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Abstract In this paper, we study the relation among Answer Set Programming
(ASP) systems from a computational point of view. We consider smodels, dlv, and
cmodels ASP systems based on stable model semantics, the first two being native
ASP systems and the last being a SAT-based system. We first show that smodels,
dlv, and cmodels explore search trees with the same branching nodes (assuming, of
course, a same branching heuristic) on the class of tight logic programs. Leveraging
on the fact that SAT-based systems rely on the deeply studied Davis–Logemann–
Loveland (dll) algorithm, we derive new complexity results for the ASP procedures.
We also show that on nontight programs the SAT-based systems are computationally
different from native procedures, and the latter have computational advantages.
Moreover, we show that native procedures can guarantee the “correctness” of a
reported solution when reaching the leaves of the search trees (i.e., no stability check
is needed), while this is not the case for SAT-based procedures on nontight programs.
A similar advantage holds for dlv in comparison with smodels if the “well-founded”
operator is disabled and only Fitting’s operator is used for negative inferences. We
finally study the “cost” of achieving such advantages and comment on to what extent
the results presented extend to other systems.

A preliminary version of a part of the results presented in this work has been published in [25].
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1 Introduction

Answer set programming (ASP) [36, 41, 46] is a declarative approach to program-
ming, which has been recently proposed in the area of nonmonotonic reasoning and
logic programming. The ASP language is based on logic rules and characterized by
the use of nonmonotonic negation [42]. The intended models of an ASP program
(i.e., the semantics of the program) are subset-minimal models which are “grounded”
in a precise sense, and are called answer sets or stable models [22, 23]. The idea
of answer set programming is to represent a given computational problem by an
ASP program whose answer sets correspond to solutions, and then use an answer set
solver to find such a solution [36].

ASP systems based on stable model semantics include both native ASP systems
(the ones which work directly on a logic program, i.e., clasp, dlv, NoMore++,
smodels, and smodels-cc1), SAT-based systems (the ones which rely on a translation
into a propositional formula and on a SAT solver to solve such formula, i.e., assat
and cmodels2) and the Pseudo Boolean (PB)-based system pbmodels3 [39], which
relies on a translation into a PB formula, and is targeted for logic programs with
cardinality and weight atoms.4

It is worthwhile noting that, in a broader view, ASP includes also other systems
that deal with logic programs but are based on different semantics, like, for instance,
aspps [11], which is based on a logic for propositional schemata, that is somehow
“closer” to classical logic. Here, we do not consider these systems because our focus
is on systems based on the stable model semantics.

In this paper, we study the relation among ASP systems from a computational
point of view. Until recently, the procedures underlying ASP solvers had been often
advocated to be “similar”, but without formal results. In [25], for the first time, we
provided such a needed, theoretical foundation, but only limited to cmodels and
smodels. From there on, other works have been performed in this direction with
different approaches, i.e., the one based on proof system ASP tableaux proposed
in [18] and then extended in [3, 19, 31], and another relying on transition systems,
recently proposed in [35].

1See http://www.cs.uni-potsdam.de/clasp, http://www.dbai.tuwien.ac.at/proj/dlv, http://www.cs.uni-
potsdam.de/nomore, http://www.tcs.hut.fi/Software/smodels, and http://www.nku.edu/∼wardj1/
Research/smodels_cc.html, respectively.
2See http://assat.cs.ust.hk and http://www.cs.utexas.edu/users/tag/cmodels.html, respectively.
3See http://www.cs.uky.edu/ai/pbmodels/.
4Note that in this work we have considered clasp as a “native” solver, given it does not use off-the-
shelf SAT solvers. But, in some sense, clasp can be viewed as a unique system given that it is neither
really “native” nor, as we said, “SAT-based”. Unlike native systems, it does not perform its inference
directly on a logic program. clasp, like SAT-based solvers, computes the completion of a program
and then performs its inference on the completion. Unlike SAT-based systems, clasp does not use
off-the-shelf SAT solvers but implements its own inference engine.

http://www.cs.uni-potsdam.de/clasp
http://www.dbai.tuwien.ac.at/proj/dlv
http://www.cs.uni-potsdam.de/nomore
http://www.cs.uni-potsdam.de/nomore
http://www.tcs.hut.fi/Software/smodels
http://www.nku.edu/~wardj1/Research/smodels_cc.html
http://www.nku.edu/~wardj1/Research/smodels_cc.html
http://assat.cs.ust.hk
http://www.cs.utexas.edu/users/tag/cmodels.html
http://www.cs.uky.edu/ai/pbmodels/
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In this paper, starting from [25], we include dlv in the picture, and present other
relevant results.

