvON after PushBrc N TvON

Figure 3: Causal laws faK p&

stands for the causal laws
causedL; if L; after L; (1<i<k)

describing that the value of the fluebf stays the same unless changed by an action.

The meaning of an action description can be represented by a transitioardiabetD be an action
description with a signaturé = (F, A). Then the transition diagrag$, V, R) describedby D, denoted by
T (D), is defined as follows:

(i) Sisthe set of all interpretationsof F such that, for every static law (4) iR, s satisfies& D L,
(i) V(P,s)=s(P),

(i) Risthe setof all triplegs, A, s’) such that’ is the only interpretation df which satisfies the heads
of all

e static laws (4) inD for which s’ satisfies&, and
¢ dynamic laws (5) inD for which s’ satisfiess ands U A satisfiesH .

The laws included iffiii) above are those that ampplicableto the transition frons to s’ caused by executing
A. For instance, the transition diagram described by the action descriptidffo in Figure 2 is presented
in Figure 1. We say that an action descriptiordmsistenif it can be represented by a transition diagram
with nonempty state set.

In the following we suppose that an action descriptionconsists of two parts:D,, (unmodifiable
causal laws) and,,, (modifiable causal laws). Therefore, we sometimes denote an actionptiescP
asDy U Dy,.

2.3 Action Queries

To talk about observations of the world, or assertions about the effette execution of actions, we use an
action query language like in [26], consisting of queries describedlasvi[16].
A basic queryis either(a) a static queryof the form

holds F, (6)

6 INFSYS RR 1843-13-08

whereF' is a fluent formula, ofb) adynamic queryf the form
necessarily@ after Ay;...; A,, 7

whereQ is a basic query and each is an action; ofc) any propositional combination of basic queries. An
existential querys an expression of the form

SOMETIMES Q, (8)
where(is a basic query; aniversal querys of the form
ALWAYS Q, 9)

where(is a basic query. Ajueryq is a propositional combination of existential queries and universal
gueries.

As for the semantics, 1&f = (S, V, R) be a transition diagram, with a s&tof states, a value function
V' mapping, at each state every fluentP to a truth value, and a sét of transitions. Ahistory of T' of
lengthn is a sequence

So,Al,Sl,...,Sn_l,An,Sn (10)

where each(s;, A; 11, si+1) (0 < i < n)isin R. We say that a state € S satisfiesa basic query)’ of
form (6) (resp. (7)) relative t@" (denotedl’, s = @), if the interpretationP — V' (P, s) satisfiesF’ (resp.
if, for every historys = sg, A1, 81, ..., Sn—1, An, s, Of T Of lengthn, basic queng is satisfied at state,).
For other forms of basic queri€g, satisfactionis defined by the truth tables of propositional logiclis
described by an action descriptidh then the satisfaction relation betweeand a basic querg) can be
denoted byD, s = @ as well.

Note that, for every stateand for every fluent formul’,
D,s =holdsF < D,s = —holds—F.
For every state, every fluent formuld’, and every action sequengg, ..., A, (n > 1), if
D, s = necessarily(holds F) after A;;...; A,

then
D, s = —necessarily(—holds F') after Ay;...; A,.

i

We say thatD entailsa queryg (denotedD = g) if one of the following holds:
e ¢is an existential query (8) anfl, s =) for some state € S;

e gis auniversal query (9) anB, s = @ for every states € S

g =—q andD - ¢;
e g=q ANgandD = ¢; andD = ¢o; OF

e g=qVgandD = q orD = g.

INFSYS RR 1843-13-08 7

For every basic querg,
D = SOMETIMES Q@ iff D = -ALWAYS —Q.

For a setC' of queries, we say thdD entailsC' (denotedD|=C) if D entailsevery query inC. Consider,
e.g., the action description presented in Figure 2. It does not entail tof/qgeries containing

ALWAYS necessarily (holds - TvON) after { PushPBrc }
because this query is not satisfied at the stdteON, PowerON }; but, it entails the queries:

ALWAYS holds PowerON = TvON, (11)

ALWAYS holds PowerON A TvON D
—necessarily(holds TvON) after { PushPBry }.

(12)
In the rest of the paper, an expression of the form

possiblyQ after Ay;...; Ay,
where(is a basic query and each is an action, stands for the dynamic query

—necessarily-Q after A;;...; Ay;

an expression of the form
evolvesFy; A1; Fi;...; Fh_1; Ay Fy, (13)

where eaclt; is a fluent formula, and each; is an action, stands for
holds Fy A possibly (holds F; A possibly (holds F; A ...) after As) after Ay;

and
executableAy;...; A,

where each; is an action, stands for
possibly True after Ay;...; A,.

We sometimes dropolds from static queries appearing in dynamic queries.

2.3.1 Examples

To get a better intuition about the capability of the action query languageiveesgme examples of prop-
erties that can be expressed in it.

e Existence of certain states, transitions, and historieer instance, we can express the existence of
states where a formul&l holds by means of the query

SOMETIMES holds F.

8 INFSYS RR 1843-13-08

Similarly, we can express the existence of a transition from some state wi@mawda F' holds to
another state where a formufd holds, by the execution of an actich

SOMETIMES holds F' A possibly F’ after A.

In general, the existence of a history (10) such that, for eqabf the history, the interpretation
P — V (P, s;) satisfies some formulB; is expressed by the query:

SOMETIMES evolves Fy; A1; Fi; ... F_1; Ay By (14)

For instance, the query
SOMETIMES evolves PowerON; { PushPBrvy };

—PowerON; { PushPBrvy }; PowerON . (15)
describes the presence of the following history in Fig. 1:
{PowerON, TvON },{ PushPBrvy }, (16)

{=PowerON,—-TvON },{ PushPBry },{ PowerON, TvON }.
¢ (Non-)executability of an actiori:ike in [14], executability of an action sequende, ..., A, (n > 1)
at every state can be described by
ALWAYS executable Ay;...; A,.

That no action is possible at a state where fornftllaolds is expressed by

SOMETIMES holds F A /\A62A necessarilyFalse after A.

e Mandatory and possible effects of actiohske in [14], mandatory effects of a sequende, ..., A,
(n > 1) of actions in a given context are described by

ALWAYS holds G D necessarilyF after Aq;...; Ay;
and possible effects of a sequence of actions in a context by
ALWAYS holds G D possibly F" after Ay;...; A,.

In these queries;’ describes the effects aiddthe context.

3 Problem Description

In this section, we provide a formal description of the update problem, ardlitdon, as well as a weaker
form of solution, called near-solution.

Informally, we define arAction Description Update (ADUproblem by an action descriptioR =
D, U D,,, asetl of causal laws, a s&t' = C, U C), of queries, and a preference relatioa: over action
descriptions. Herd,, and D,,, are the unmaodifiable (protected) and the modifiable paf ofespectively,
and/ is the update that has to be incorporated. The queri€s are “hard (obligatory) constraints” that have
to be satisfied in an acceptable action description, while the quer@sane “soft (preference) constraints”
that might be accounted for by the preference relatien In the latter,D = D’ expresses thdD is less
preferable compared tb’.

INFSYS RR 1843-13-08 9

Definition 1 (Action Description Update) Given an action descriptio®w = D, U D,,, a setl of causal
laws, a setC’ = C, U C, of queries, and a preference relation- over action descriptions, all over the
same signaturé, an action descriptiorD’ accomplishes an (action description) updait® by I relative
toC, if

(i) D’is consistent,
(i) byuICD CDUI,
(i) D' E C,,

(iv) there is no consistent action descripti@’ such thatD, Ul € D” € DU I, D" = C,, and
D'c¢e D"

Such aD’ is called asolutionto the ADU problem(D, I,C,C¢). If an action descriptionD’ satisfies
(i)—(iii), then we callD’ a near-solutiorto the ADU problem{D, I, C, C¢).

Condition(i) expresses that an action description update, modeling a dynamic domdirasstie TV
system in Section 1, must have a state. According to Condfiipmew knowledge about the world and
the invariable part of the existing action description are kept, and the ldausain the variable part are
considered to be either “correct” or “wrong”, and in the latter case simiglyoded.

Condition (iv) imposes semantical constrairfison D’, which comprise further knowledge about the
action domain gained, e.g., from experience. It is important to notetleain be modified later for another
action description update (as will be discussed below).

Finally, Condition(iv) picks the most preferred action description among the ones for whichi-Cond
tions (i)—iii) are satisfied.

In an ADU problem, the preference relation can be described in variays.wFor instance, it can be
defined in terms of syntactic conditions, like simple set inclusion. If we defingo be C, then an action
descriptionD is less preferable than an action descriptidohif D c D’. Alternatively, the preference
relationC¢ can be defined in terms of semantic conditions. For instance, once a weighigsed to each
action description with respect to some semantic measure (e.g., the numbariesdnC), entailed by
the description) by a functioweight, we can take_c to be an operatokeight COmparing the weights
of the action descriptions; then an action descriptidtis less preferable than an action descriptiohif
D <weight D'

In the literature, two kinds of changes that incorporate new information ikisosvledge base have
been identified, viz. revision (which adds more precise knowledge @abeutomain) and update (which is
a change of the world per se) [60], which should be governed byrdiftesets of postulates in axiomatic ap-
proaches like the AGM theory [1] and the KM theory [36]. Our notion ofldBas more of a revision flavor,
but we do not govern it with AGM or KM postulates, as the formalism is non-gtamc; see Section 7.2
for more discussion. However, the conditiafian be adjusted if the nature of the charige known. In
case of a revision(; should reasonably contain all conditions corresponding to observatiads about the
domain, while other conditions may be kept or dropped; on the other hahd; & change of the world per
se, then conditions corresponding to observations might be dropped.

3.1 Examples

The following is an example of an ADU problem with the syntax-based prater relation above.

10 INFSYS RR 1843-13-08

{PUShPBRc}

{PuShPBTv}
it @ {PushPBry, PushPBgrc)} 4
/\

PowerON —PowerON
TvON -TvON

{PushPBTV, PushPBRc}
{PUShPBTv}

Figure 4: Transition diagram described byJ I of Ex. 1.

Example 1 Let D be the action description fak,y in Figure 2, with D,,, containing the third and the
fourth causal laws (i.e,, = {causedTvON if PowerON, caused—TvON if =PowerON }, and let]
be the set of the causal laws fhrz in Figure 3. LetC' = C, contain the besides the query (3) also the
queries (12) and

ALWAYS executable { PushPBrvy }, a7)

and take (strict) set-inclusiort{ as the preference relation-. The transition diagram described ByUT is
shown in Figure 4. Here we can see that, at the state wherefsatbrON and TvON are mapped te, the
action PushPBg is not executable. Therefor®, U I is not a solution to the ADU problerfD, I, C, C¢).
In fact, a solution is obtained by dropping the static law (2) frbrm) I. O

For an instance of a semantic definitionof, consider the following setting based on weights that are
assigned to queries afi (i.e., weighted queriefn [16]). We define the weight of an action descriptibn
relative to a set of queries, and a weight functigh: C — R mapping each query i to a real number

by
weighty (D) = ZCeCD»:Cf(c).

Intuitively, the weight of an action description defined relative to the weightpueries encodes to what
extent the se€’ of given preferable queries is satisfied. (Note thaan easily express a threshold function
as well.) With this definition, the more the highly preferred queries are satisfiednore preferred the
action description is.

Example 2 Reconsider our previous example whétgconsists of the query (12) with weight 1. Suppose
that the preference relatianc is defined in terms of a weight function on queries (iEG:<Weigh§1).
Then, the action descriptiod3’ = (D U I) \ {causedTvON if PowerON} andD” = D,, U I satisfyC,
and thus are near-solutions. HowevBr, does not satisfy’,,, which impliesweight,(D") = 0, whereas
weight,(D') =1, and henced” C¢ D'.

For further details on comparing action description by means of weightetiequend other semantic
preferences, we refer the reader to [16].

In the rest of the paper, we will study ADU problems at an abstract le\alirlg the preference relation
undefined. For some problems, we will provide more concrete results bntiaging the preference
relation: we will takeC ¢ asc (andC,, = 0, thusC = C,) for an instance of a syntax-based relation, and
we considerC¢ = <weight, @S @ representative of the semantic-based approaches.

INFSYS RR 1843-13-08 11

4 Properties of Updates

In this section, we study some basic properties of solutions to an ADU problenthis end, we first
introduce a subsumption relation between action descriptions, and thentishbsolutions to an ADU
problem fulfill some desired properties regarding special updategdethat the preference relatiaf
obeys some natural conditions. We then consider the structure of solatidmeear-solutions, and establish
a disjoint factorization result that allows for decomposing an ADU into smaédesp

4.1 Basic Update Properties

We define subsumption of causal laws by an action description as follows.

Definition 2 (Subsumption) Let D be an action description over a signatufe= (F, A). Then,

e a static law (4) over is subsumedby D, if for every states in 7°(D), the interpretation oF describ-
ing s satisfies? D L;

e a dynamic law (5) oveL is subsumedy D, if for every transition(s, A, s’) in T'(D), the following
holds: if the interpretation oF U A describings and A satisfiesH, then the interpretation oF
describings’ satisfies7 O L.

A setS of causal laws isubsumedby an action descriptio, if every law inS is subsumed bp.

Furthermore, we build on the properties of a preference relatigintroduced next.
In the following, for an action descriptio® and a set' of queries, let us denote lyp the set{c €
C|DEc}.

Definition 3 Given a set of querie§' over a signatureC = (F, A), a preference relatiom o over al is
called

e monotone with respect t@, if for any two action description® and D’ in £, Cp» C Cp implies
D 7 ¢ D', andstrongly monotone with respect &, if additionally Cp, € Cp impliesD’ C¢ D;

e monotone with respect td, if for any two action description® and D’ in £, D’ C D implies
D Z¢ D', andstrongly monotone with respect 14 if additionally D’ ¢ D impliesD’ C¢ D;

e non-minimizing with respect td, if for any action descriptiorD in £, D |= C impliesD [z~ D’ for
all D’ C D, andstrongly non-minimizing with respect 9, if additionally D = C impliesD’ ¢ D
forall D' C D.

We say that_ is monotoneif it is either monotone with respect t0 or monotone with respect t6
(or both).

Monotonicity is an intuitive potential requirement one might have on a prefereslation: monotonicity
with respect toC' encodes the semantically motivated preference of satisfying preferabteeg) as much
as possible, whereas monotonicity with respectf texpresses a more syntactic view of retaining as many
causal laws as possible. This is reflected in our representativegmeéerelations. Notice that is strongly
monotone with respect td (but not necessarily with respect), Whereas<weightq is monotone with
respect ta”' if, for instance, all weights are nonnegative (but not necessarily wihect ta’).

12 INFSYS RR 1843-13-08

Obviously, any monotone preference relation is also non-minimizing with ce&pé, and strong mono-
tonicity with respect taC implies thatC ¢ is also strongly non-minimizing with respect b Intuitively,
a non-minimizing preference relation with respectt@nsures that syntactically smaller (with respect to
subset inclusion) action descriptions cannot prevent an action désctipat satisfies all queries from being
a solution, while the respective strong property explicitly excludes synsdlgtemaller action descriptions
as solutions in this case (note that the additional condition implies the conditioonefmimimizing, and
could serve as a definition alone). This intuition motivates basic propertssuifons to an ADU problem
as follows.

Proposition 1 (Subsumption) Let (D, I,C,C¢) be an ADU problem, such that- is non-minimizing
with respect toZ, D is consistent and = C. If D subsumeg, thenD U [is a solution to(D, I, C, C¢).
Moreover ifC ¢ is strongly non-minimizing with respect 1 thenD U [is the unique solution.

Proof. LetD = D, U D,,, and letT'(D) = (S,V, R). SinceDUI = D, U I U D, trivially satisfies(ii) of
our definition of update accomplishment, it remains to sh@wD U I is consistent(iii) D U I = C,, and
(ivyD,uICD' CDUTandD’ = C,impliesDUI iZ¢ D'.

LetT(DUI) = (S, V', R'). In the following we prove thal (D U I) = T(D).
S’ = S: SinceD C DU I, we getS’ C S. FurthermoreD subsumed and, hence, every € S satisfies
G D L for all static laws of form (4) i/, i.e.,S C S’.
V' = V: Follows fromS” = S and our labeling convention for states.
R’ = R: Let (s, A, s') be acandidatefor a transition relationR, of an action description], if (a) s’
satisfies the heads of all static laws of form (4) inD, for which s’ satisfies, and(b) s’ satisfies the heads
L of all dynamic laws of form (5) inD, for which s’ satisfiesG ands U A satisfiesH. Furthermore, let
s’ be adetermined successof s w.r.t. A, if the set of heads of all laws applicable tg A, s’) uniquely
determineg’, i.e., it contains (at least) one fluent literal for every fluenFinThen,(s, A, s') € Riffitis a
candidate for? ands’ is a determined successor©ivith respect tad. SinceD C D U I, every candidate
(s, A,s") for R is a candidate foR. Moreover, thatD subsumed implies that every candidate, A, s)
for R is a candidate foR’ as well. As(s, A, s’) is neither inR nor in R/, if s’ is not a determined successor
of s with respect taA it follows that R’ = R.

Given thatD is consistent and thab = C, T'(D U I) = T(D) proves(i) and (iii). As for (iv),
D E CandT’ = T impliesD U I = C. SinceC¢ is non-minimizing with respect t@, it follows for
al D,ul C D' C DUl,thatDUI [Z¢ D', which proves(iv). Therefore,D U I is a solution to
(D, I,C,C¢). Moreover, ifC ¢ is strongly non-minimizing with respect #, thenD’ ¢ D U I holds for
all D, Ul C D'C DuUI. Thisimplies thatD U I is the unique solution teD, I, C, C¢) in this case. O

From this result, we obtain the following corollaries telling us that the solution t&RU is as we
would expect in some extremal cases, that correspond to cases thatomeidered for nonmonotonic logic
programming updates [4, 18].

Corollary 1 (Void Update) Let (D, 0, C,C¢) be an ADU problem. IfZ¢ is non-minimizing with respect
to £, D is consistent, and = C, thenD is a solution to(D, (), C, C¢). If C¢ is strongly non-minimizing
with respect taZ, thenD is the unique solution.

Corollary 2 (Idempotence) Let(D, D, C,C¢) be an ADU problem, such thatc is non-minimizing with
respect tol, D is consistent, and = C, thenD is the unique solution téD, D, C, C¢).

INFSYS RR 1843-13-08 13

Let us call a causal lavautological if it is subsumed by every action descriptiéh Informally, such
a causal law has no logical content, and updating with it should not lead/tchamge. In fact we have the
following property.

Corollary 3 (Addition of Tautologies) Let(D, I,C,) be an ADU problem, such that. is non-minimi-
zing with respect t&, D is consistent, and = C'. If I consists of tautological causal laws, thénu I is
a solution to(D, I, C,C¢). If C¢ is strongly non-minimizing with respect f thenD U I is the unique
solution.

Notice that a similar property fails for logic programming updates as in [4, 18].

Example 3 Consider an action descriptidn that has the following causal laws:

inertial LightON ,—LightON, (18)
causedLightON after SwitchLight A —LightON, (29)
caused—LightON after SwitchLight N\ LightON . (20)

Since D is consistent and- is strongly non-minimizing, we can state for any 6ebf queries, such that
D E C: D is the unique solution t6D, (), C, C) (void update), as well as t@, D, C, C) (idempotence),
and to(D, D', C, C) for any tautological action descriptidd’ (addition of tautologies).

Considering<weigh5 with nonnegative weights for any querye C instead ofC as a preference relation
(which is non-minimizing), we can still infer thd®’ is a solution, in general however, it need not be unique.
O

4.2 Disjoint Factorization

We next consider a structural property of solutions and near-solutidrish can be exploited for a syntacti-
cal decomposition of an ADU problem, in a divide-and-conquer manremrase of the involved semantics
of transitions and causation, in general some prerequisites are needed.

Definition 4 (NOP) We say that an action descriptioR has NOR if T'(D) has either (i) a transition
(s,0, s) for some stats, or (ii) for every states some transitior(s, (), s’).

Notice that NOP is a very natural property that often applies, in particolatirhe-drivendomains,
where passage of time caugesi, s) by inertia, usually for all states

The following lemma is the key for our disjoint factorization result. For any actignatureC = (F, A),
we denote byC p the part of it which appears in any action description

Lemmal LetT(D?) = (5% V¢ R?) for action descriptionsD?, i = 0,1, such thatZ o N L = (. Let
T(D® U DY) = (S, V, R). Then the following hold:

(i) S=5°xS;

(i) If RO+ @ andR! # 0 then, for(s], A°, %) € RV and(s}, A, s}) € RY, (sJush, APU AL sQust) e
R;

(iii) for (s, A,s") € R, (sN Lpo, AN Lpo,s' N Lpo) € ROand(sN L1, ANLpi,s' N Lp1) € R

14 INFSYS RR 1843-13-08

Proof. (i) is trivial. We prove(ii) and(iii) as follows.
(i) Suppose thak® # () andR! # . Take any(s), A%, s9) € R® and (s}, A', s1) € R'. We show that
(s§usp, AYU AL sY U st) € R. Suppose this is not the case. Then one of the following two cases holds:

(1) For some dynamic law of the form (5) inD® U D*, s U s{ U A° U A! satisfiesH, ands! U s} does
not satisfyG A L. W.l.o.g., suppose thatis in D°. Then, sincelpo N Lp1 = 0, s§ U A° satisfiesH and
s{ does not satisfyz A L. This implies thats, A°, s9) ¢ R", which is a contradiction.

(2) sy U si is another state (different fros{ U s1) that satisfies the heads of all static laws (4pitu D*
for which s§ U s} satisfiesG, and of every dynamic law (5) i® U D*, such that satisfaction off by
59U sy U A% U Al implies thats{ U s} satisfiesG. Then, (since each causal law isiif or D! but not in
both, due tol o N L1 = () it follows that, s§ satisfies the heads of all static laws (4)I¥ for which
s satisfies7, and of every dynamic law (5) i®°, such that satisfaction dff by s U A° implies thats!
satisfiesG. This implies that(s9, A°, sY) ¢ R;. (Symmetrically, the claim holds fab!.) This is again a
contradiction.

(i) Take any(s, A,s’) € R. W.L.o.g., suppose thds N Lo, AN Lpo, s’ N Lpo) & RY. Then one of the
following two cases holds:

(1) For some dynamic law of the form (5) inD?, s N L U A N Lo satisfiesH, ands’ N £ o does
not satisfyG A L. SinceLpo N Ly = (), s U A satisfiesH ands’ does not satisfyz A L. This implies
(s, A, s') ¢ R, acontradiction.

(2) Y is another state that satisfies the heads of all static la® ifor which s N £ 0 satisfiess, and
of every dynamic law (5) inD; such that satisfaction d by s N L0 U A N Lpo implies thats’ N £ po
satisfiesG. Considers” = sy U s’ N Lp1. Due to(i) above,s” € S. Moreover, sinc&po N Lp1 = 0, the
following holds: s” satisfies the heads of all static laws (4)¥ U D' for which s satisfies, and of every
dynamic law (5) inD® U D*, such that satisfaction df by s U A implies thats’ satisfiesiy. This implies
that(s, A, s’) ¢ R, which is a contradiction. O

Intuitively, this lemma describes how the transition diagram of an action déseripgan be composed,
if the action description consists of two syntactically disjoint parts. It canbleusxploited to decompose a
given action description into disjoint parts as in our next result. For sdeltamposition to be faithful in the
sense that solutions to the respective ADU subproblems can be compagseld @ solution to the original
ADU problem, care has to be taken with respect to two aspects: First, an setgif/transitions shall not
compromise the approach, and thus has to be avoided, in the presegoawiicqueries (cf. Lemma(li)).
This can be guaranteed by the NOP property, which will in fact be suitiéte composing near-solutions.
Second, for composing solutions the composed preference relatios toeasmply with the preferences of
the subproblems. Stated from the viewpoint of decomposition, the preferetation must be factorizable.

Towards a formal treatment of these ideas, we need further terminolow.caW(CO,Ll), where
L= (Fi A", i = 0,1, apartitioning of a signatureC = (F, A), if (F, F1) and(A°, A!) are partitioning
of F and A, respectively. We first define decompositions of action descriptions@amditions.

Definition 5 (AD/Condition Decomposition) SupposéL®, £!) is a partitioning of a signatur€ = (F, A),
and let X be either an action description or a set of conditions ogerThen a partitioning(X°, X!) of
X is called adecomposition ofX" with respect to £°, £1), if Ly: C £, fori = 0,1. Furthermore, X is
decomposable with respect 6, £1), if such a decomposition exists.

Based on this, we next define the notion of a near-decomposition of angkBtdem, which splits the
action description and the conditions in separate parts while disregardifeggmce.

INFSYS RR 1843-13-08 15

Definition 6 (Near-Decomposition) Let (D, I, C,C¢) be an ADU problem with signatuig, and let(D°,
DY, (1%, 1), and(C?, C') be decompositions dd, I, andC, respectively, with respect to a partitioning
(£°, £Y) of £. Then,((D, 1°,C%), (D!, I', C1)) is anear-decompositioof (D, I, C, C¢) with respect to
(£0, 2.

The following theorem now formally shows that the near-solutions of an Aidblem can be obtained
from those of a near-decomposition, provided that some ramifying conslitiold. We say that a query
occurspositively (resp. negatively in a setC' of queries, ifc occurs in the scope of an even (resp. odd)
number of negations in a query @

Theorem 1 (Disjointness) Given an ADU problem(D, I, C,C¢) with signatureZ, let ((D°,1° C?),
(DY, I',C")) be a near-decomposition with respect to a partitioni@y, £*) of £, and letC¢, be an
arbitrary preference ordering for action descriptions ov&r, i = 0, 1. Then the following holds:

(i) Let X' be a near-solution tgD?, I', C*, C) such thatX? has NOP if some dynamic query occurs
negatively inC'~%, fori = 0,1. ThenX® U X! is a near-solution td D, I, C, C¢).

(i) Let X be a near-solutiont¢D, I, C,C¢), and let(X°, X!) be any partitioning ofX with respect to
(£°, £1) such thatX? C D! and X’ has NOP if some dynamic query occurs positivelgin?, for
i = 0,1. Then, X" is a near-solution tq D?, I*, C*, C), fori = 0, 1.

Proof. LetT(X°uU X!) = (S,V,R) and letT(X?) = (S% V*, R"). We first show for any static query
that X U X1 s = cif c € CF, X', s' = ¢, ands N L = s'. Since for each fluent literdl in ¢, s = L
impliess = L, and sincec € L C L (i.e., c contains only fluent literals fronf?), the claim follows.
Conversely, for any static query it holds thatX?, s' |= cif ¢ € O, X° U X!, s = ¢, ands’ = s N L,
Again due to the fact that every fluent literlin ¢ is from £, we conclude that = L impliess’ = L,
which proves the claim. Therefore, we conclude for any static queryC.: C £’ that there exists a state
s € S such thatX® U X!, s |= ciff there exists a state’ € S? such thatX’, s’ = c¢. Moreover by the
structure ofS (cf. Lemma 1(i)), X° U X!, s = cfor all s € Siff X!, s' |= cforall s* € S. Hence, ifC
just contains static queries, th&ff U X! entailsC iff X° entailsC? and X' entailsC".

We next consider dynamic queriesthat are either of the formecessarily@ after Aq;...; A, or
—necessarilyQ after Aj;...; A, and show the following: (L)X° U X! s = cif ¢ € Cf, X', s' |= ¢,
sN L' = st, andX '~ has NOP ifc is negative, oK) contains a negative dynamic query; (2}, s’ |= c if
ceCL X'UX! sc st =snLiandX !~ has NOP ife is positive, orQ contains a positive dynamic
query. We proceed by induction on the nesting depti the query.

Base Casek{ = 0): (1) Letc be positive and towards a contradiction consider a stateS, such that
sN L? = st and there exists a histoly= s, A1, 51, ..., 8,1, An, $n, SUCh thak,, [~ Q. By Lemma 1(jii)
every transition of the historl = s, A1,s1NL%, ..., s, 1NL", Ay, s,NLYisin R'. Furthermores,, #~ Q
implies s, N L' ~ Q because: € Xt andQ contams onIy static queries. Contradiction.clis negative,
then there exists a histoly = s*, Ay, s,...,s! |, Ay, st such thatsZ ¥ Q. SinceX'~% has NOP, there
exists a sequence of+ 1 states, such that'~* = s'~*, 0, s1% ... s (), sl is a history ofX 17, By
Lemma 1(ji), h = s' U s ™4 Ay, ..., Ap, s, Usl tisa hlstory ofXVu X1, Furthermoresf1 ¥ Q implies
st Usl=" £ Q because € Xi andQ contains only static queries. Contradiction. This proves (1} fer0.

(2) Let c be positive and towards a contradiction consider a sfate 5%, such thats’ = s N £ and
there exists a history = s%, Ay, si,... st |, Ap, si, such thatsl b& Q. SinceX'~* has NOP, there
exists a sequence of+ 1 states, such thadt' % = s'=% 0, 57", ..., s. 7%, 0, s} 7" is a history ofX'~%. By
Lemma 1(ii), h = s' Us' ™% Ay, ..., Ay, si, Usl=tis a history ofX° U X! Furthermoresg ¥ Q implies

16 INFSYS RR 1843-13-08

st UsLt™ = Q because: € X and(@ contains only static queries. Contradiction.clis negative, then
there exists a history = s, Ay, s1,. .., Sn—1, An, sn, Such thas,, = Q. By Lemma 1(iii) , every transition
of the historyh! = s°, A1,s1 N LY, ... 5,1 N LY Ap, s, N LEIs in RE. Furthermores,, % Q implies
s, N LY Q because € X' and@ contains only static queries. Contradiction. This proves (2)fer 0.

Induction Step: Let (1) and (2) be true for dynamic queries of nestipthdst most: — 1 and consider
a dynamic query: of nesting depttk. Then,Q contains only static queries and dynamic queries of nesting
depth at most — 1. Thus, (1) and (2) also hold faef, as follows easily by the arguments of the base case,
replacing justifications by the fact tht contains only static queries with a respective justification €hat
contains only static queries and dynamic queries of nesting depth akmost

So far, we have shown that (1) and (2) hold for any basic query. 8gtitucture of5 (cf. Lemma 1(i)),
we conclude for any existential or universal querthat X° U X! = cif ¢ € C%, X' = ¢, andX!~* has
NOP if ¢ contains a negative dynamic query, as well as fiat= cif c € ¢, X° U X! = ¢, and X!~
has NOP ifc contains a positive dynamic query. Therefal, = C? and X' ~% has NOP ifC* contains a
negative dynamic query, farc {0, 1}, impliesX° U X! |= C. ConverselyX’ U X! = C andX'~¢ has
NOP if C* contains a positive dynamic query impli& = C?, fori € {0, 1}.

We now proceed with the proof of the theorem. Céxelet X be a near-solution teD?, I, C*,),
for i = 0,1. Suppose that, foi = 0,1, X’ has NOP if some dynamic query occurs negativelyir?,
We show thatX® U X! is a near-solution tdD, I,C,C¢). By Lemma 1(i), X° U X! is consistent,
sinceX? and X! are consistent. Furthermor®? U D! UT°u ' € X°uU X! € D U I follows from
DOUI’ C XY C DPul’andDLluUTl! C X C D'UI!, respectively. Eventualy¥® = C? and X! |= C1
implies X° U X! |= C. This proves tha’® U X! is a near-solution toD, I, C, C¢).

Case(ii): Let X be a near-solution t6D, I, C, C¢), and let(X°, X!) be a partitioning ofX such that
X% C DYandX! C D'. Suppose that, far= 0, 1, X* has NOP if some dynamic query occurs positively
in C1=%. We prove that foi = 0,1, X' is a near-solution toD?, I*, C?, C:). SinceX is consistent, also
X% andX! are consistent. To see this, observe that w.l.0.g¢ifis inconsistent, then the static lawsif
are unsatisfiable, which implie$ is unsatisfiable as well, a contradiction. Moreovey, Ul C X C DUI
impliesD? U 1° € X° € DPuI®andDl U It C X! € D' U T Finally, X° U X! = C implies
X0 ¢%andX! = C!. Thus,X? and X! are near solutions taD°, 1°, CY, C o) and(D*, I, O, C),
respectively. O

Informally, the NOP property in Theorem 1 is needed to ensure that theitteendiagrams of near-
solutions to the sub-problems can be “combined”. As already mentionee ab@vis only necessary in the
presence of dynamic queries.

For a full decomposition of an ADU problem, we need beyond a near dexsitign also a factorization
of the preference relation, which is formally defined as follows.

Definition 7 (Preference Factorization) Let C~ be a preference relation for action descriptions over sig-
nature£, and let(£°, £!) be a partitioning of£. A pair (C 0, ") of preference relations : for action
descriptions over’, i = 0, 1, is afactorization of— with respect tq £°, £1), if for any action descrip-
tions D, D’ over L that are decomposable with respect(’, £!), it holds thatD = D’ implies that
eitherD° o D'° AD"' oo DY or D'° oo DO A DY e D'

Note that preference by strict subset inclusian-&C) is always factorizable (e.g., taking as the
preference relations of the factorization). We also remark that if thef sptasiesC' is decomposable with
respect to(£°, £1), then the query weight preferenegyeigny, is factorizable, provided that weights are
nonnegative (for instance, taking the same weights for the factorization).

INFSYS RR 1843-13-08 17

A full decomposition of an ADU problem is then as follows.