We first analyze the computational behaviour of cmodels, smodels, and dlv ASP
systems on the class of tight [12] logic programs. This class is characterized by the
fact that the answer sets of a tight program � are in one-to-one correspondence with
the solutions of the propositional formula representing the completion Comp(�) of
� [7].5 We prove that the three systems explore search trees with the same branching
nodes (assuming, of course, a same branching heuristic) on tight programs. Since
SAT-based systems are based on the Davis–Logemann–Loveland (dll) algorithm,
which is one of the best studied procedures in Artificial Intelligence and Computer
Science, the equivalence results on tight programs allow us to derive new complexity
results for cmodels, smodels, and dlv procedures, related to, e.g., (a) logic program
translations of SAT formulas encoding the pigeons principle and k-CNF randomly
generated formulas, and (b) deciding the best literal to branch on. Note that [31]
have recently shown, among other results, that it is possible to define a proof system
for (nondisjunctive) logic programs which can polynomially simulate tree resolution,
and vice versa (assuming translations between ASP and SAT similar to those we use
in this paper). Given that cmodels (resp. smodels) can be seen as an implementation
of tree resolution (resp. of the proof system for nondisjunctive programs), their work
can be seen as an alternative way of extending results known for dll to ASP systems.
We strengthen this result showing that the procedures produce exactly the same
search trees (assuming the same branching heuristics).

We then turn our attention to nontight programs. We show that on nontight pro-
grams the SAT-based systems are computationally different from native procedures,
and the latter have some computational advantage. This is accomplished by finding
nontight programs which are exponentially hard for cmodels but are very easy for
smodels and dlv.

Moreover, we outline further advantages of native procedures over SAT-based
ones. Consider the points of the algorithms where the computation ends at the leaves
of a search tree without a contradiction (that we call consistent leaf interpretations):
on these leaves each atom in the Herbrand Base has been assigned either to True
or to False. We prove that such interpretations are guaranteed to be answer sets for
dlv and smodels but not for cmodels, which additionally needs a stability check
for their verification. Intuitively, native procedures do not need a stability check
because they employ the “well-founded” operator for negative inferences,6 which
detects in advance possible reasons for “unstability” (recall that, as shown in [32],
a model is stable iff it is a fixpoint of the “well-founded” operator). An interesting
difference among the native procedures arises when their “well-founded” operator is
disabled, and negative inferences are performed by their “Fitting” operator only. In
this case, only the dlv system still guarantees this property, that is, even if the “well-
founded” operator is disabled, the consistent leaves of the computation of dlv are
automatically guaranteed to be answer sets, without the need of any stability check.

5There are other reductions, i.e., the ones presented in [29, 30] which guarantee the one-to-one
correspondence. Here, we consider Clark’s completion because it is the one used by the SAT-based
systems we analyze and because, in general, it leads to better results; see, e.g., the results of the First
Answer Set Programming Competition held in 2007 and even the analysis in [29].
6The “well-founded” operator is called AtMost in the original presentation of smodels.
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This is mainly due to a peculiarity of dlv, which is more “cautious” in the derivation
of positive literals and better ensures their support also employing a four-valued
interpretation for atoms. Starting from these results, we study the complexity of
finding such a consistent leaf interpretation, which is shown to be linear for cmodels,
smodels and dlv on tight programs; and (a) becomes quadratic for native procedures
on nontight programs; (b) remains linear when disabling well-founded inferences.

We finally comment on to what extent all the results presented so far extend to
the remaining ASP systems based on stable model semantics.

An important consideration, which is suggested by the equivalence results of
this paper, is that native and SAT-based ASP systems can take advantages from
each others. ASP solvers could benefit (at least on tight programs) from the great
amount of work done in SAT: search strategies, heuristics and combinations, which
have been shown to be effective in SAT, can be imported (with the necessary
adaptations) in ASP systems leading to similar improvements. This is indeed the case
as shown in [24, 27] (where results are shown to experimentally extend to nontight
programs), and this is the current research trend that the main groups working on
native procedures are following, by implementing optimized look-back techniques
and heuristics in order to more efficiently handling “real-world” problems (see,
e.g., [20, 40, 48]7).