Definition 8 (ADU Decomposition) A decompositionof an ADU problem(D, I,C, C¢) with respect
to a partitioning (£°, £1) of its signature£ is a pair ((D°, I°,C° C¢o), (DY, I, C, Cen)) such that
(D%, 1°,C%), (DY, I',CY)) is a near-decomposition D, I, C, =¢) and(C o, T) is a factorization of
Co.

The following result, which is the main result of this section regarding solutbéas ADU problem, is
then easily obtained from Theorem 1.

Theorem 2 Let ((D°,1°,C°, C¢o), (DY, I, CY,C¢1)) be a decomposition of an ADU problef®, I,
C,C¢) with respect to a partitioning £°, £1) of its signature£. Suppose that either (i) no dynamic
query occurs inC, or (ii) no dynamic query occurs i@, If X% is a solution to(D?, I, C%, C) for

i = 0,1, where in case (ii)X! has NOP, thenX® U X! is a solution to(D, I, C, C¢). Furthermore, in case
(i) every solution tq D, I, C, C¢) can be represented in this form.

Item (i) states that we can fully decompose an ADU into two components, and that dlbeslgan
be obtained by a simple combination of the solutions of the individual compaonkoisever, this works
in general only in absence of dynamic queries (combining the transitiomg@the components is then
unproblematic). Iten(ii) accounts for possible dynamic queries in one component, which are Uepiatic
as long as solutions of the other have NOP. However, not all solutionsecanmposed from solutions of
the components in general.

Example 4 Consider the ADU problentDU D', I,C, C), with D, I, andC as in Example 1, and’
as in Example 3. Sinc&® = D U I\ {(2)} is a solution to(D, I, C, C) (cf. Example 1),X! = D’
is (the unique) solution t¢D’, 0,0, C) (cf. Example 3), andD)’ has NOP (which is easily verified), by
Theorem i) X°U X! = (DuUD'UI)\ {(2)} isasolutionta DU D', I,C, C). O

Example 5 Consider the ADU probleniD U D', I, C, <Weighg), with D, I, C, andweight, as in Exam-
ple 2, andD’ as in Example 3. Agaik*UX" = (DU D'UT)\{(2)}isasolutiontd DU D', I, C, <weight,
),asX? = DUTI\{(2)}isasolutiontaD,I,C, <weight,) (cf. Example 2), and a¥! = D'is (the unique)
solution to(D’, 0, 0, <Weight1). By Theorem 1D, U D’ U is a different near-solution to this ADU problem
sinceD, U is a near-solution teD, I, C, <Weight]). Moreover, setting the weight of query (12) to 0 (which
amounts to assigning the preferred queries a ‘don’t care’ status)ulthibe another solution. O

Theorem 1 provides a basis for decomposing an ADU into smaller ADUs @éinabe solved in a divide-
and-conquer manner, and Theorem 2 shows some possible exploitdigse fesults can be integrated into
algorithms for computing solutions, which we consider in Section 6 below. Fjmaite that for our exem-
plary preference relations and<Weigh5 with non-negative weights, the benign properties of monotonicity
and non-minimization with respect 10, carry over to their standard factorizations (given by restricting the
relation to the relevant domain) and can be recursively exploited.

5 Complexity Analysis

In this section, we investigate the computational complexity of relevant taskelficing an ADU problem,
including to decide whether a solution exists and whether given actionsifgte&st is a solutions. The

18 INFSYS RR 1843-13-08

DEC,& D¢ D' | solution existence| solution checking

in PSPACE PSPACE PSPACE
in AP (i > 1) »F N
in P NP DP

Table 1: Complexity of deciding solution existence and solution checkingrafpg on the complexity of
the relevant subproblems (completeness results; hardness holdeébpfeference relationc).

complexity of these tasks strongly depends on the complexity of deciding arreetiiven action description
satisfies a set of (obligatory) queries (i.®, = C,), and whether an action description is preferred over
another action description under the given preference relationifi.e.c D’).

We first consider the worst-case complexity of the above mentioned subpre as a parameter and
derive upper bounds (in terms of membership results) for deciding whath&DU problem has a solution,
and for checking whether an action description is a solution to an ADU probilea generic setting. We
then ‘instantiate’ this generic setting by considering different classssiffted sets) of queries which yield
different complexities for decidin@ = C,, and by studying concrete preference relations for which the
complexity of decidingD C¢ D’ differs. In particular, we provide completeness results for the syntactic
preferencec (for which decidingD = D’ is polynomial) and for the semantic preferenacaeighg (for
which decidingD C¢ D’ ranges up t&SPACE) for the various classes of queries considered.

5.1 Generic Upper Bounds

Our main result on generic upper bounds, which however also givegethieral picture of more precise
complexity characterizations, is summarized in Table 1. Recall BIS®tACE is the class of decision
problems that can be decided by a (deterministic) Turing machine using apauest polynomial in the
length of the input.PSPACE entails the so-calledolynomial hierarchya sequence of classes defined as
AP =xf =Ty = P,andfori > 0, by AL, = P*, 5F, = NP™, andIIZ,, = coNP™. Finally,
D” is the class of decision problems whasssinstances are characterized by the “conjunction” oNah
problem and an independeniNP problem. The prototypical such problem is SAT-UNSAT, whgss
instances are paird’, G) of propositional formulas such thdt is satisfiable and- is unsatisfiable; this
problem is also complete f@?*". For a background in complexity theory, we refer to [49].

Informally, the results show that modulo the cost of deciding action quenig@peeference, the com-
plexity of solution existence and checking increases at most by one law polynomial hierarchy, which
is due to the exponential search space for a solution respectively a $mtion candidate, which might
be nondeterministically guessed. Since the search space can be ttangreynomial space, there is no
increase in complexity in the most general case.

We next formally establish Table 1. Given an ADU probléi I, C,), let Ccheck denote the class
of problems of decidind’ = C, foranyD,, UI C D’ C D U I. Similarly, letPcheck denote the class
of problems of deciding whethdp, C¢ D- holds, for action description®, Ul C D; € D U I and
i€ {1,2}.

Theorem 3 Deciding whether a given ADU proble(, I, C, C¢) has a solution (or a near-solution) is
(i) in PSPACE if Ccheck is in PSPACE, (i) in X7 if Ccheck isin AP andi > 1, (iii) in NP if Ccheck is

INFSYS RR 1843-13-08 19

inP.

Given an ADU problentD, I,C,C¢) together with an action descriptio®’, deciding whetheD’ is a
solution for it is (a) INPSPACE if Ccheck andPcheck are in PSPACE, (b) in HZP if Ccheck andPcheck
arein AP andi > 1, (c) inD? if Ccheck andPcheck are inP.

Proof. LetD = D, U D,,. In order to decide whethdD, I, C,C¢) has a solution, we can guess a
near-solutionD’ such thatD,, UI C D’ C D, U I, along with a state for D’ (to witness consistency), and
checkD’ = C, in polynomial spacéi), otherwise in polynomial timéii) , respectively with the help of a
»F | -oracle. This prove§), (i), and(iii) .

As for deciding whether a giveD’ is a solution, let us consider the complementary problem. We can
nondeterministically guesP” together with a state” and proceed as follows. We check in polynomial
time whetherD, UT ¢ D', or D’ ¢ D U I. We also check whethdp’ is inconsisten{a) in polynomial
space, respectivelgb) with a single call to arNP-oracle. Deciding whetheb’ [~ C, can be done in
polynomial space in Cas@), and in polynomial time with zﬂﬁl—oracle in Casd€b). Furthermore, we
check in polynomial time whethdp,, U T ¢ D” C D U I and if D" is consistent (whethet” is state of
D"). Two further checks decide wheth®¥ = C, andD’ C¢ D" (a) in PSPACE, and(b) in polynomial
time with the help of &7 ;-oracle. Thus, the complementary problengayin PSPACE, respectively(b)
in ©F, proving(a) and(b).

For (c) we nondeterministically guess a statef D’ which we use to check consistency in polynomial
time. Also we decideD, U I C D' C D, U I in polynomial time. An independenbNP-check excludes
more preferred near-solutions, i.e., the complementary problem of ggd3$itogether with a state” and
checkingD,, U I ¢ D" C D U I, consistency (whethet is state ofD”), D" = C,, andD’ C¢o D" in
polynomial time. This proveB’-membership fofc). O

Before we turn our attention to ‘instantiating’ this general result for ADalgbems with different classes
(restricted sets) of queries and concrete preference relations, whiigheld precise complexity characteri-
zations in terms of completeness results, we remark that to ease expositiarémikinder of this section
proofs are sketched, resembling the main arguments and constructialesfulitproofs are given in Ap-
pendix A.

5.2 Query Entailment

As outlined in the beginning of this section, one of the two important subtaskdvimg ADU problems is
checking whether a set of queries is entailed by an action descriptionsdlitissk has a major influence on
the complexity of finding solutions of an ADU problem. Therefore, besidesicering arbitrary queries,
we also investigate restricted classes of queries. In particular, when timahaesting depth of dynamic
queries is fixed by an integét and when no dynamic queries occur at all.

Theorem 4 Given an action descriptioD and a setC' of queries, decidingd = C is (i) PSPACE-
complete in general, (ii®f+3-complete ift is the maximal nesting depth of dynamic querie€'jrand (iii)
PﬁIP—compIete ifC' does not involve dynamic queries.

HerePﬂIP means polynomial-time with a single parallel evaluation of calls ttN&noracle. Similarly for

1> 1, @f is the class of problems that can be decided in polynomial time with parallel calEfiqa)racle
(alternatively, this class is often characterized by allowir@og n) many oracle calls) [59].

Proof. Concerningi) the result has been shown in [16]. Membership in Qé@defollows from the fact
that checking the truth of a negated universal query of the foeAbWAYS (@, where(is a conjunction

20 INFSYS RR 1843-13-08

of clauses over static queries of the fohmlds F' or —holds F, is in NP. Hence, the complementary task,
i.e., checking the truth of a positive universal quUeR/\WAYS @, is in coNP. Thus,D k cis decided
in polynomial time with a single parallel evaluation ofNP-oracle calls, given that is the number of
universal queries in. Similarly, one proves in Cag@) by induction on the nesting depih thatD |= cis
decided in polynomial time with parallélf+2-oracle calls.

As for hardness, the problem (iii) is reduced to the followin@’f“’—hard decision version dflaximum
CNF Satisfiability[37]: Given a Boolean formuld® in conjunctive normal form (CNFand an integek,
decide whether the maximum number of clauseg'ithat can be simultaneously satisfied by an interpreta-
tion is 0 mod k. Consider a 3-CNF formula of the forf\;" , L; 1 V L;» V L; 3, whereL; j, 1 < i < n,

1 < j <3, isaliteral over atom¥ = {Xy,..., X,,}, and the following action descriptiab;:

causedC; if L; 1, causedC;if L;2, causedC; if L; 3,

_ 1<i<
caused—C; if =L; 1 A =L;2 A —L; 3, } ==

causedFy ; if Cq, caused—Fy if =Ch,
causedF o if -Cy, caused—F if Cy,

causedrF; ; if C; A F_q j—1,

; 2<3< 1<3<34
CaUSEd_'FiJ' if =C; A F’ifl,jfh } SN, 1770

causedF; ; if -C; A Fi_y j,

i 2<1 < 0<ij<i
caused—F; ;if C; ANFj_1; } sitsn, Us g <t

ThenD; [¢ iff the maximum number of clauses i that can be simultaneously satisfied by an interpre-
tation isO mod k, wherecy, is the following query:

c,. = ALWAYS holds F, oV
SOMETIMES holds F,, , A ALWAYS (—-holds F}, y+1 A ... A =holds F;, ,,)V

SOMETIMES holds F,, ;; A ALWAYS (=holds F;, ;41 A ... A —holds F}, ,),
For hardness in Cag#), considemnn Quantified Boolean Formulas (QBFs)
O =QX] QX QuXLE, 1< 1<m

whereQ; = 3if i = 1 mod 2 andQ; = V otherwise,X* andX]l., 1<i,j<nandl <kl <m,are
pairwise disjunct sets of propositional variables i j or k # [. andE! is Boolean formula over atoms
in X! = X! u---uU X!, such that if®,; is false then®,,, ..., ®,, are false, too. Deciding whether the
maximum indexo, 1 < o < m, such that®, is true, is odd is@fﬂ—hard [59]. The problem of deciding
D k= cfor a queryc with nesting deptlt of dynamic queries is reduced to this problem, as follows.

Letn =k + 2,1 <1 < m, and let the action descriptidi, consist of the following statements:

causedF} if F! after A;_1,

; 2<i<n FleX!
causedﬁFj if ﬁFZl after A;_1, } S1sn, by € Xy

causedF]l. after 4,_; A F]@,

2<i<n,1<j<n,i#j FleX!
caused—F} after A; 1 A —F), } sismlsjsnifgjleX

INFSYS RR 1843-13-08 21

Consider the query:

(m=3)/2(SOMETIMES f2+1 A ALWAYS —f2172) v ™ if m is odd
Co =

(m=2)/2(SOMETIMES f2+1 A ALWAYS —f2+2) otherwise,

where
fl=p necessarilyp; (... (p,—1 necessarilyp, 1 holds E' after {A,-1})...) after {A;},

wherep; = —if 7 is even anag; is void otherwise, foil < ¢ < n — 1. Then, the maximum indexsuch that
®, is true, is odd iffDs |= c,. O

5.3 Solution Existence

Equipped with these precise complexity characterizationdcatck for ADU problems of some classes
of queries, we aim to exactly characterize the complexity of the solution findghg far these classes of
gueries and particular preference relations. Notice that checking aiteesolution exists is independent of
the concrete preference relation and its computation. This leads to the fajloggult.

Theorem 5 Deciding whether a given ADU proble(®, I, C, C¢) has a solution (or a near-solution) is
(i) PSPACE-complete in general, (ii)3§+3—complete, ift is the maximal nesting depth of dynamic queries
in C,, (i) XI'-complete, i, does not involve dynamic queries, and (§fy-complete ifC, = (.

Proof. Membership follows from Theorems 3 and 4, and Hardness in @ag#lows from Theorem 4.
For hardness in Cadgé@), letn = kK + 2 and let® = 3Y Q1 X1 --- Q. X, E be a QBF, wheré); = 3 if
1 = 0 mod 2 and(Q); = V otherwise. Consider

D, = Dy U {causedY; after A;_1 A Y;, caused—Y; after A; 1 A—Y; |2 <i<n},

whereD; is the action description from the proof of Theorem 4 with 1, D,,, = {causedY;, caused—Y; |
YieY}, I=0,C=C,uUC,with C, =0 and

C, = {ALWAYS p; necessarilyp; (... (pn—1 necessarilyp,_iholdsE after {A,_1})...) after {A;}},

wherep; = — if ¢ is odd, void otherwise, fot < ¢ < n — 1. Then, there exists a solution to the action
description update problet®,, U D,,,I,C,C¢) iff ® is true.

For (iii) let ® = 3Y VX FE and consider the action description update problém U D,,,, I, C,C¢),
whereD,, = 0, D,, = {causedY;,caused-Y; | Y; € Y}, I = (), andC = C, = {ALWAYS holds E}.
Again, the action description update problé, U D,,,, I, C, C¢) has a solution iffd is true.

Finally, for (iv), let E be a Boolean formula over atorisand let us defind,, = {causedY; if ~F,
caused-Y; if -E}, D,, = {causedY;,caused-Y; | Y; € Y}, I = (), andC = (. Then, (D, U
D,,,I,C,C¢) has a solution iff) is satisfiable. O

This result can be instantiated with any preference relation and yields cemgés results for deciding
the existence of a solution. When instantiated with our syntactic preferenagemarkable consequence
is the following. Deciding whetheD U [is a solution to an ADU probleniD, I, C, C) has the same
complexity as decidin@ |= C, in general. Deciding the existence of an arbitrary solution is slightly harder
than decidingD = C, for restricted settings of queries @,. Intuitively, the additional computational
effort accounts for the search of a solution candidate.

22 INFSYS RR 1843-13-08

5.4 Solution Checking

We finally turn our attention to the recognition of solutions, where we prowdpective results for the
syntactic preference and the semantic preferene;eﬂ,eighg. Again the problem turns out to BeSPACE-
complete in general. Similarly as before, forin restricted query settings testing arbitrary solution candi-
dates has higher complexity than testifgJ I, which intuitively accounts for the additional maximality
criterion to be checked for a solution.

Theorem 6 Given an ADU problentD, I, C, C) and an action descriptiod’, deciding whethe)’ is a
solution for it is (i) PSPACE-complete for general queries if,, (ii) Hkp+3—complete it is the maximal
nesting depth of dynamic queries@h, (iii) II5’-complete ifC,, does not involve dynamic queries, and (iv)
D-complete ifC, = 0.

Proof. Membership follows from Theorem 3, observing that for any givedioaaescriptionsD’ and D",
decidingD’ ¢ D” can be done in polynomial time, i.e., ttRatheck is in P for C.

Hardness in Cagg) follows from Theorem 4. Fofii) letn = k+2andletd = VY Q1 X --- Q. X, F
be a QBF, wher€); = Jif i = 1 mod 2 andQ); = V otherwise. Consider

D, = D, U {causedY; after A,_; AY;, caused—Y; after A;_; A Y; | 2 <i <n},

whereD; is the action description from the proof of Theorem 4 With 1, D,,, = {causedY;, caused-Y; |
Y; e Y}, I =0,andC = C, = {ALWAYS f V g}, where

f = p1 necessarilyp; (... (pn—1 necessarilyp,_; holds E after {A,_1})...) after {A;},

g = /\ SOMETIMES holds Y; A SOMETIMES holds —Yj,
Y;eY
wherep; = — if i is odd, void otherwise, fotr < i <n — 1, andp,, — 1 = —if n is odd and void otherwise.
Then, D, is a solution to the action description update probléw U D,,,, I, C, C) iff ® is true.

For (iii) let ® = VY 3X E and consider the action description update prob{ém U D,,,I,C, C),
whereD,, = (), D,, = {causedY;,caused-Y; | Y; € Y}, I = (), andC = C, = {ALWAYS —holds E V
g}, with g as before. The ADU problertD,, U D,,,, I, C, C) hasD,, =) as a solution iffd is true.

Finally (iv), let £4 and E> be Boolean formulas over atom§ andYs, respectively. Consideb, =
{caused—F causedF if =F;}, D,, = {causedF if =Fs}, I = (), andC = (. Then,(D, U D,,,I,C, C)
has solutionD,, iff E is satisfiable and’; is unsatisfiable. O

We next consider solution checking for the semantic preferen,g‘e%hg. Note that whilePcheck is
polynomial forC, this is no longer the case fetweigh; . However, intuitively whenever the complexity of
Pcheck does not outweigh the complexity Otheck, i.e., when we do not allow for more complex queries
in C,, than inC,, then we stay within the same upper bounds ascforProviding also matching lower
bounds yields the following result, which differs from the previous orlg #nC' = (). The intuitive reason
is that for the syntactic preference also in this case a maximality check ischeedecognize a solution,
while the semantic preference is indifferent fdr= (), which means that basically a consistency check is
sufficient and that every near-solution also is a solution.

Theorem 7 Given an ADU probleniD, I, C, <Weigh5) and an action descriptio®’, deciding whetheD’

is a solution for it is (i)PSPACE-complete for general queries {, (ii) HerS-compIete ift is the maximal
nesting depth of dynamic queriesdn (iii) T} -complete ifC' does not involve dynamic queries, and (iv)
NP-complete ifC' = 0.

INFSYS RR 1843-13-08 23

Proof. Membership fo(i), (ii), and(iii) follows easily from Theorems 3 and 4. Hav), i.e. C' = (), Pcheck
is trivial for <weight, hence we can decide whethef is a solution essentially by checking consistency.

Hardness in Cag@) follows from Theorem 4. Fofii) letn = k + 2 and conside®, D,,, D,,, I, andC,
from the proof of Theorem @i). Additionally, letC,, = {ALWAYS holds Y;, ALWAYS holds —Y; | Y; €
Y'} and consider a weight of 1 for eaete C,,. Then,D,, is a solution ta(D,, U D,,, I,C, U Cy, <Weigh;1)
iff it is a solution to(D,, U Dy, I, C,, C).

For (iii) consider®, D, I, andC,, from the proof of Theorem @i). Again, letC,, = {ALWAYS holds Y},
ALWAYS holds —Y; | Y; € Y'} with weight 1 for eachx € C),. Then, for the same reason as abadvg,is
asolution to(D,, U D,,, I, C, U Cy, <Weigh5) iff it is a solution to(D,, U D,,, I, C,, C).

Finally (iv), let E be a Boolean formula over atomSand consider the ADU problem given iy, =
{causedY; if ~F, caused-Y; if =E}, D,, = 0, I = (), andC =). Then, D, is a solution to(D,, U
D, 1,C, <Weighg) iff £is satisfiable. O

Hence, even recognizing solutions is quite hard. However, recognigagsolutions is easier for re-
stricted sets of querie@€+3-complete if the maximal nesting depth of dynamic querie€’iis k, Ph\‘P-
complete ifC" has no dynamic queries, abd-complete ifC' = (). This follows easily from Theorem 4.

6 Computing Solutions

Equipped with a clear picture of the computational cost in terms of complexithéorelevant (sub-)tasks
of solving an ADU problem, we now turn to the issue of computing solutions wsdgated, deterministic
algorithms.

6.1 General Algorithms

With an oracle for near-solutions, in case of the syntactic preferenage can incrementally compute a
solution to an ADU problentD, I, C, C) whereD = D,, U D,,, in polynomial time using the algorithm
in Figure 5. By virtue of Theorems 5 and 6, this algorithm is worst case optaxwah when the nesting
depthk of dynamic queries is restricted, since computing a solution needs the pb\ﬂezﬁ3 oracle.

If the existence test for a near-solution @, U D,,,, I,C,C) in Step 1 or Step 2 in fact returns some
near-solutionD”, then we can replace the respective assignment thy the assignment®’ := D" and
Dy, := Dy, \ D".

We remark that for semantic preferences, Iékﬁeighg, such a deterministic polynomial time procedure
for computing solutions, using an oracle for computing near solutions, riutegork in general. However,
in certain cases an oracle for near-solutions can be used effectivebinmlar way. For instance, whenever
the queries irC, can be strictly ordered according to their (non-negative) weights, thatmo subset of
gueries that are before a quetin the ordering can sum up to a higher weight tlkaihen, in a procedure
similar to SOLUTION, one can iterate through the set of querigsonce, using the oracle to determine
whether near-solutions exist to the slightly modified problem where certaineguiromC;, are added t@’,
in order to determine the set of queries fraisatisfied by an optimal solution. Once this set is known, any
near-solution of the problem where these queries are addggl is a solution to the original problem.

For the general case @fweigh[] with nonnegative weights, for instance, a branch and bound algorithm
can be devised from Algorithm & UTION that uses an oracle for near-solutions to compute an initial
solution candidate and, throughout the computation, better candidatesadsruthe style of an anytime
algorithm.

24 INFSYS RR 1843-13-08

Algorithm SOLUTION~
Input: an ADU problem(D, I,C, C)
Output: some solution dfD, I, C, C), if one exists.

Step 1 if(D, U Dy, I,C, C) has a near-solution
then D’ := D,, elsehalt;// no solution exists

Step 2 whileD,,, # 0 do
choose somé € D,,;
D, := D' U{l}; Dy, := Dy, \ {{};
if (Dy, U D,,,I,C,C) has a near-solutiothen D" := D' U {/};
endwhile;

Step 3 outputD’. O

Figure 5: Algorithm to compute some solution preferred by set-inclusion

For other preferences, algorithms will have to be developed that similarly exploit the structure of
Cc to prune the search space effectivelylf is monotone with respect to the underlying signature, we
may adapt Algorithm SLUTION similarly as for<\,\,eight;Z to a branch and bound algorithm that aims at
enumerating near-solutions (for which e.g. techniques as in [12] afelJuard cuts branches in the search
tree if no better near-solutions compared to the currently most prefemnejio,, ..., D,,, can be found in
them; more precisely, any branch for a (partial) near-solufiaan be cut such thd@uU{¢4, ..., ¢} Co D;
for someD;. Note that every solution preferred undeg is also preferred under set-inclusion, and we can
adapt in the same way the variant of Algorithnol®JTION that exploits near-solutions returned by the
oracle. This scheme may be further refined, as usual, by exploiting ntiesplke solution dominance (for
each possible solutio®’ such thatD C D' C {¢;,...,4,}, one of the solution®; is preferred); further
investigation remains for future work.

6.2 Near-Solutions

Near-solutions to a given ADU problem may be nondeterministically computedthe membership part

of Theorem 5, or may be obtained from a QBF encoding using a QBF sMeipresent here a different
computation method, which builds on update descriptions and “update fletstit Roughly, rather than to
consider varying update descriptions, in this method the problem is compiled sitwle action descrip-
tion, called theupdate descriptionin which special update fluents govern the inclusion and exclusion of
causal laws. Determining an update amounts then to determine an appropdate fluent set, which is
semantically defined and may be computed by query answering and stadémesdtgpn algorithms.

Definition 9 Let D = D, U D,, be an action description with signatuf®, A). Theupdate description
U(D) is the action description obtained from as follows:

1. Extend(F, A) by a setH of k = |D,,| new fluents (calledpdate fluentsH,, ..., Hy;
2. label each static law (4) i,,, with a fluentH; € H:

causedL if G A H;, (22)

INFSYS RR 1843-13-08 25

Algorithm NEAR-SOLUTION(D, I,C,C¢)
Input: an ADU problem(D, I,C,C¢)
Output: some near-solution 6D, I, C, C¢), if one exists.

Step 1 if D U I is consistentand U I = C, then outputD U I and halt;
Step 2 construct the update descriptibhof DU I = D, U1 U D,y;

Step 3 ifsome update fluent s&f for U relative toC, exists
then take an arbitrary sucM elsehalt; // no near-solution exists

Step 4 identify the sefV” of causal laws inD,,, labeled by the elements df;

Step 5 outputD, UW U I.

Figure 6: Algorithm to compute some near-solution

and each dynamic law (5) iP,,, with a fluentH; € H:
causedL if G after H A H;, (22)

such that no two laws are labeled by the same fluént

3. for eachH; labeling a law, add the dynamic law:

inertial H;, ~H,. (23)

We next define update fluent sets. To this end, we define, given an dessariptionD,, U D,, and a set
of conditionsC' on the same signature, a partitioniﬁg, SQC of the state se$" of the update description
U = U(D) of D, U D,, having the seH of update fluents, as follows. For any two states c SU let
s=n ¢ iff snH=sNH,andletSy, = {s' € SY | s =u s}. Given a query: and states € S", we
say thatc holds ats wrt. Sﬁs, if in case(i) c is existential (8).F, s’ = @ holds at some’ € Sﬁs; (i) cis
universal (9),F, s’ = @ holds at alls’ € Sﬂ’s; (iii) ¢ is a Boolean combination of existential and universal
gueries:;, the combination evaluates to true if eaglmas the value atwrt. Sg,s. Then,Sg ={s¢€ SU | ¢
holds ats wrt. S ,, for all ¢ € C'}. Furthermore, in the rest of this section, we identify states with the sets
of fluents which are true at that state.

Definition 10 Anupdate (fluent) sdbr U relative toC is a setM C H such that (i)s " H = M for some
s € SY, and (ii) S, C S¢.

With the notions above, we can compute a near-solution to an ADU probiem, C,C¢), where
D = D, U D,,, with the algorithm NEAR-SOLUTION shown in Figure 6. The key to its correctness is the
following proposition.

Proposition 2 Let(D, I, C, C¢) be an ADU problem, witth = D,,U D,,. LetU be the update description
of DUI = D,UIUD,,, and letlW denote a subset dp,,, containing laws labeled by the elemeiMsC H
inU. ThenD’ = D, UIUW is anear-solution td D, I, C,) iff M is an update set foi/ relative toC,.

26 INFSYS RR 1843-13-08

The proof of this correspondence result, which is technically involvingivien in Appendix B. It
follows the intuition that by considering an update setfur [relative toC, and ‘adding’ the corresponding
labeled laws (which by construction are framy,) to D,, U I, one ends up with an action descriptibhthat
satisfies”,. The essential argument is by showing that for any statieD’, s U M is a state of/, and due
to Condition(ii) of Definition 10 it is a state iISUO, which in turn implies that € SDO/, i.e., thatD' = C, .
Moreover, Conditior{i) of Definition 10 guarantees that’ is consistent. Vice versa, to every near-solution
corresponds an update g9t given by the labels of the modifiable laws included in the near-solution.

From Proposition 2, the correctness of algorithmAR-SOLUTION is then easily established.

Theorem 8 Let(D, I, C, C¢) be an ADU problem, witl® = D,,UD,,,. Then AlgorithhNEAR-SOLUTION
outputs some near-solution @D, I, C, C¢) if and only if some near-solution ¢D, I, C, C¢) exists.

We observe that for as the preference ordering:, the algorithm can be easily adapted to find so-
lutions instead of near solutions: to this end, in Step 3 we take a maximal onelst\ieade that Step 1
is not necessary as far as mere computation of any near-solution isreedceHowever, in the view of
ADU problem solving it may be worthwhile to particularly retuthu [first, if it is a near-solution, since
it constitutes the case whefecan be incorporated without modificationfa This is in particular relevant
for preference relations ¢ that are non-minimizing, as then in fact a solution is output.

Example 6 Consider an ADU probleniD, I, C,C¢) given by D, I, andC as presented in Example 1.
Note thatD U I [~ C (as explained in Example 1). We obtain the following update descrigficof
D, UIU D,,, which containd,, U I and the laws:

causedTvON if PowerON, Hq,
caused—TvON if =PowerON, Hs,
inertial H;, —~H; (1<i<2).

According to the transition diagram describedlbywe have that actio®ushPBr¢ is not executable, i.e.,
query (3) fails, at any state2 { PowerON, TvON, H;}. Moreover, at any state> { PowerON, TvON }
such thatHs ¢ s, query (12) fails due to missing causation fo7'vON. Query (17), however, is satisfied
at every state of/. We thus obtain

SY. = {s € SY | s satisfiesH; V ~H>},

and, for instance{ PowerON, TvON, Hy} € S&. Therefore{H,} is an update set fdv relative toC,

and obviously it is the only one. Hence, if we add the law labeledbyo D,, U I, or equivalently remove
the law (2) that is labeled b¥; from D U I, we obtain a near-solution to the problem (cf. also Example 1).
O

Example 7 Consider a slight variant of the previous Example 6, where also the dyanwgdn D (except
for the inertia laws) are maodifiable, and with the following causal laws addéd,io

causedTvON after PushPBpy A ~PowerON,
caused—TvON after PushPBry N PowerON.

The transition diagram described By U [is the same as in Figure 4, and thus for the same reasons as
mentioned in Example 1) U I = C. The update descriptioti of D,, U I U D,,, consists ofD,, U I, the

INFSYS RR 1843-13-08 27

labeled laws as presented in Example 6, and the following causal laws:

causedPowerON after PushPBry A ~PowerON, Hs,
caused—-PowerON after PushPBry A PowerON , Hy,
causedTvON after PushPBry A ~PowerON, Hs,
caused—-TvON after PushPBry A PowerON , Hg,
inertial H;, —H; (3<i<6).

According to the transition diagram described By query (3) still fails, since the actioRushPBr¢ is
not executable wheneverD { PowerON, TvON, H,}. Let us consider the remaining statesf U, i.e.,
only those such thall; ¢ s. We first observe that a failure of query (12) is witnessed by any statk
s 2 {PowerON, TvON} such thatHs ¢ s and eitherHs ¢ s or Hy ¢ s (or both), since there is no
causation for-TvON when executingPushPBry . Finally, query (17) does not hold at any such state
where the power and the TV are off, i.e) { PowerON, TvON } = 0, if {H2, Hs} C sandHs ¢ s. More
formally,

SUs = {s € SV | s satisfiesH; V (~Hg A (~Ha V ~Hy)) V (—=Hs A Hy A Hs)}.

Two update sets fdv relative toC are{ Hs, Hy, Hs, Hg} and{ Ha, H3, H4, Hg }. (That they actually consti-
tute update sets is witnessed, e.qg.{B%, H,, Hs, Hg} € SY and{H>, Hs, Hy, Hs} € SY, respectively.)
We may choose either one and, by adding the corresponding causablawsJ I, we get a near-solution

to the problem. Note however, that in casegf=C, for instance, none of the near-solutions is a solution,
as removing (2) is sufficient. This is reflected by the (maximal) updatefégtHs, Hy, Hs, Hg}. O

Algorithm NEAR-SOLUTION can be run in polynomial space, and is thus within the worst case optimal
bounds. Indeed, the update descriptidbfor D andC can be easily computed in polynomial time, and after
the consistency and entailment check in Step 1, the bulk of the work is with Step 8 compute an update
setM. Here, we can resort to different methods. If the full stateS$ebf U would be explicitly given, then
Step 3 is clearly feasible in polynomial time. Otherwise, we can use an algoridtraribmerates?, and
for each state generated taken H as candidate update dtfor which condition(ii) S s C Sg is tested
using query answering; a brief outline is as follows. Ft= /\HZ,EM H; A /\HieH\MFHZ»; intuitively,
F, holds at a state’ iff s’ belongs toSY .. Then, for each existential queryof form (8), definecs =
SOMETIMES holds Fs A Q, and for each universal gueeyof form (9), lete; = ALWAYS holds F; D Q.
For a Boolean combination of existential and universal queries, we defieas the query obtained by
rewriting each occurrence of an existential or universal query asrited above. Theﬁﬁs - Sg is
equivalent to entailmerif = ¢, for each query:in C. ’

Thus, one can build algorithms to compute near-solutions of an ADU on togsid beasoning services
for action descriptions that generate sets of states and perform quesgiéng (as supported e.g. in AD-
Query [19], under some limitations), which are applied to the update desarigii®y). Compared to a
simple search over the near-solution candiddsuch thatD, U I C D’ C D U I and testing whether
D’ = C,, this approach has some attractive advantages. One is that we may comp#éagiteon diagram
of U(D) into an efficient representation (e.g., into binary decision diagrams thatiatemary in efficient
processing of transition-based formalisms), and perform state gemeeatt query answering over this
single representation, rather than to consider reasoning over vargimgjtion diagrams, which may have
considerable management cost (setting up data structures anew, etasy atifeout further precaution and
effort.