On the other hand, given our results on nontight programs, SAT-based ASP
solvers should evaluate the possibility to import from native solvers (with the needed
adaptations) the techniques for exploiting “well-founded” inferences.

Our considerations have been recently confirmed by clasp [20], which aims at
combining SAT heuristics and optimizations with the powerful techniques specif-
ically designed for ASP. The effectiveness of clasp’s approach is confirmed both
in [20] and in the results of the First ASP Competition [21].8

Summing up, the main contributions of this paper are:

• We prove that cmodels, smodels and dlv ASP systems, based on stable model
semantics, are equivalent on tight programs.

• We show that they are not equivalent on nontight programs, and native proce-
dure have advantages over SAT-based procedures.

• We show new complexity results for such systems.

When dealing with consistent leaf interpretations,

• We highlight computational advantages of native over SAT-based procedures.
• We highlight further computational advantages of dlv over smodels, when

considering the systems without well-founded inferences (i.e., using only Fitting
operator for negative inferences).

• We study the computational cost of achieving such advantages.

The paper is structured as follows. In Section 2 we give the basic definitions.
Section 3 is devoted to the presentation of the algorithms of cmodels, smodels,
and dlv, respectively, which are used in Section 4 for the formal analysis of their
computational properties. Section 5 compares the systems with Fitting’s operator for

7Regarding smodels, these are personal communications from Ilkka Niemelä.
8http://asparagus.cs.uni-potsdam.de/contest/.

http://asparagus.cs.uni-potsdam.de/contest/
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negative inferences (well-founded operator disabled). Section 6 discusses the impact
of our results on other systems. Section 7 is dedicated to the study of the related
work. We end the paper in Section 8 with the conclusions and possible topics for
future research.

2 Basic definitions

In this section, we introduce the basic concepts and definitions that will be used in
the rest of the paper. We first present ASP syntax and semantics, and then important
properties that hold on some classes of logic programs.

2.1 Syntax

Let P be a set of atoms.9 If p is a an atom, p is the negation of p, and p is p. We will
also use the logic symbol ⊥ (standing for False).

Atoms and their negations form the set of literals. If S is a set of literals, we define
S = {l : l ∈ S}.

A rule is an expression of the form

p0 ← p1, . . . , pm, pm+1, . . . , pn (1)

where p0 ∈ P, and {p1, . . . , pn} ⊆ P (0 ≤ m ≤ n). If r is a rule (1), head(r) = p0

is the head of r, and body(r) = {p1, . . . , pm, pm+1, . . . , pn} is the body of r.10 We
also define posBody(r) = {p1, . . . , pm} (resp. negBody(r) = {pm+1, . . . , pn}) as the
positive (resp. negative) part of the body. A (logic) program is a finite set of rules.

2.2 Semantics

Consider a program �, and let X be a set of atoms. In order to give the definition
of an answer set, we consider first the special case in which the body of each rule
in � contains only positive atoms (i.e., for each rule (1) in �, m = n). Under these
assumptions, we say that

• X is closed under � if for every rule r (1) in �, p0 ∈ X whenever posBody(r) ⊆
X, and that

• X is an answer set for � if X is the smallest set (i.e., minimal under subset
inclusion) closed under �.

Now we consider the case in which � is an arbitrary program. The reduct �X of
� relative to X is the set of rules

p0 ← p1, . . . , pm

9Since our analysis compares the ASP solvers whose input are propositional programs, we deal with
propositional programs in this paper. Atoms, literals, rules, programs are implicitly assumed to be
ground here.
10This formulation does not (directly) allow for constraints like ⊥ ← body(r), but they can be
expressed with a rule p

′ ← body(r), p′ , provided p′ is a newly introduced atom.
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for all rules r (1) in � such that X ∩ negBody(r) = ∅. X is an answer set for � if X is
an answer set for �X .

2.3 Program properties

The dependency graph of a program � is a directed graph G such that

• the vertexes of G are the atoms in �, and
• G has an edge from p0 to p1, . . . , pm for each rule (1) in �.

A loop of � is a nonempty set L of atoms such that for each pair p, p′ of atoms
in L there is a path of length > 0 from p to p′ in the dependency graph of �, whose
intermediate nodes belong to L. A program � is tight if G does not contain any loop.

Example 1 Consider the following two simple programs:

�1 : p ← q, not r.
q.

�2 : p ← p.

Program �1 is tight, while �2 is nontight. Indeed, the dependency graph of �1

does not contain any loop, while the dependency graph of �2 contains a loop on
p. Note that �1 has the answer set {p, q}, while the unique answer set of �2 is the
empty set.