28 INFSYS RR 1843-13-08

Furthermore, the update description is a useful basis for iterated Mark@vistory-less) updates un-
der lazy evaluation, and more generally for realizing non-Markovian s&osaof sequences of updates
I, ..., I, inanalogy to update programs in the context of logic programming updat&s][4n the Marko-
vian case, the result of updating an action descripfida obtained by incorporating thig,i = 1, ...,k one
after the other intd). The update descriptioti (D) may be generalized to capture such iterative updates
rather easily, by using time stamped copies of action descriptions that arel\slin&ed, and modifying
the preference orderingc appropriately into a prioritized version. In the non-Markovian case, geland
preference ordering can be tailored to realize particular update semamiestigating this is left for further
work.

7 Discussion

7.1 Related Work

Updating and revising knowledge bases has been studied extensivedciorttext of both databases and All,
with different approaches, and in various representation framewerys [61, 36, 54, 28, 29, 18, 46, 33,
34, 35, 56, 41, 44, 57, 64, 62, 32, 38, 16]. The relation of this pmktereasoning about actions has been
identified earlier [60, 55, 51], since the effects of executing an actiorgimem situation can be modeled as
the change of a theory representing the current state by a formulseegiregy the action effects. However,
compared to reasoning in action languages, such an approach leaaetidghaunder consideration and its
effects rather implicit. Therefore, we restrict our attention to those wowrkisditther treat the notion of an
action explicitly in the language, or that are otherwise more closely related teark.

Sakama and Inoue’s work [56] is similar to our work in that it also studiestgppgroblems in a non-
monotonic framework (yet in logic programming) and considers the sameianitef minimal change. It
deals with three kinds of updates to a knowledge basd¢heory update ofb by some new information
1, inconsistency removal from, and view update ob = D, U D,, by some new informatioi. In the
context of reasoning about actions and change, these kinds of atatexpressible as ADU problems
(D,I,0,C), (D,0,0,C), and(D, U D,,UI),0,0,C). Sakama and Inoue show in [56] that checking for
solution existence i&P-hard for each problem; this complies with Theorertii§y. An important differ-
ence to [56] is that in an ADU probletD, I, C, C), the conditions” may not be directly expressed in.
Moreover, the semantics of an action descriptidnin C is a transition diagram, and only captured dily
answer sets of a logic program corresponding to D by known transfannsa

Li and Pereira [41] and Liberatore [44] study, like we do, theory wpgaoblems in the context of
reasoning about actions and change, based on an action languadenfiuageA instead ofC). New
information, , contains facts describing observations over time (e.g., the aBtishPBr- occurs at time
stamp 0). The action languageve use is more expressive thann that it accommodates nondeterminism
and concurrency, and the changes in the world are not only due td difects of actions. To formulate
temporal observations, we can extend our query language by quétiesforms

FE occurs att;, (24)
P holds att;, (25)

whereF is an action nameP is a fluent name, ang is a time stamp; a statesatisfies a query (24) resp.
(25) if, for some history (10) such that=sg, FE isin A;,1 resp.s; satisfiesP.

Our notion of consistency of an action descriptibn(in essence, the existence of a state) is different
from that of Zhang in [63]. They describe action domains in propositidgabmic logic, and require for

INFSYS RR 1843-13-08 29

consistency the existence of some model of an action description. Diffesemthe setting here, conflicting
action effects may prevent any model. With the extension of our query dgegdiscussed above, other
forms of consistency studied in [63] can be achieved in our framewgrklebcribing possible scenarios or
formulas as queries.

Some of the related work mentioned above, like [5, 45, 2, 32], study actsaorigtion updates in
connection with the problem of elaboration tolerance. The goal is to artbe/ésllowing question: how can
an action description be updated to tolerate new elaborations on the actiom@dB8®] studies the update
problem in the context of dynamic logic [30]. Here action domains are septed in a simplified version
of dynamic logic. An action domain description consists of static laws (&9~ Light, which expresses
that “if the switch is up then the light is on”), effect laws for actions (e-glip — [Toggle] Up, which
expresses that “whenever the switch is down, after toggling it, the roomlp’lit and executability laws
for actions (e.g.;7Broken — (Toggle) T, which expresses that “toggle can not be executed if the switch
is broken”). To handle the frame problem and the ramification problem, seqoence relation is built (in
a meta-language) over the action description. Note that the action desclgstgrage’ does not require
such a meta-language to be able to handle these problems. In this formalvédnier reasoning about
actions and change, the authors consider revising beliefs about dtétesveorld (as in, e.g., [33, 57]),
as well as revising beliefs about the action laws. They update actionigtésts with respect to some
elaborations (described also by causal laws), by modifying the causaliahe action description by first
“contraction” and then “expansion”. In the end, the antecedents of sansal laws in the action description
are strengthened with respect to the new elaborations. Consider thelexaope; during a blackout, the
agent toggles the switch when it is down, and the room is still dark. Suclabaration is described by a
causal law, likeBlackout — [Toggle] Light. The action description is modified by this elaboration, by first
contracting the effect laws (e.g+Up — [Toggle] Up) and then expanding the theory with the weakened
laws (e.g.,~ Up A —Blackout — [Toggle] Up). The idea behind modifying a theory with an elaboration of
the form¢ — [a]v in this way, is to ensure two conditions wherdoes not hold: first still has the effect
1; and second, has no effect except those literals that are consequenceg.ofThe semantics of such
syntactic operations are given in terms of changes (e.g., addition/remi@ddes) in the transition diagram.
Note that [32] modifies causal laws to tolerate elaborations, whereasdweesdcausal laws (which may
be obtained from some observations, or which may describe some elabgyatidhe original description
and furthermore we drop a minimal set of causal laws from the originahyrssothat given queries (which
may describe some desired/preferred conditions on the domain) are ehtaiteslupdated description.

Another related work that studies action description updates, for elidmotalerance, is [2]. The
authors introduce an action description language, called Evolp Actiorrdnsg(EAPS), built upon the
update language Evolp [3]. This language can be used to represent@dmmains, as well as their updates
due to some elaborations. An action domain description consists of staticaiges{ght < Up), dynamic
rules (e.g.gffect(Light — Up) < Toggle, -~ Up which expresses that, if at some stehe switch is down,
then Light < Up becomes true at step+ 1), inertial declarations (e.ginertial(Light)), and initialize
declarations (e.ginitialize(Light) which stands fotight < prev(Light) whereprev(F) is a new atom
introduced for describing the value of flughin the previous state) introduced for representing inertia. Note
that in the action languadg there is no need to introduce new atoms to be able to handle the frame problem.
An elaboration is encoded as a separate action descriptjand then “asserted” to the main description,
using theassert construct of Evolp. Adding to the main descriptiassert(D) is different from addingD.

For instance, consider addingsert(Light — Up) < Toggle to an action description. Then, when the
switch is toggled, the ruléight < Up remains inertially true until its truth is possibly deleted afterwards.
The semantics of an EAP (an thus theert construct) is given by means of stable models [25]. Note

30 INFSYS RR 1843-13-08

that [2] is similar to our work in that updates that consist of static/dynamic areslescribed in the same
language as the action description. On the other hand, the languageati®y?3 us to talk about, as a part
of the updates, changes over rules (using the assert construct).

The works by Lifschitz [45] and by Balduccini and Gelfond [5] are simitaj2] in that they also modify
action descriptions with respect to new elaborations, by means of addiagl¢aws, in the sense of additive
elaboration tolerance [48, 50]. Lifschitz describes in [45] an action domdanguage’ such that every
causal law is defeasible (by means of an abnormality predicate). To faemadee other variations of the
domain, the agent can just add new causal laws, some of which “disaines’ existing causal laws. In [5],
the authors extend an action description, encoded as a logic programguiitsisStency restoring” rules, so
that when the action description and given observations are incompatiése, lies can be “applied” to get
some consistent answer set. This, however, is more geared towacdimpaxceptions. In [45] and [5], the
causal laws of the original domain description are not modified.

Concerning results on the computational complexity, Eiter and Gottlob [21} stumimber of syntax-
based as well as model-based knowledge base revision operatonoeiue precise complexity characteri-
zations for the problem of checking whether a given formula is derivfadohe a revised (updated) knowledge
base by reducing the problem to the evaluation of counterfactuals. H8ddignproved these complexity
bounds for restricted settings under Winslett's Possible Models Appradoeratore [43] considers further
approaches for belief update from the literature, derived correfpgrcomplexity results, and extended
them to the problem of iterated update. Caybél.[10] study pre-ordered belief bases. A priority relation
on belief bases induces a preference relation on the set of subseteliéfabase, which can be used to
select preferred subsets in order to define (refined) changetorgerdhey provide complexity results for
inclusion-based preference, maximum cardinality, and lexicographiierpreee by investigating entailment
of a formula by a set of consistent subsets of a belief base under saidailment principles including
credulous, skeptical, and so-called argumentative entailment. Baraleamd) 6] considers the complexity
of model checking for knowledge update. As for traditional belief updiie relation to reasoning about
actions consists in regarding the effects of an action as an update to thet@tate. However, motivated
by sensing actions that do not change the world, Baral and Zhang distingnowledge updates as belief
updates where changes not only correspond to alterations of theaddlbwt may also be affect an agent's
knowledge about the world. They give a model theoretic account oivletlye updates based on modal
logics, show that the complexity of model checking is on the second layee gitlynomial hierarchy, and
identify tractable subclasses.

More closely related to our work are investigations concerning the compleixigasoning about actions
in an action language. For the action languag&iberatore [42] establishes, for instand&-completeness
of consistency checking anebNP-completeness for entailment, which essentially amounts to checking
whether

D = ALWAYS necessarily (holds F') after Aj;...; Ay,

for a given action descriptio®, a fluentF', and a sequence of actiods; . ..; A, in our setting. Langet

al. [39] refer to this as “progression problem;” they investigated its computdtmmaplexity for simple
causal action theories which constitute a special case of causal theatifferent languages, in particular
capturing the fragment of action languagehat we considered. Besides the progression problem, the
complexity of other reasoning tasks, including executability and determinisiidiessed in this framework
which is further extended to so-called generalized action theories. Wekédha, like for progression,
several of these results can be obtained as special cases of ddgiding for particular querieg in our
setting. Moreover, to the best of our knowledge, the complexity of deciaitign queries has not been
addressed so far (apart from tREPACE result for the general case for the query language we considered,

INFSYS RR 1843-13-08 31

which has been proven in [16]), let alone the problem of updating actsoriptions in the presence of
meta-knowledge expressed by action queries.

7.2 Nature of Change

As already briefly mentioned in Section 3, our notion of action update has aharéelief revision than a
belief update flavor. This view is supported by a deeper analysis ofgehi@anconnection with reasoning
about actions and change [38, 53]. Lang [38] describes a scopevision and for update, and he notices
that, as pointed out by [23, 24], the scope can not be simply decided étharthe theory is about static
vs. dynamic worlds. Then, as also pointed out by [9, 13], Lang rela@sion and update by means
of backward-forward reasoning, in particular, by means of actiogression. According to [38], belief
revision is to correct some initial beliefs about the past/present/future $tagworld by some observations
about the past/present state of the world. On the other hand, belief updstene formulax corresponds
to progressing the theory by a specific feedback-free action that wilemakue with respect to a given
update operator; here does not describe observations. In this framework, Lang says thajppuoach is
closer to a revision process than to an update; however, since owaapprhanges the transition diagram
of an action description, it is meaningful to consider it as an update pesesell.

The AGM and KM postulates [1, 36] are based on an underlying logic thatoisotonic in nature.
However, the action languag@ewe consider is nonmonotonic. For instance)itonsists of the single law

causedP if P

where P is the single fluent and there are no actions, then the transition diagramibedsoy D, T'(D),
has a single state = {P}. Thus the causal lawausedP is satisfied byI'(D) (equivalently,D |=
ALWAYS holds P), and can be seen a semantic consequenée éfowever, if we add

caused—-P if =P

to D, thenT'(D) has another stat¢é = {—P} andD [~ ALWAYS holds P; thuscausedP is no longer
a semantic consequence. The AGM framework, and similarly the KM frankgwsonot suitable for non-
monotonic settings, as discussed, e.g., for non-monotonic logic programnjir®j and for defeasible logic
in [8]. Thus governing our action description updates with the AGM or KNgtplates is not meaningful; an
AGM- respectively KM-style theory for non-monotonic logics with signifitatiention is, to our knowledge,
still missing. Instead, we considered some basic properties in Section 4dlzataog to properties for non-
monotonic logic programming updates [18]. We note that [33], for instacmesiders the incorporation
of belief change into the fluent calculus, geared by an axiomatic treatméalief revision and update
satisfying the AGM and KM postulates, respectively. However, the uyidgrlogic is monotonic and only
static knowledge is subject to change, and preference is based dkirggrahstates.

7.3 Repair of Action Descriptions

We can sometimes improve solutions (and near-solutions) to an ADU prdlilem C,) by considering
a slightly different version of the problem. We may take the view that a céasas not completely wrong,
and for instance holds in certain contexts. Supposeltigas dynamic law of the form:

causedl’ after A’ A G/,

where L’ is a literal, G’ is a propositional combination of fluents, ardd is an action. We can obtain
an action descriptiorD* from D, which describes the same transition diagramDashy replacing each

32 INFSYS RR 1843-13-08

dynamic law (5) inD,,, with:
causedL if F after H A G,
causedL if F after H A -G'.

We then have that for each near-solutibhto (D, I, C, C¢) there exists some near-solutidh’ to (D, I,

C, C¢) which containsD’ as a subset (in particular, for subset preferenceach solution t¢D, I, C, C)
gives rise to some solution ¢D*, I, C, C)); with an (ad-hoc) adaptation of the solution preferenge

to C¢, the solutions of D, I, C,C¢) can then be recovered from the onegbF, I, C,C¢). Therefore,
such a replacement method can be useful to prevent “complete removatined laws from the given
action description. Furthermore, solutions(@#°, I, C, C¢,) which do not correspond to solutions of the
original problem(D, I, C, C¢) can be viewed as approximations of solutions for the latter. They might be
of particular interest if the original problem has no solution.

Similar methods are also useful for repairing an action description, e.gm#é ggnamic laws (5) in the
action description have missing formulas#h In this case, we need to replace such causal laws by some
modified statement(s) from a candidate space. Our current framewotecgeneralized in this direction
by changing the candidate solution space for a solufdrom D, € D’ C D, U I to a set of action
descriptionsand (D, I') such thatD,, U I C D’ holds for eactD’ € cand(D, I); if a modifiable causal law
¢; in D gives rise to alternative candidate replacements!(¢;, I), thencand(D,I) = {U_, D; | D; €
cand(¢;, I)} should hold, wherd = {/¢1,...,4,}.

We note that as for repairing action descriptions, [15] took a slightly @iffersemantics-oriented view
for resolving conflicts between an action description and a set of corglifiothe context of action language
C. Conflicts are characterized by means of states and transitions in the tradsigoam described by the
given action description that violate some given conditions. The goal istdseeach conflict by modifying
the action description, but not necessarily by deleting some causal laggevdr, the repair of a single
conflict might be achieved by numerous alternative changes to the actonp®n, such that the candidate
solution space is very large; furthermore, the repairs of individuallictinterfere with each other, and
might introduce other conflicts. This led the authors of [15] to propose@utjor the user in terms of
guery services on an action description and conditions, which proviglaretions for certain disorders,
rather than an automated repair; a respective tool and methodology feags to correct editorial errors
in the knowledge representation process (e.g., by typos or omitted fornmg @ee described in [19, 20].
An interesting issue for further work is to analyze under which conditioet sepairs can be obtained as
solutions of an ADU problem in a generalized framework as outlined above.

8 Conclusion

In this paper, we have considered the problem of updating an actiorigtEstwith some new information

in the framework of action languages, where meta-level knowledge #futomain in terms of observa-
tions and other constraints is respected. To this end, we have introdtaretednotion of action description
update which, given an action descriptibnthe new informatiod (as a set of statements) and some desired
conditionsC' (expressed in an action query language), singles out a solution to tateymblem, based
on a preference relatianc over action descriptions.