If p0 is an atom, we define completion of � relative to p0, i.e., Comp(�, p0), as
the propositional formula

p0 ≡
∨

(p1 ∧ · · · ∧ pm ∧ pm+1 ∧ · · · ∧ pn)

where the disjunction extends over all rules (1) in � with head p0. The completion
Comp(�) of � consists of formulas Comp(�, p0) for each atom p0.

The following theorem exploits an important correspondence between the answer
sets of � and the models of Comp(�).

Theorem 1 [17] For any tight program �, there is a one-to-one correspondence
between the answer sets of � and the models of Comp(�).

As a side effect of the theorem, enumerators of SAT models can be used, on
tight programs, as ASP solvers if run on the completion of �. Note that for nontight
program �2, Comp(�2) is the propositional formula p ≡ p, which has two models,
but the one where p is assigned to True does not correspond to an answer set because
of the loop on p in the dependency graph.

3 ASP procedures

In this Section we present the solving procedures for the ASP systems cmodels,
smodels and dlv. Besides being well-known, we focus on these systems because their
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solving procedures are both representative (at least considering basic algorithms
without learning) of other ASP procedures (e.g., cmodels for assat and smodels
for smodels-cc), and have some peculiarities (i.e., SAT-based vs. native procedures,
and based on four-valued interpretations vs. three-valued interpretations).

Remark 1 In the description of the algorithms reported in this paper, we assume that
parameters are passed to a procedure by value, as in [8].

In the following, given a program �, we denote with P the set of atoms appearing
in �.

3.1 cmodels

cmodels [27] is a SAT-based ASP system which reduces the problem of answer
set computation to the satisfiability problem of propositional formulas via Clark’s
completion, and uses a SAT solver as search engine. In order for the formula to
be fed to a SAT solver, it needs to be converted into Conjunctive Normal Form
(CNF), usually by adding variables (denoted with the set N). Formally, a clause is a
finite set of literals and a (propositional) formula is a finite set of clauses. A three-
valued interpretation is a pair I := 〈T, F〉, where T and F are sets of atoms included
in the signature of the SAT formula. An atom p is True/False/Undef w.r.t. I if p ∈
T/F/((P ∪ N) \ (T ∪ F)). We denote by T(I)/F(I)/U(I) the set of True/False/Undef
atoms w.r.t. I.

In the following, I + true(p) denotes the extension of the interpretation I assign-
ing p to True, and similarly for I + false(p) and I + undef (p).

An interpretation I satisfies a formula � if for each clause C in �, C ∩ (T(I) ∪
F(I)) �= ∅. If I satisfies � then we also say that I is a model of � and that � is
satisfiable. Finally, I is inconsistent iff T(I) ∩ F(I) �= ∅.

There are various versions of cmodels. Here we consider the one proposed in [27]
(called ASP-SAT in that paper) without learning, which also corresponds to the
description on the cmodels’s home page, and it is represented in Fig. 1, where

– � is the input program; � is a set of clauses; I is an interpretation; p and l are an
atom and a literal, respectively.

– lp2sat(�) is the set of clauses—corresponding to the CNF translation (using [52]
clause form transformation) of Comp(�)—formally defined below.

Fig. 1 The algorithm
of cmodels
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– �I is the formula obtained from � by (a) deleting the clauses C ∈ � such that for
some literal l, l ∈ (T(I) ∪ F(I)) ∩ C, and (b) deleting l from the other clauses in
� such that l ∈ (T(I) ∪ F(I)) ∩ C.

– I∅ is the function which extends the interpretation I with I + undef (p) for each
p ∈ P ∪ N.

– test(I,�) returns True if T(I) ∩ P is an answer set of �, and False otherwise.
More in details, it works by (a) computing the reduct �T(I)∩P of � with respect
to the set of atoms T(I) ∩ P; (b) computing the answer set X of �T(I)∩P via
the Dowling–Gallier procedure [10]; and, finally, (c) if (T(I) ∩ P) \ X is empty
returns True, otherwise False.

– ChooseLiteral(�, I) returns a literal in P ∪ P, according to some heuristic, such
that {l, l} ∩ U(I) �= ∅.
Moreover, we assume that the left part of the or at line 5 is evaluated before the
right part at line 6, as customary.

cmodels(�) simply invokes dll-rec(lp2sat(�),I∅,�). It is easy to see that dll-
rec(�,I,�) is a variation of the standard dll procedure. In particular, at line 3,
instead of just returning True as in the standard dll (meaning that the input set of
clauses is satisfiable), it invokes test(I,�): such a modification is needed only if the
input program � is nontight. Indeed, if � is tight we are guaranteed that any model
of lp2sat(�) corresponds to an answer set of � [17], and test(I,�) always succeeds.

In order to precisely define lp2sat(�) we need the following definitions. If p0 is an
atom, the translation of � relative to p0, denoted with lp2sat(�, p0), consists of

1. for each rule r ∈ � of the form (1) whose head is p0, the clauses:

{p0, nr}, (2)

{nr, p1, . . . , pm, pm+1, . . . , pn}, (3)

{nr, p1}, . . . , {nr, pm}, {nr, pm+1}, . . . , {nr, pn}, (4)

where nr is a newly introduced atom, and
2. the clause

{p0, nr1 , . . . , nrq} (5)

where nr1 , . . . , nrq (q ≥ 0) are the new symbols introduced in the previous step.

Finally, the translation of �, denoted with lp2sat(�), is ∪p∈Plp2sat(�, p).

The following proposition states the correctness of cmodels procedure.

Proposition 1 [27] Let cmodels be the procedure in Fig. 1. Then, for each program
�, cmodels(�) returns True if � has an answer set, and False otherwise.

A few remarks are in order:

1. As we said, there are various versions of cmodels. However, if the input program
� is tight, all the versions are equivalent at the algorithmic level. In other words,
the presentation of cmodels in Fig. 1 can be considered as representative for all
the various versions of cmodels, in case of tight programs.
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2. Figure 1 is indeed a simple presentation of cmodels. cmodels incorporates, e.g., a
pre-processing for the simplification of the input program. Analogously, dll-rec
is based on the standard simple recursive presentation of dll: modern SAT
solvers (including the ones used by cmodels) feature more sophisticated look-
ahead, look-back strategies, such as backjumping and learning, and heuristics.

3. Given a program �, its translation lp2sat(�) to SAT is exactly the one used by
cmodels (see [4]).

3.2 smodels

smodels [50] is a native ASP procedure which, given a program �, searches for
answer sets by “extending” an interpretation I till either I becomes inconsistent (in
which case backtracking occurs) or each atom is not assigned to U(I) (in which case
T(I) is an answer set for �). T and F are now sets of atoms in P, and the set of
undefined atoms U is defined as P \ (T ∪ F). Given an interpretation I, the body of
a rule is (a) True if the set of its literals is empty, or (b) equal to the minimal truth
value of its literals considering the order True > Undef > False. We denote the truth
value of a literal or set of literals S w.r.t. I by valI(S), and we will omit the index I
(writing val(S)) when I is clear from the context. A simple, recursive presentation of
smodels is given in Fig. 2, where

– � is a program; I is an interpretation; p is an atom; r is a rule; and l is a literal.
– �I is the program obtained from � by eliminating the rules r ∈ � such that

valI(body(r)) = False.
– ChooseLiteral(�, I) is the same function used by cmodels at line 4 in Fig. 1.
– Given a rule r, assignToTrue(I, posBody(r)) is a procedure that assigns

to True all atoms in posBody(r) that are assigned to Undef. Similarly
for assignToFalse(I, negBody(r)), where undefined atoms in negBody(r) are
assigned to False.

The computation of smodels-rec(�, I) proceeds as follows (in the following, we
say that a set of atoms X extends an interpretation I if T(I) ⊆ X and F(I) ∩ X = ∅):

– Line 1: the interpretation I is extended by the routine expand(�, I), explained
below.

– Line 2: if I is inconsistent, no answer set extending I exists, and False is returned.
– Line 3: if each atom p ∈ P is assigned either to True or to False, then (a) T(I) is

an answer set of the initial program, and (b) True is returned.
– Lines 4–6: if none of the above applies, a literal l is selected (line 4), an answer set

extending I + true(l) (line 5) is searched, and, upon failure, I + false(l) (line 6) is
searched.

expand(�, I) extends the assignment I generated so far by recursively invoking
AtLeast (line 7) and then WFInf (line 10) till it is no longer possible to extend I
(lines 12–13). AtLeast encodes the following facts:

– Line 14: if there exists a rule r whose body is True, and the head is not True, then
the head is assigned to True.