We then studied semantical and computational properties of action updateés frathework, where
we presented among other results decomposition results and complexitgtehiaedions of basic decision
problems associated with computing solutions, viz. deciding solution existerceadution recognition.
We considered in the complexity analysis generic settings as well as partitstiances, paying attention

INFSYS RR 1843-13-08 33

to different classes of conditions and preference relations. Furtmermwe presented some algorithms for
computing solutions and near-solutions (which approximate solutions), amtissussed our work in the
context of the literature.

Several issues remain for further work. Our computational resultdgea@vbasis for the realization of
concrete implementations to incorporate updates into action descriptions irtidrelanguage’, based on
top of existing reasoning system like the causal calculator [47] or ADARU®], which is an important
need for deploying such systems to applications. However, for practicakerns, efficient domain-tailored
algorithms will need to be developed.

In connection with this, meaningful fragments of low (polynomial) complexitycdiiaterest; related to
this is the study of language fragments that correspond to simpler (lessei@) action languages, such
as.A or B (see [26]). However, several of the intractability results that we eskealibere involved rather
simple action descriptions, which suggests that polynomial complexity will hdweachieved by pragmatic
constraints rather than logical or structural conditions. On the other, hésudricher, more expressive action
languages, such as the languégeith disjunctive causal laws may be studied, the action langdadd0],
or the action languagk [17] (into which the language considered here maps naturally) may be dtudie

Further issues are to consider richer forms of conditions (e.g., by glerest action query languages),
and to extend the current computational study to further notions of preferrelations. For example, to
syntax-based preference using cardinality, lexicographic ordearirigrmula ranking, possibly with priority
levels on top [7, 10], or to semantic-based preference that uses atigrtvassignments like those in [16]
(which are computable in polynomial space) or preference based onastdt&ransition-rankings, inspired
by approaches e.g. in conditional reasoning (see [22]).

Another issue are multiple updates. The update descriptions that we feck$eme provide a useful
basis for a realization of Markovian (history-less) upddteds, . . ., I of an action description under lazy
evaluation, and may be used, similar as update programs in the context optogiam updates [4, 18],
also to realize non-Markovian semantics of a sequence of updates tti@m de&scription. However, this
remains to be explored in further investigation.

Finally, in regard with connection with AGM and KM theory, postulates angherties that are tailored
to theories of action in a non-monotonic setting would be interesting.

Appendix

A Proofs for Section 5

Theorem 4 Given an action descriptioD and a setC' of queries, deciding® = C' is (i) PSPACE-
complete in general, (ii@ﬁrg-complete ift is the maximal nesting depth of dynamic querie€'jrand (iii)
Pﬁ“’—complete ifC’ does not involve dynamic queries.

Proof. Concernind(i) the result has been shown in [16]. We proceed with the progf)odnd(iii) .
Membership W.l.0.g. C' contains a single query. Let us conside(iii) first. Then,c is a conjunction of
clauses over universal queries of the foRWAYS (@ or —ALWAYS (@, where(is a conjunction of clauses
over static queries of the forimolds F' or —holds F'. Checking truth of a negated universal (sub-)query of
this form is inNP. To wit, we nondeterministically guess a possible stabé D and verify in polynomial
time thats is a state ofD (satisfies all static laws dD) and thats does not satisfy) (there is a clause i)
such that none of its static queries is satisfieg)aHence, the complementary task, i.e., checking the truth
of a positive universal querALWAYS @, is incoNP. Thus, we can decidP = cin polynomial time with

34 INFSYS RR 1843-13-08

a single parallel evaluation of NP-oracle calls, given that is the number of universal queriesdn This
provesPﬂIP-membership.

For (ii), the queryc is a conjunction of clauses over universal queries of the fAtWAYS (@ or
—ALWAYS (@, where@ is a conjunction of clauses over static queries as above and over dynagnies)
necessarilyQ,_ after Ay;...; A, or —-necessarilyQ),_, after Ay;...; A,, whereQ_1 is a basic query
of nesting depthk — 1. Letc¢; — ¢4 denote queries of the formy = ALWAYS @, co = -ALWAYS Q,
cs = ALWAYS —(Q, andcy = -ALWAYS —(Q), respectively. We show by induction that deciding whether
D cisin©f,,.

Base casek{ = 0): For staticQ, by (iii) decidingD | ¢, isin Ph\“’, for1 < ¢ < 4. Hence, let
@ = necessarilyQy_1 after Ay;...; A, be a dynamic query. Decidin® = c¢; is in NP since the
complementary probler® |= ¢, isincoNP. The latter problem is decided by nondeterministically guessing
a historyh = sg, A1, s1,...,8,-1, An, s, Of lengthn and checking in polynomial time thatis a history
of D, i.e., thats; (0 < i < n) is a state ofD and that(s;, A;+1, si+1) (0 < i < n)is in R. Furthermore,
D, s, E —Qi—_1 can be checked in polynomial time sin€g_; is a propositional combination of static
queries, witnessing [~ c;. DecidingD = ¢ is in I1 and the complementary proble = ¢, is in 4.

To wit, in order to disproveD = c3, guess a state and—as outlined above—use thé-oracle to verify
that for all historiesh of lengthn emanating froms (sy = s) it holds thatD, s,, = Qr_1. This establishes
D, s = —Q and henceD [~ c3. Putting all together, in order to decide |= ¢, an oracle fo2” problems
is sufficient to decide the truth of any universal query.iThus,D |= ¢ can be checked in polynomial time
with a polynomial number of parallél?’-oracle calls and therefore is @

Induction step: Let the nesting depth of dynamic queriek be0, and assume that decididy = Q1

isin @kP+2 for any subquery of nesting depth— 1. Then, as easily seen by the arguments for the base case
above,D = I can be decided by means oﬁg;z-oracle for any universal queir§ < c. Thus, again by
parallel evaluationD |= cisin ©f, ,.
Hardness In order to prove(iii) we reduce the problem to the foIIowirigFP-hard decision version of
Maximum CNF SatisfiabilityGiven a Boolean formuld&’ in conjunctive normal form (CNFand an in-
tegerk, decide whether the maximum number of clause#’ithat can be simultaneously satisfied by an
interpretation i) mod k.

W.lLo.g., let " be a 3-CNF formula of the formi\!" , L; 1 V L;» V L;3, whereL;;, 1 < i < n,

1 < j <3,isaliteral over atom¥ = {X;,..., X,,}. ForX; € X, by =L we denote-X; if L = X, and
X; if L = —X;. Consider the action descriptidn, consisting of:

causedC; if L; 1, causedC;if L; 2, causedC; if L; 3,

. 1< <
caused—C; if ~L; 1 A—=L;o A —L; 3, } ==

causedF ; if Cy, caused—F ; if =Cq,
causedF o if -Cy, caused—F if Cy,

causedF; ; if C; A Fj_1j_1,

; 2<3< 1<7<1
Caused_\Fiyj if =C; A E—l,j—h } SN, L7510

CaUSGdFi’j if =C; A Fi*l,ja

i 2<1< < i<i
caused—F; ; if CiyANFi_q1; } <i<n,0<j<1

Observe thaiD; contains only static laws. A state, consistent withD; corresponds to an arbitrary total
interpretation onX together with a total interpretation on flueritg 1 < ¢ < n, such thatC; is true ats iff
the interpretation oX satisfies clausé€’;. The latter is enforced by the firgt laws in D;. The remaining

INFSYS RR 1843-13-08 35

laws cause atotal interpretation on fluehts, 1 < j < ¢ < n, suchthat; ; is true ats iff the interpretation
on X satisfiesj clauses amon§C1, ..., C;}.
Now consider the following query:

¢, = ALWAYS holds F, oV
SOMETIMES holds F,, ; A ALWAYS (=holds F}, j41 A ... A —holds F}, ,,)Vv

SOMETIMES holds F}, 5, A ALWAYS (=holds F, 541 A ... A =holds F,,),

wherel = [n/k|.

We show that the maximum number of clause#’ithat can be simultaneously satisfied by an interpre-
tation isO mod & iff Dy = ¢y.

Only-If: Suppose that the maximum numhbeiof clauses inf' that can be simultaneously satisfied
by an interpretation i$ mod k. Considero = 0 first. Then, no clause of’ is satisfiable. By con-
struction, F; o holds for1 < i < n at every states of D;. In particular,F}, o holds at every state, and
thereforeALWAYS holds F), is entailed byDy, i.e., D1 = ¢;. Now leto > 0. W.l.o.g.o = ak for
somel < a < [. Then, by constructiorF;, ; is false foro < j < n at every states of D;. There-
fore, D; = ALWAYS (-holds F,, qx+1 A ... A —holds F, ;). Also by constructionF;, , is true at a
state corresponding to an assignment that maximizes the simultaneously satafiges. This implies
D, = SOMETIMES holds F, .;. Observing that, together, these two queries constitute a conjungt of
we conclude thab; |= ¢.

If: SupposeD; = ¢, and assumé; = ALWAYS holds F;, first. Then, by construction no clause
in F' is satisfiable, Hence the maximum numbeof clauses inf’ that can be simultaneously satisfied by
an interpretation i9 and thuso = 0 mod k. Now let any other conjunct af;, be entailed byD+, i.e., for
somel < a < [it holds thatD; = SOMETIMES holds F;, ., andD; = ALWAYS (—holds F;, q54+1 A
... A =holds F,,). Then, there is a stateat which F,, . is true. By construction, this means thst
clauses oft” can simultaneously be satisfied. Moreovey,; is false at every stateof D if j > ak. Again
by construction, this implies thatk is the maximum number of clauses ithat can be simultaneously
satisfied. Sincek = 0 mod k this proves the claim.

For hardness in Cag@), considernn quantified Boolean formulas of form

O =X Qo X QXLE, 1<i<m,

whereQ; = Jif i = 1 mod 2 andQ; = V otherwise, X} and X}, 1 < i,j < nandl < k,l < m, are
pairwise disjunct sets of propositional variables i j or k # 1. andE' is Boolean formula over atoms
in X! = Xt u---uU X!, such that if®; is false then®; 4, ..., ®,, are false, too. Deciding whether the
maximum index, 1 < o < m, such thatb, is true, is odd i39§+1-hard.

We reduce the problem of decidirig |~ ¢ for a queryc with nesting deptlt of dynamic queries to this
problem, as follows.

Letn =k +2,1 <1 <m,and letD, be the action description consisting of the statements:

causedF} if F! after A;_1,

; 2<i<n FleX!
caused-F! if ~F! after A;_1, } Stsn, by e Xy

causedF]? after 4,_; A F},

2<i<n.1<j<n.,i#ij FlecX!
causedﬁF}afterAi_l/\ﬂF}, } sismlsjsni#jkeX;

36 INFSYS RR 1843-13-08

Observe that a stateof Dy corresponds to an arbitrary consistent total interpretation &vep - - - U X™,
Note also thats, {4;},s’) (1 <i < n — 1) is a transition in the transition diagram describedbyiff all
fluents are interpreted identically except those d{iﬁrl U---UXm.

Consider the query:

(M52 SOMETIMES f%+1 A ALWAYS —f2:42) v fm if m is odd
Co =

(m2)/2(SOMETIMES f2+1 A ALWAYS —f2+2) otherwise,

where
f! = p1 necessarilyp; (... (p,—1 necessarily,_; holds E' after {A4,,_1})...) after {4},

wherep; = — if i is even, void otherwise, far < i <n — 1.

We first prove thatb, is true iff there exists a stateof Dy, such thatDs, s |= f*.

For the only-if direction suppos@; is true. We show by a recursive argument that if a state
coincides with a satisfying truth assignment fbr on X{ then Do, 59 = f'. Assume thats,_, is a
state of D, that coincides with a satisfying truth assignment dgron X! U --- U X! ;. We show that
Dy, 8y_9 = pp_1 N p,_1holds E! after {A,,_1}. If n — 1is odd then@,, = V. Thus, any assign-
ment onX!, will turn the assignment o} U --- U X! | given bys,_» into a satisfying assignment for
E!. Thus, every transition byA,,_;} from s, _o will lead to a states,,_; that satisfiess!. This proves
Do, 5, o = necessarily holdsE! after A,,_; if n — 1is odd. So let» — 1 be even. Ther),, = 3. In
this case, there exists an assignment@nthat, together with the assignment & U --- U X! _, given
by s,_o, is a satisfying assignment f@'. Thus, there is a transition by4,,_;} from s,,_» to a states,,_;
that satisfieds!. Therefore,D,, s,,_» = —necessarily-holds E' after A,,_ if n — 1 is even. In any case,
Ds, 8,9 = pn_1 N holds p,,_; E' after {A,,_1}. Applying this argument recursively proves the claim
that if a states, coincides with a satisfying truth assignment figron X!, thenDs, 5o |= f', and thus, that
there exists a state @b, such thatD,, s = ft.

For the if-direction lets be a state oD,, such thatD,, s = f!. We establish the truth @b; recursively
as follows. Leth = s, Ay, 81,...,8,—3An_2, Sp,—2 be a history ofD,. We show thas,, s is a state ofD,
that coincides with a truth assignment &1 U --- U X!, such thaQ,, E' is true. Ifn — 1 is odd, then
Ds, s, = necessarily holdsE! after A,,_1, sinceDs, s = f!. Thus, any assignment oxi, will turn the
assignment ok} U --- U X! _, given bys,,_ into a satisfying assignment fd#'. If n — 1 is even, then
Dy, s,_o = —necessarily—holds E' after A,,_1, sinceDs, s = f'. Therefore, there exists an assignment
on X! that will turn the assignment oX! U --- U X! | given bys, _» into a satisfying assignment for
E'. Hence, in any cas@,, E' is true. Applying this argument recursively proves the claim ats = f!
implies the truth ofd;.

We now show that the maximum indexsuch thatd, is true, is odd iffDy = c,.

Only-If: Let the maximum index such that®, is true be odd. Consider any stat®f D, such that
Do, s = f. If o = m this provesD; |= ¢,. So leto < m. Then additionallyD,, s [~ fo*!, for every
states’ of D,. Hence,D, = SOMETIMES f° and D, |= ALWAYS —f°*! ie., forl = (o —1)/2
Dy |= SOMETIMES 241 A ALWAYS —f2+2, This provesDs |= c,.

If: AssumeDy = ¢,. If mis odd andDy = f™, Thenm is the maximum index such that®,
is true, ando is odd. This proves the claim. So consider the remaining cases, i.e., therandeari
(0<1< (m—3)/2if misoddand) < < (m—2)/2, otherwise), such thdd, = SOMETIMES f2+1 A
ALWAYS - 242 Then, there is a stateof Dy such thatf?+! is entailed, whereag?*2 is not entailed

INFSYS RR 1843-13-08 37

at any states’ of D,. Leto = 20 + 1. We conclude tha®, is true and®,; is false. Thusp is the
maximum index such thak, is true, and it is odd. This proves the claim and therefofe ,-hardness, i.e.,
O}, 5-hardness. O

Theorem 5 Deciding whether a given ADU problef®, I, C, C) has a solution (or a near-solution) is (i)
PSPACE-complete in general, (iixkﬂg—complete, ifc is the maximal nesting depth of dynamic queries in
C,, (i) ©¥-complete, ilC, does not involve dynamic queries, and (\f-complete ifC,, = (.

Proof.

MembershipFollows from Theorems 3 and 4.

Hardness Hardness in Cas@) follows from Theorem 4. Fofii) letn = k£ + 2 and let

=Y Q1 X QX FE
be a QBF, wher€); = 3 if : = 0 mod 2 and@); = V otherwise. Consider
D, = Dy U {causedY; after A;_; AY;, caused—Y; after A; 1 A—Y; |2 <i<n},

whereD; is the action description from the proof of Theorem 4 with 1, D,,, = {causedY;, caused—Y; |
Y,eY},I=0,C=C,uUC,withC, =0 and

C, = {ALWAYS p; necessarilyp;(... (pn—1 necessarilyp,_iholdsE after {A,_1})...) after {A;}},

wherep;, = — if 4 is odd, void otherwise, fot < i < n — 1. We show that there exists a solution to the
action description update proble®,, U D,,, I, C, C¢) iff @ is true.

For the only-if direction, letb,, € D’ € D, U D,, be a solution. The’ is consistent and states
of D’ coincide with some interpretation dn and an arbitrary interpretation oy, . .., X,,. By the same
arguments as in the hardness proof of Theord(i) 4the fact thatD’ = C, witnesses the truth cb.

For the if-direction letd be true. Consider a satisfying truth assignmentrgriet D!, be the set of
static causal laws fron,,, compliant with this assignment, and Bt = D,, U D/,.. Then,D’ is consistent
andD, € D' € D, U D,,. Moreover, by the same arguments as in the hardness proof of Thddigm
D’ = C,. This proves thaD’ is a near-solution, and hence the existence of a solution.

For (iii) let ® = 3Y'VX E and consider the action description update problém U D,,,, I, C,C¢),
whereD,, = 0, D,, = {causedY;,caused-Y; | Y; € Y}, I = (), andC = C, = {ALWAYS holds E}.
We prove that the action description update probiém U D,,,, I, C, C¢) has a solution iffp is true.