– Line 15: if an atom p, which is not false, is not the head of any potentially
applicable rule, then p can be safely assigned to False.
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Fig. 2 The algorithm of smodels

– Line 16: if there is only one rule with head p, the head is positively assigned (i.e.,
it evaluates to True) and the body is not false, then each undefined atom in the
positive part of the body is assigned to True, while each atom in the negative part
of the body is assigned to False.

– Line 17: if there is a rule with head p whose body contains only one literal l which
is undefined, if p evaluates to False, then l has to be assigned to False.

When no further simplification is possible,

1. I is returned by AtLeast(�, I) (line 18); and, if the program is nontight,
2. WFInf is invoked with �∅

I —the reduct of �I relative to the empty set—and ∅ as
arguments (line 10).

WFInf incrementally adds to a set X of atoms first initialized to ∅ the heads of
the rules in �∅

I whose body is a subset of X (line 19). If X is the set returned by
WFInf(�∅

I , ∅) (i.e., if X is the set returned at line 20), if an atom p does not belong
to X then p can be safely assigned to False (line 11) (see [49] for more details).
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The following proposition states the correctness of smodels procedure.

Proposition 2 [49] Let smodels be the procedure in Fig. 2. Then, for each program
�, smodels(�) returns True if � has an answer set, and False otherwise.

The above presentation of smodels is a recursive reformulation of the description
of smodels provided in [49], page 17. As for cmodels, the actual implementation of
smodels features more complex look-ahead/look-back strategies and heuristic.

3.3 dlv

dlv [33] is, like smodels, a native ASP procedure which works directly on the
program at hand. Actually, dlv can work with the wider set of disjunctive logic
programs, where a rule r is generalized such that the head is a disjunction of atoms.
Here, for the sake of the comparison to the other systems, we restrict the algorithm
of dlv to work on logic programs without disjunction in the head.

A main peculiarity of dlv is the fact that it uses a four-valued interpretation
(instead of the three-valued interpretation of cmodels and smodels) for atoms.
Indeed, dlv can assign the value “must-be-true” (denoted Mbt) to an atom p.
Intuitively, an atom p is assigned the value must-be-true if it has to become True,
but at the moment it misses a “supporting” rule, which is a rule for p whose body is
true. The effect of negation on an Mbt atom is like a “True”, while assigning to Mbt
a negated literal corresponds to the negated literal itself, and a double negation of
an atom means to assign it to Mbt. Formally, a four-valued interpretation is a triple
I := 〈T, M, F〉, where T, M, F are set of atoms included in P. M indicates the set of
atoms assigned to Mbt (M(I) if it is referred to an interpretation I), T and F have
the same meaning as in the three-valued interpretation. The set of undefined atoms
is now defined as P \ (T ∪ M ∪ F).

For simplicity, we will omit the specification of the number of truth values
of the interpretations when it is clear from the context. cmodels and smodels
interpretations are implicitly three-valued, while dlv interpretations are four-valued.
Interpretations valid for both dlv, smodels and cmodels are obviously three-valued.

The body of a rule is now (a) True if the set of literals is empty, or (b) equal to the
minimal truth value of the literals considering the order True>Mbt> Undef> False
(from [13]).

A simple, recursive presentation of dlv is given in Fig. 3, where

– � is a program; I is an interpretation; p is an atom; r is a rule; and l is a literal.
– �I is defined similarly as in the smodels algorithm.
– ChooseLiteral(�, I) is a function similar to the analogous used by cmodels and

smodels, i.e., ChooseLiteral(�, I) returns, given the same program and a “cor-
responding” interpretation, the same literal chosen by the analogous functions
in cmodels and smodels algorithms. Here we assume that ChooseLiteral(�, I)
can choose among all the undefined atoms (in the real implementation of dlv, it
chooses among the so called “PT-literals”).

– similarly to I + true(p), I + false(p) and I + undef (p), I + mbt(p) de-
notes the extension of the interpretation I assigning p to Mbt; and
assignToMBT(I, posBody(r)) is a procedure that assigns to Mbt all atoms in
posBody(r) which are assigned to Undef.
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Fig. 3 The algorithm of dlv

The computation of dlv-rec(�, I) proceeds in a very similar way to the one
of smodels. Here we would like to underline two crucial differences between the
algorithm of dlv and the one of smodels, which are mainly due to the presence of
the Mbt value in dlv, and that will play a fundamental role in some of the results we
will obtain:

– the only point of the algorithm where an atom can be assigned True is line 14, if
the atom is guaranteed to be supported. In every other point, assigning an atom
“positively” means to set it to Mbt.

– in Line 3, if each atom p ∈ P is assigned, we have also to check, differently from
smodels, that there is no atom p ∈ P such that val(p) = Mbt, i.e., no atom is
assigned toMbt. If this is the case, T(I) is an answer set of �, and True is returned,
otherwise False is returned.11

The following proposition states the correctness of dlv procedure.

Proposition 3 [32] Let dlv be the procedure in Fig. 3. Then, for each program �,
dlv(�) returns True if � has an answer set, and False otherwise.

11Note that, when dealing with disjunctive programs dlv calls StabilityCheck(�, I), which checks the
“stability” of the (candidate) answer set (composed by the atoms assigned to True by I) and returns
(a) True if it is an answer set of �, or (b) False otherwise. For the class of nondisjunctive logic
programs studied in this work, StabilityCheck(�, I) is not needed at all for dlv.
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The above presentation of dlv is a recursive reformulation of the description of
dlv provided in [13], pages 40–43, enhanced with the Well-founded operator for
implementing WFInf, from [5], Section 4.1 .

As for cmodels and smodels, the actual implementation of dlv features more
complex look-ahead/look-back strategies and heuristic.

Remark 2 The atoms assigned to True by an interpretation I in dlv computation
coincide with the minimal model of {r ∈ � | valI(body(r)) ≥ Mbt}∅, that is, the
minimal model of the program obtained by deleting the negative bodies from rules
r whose bodies are satisfied. Thus, True atoms are guaranteed to be “founded”, T(I)
collects all consequences of the reduct during the computation; while this property
does not hold for Mbt atoms, because M(I) collects the residual atoms that must
necessarily be True in order to let rules be satisfied, but are missing a founded
justification.

Remark 3 cmodels and smodels support types of rules other than (1), namely
choice rules and cardinality and weight constraints rules [51], while dlv supports
aggregates [16]. The relation in this paper has been studied using the common type
of rule supported by the three systems.

Remark 4 About the implementation, smodels and dlv implement in a more effi-
cient way some of the points presented in the algorithms, e.g., (a) the check about
the tightness of the program (at line 9 of both procedures) is done once, and a flag is
used; and (b) WFInf procedure does not work on the entire set of atoms but only on
atoms involved in strongly connected components.

4 Relating CMODELS, SMODELS and DLV

In this section we study the relation among the ASP procedures presented in
Section 3. We first formalize the notion of “equivalent” procedures, that is, we specify
under which conditions two procedures are considered to be equivalent. Then, we
present equivalence results on tight programs, and we eventually illustrate the results
on nontight programs.

4.1 The notion of equivalent procedures

Our goal is to prove that the computations of smodels, dlv and cmodels on a pro-
gram � are strongly related if � is tight, while there are relevant differences among
the computations if � is not tight. We will compare the search trees of the three
procedures on �, i.e., the search trees of smodels-rec(�, J∅), dlv-rec(�, J∅) and
dll-rec(lp2sat(�), I∅,�), given J and I be an interpretation for cmodels/smodels
and dlv, respectively. These procedures operate in the signature of the input
program and formula, respectively. A technical problem to be dealt with, to compare
the search trees generated by the three procedures, is that the translation lp2sat
introduces additional atoms which do not belong to the set P of atoms in �. However,
we know that, once all the atoms in P are assigned, also the additional atoms
introduced by lp2sat will be assigned by unit-propagate in dll-rec as proved in
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[26]. Thus, in the following, we assume that ChooseLiteral is guaranteed to return
the same, undefined, literal in P ∪ P, given � and “same” interpretations, i.e., the
additional atoms introduced by lp2sat are disregarded.

We say that a set X of literals is a branching node of smodels(�)/
cmodels(�)/dlv(�), if, in the computation of smodels(�)/cmodels(�)/dlv(�),
there is a call to smodels-rec(�, J) /dll-rec(lp2sat(�), J, �)/dlv-rec(�, I), and X
equals T(J) ∪ F(J)/(T(J) ∪ F(J)) ∩ (P ∪ P)/T(I) ∪ M(I) ∪ F(I), respectively.

We then define Branches(proc) to be the sequence of branching nodes generated
in the computation of procedure proc for program �.

Finally, we say that proc1 and proc2 are equivalent if

Branches(proc1) = Branches(proc2).