For the only-if direction, letD,, € D’ C D,, be a solution. TherD’ is consistent and states &Ff
coincide with some interpretation dn and an arbitrary interpretation oXi. SinceD’ = C,, E is true at
every such state, witnessing that any truth assignmer ¢arns the joint assignment on botti,and X,
into a satisfying assignment f@f. This proves the truth ob.

For the if-direction let® be true. Consider a satisfying truth assignment’orand letD’ be the set of
static causal laws fron®,,, compliant with this assignment. Theb, is consistent and, C D' C D,,.
Moreover, sinceb is true, any truth assignment ofi turns the joint assignment on bofti,and X, into a
satisfying assignment faE. Therefore,E holds at all states ab’, witnessingD’ = C,. This proves that
D’ is a near-solution, and hence the existence of a solution.

Finally. for (iv), let E be a Boolean formula over atom¥sand let us defind,, = {causedY; if - F,
caused-Y; if -E}, D,, = {causedY;,caused-Y; | Y; € Y}, I = @, andC = 0. Then, (D, U
D,,,I,C,C¢) has a solution iff£] is satisfiable.

38 INFSYS RR 1843-13-08

For the only-if direction, letD,, € D’ C D, U D,, be a solution. TheD’ is consistent and states of
D’ coincide with some interpretation an. SinceD,, C D', E is true at every such state. This proves the
satisfiability of £.

For the if-direction letZ be satisfiable. Consider a satisfying truth assignmerit oand letD;,, be the
set of static causal laws from,,, compliant with this assignment. TheR, = D,, U D], is consistent and
D, C D' C D, U D,,. MoreoverD’ = C, trivially. This proves that)’ is a near-solution, and hence the
existence of a solution. O

Theorem 6 Given an ADU problen{D, I, C, C) and an action descriptiod’, deciding whethe)’ is a
solution for it is (i) PSPACE-complete for general queries ifl,, (ii) HkP+3-compIete ifk is the maximal
nesting depth of dynamic queriesdh, (iii) I15-complete ifC,, does not involve dynamic queries, and (iv)
D”-complete ifC, = 0.

Proof.

MembershipFollows from Theorem 3, observing that for any given action desorip D’ and D", deciding
D’ c D" can be done in polynomial time, i.e., ttatheck is in P for C.

Hardness Hardness in Casg) follows from Theorem 4. Fofii) letn = k£ + 2 and let

be a QBF, wheré); = Jif i = 1 mod 2 and(); = V otherwise. Consider
D,, = Dy U {causedY; after A;_; AY;,caused-Y; after A;_1 A=Y; |2 <i<n},

whereD; is the action description from the proof of Theorem 4 With 1, D,,, = {causedY;, caused-Y; |
Y; e Y}, I =0,andC = C, = {ALWAYS f V g}, where

f = p1 necessarilyp; (...(p,—1 necessarilyp,_1 holds E after {4,,_1})...) after {4},

g = /\ o SOMETIMES holds Y; A SOMETIMES holds —Y;,
wherep; = — if i is odd, void otherwise, for < i <n — 1, andp,, — 1 = —if n is odd and void otherwise.
We show thatD,, is a solution to the action description update problém U D,,,, I, C, C) iff & is true.

Obviously, D,, is consistent and C D,,. Additionally, states ofD, consist of arbitrary truth assign-
ments toY and X, ..., X,,. Therefore,D, satisfiesg, and henceD,, = C,. This proves thaD, is a
near-solution. We show that it is a maximum near-solutio®if§ true.

For the only-if direction, towards a contradiction assume dhat false. Then-® is true. Observe that
=® is a QBF of the form considered in the hardness proof of Theoréih with £ negated. Applying the
arguments of this proof, we obtain that there exists dsett D' C D, U D,,, such thatD’ is consistent
andD’, s = f for every states of D’ (Note thatp,_, accounts for the negation @&). ThereforeD’ = C,,
and thusD’ is a near-solution. This contradicts the maximality/f.

For the if-direction, towards a contradiction assume fhatis not maximal. Then, all sates of a max-
imum solution coincide on at least one assignment to sbme Y, and therefore it does not satisfy
Consequentlyf is satisfied at all states of a maximum solution. Applying the arguments of thadsard
proof of Theorem Xii), we conclude that® is true, a contradiction.

For (iii) let ® = VY 3X E and consider the action description update prob{ém U D,,,I,C, C),
whereD,, = (), D,, = {causedY;,caused-Y; | Y; € Y}, I = (), andC = C, = {ALWAYS —holds E V
g}, with g as before. We prove that the action description update problgpu D,,,, I, C, C) hasD,, =
as a solution iff® is true.

INFSYS RR 1843-13-08 39

Obviously, D,, is consistent and C D,,. Additionally, states ofD,, consist of arbitrary truth assign-
ments toY” and X. Therefore,D,, satisfiesy, and henceD,, = C,. This proves thaD,, is a near-solution.
We show that it is a maximum near-solutiondifis true.

For the only-if direction, towards a contradiction assume ¢hit false. Then-® is true. Observe that
-® is a QBF of the form considered in the hardness proof of Theordii) Svith £ negated. Applying
the arguments of this proof, we obtain that there exists aet- D’ C D,,, such thatD’ is consistent
andD’ = ALWAYS —holds E, i.e., D' = C,. Therefore,D’ is a near-solution, which contradicts the
maximality of D,,.

For the if-direction, towards a contradiction assume fhatis not maximal. Then, all sates of a max-
imum solution coincide on at least one assignment to sbme Y, and therefore it does not satisfy
Consequently, a maximum solution must satisWVAYS —holds £ . Applying the arguments of the
hardness proof of Theorem(li) , we conclude that® is true, a contradiction.

Finally (iv), let £; and E; be Boolean formulas over atom$ andY>, respectively. Consideb, =
{caused—F, causedF if —E;}, D,, = {causedF if —=Es}, I = (), andC =). Then,(D,, U D,,,I,C,C)
has solutionD,, iff E is satisfiable and’s is unsatisfiable.

Obviously,I € D,, andD,, = C,. Therefore,D, is a solution iff it is consistent and maximal, i.e.,
no superset ofD,, is consistent. We show that this two conditions holdAff is satisfiable andEs is
unsatisfiable.

For the only-if direction, assume tha, is consistent and maximal. Théf, is satisfiable withessed by
the truth assignment fg, of any state ofD,,. FurthermoreD,, U D,, is inconsistent (otherwise it would be
a solution, since it trivially satisfieS,,), which implies thatt; is unsatisfiable.

For the if-direction, letE; be satisfiable and’; be unsatisfiable. Then any satisfying assignment to
fluents inY; together with assigning falsity t&' and any truth assignment to fluents frafyields a state
of D, witnessing its consistency. Moreovér, U D,,, is inconsistent due to the unsatisfiability /g, which
implies thatD,, is maximal. This prove®’ -hardness. O

Theorem 7 Given an ADU probleniD, I, C, <Weighg) and an action descriptio®’, deciding whetheD’

is a solution for it is (i)PSPACE-complete for general queries @, (ii) HkPH-complete ift is the maximal
nesting depth of dynamic queriesdn (iii) T} -complete ifC' does not involve dynamic queries, and (iv)
NP-complete ifC = 0.

Proof.

MembershipFor (i), (ii), and(iii) membership follows from Theorems 3 and 4. Note that in order to decide
Dq <weight, D, for any action description®, and D9, such thatD,, UI C D; C DU fori € {1,2},
and a set of weighted queri€$, we decideD; |= c, for everyc € C, (i.e., polynomially many), and sum
up the corresponding weights in polynomial time. ThusDjf = ¢ can be decided in polynomial space,
respectively in polynomial time with the help ofEalP_l—oracIe, therPcheck is in PSPACE, respectively
in Af, for <weight, - For (iv), i.e. C = (), Pcheck is trivial for <weight, - In this case we can decide whether
D’ is a solution by guessing a stateand checking that it is a state &f in polynomial time (witnessing
consistency) and additionally checkidg, U I € D’ andD’ C D U I in polynomial time. This proves
NP-membership fofiv).

Hardness Hardness in Cas@) follows easily from Theorem 4. Fdii) letn = k + 2 and conside®, D,,,
D,,,, I, andC, from the proof of Theorem @i). Additionally, let

C, = {ALWAYS holds Y;, ALWAYS holds —Y; | Y; € Y}

and consider a weight of 1 for eaeche C,. Then,D, <weight, D’ for everyD, ¢ D' C D, U D,,,
Sinceweightq(Du) = 0, whereas all states dD’ coincide on at least one assignment to sdrhec Y,

40 INFSYS RR 1843-13-08

thus making at least one of the queriesCip true, i.e.,weightq(D’) > 1. Therefore,D,, is a solution to
(Dy U Dy, I,C, U Gy, <Weigh;1) iff it is a solution to(D,, U D,,,, I, C,, C), which proveslIkP+3-hardness
(cf. Theorem {ii)).

For (iii) consider®, D, I, andC, from the proof of Theorem @i). Again, let

C, = {ALWAYS holds Y;, ALWAYS holds —Y; | Y; € Y}

with weight 1 for eachc € C),. Then, for the same reason as aboik, <weight, D’ for everyD,, C
D" C D, U D,,. Therefore,D, is a solution to(D,, U D,,,,I,C, U Cp, <Weighg) iff it is a solution to
(Dy U Dy, I,C,, C), provingIl{-hardness.

Finally (iv), let E be a Boolean formula over atomSand consider the ADU problem given &y, =
{causedY; if ~F, caused—Y; if -E}, D,, = 0, I = (), andC = (. Then,D,, is a solution to(D,, U
D,,,I,C, <Weightq) iff £ is satisfiable.

For the only-if direction, letD,, be a solution. Thew,, is consistent, states @,, coincide with some
interpretation ort”, andF is true at every such state. This proves the satisfiabiliti .of

For the if-direction letE be satisfiable. A satisfying truth assignmentons a state ofD,,, i.e., D,, is
consistent. Moreovei),, Ul C D, C DU I andD, [C, trivially. And sinceD, UI = D, = DU,
we conclude thab,, is a solution. O

B Proofs for Section 6

Prior to the proof of Proposition 2, we establish the following lemma which pinptietselation between
states and transitions of an update descriptioand any action descriptioR’ obtained by an (arbitrary)
selection of modifiable laws.

Lemma2 LetD = D, U D,, be an action description, and |é?/,, be a subset oD,,,. Let(S,V, R) be
the transition diagram described by’ = D,, U D). LetU = U (D) be the update description @, with
a setH of update fluents, and 1€5Y, VU, RY) be the transition diagram described By Let M be the
subset oH labeling the laws inD!,,. Then the following hold:

() s\Hec Siff sc SYandsnH =M,
(i) (s,A,s)in RUiff s =g &', and
(i) (s\H,A,s\H)ec Riff (s,A,s') € RV ands N H = M.
Proof.
(i) For the only-if direction consider any state= S. By the definition of a transition diagram described

by an action description, for every static law (4)Ii, s satisfiesG O L.

Case 1Take any static law (4) iV, that does not contain arfy; € H. By the definition of an update
description, this static law is iv,, as well. Then, since satisfiess D L, s U M satisfies7 D L.

Case 2.Take any static law (21) itV such thatd; € M. By the definition of an update description,
there is a corresponding static law (4)i),. Then, since satisfiess O L, sUM satisfies? AH; D L.

Case 3Take any static law (21) ity such thatt; ¢ M. Sinces U M does not satisfyz A H;, s UM
satisfiesG A H; D L.

INFSYS RR 1843-13-08 41

(ii)

(iif)

By the definition of an update descriptioli,does not contain any other static laws. Therefore, from
these three cases, it follows that! M is a state inSV.

For the if-direction consider any staten SU, such that N H = M. By the definition of a transition
diagram described by an action description, for every static law (@) insatisfiesz O L.

Case 1Take any static law (4) iD,,. By the definition of an update description it is alsdinand it
does not contain any elementHf Therefores \ H satisfiesz O L.

Case 2.Take any static law (4) iD,,,. By the definition of an update description, for every static
law (4) in D], there is a static law (21) ifY. Since, for every corresponding static law (21)ins
satisfies5 A H; D L, and since by assumptidi; is in s, s \ H satisfies& D L.

From these two cases, it follows that, for every static law (4)ins \ H satisfies? O L. Thus,s \ H
isin.S.

Since no element dfl appears in the head of any causal lawiexcept for the inertia laws (23), we
conclude thats, 4,s) in RV iff s =g .

For the only-if direction consider arly, A, s’) in R. By the definition of a transition diagram described
by an action description, for every dynamic law (5)Iin, s’ satisfiesL if the law is applicable to
(s, A, s") (i.e.,s U A satisfiesliH ands’ satisfies). Due to(i), boths UM ands’ UM are inSY.

Case 1.Consider any dynamic law (5) iti, that does not contain an§/; € H. Suppose that it is
applicable tosUM, A, s'UM). Then, since ndf; € H occurs in this law, it is applicable @, A, s’)
as well. By the definition of an update description, this law iBin Since(s, A, s’) isin R, s’ satisfies
L. Thens’ U M satisfiesL.

Case 2Consider any dynamic law (22) iif, that is not of the form (23), wherH; labels a dynamic
law (5) in D}, i.e., H; € M. Suppose that it is applicable teU M, A, s’ UM). Thatis,s UM U A
satisfiesH A H; ands’ U M satisfiesG. SinceH does not contain anyl; € H, s U A satisfiesH;
sinceG does not contain anif; € H, s’ satisfies. Then, the corresponding dynamic law (5)I),
is applicable tds, A, s'). Since(s, A, s') is in R, s’ satisfiesL. Then,s’ U M satisfiesL.

Case 3.Consider any dynamic law (23) iti. By (i) we conclude thafs, A, s') in RV iff s =g s’
Hence,s UM satisfiesH; iff s'UM satisfiesH;. Therefore, this law is applicable {eUM, A, s'UM)
iff L =H;andH;isinM, or L = ~H; andH; ¢ M. ConsequentlyM is the only interpretation on
H satisfying the heads of the applicable inertia laws.

By the definition of an update descriptioli,does not contain any other dynamic laws applicable to
(sUM, A, s UM).

So far we have shown thag) for every(s, A, s’) in R, s’ U M satisfies the heads of every dynamic
law in U that is applicable tds UM, A, s’ U M). Moreover, we can observe th@f for each dynamic
law in D’ applicable to(s, A, '), there is a corresponding law {n applicable to(s U M, A, s’ U M),
and that(c) except for the inertia laws (23)] does not contain any other dynamic laws applicable to
(sUM, A, s UM).

Since we know that’ is the only interpretation satisfying the heads of all dynamic law®’iapplica-
ble to(s, A, '), it follows from (a)-c) and Case 3 above, th&tu M is the only interpretation satisfy-
ing the heads of all dynamic laws ihapplicable to sUM, A, s'UM). Therefore{sUM, A, s’ UM)
isin RY.

42 INFSYS RR 1843-13-08

For the if-direction consider angs, A, s') in RV, such thats N H = s’ 1 H = M. Due to(i) above,
s\ Hands'\ H are inS. By the definition of a transition diagram described by an action description,
for every dynamic law (5) i/, s’ satisfiesl. if the law is applicable tds, A, s’) (i.e.,sU A satisfiesH
ands’ satisfies).

Consider any dynamic law (5) i»’. Suppose that it is applicable te \ H, A, s’ \ H). That is,
(s \ H) U A satisfiesH ands’ \ H satisfies5.

Case 1.This law is inD,,. SinceG and H do not contain any element &1, s U A satisfiesd and
s’ satisfiesd, and thus the law (5) is applicable ts, A, ') as well. By the definition of an update
description, this law is also . Since(s, A4, s') isin RY, &' satisfiesL. SinceL does not contain any
element ofH, s’ \ H satisfiesL.

Case 2.This law is inD/,. Sinces contains every elemerfi; of H labeling a dynamic law irD/,,,

s U A satisfiesH N H;. By the definition of an update description, there is a corresponding 2w (2
in U, which is applicable tds, A, s'). Since(s, 4, ') isin RV, s’ satisfiesL. SinceL does not contain
any element oH, s’ \ H satisfiesL.

So far we have shown thag) for every(s, A, s') in RV, s’ \ H satisfies the heads of every dynamic
law in D’ that is applicable tds \ H, A, s’ \ H). Moreover, we can observe thi#f) for each dynamic
law in U applicable to(s, A, s’), except for the inertia laws (23), there is a corresponding laWw'in
applicable tos \ H, A, s’ \ H), and tha{c) D’ does not contain any other dynamic laws applicable to
(s\H, A, s\ H).

Since we know that’ is the only interpretation satisfying the heads of all dynamic lavis applicable

to (s, A, s), it follows from (a)-(c) thats’ \ H is the only interpretation satisfying the heads of all
dynamic laws inD’ applicable to(s \ H, 4, s’ \ H). Therefore(s \ H, A, s’ \ H) isin R. 0

Proposition 2 Let(D, I,C, C¢) be an ADU problem, witt = D, U D,,. LetU be the update description
of DUI = D,UIUD,,, and letiW denote a subset db,,, containing laws labeled by the elemeMsC H
inU. ThenD’ = D, UTUW is a near-solution td D, I,C,C¢) iff M is an update set fot/ relative
to C,.
Proof. Let(D,I,C,¢)bean ADU problem, wittD = D, ,UD,,. LetU be the update description 6fU
I = D, UIU D,,, with a setH of update fluents, describing the transition diagfBth= (SY, VU RY).
Let W be a subset oD, containing laws labeled biWI C H in U. LetT = (S,V, R) be the transition
diagram described b))’ = D,, U T U W. We show thatD’ is a near-solution t0D, I, C, C¢) iff M is an
update set fot/ relative toC,,.

For the if-direction suppose thail is an update set fat’ relative toC,. We show thatD’ is a near-
solution to(D, I, C, C¢) the definition of a solution hold.

(i) Sinces N H = M for some state € SV, and due to Lemma @), S is not empty. Therefore])’ is
consistent.

(i) It follows from the definition ofD’ thatD, UI C D' C DU I.

(i) For any state in S, observe that by Lemma(®, s UM is in SU.

We show for any static or dynamic queryand any state in S, thatU, s UM = cimpliesD’; s | c.
Towards a contradiction assurbies UM = candD’, s (£ ¢, and consider a static queryirst. Since
no element oH appears i, and the query is statie,u M [~ ¢ follows. However, this contradicts the

INFSYS RR 1843-13-08 43

assumption. So letbe a dynamic query anda history (10) inT" such thatsy = s andD’, s,, = Q.
We continue by induction on the nesting deptbf c. If £ = 0, then(is a static query and, since no
element ofH appears ir, it follows thats,, U M [~ Q. Moreover, by Lemma &ii) ,

hU:SoUM,Ao,SlUM,...,Sn_lLJM,An,SnUM

is a history inTV. Thus, we conclud&, s UM [¢, a contradiction. So let us assume the claim holds
for dynamic queries with maximum nesting depth- 1, and consider a dynamic query of nesting
depthk. Then,Q contains only static queries and dynamic queries of nesting depth akmost By
hypothesisD’, s, [~ Q impliesU, s, UM F~ Q. Furthermore, again by Lemmg(i#l) , the historyhV
corresponding ta is a history inTV. Thus, we conclud®, s U M [~ ¢, a contradiction. This proves
U,sUM = cimpliesD’, s = cfor all sin S, and any static or dynamic queryand thus also for any
basic query..

We continue considering existential and universal quetie®¥/e show that ifc holds ats U M wrt.
SI[-JLsUM’ thenD’ |= c. For an existentially quantified basic quepy the claim follows from the fact
that, by definition, ifc holds ats U M wrt. Si , ;,;, Somes’ € S exists such thal/, s’ = Q and
s’ =g s. By Lemma 2(i), we conclude that' \ H is a state ofD’. Moreover, fromU, s’ = @ and
the fact that? is basic, it follows thatD’, s’ \ H = @, and hence)’ |= ¢. So letc be a universally
quantified basic quer§), and towards a contradiction, assume that~ c. Then, there exists a state
s" of D’ such thatD’, s’ = Q. Note that by Lemma &) s’ UM < SY. Moreover, since) is basic
we conclude that/, s" UM [~ @ (otherwiseD’, s’ = @ follows which is in contradiction with our
assumption). Howevet/, s' UM }~ Q contradicts that holds ats UM wrt. Sg ;- Therefore, ifc
holds ats UM wrt. Sﬁ,sUM, thenD’ |= ¢ for every existential and universal querythe same follows
for any Boolean combination of existential and universal queries. Thigepg that ifc holds ats U M
wrt. S}ULsuM, thenD’ = ¢, for any queryc.

Finally, we show thaD’ |= C,,. Consider an arbitrary € S (which exists, since b§i) D’ is consistent).
Then, due to Conditiofii) for update fluent sets,U M € Sgo. This means by definition thatholds
ats wrt. S . for everyc € C,. As we have shown above, this implié¥ = ¢ for all ¢ € C,,. This
provesD’ E Co.

For the only-if direction letD’ be a near-solution t0D, I, C,). We show thaiM is an update set
for U relative toC,, i.e., (i) s " H = M for somes € SV, and(ii) Sz , C S¢, .

(i) SinceD’ is consistent there exists a statec S. Furthermore, by Lemma @) we conclude that
s UM € SY, for any such state.

(i) We first show for any static or dynamic quergnd any state in S, thatD’, s = cimpliesU, sUM |=
c. Towards a contradiction assuni®, s |= c andU, s UM £ ¢, and consider a static queafirst.
Since no element dfl appears i, and the query is statig, [¢ follows. However, this contradicts the
assumptionD’, s = ¢. So letc be a dynamic query anfd’ a history (10) T’V such thatsy = s UM
andU, s,, = Q. We continue by induction on the nesting deptbf c. If &£ = 0, then@ is a static query
and, since no element &1 appears ir, it follows thats,, \ H (~ Q. Furthermore, by Lemma @),
s; =H 8o for 1 < ¢ < n. Therefore, by Lemma dii) ,

h:SQ\H,Ao,Sl\H,...,Snfl\H,An,Sn\H

44 INFSYS RR 1843-13-08

is a history inT". Thus, we concludé’, s }~ ¢, a contradiction. So let us assume the claim holds
for dynamic queries with maximum nesting degth- 1, and consider a dynamic query of nesting
depthk. Then,Q contains only static queries and dynamic queries of nesting depth akmost By
hypothesislJ, s,, = Q impliesD’,s,, \ H (£~ Q. Furthermore, again by Lemma(®) and (iii), the
history i corresponding ta. is a history inT. Thus, we conclud®’, s [~ ¢, a contradiction. This
provesD’; s = cimpliesU, s UM [= ¢ for all s in S, and any static or dynamic queryand thus also
for any basic query.

We continue considering existential and universal quetié®t s be any state sV such thas N H =
M. We show thatD’ |= ¢ implies thatc holds ats wrt. Sf .. For an existentially quantified basic
query(@, the claim follows from the fact that then there exists a state S, such thatD’, s’ E Q. By
Lemma 2(i) s’ U M is a state inSY, and sincey is basic, it follows that/, s’ UM |= Q. Moreover

s’ UM =g s, and henceg holds ats wrt. Sﬁ’s by definition. So letc be a universally quantified
basic query), and towards a contradiction, assume thdbes not hold at wrt. S{is. Then there
existss’ € SY ., such that, s’ £ Q. By Lemma 2(i) s’ \ M is a state ofD’, and sincey is basic,
D' s~ Q follows. However, this contradictd’ = c. Therefore, ifD" = ¢, thenc holds ats wrt.
Sﬂs for every existential and universal quetythe same follows for any Boolean combination of
existential and universal queries. This proves fhat= ¢ implies thatc holds ats wrt. S ..

Therefore, given thab’ is a near-solution and hend¥ |= C,, we conclude thaﬁﬁ,s C Sg. 0

References

[1] C. Alchourron, P. Gardenfors, and D. Makinson. On the logic of theory change: Partial coegrac-
tion and revision functionslournal of Symbolic Logic0:510-530, 1985.

[2] J. J. Alferes, F. Banti, and A. Brogi. From logic programs updatesctan description updates. In
Proc. CLIMA V (revised selected and invited papew)ume 3487 oLNCS pages 52—77. Springer,
2004.

[3] J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolvingiogrograms. InProc. JELIA-02
pages 50-61, 2002.

[4] J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, an@.TPrzymusinski. Dynamic updates
of non-monotonic knowledge basekurnal of Logic Programmingd5(1-3):43-70, 2000.

[5] M. Balduccini and M. Gelfond. Logic programs with consistencytwgag rules. Ininternational Sym-
posium on Logical Formalization of Commonsense Reasoning, AAAI 20fng Symposium Serjes
pages 9-18, 2003.

[6] C. Baral and Y. Zhang. Knowledge updates: Semantics and complegitgs.Atrtificial Intelligence
164(1-2):209-243, 2005.

[7] S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Pradeorisistency management and prioritized
syntax-based entailment. Rroc. IJCAI-93 pages 640-647, 1993.

[8] D. Billington, G. Antoniou, G. Governatori, and M. J. Maher. Revism@nmonotonic theories: The
case of defeasible logic. Proc. German National Conference on Atrtificial Intelligence (KI)-pages
101-112, 1999.

INFSYS RR 1843-13-08 45

[9] C. Bouitilier. A unified model of qualitative belief change: A dynamicatgyns perspectivértificial
Intelligence 98(1-2):281-316, 1998.

[10] C. Cayrol, M.-C. Lagasquie-Schiex, and T. Schiex. Nonmonotogsoning: From complexity to
algorithms.Annals of Mathematics and Artificial Intelligenc@2(3-4):207-236, 1998.

[11] J. Chomicki, R. van der Meyden, and G. Saalengics for Emerging Applications of Databases
Springer-Verlag, 2003.

[12] R. Dechter and A. Itai. Finding all solutions if you can find one. Técal Report ICS-TR-92-61,
University of California at Riverside, September 1992.

[13] A. del Val and Y. Shoham. A unified view of belief revision and ugdaJournal of Logic and
Computation4(5):797-810, 1994.

[14] T. Eiter, E. Erdem, M. Fink, and J. Senko. Updating action domaiorge®ns. InProc. |IJCAI-05
pages 418-423, 2005.

[15] T. Eiter, E. Erdem, M. Fink, and J. Senko. Resolving conflicts in aascriptions. IfProc. ECAI-06
pages 424-433, 2006.

[16] T. Eiter, E. Erdem, M. Fink, and J. Senko. Comparing action detsonip based on semantic prefer-
ences.Annals of Mathematics and Artificial Intelligencs0(3-4):273-304, 2007.

[17] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A lggimgramming approach to knowledge-
state planning: Semantics and complexAZM Transactions on Computational Log(2):206—-263,
2004.

[18] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of tpd@quences based on causal
rejection. Theory and Practice of Logic Programmin2(6):721-777, 2002.

[19] T. Eiter, M. Fink, and J. Senko. A tool for answering queriescioa descriptions. IfProc. JELIA-06
number 4160 in LNCS, pages 473-476. Springer, 2006.

[20] T. Eiter, M. Fink, and J. Senko. Error classification in action deions: A heuristic approach. In
Proc. AAAI-08 pages 905-910. AAAI Press, 2008.

[21] T. Eiter and G. Gottlob. On the complexity of propositional knowledgeeh@vision, updates, and
counterfactualsAtrtificial Intelligence 57(2-3):227-270, 1992.

[22] T. Eiter and T. Lukasiewicz. Default reasoning from conditionabwledge bases: Complexity and
tractable casedrtificial Intelligence 124(2):169-241, 2000.

[23] N. Friedman and J. Y. Halpern. Belief revision: A critiquiurnal of Logic, Language and Informa-
tion, 8(4):401-420, 1999.

[24] N. Friedman and J. Y. Halpern. Modeling belief in dynamic systemg, IpaRevision and update.
Journal of Atrtificial Intelligence Researcth0:117-167, 1999.

[25] M. Gelfond and V. Lifschitz. The stable model semantics for logic pogming. InProc. International
Conference and Symposium on Logic Programming (ICLP/Shd)es 1070-1080, 1988.

46 INFSYS RR 1843-13-08

[26] M. Gelfond and V. Lifschitz. Action language<lectronic Transactions on Artificial Intelligence
3:195-210, 1998.

[27] E. Giunchiglia and V. Lifschitz. An action language based on cagigalanation: Preliminary report.
In Proc. AAAI-98 pages 623-630, 1998.

[28] M. Goldszmidt and J. Pearl. Rank-based systems: A simple apptoaetief revision, belief update,
and reasoning about evidence and action®rbt. KR-92 pages 661-672, 1992.

[29] S. O. Hansson.A Textbook of Belief Dynamics: Theory Change and Database Updatipgli€d
Logic). Kluwer, 1999.

[30] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. Handbook of Philosophical Logipages 497—
604. MIT Press, 1984.

[31] A. Herzig. The PMA revisited. IfProc. KR-96 pages 40-50, 1996.

[32] A. Herzig, L. Perrussel, and I. J. Varzinczak. Elaborating dand@scriptions. InProc. ECAI-06
pages 397-401, 2006.

[33] Y. Jinand M. Thielscher. Representing beliefs in the fluent calciiuBroc. ECAI-04 pages 823-827,
2004.

[34] Y. Jin and M. Thielscher. Iterated belief revision, revis@dtificial Intelligence 171(1):1-18, 2007.

[35] Y.Jinand M. Thielscher. Reinforcement belief revisidournal of Logic and Computatioi8(5):783—
813, 2008.

[36] H. Katsuno and A. O. Mendelzon. On the difference betweentingla knowledge base and revising
it. In Proc. KR-91 pages 387-394, 1991.

[37] M. Krentel. The complexity of optimization problemslournal of Computer and System Sciences
36:490-509, 1988.

[38] J. Lang. Belief update revisited. Rroc. IJCAI-07 pages 2517-2522, 2007.

[39] J. Lang, F. Lin, and P. Marquis. Causal theories of action: A adgatnal core. IrProc. IJCAI-03
pages 1073-1078, 2003.

[40] J. Lee and V. Lifschitz. Describing additive fluents in action langu@g. InProc. IJCAI-03 pages
1079-1084, 2003.

[41] R. Liand L. M. Pereira. What is believed is what is explained (sometjmi@ Proc. AAAI-96 pages
550-555, 1996.

[42] P. Liberatore. The complexity of the languade Electronic Transactions on Artificial Intelligence
1:13-38, 1997.

[43] P. Liberatore. The complexity of belief updatrtificial Intelligence 119(1-2):141-190, 2000.
[44] P. Liberatore. A framework for belief update. Rmoc. JELIA-0Q pages 361-375, 2000.

INFSYS RR 1843-13-08 47

[45] V. Lifschitz. Missionaries and cannibals in the causal calculatoProt. KR-00 pages 85-96, 2000.

[46] H. Liu, C. Lutz, M. Milicic, and F. Wolter. Updating description logic ates. InProc. KR-06 pages
46-56, 2006.

[47] N. McCain and H. Turner. Satisfiability planning with causal theoriie®roc. KR-98 pages 212-223.
Morgan Kaufmann, 1998.

[48] J. McCarthy. Elaboration tolerance. Btoc. CommonSens&998.
[49] C. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[50] A. Parmar.Formalizing Elaboration ToleranceDissertation, Department of Computer Science, Stan-
ford University, August 2003.

[51] P. Peppas.Belief Change and Reasoning about Action — An Axiomatic Approach teIhfadDy-
namic Worlds and the Connection to the Logic of Theory Chabjgsertation, Basser Department of
Computer Science, University of Sydney, 1993.

[52] P. Peppas. Belief revision. In F. van Harmelen, V. Lifschitz, anB&ter, editorsHHandbook of Logic
in Artificial Intelligence and Logic Programminghapter 8, pages 317—360. Elsevier, 2008.

[53] P. Peppas, A. C. Nayak, M. Pagnucco, N. Y. Foo, R. B. H. Kvand M. Prokopenko. Revision vs.
update: Taking a closer look. Proc. ECAI-96 pages 95-99, 1996.

[54] L. M. Pereira, J. J. Alferes, and J. N. Aparicio. Contradictiomogal within well-founded semantics.
In Proc. LPNMR-9]1pages 105-119, 1991.

[55] A. S. Rao and N. Y. Foo. Minimal change and maximal coherenceadistfor belief revision and
reasoning about actions. Rroc. IJCAI-89 pages 966-971, 1989.

[56] C. Sakama and K. Inoue. An abductive framework for computingitedge base update3heory
and Practice of Logic Programmin@(6):671-713, 2003.

[57] S. Shapiro, M. Pagnucco, Y. Les@ance, and H. J. Levesque. Iterated belief change in the situation
calculus. InProc. KR-00 pages 527-538, 2000.

[58] F. van Harmelen, V. Lifschitz, and B. Portadandbook of Logic in Artificial Intelligence and Logic
Programming Elsevier, 2008.

[59] K. Wagner. Bounded query class&AM Journal on Computind.9(5):833-846, 1990.

[60] M. Winslett. Reasoning about actions using a possible models appraad®roc. AAAI-88 pages
89-93, 1988.

[61] M. Winslett. Updating Logical DatabasesCambridge University Press, 1990.
[62] D. Zhang. Properties of iterated multiple belief revisionPhoc. LPNMR-04pages 314-325, 2004.

[63] D. Zhang, S. Chopra, and N. Foo. Consistency of action deégmigp InProc. PRICAI-02 pages
70-79, 2002.

48 INFSYS RR 1843-13-08

[64] Y. Zhang and N. Y. Foo. Updates with disjunctive information: Fromtactical and semantical
perspectivesComputational Intelligencel 6(1):29-52, 2000.