4.2 Some useful lemmas

In this subsection, we state the first results of this work, by proving some general
lemmas which state the relations among unit-propagate, AtLeast and DetConsInf .
Then, in the subsections below devoted to tight and nontight programs, we show the
main results on the comparison among cmodels, smodels, and dlv algorithms, by
exploiting these lemmas.

To start, we prove that AtLeast and unit-propagate compute corresponding results.

Lemma 1 Let � be a program, I and I′ be two interpretations, such that F(I) =
F(I′) ∩ P and T(I) = T(I′) ∩ P. Then, T(AtLeast(�, I)) = T(unit-propagate(lp2sat
(�), I′)) ∩ P and F(AtLeast(�, I)) = F(unit-propagate(lp2sat(�), I′)) ∩ P.

Proof The proof is by induction on |T(I) ∪ F(I)| = |(T(I′) ∪ F(I′)) ∩ P| = n.

Base case. For n = 0, I = I∅, I′ = I′
∅. In AtLeast, and correspondingly in unit-

propagate, there are two possibilities to make inference at this point:

a if “facts”, i.e., rules of the type (1) with m = n = 0 exist in �, which corresponds
to an application of rule (14) in AtLeast where the body is trivially true.
Assuming such rules ri, 1 ≤ i ≤ q exist, each p0 := head(ri) is then added to T(I).
Correspondingly, in dll-rec, each such a rule corresponds to the clauses (2)–(3)
of lp2sat(�):

{p0, nr}, {nr}.
and nr and p0 are assigned by unit-propagate and added to T(I′). The thesis thus
holds.

b if, for a not yet false atom p0 there is no rule having p0 in the head. Assuming
such atoms exist, rule (15) applies and p0 is added to F(I).
Correspondingly, in dll-rec, clause (5) corresponds to:

{p0}
and p0 is assigned by unit-propagate, thus p0 is added to F(I′). The thesis thus
holds.

If items a and b do not hold, the thesis trivially holds.
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Step case. Consider two interpretations I and I′ such that |T(I) ∪ F(I)| = |(T(I′) ∪
F(I′)) ∩ P| = n, and the thesis holds for n. In the following, we show that each rule
application in AtLeast corresponds to the same assignments in unit-propagate, and
vice versa. Ultimately, given the hypothesis, the two procedures assign the same
atoms in �.

Consider now each line of AtLeast. If rule

(14) applies, p0 = head(r) is added to T(I), because {p1, . . . , pm} ⊆ T(I) and
{pm+1, . . . , pn} ⊆ F(I).
Correspondingly, in dll-rec, (a) nr is assigned by unit-propagate and added to
T(I′) from clause (3), (b) p0 is assigned by unit-propagate and added to T(I′)
from clause (2), and (c) clause (5) is simplified (note that all clauses of type (4)
were previously deleted). The thesis thus holds.

(15) applies, p0 is added to F(I).
Correspondingly, in dll-rec, clause (5) is {p0}: thus p0 is assigned by unit-
propagate and p0 is added to F(I′). The thesis thus holds.

(16) applies, already p0 ∈ T(I), body(r) is not satisfied, and all the undefined literals
in body are added to I, i.e., the undefined atoms in the positive part are added
to T(I) and the undefined atoms in the negative part are added to F(I).
Correspondingly, in dll-rec, the clause (5) is of the form {nr}, while clause (3)
and the set of clauses of type (4) have been reduced in accordance to I, and
(2) previously deleted. Thus (a) nr is assigned by unit-propagate and added to
T(I′), (b) clause (3) is deleted, and (c) all the still remaining clauses of type
(4) (i.e., the ones for which pi �∈ (T(I) ∪ F(I)), 1 ≤ i ≤ n) are assigned by unit-
propagate, the various pi added to the related set, and the thesis again holds.

(17) applies, head(r) ∈ F(I), {p1, . . . , pm, pm+1, . . . , pn} \ (T(I) ∪ F(I)) = {l}, l is
added to F(I) if l = p, and l is added to T(I), otherwise.
Correspondingly, in dll-rec, clause (3) is unit because {nr, p1, . . . , pm,

pm+1, . . . , pn} \ (T(I) ∪ F(I)) = {l} (clause (5) was canceled, nr was assigned by
unit-propagate from clause (2) thus erasing clauses (4)). Thus, the thesis holds,
because again l is added to F(I′) if l = p, and l is added to T(I′), otherwise.

Conversely, consider that a unit clause appears in P ∪ P. This can be because:

1. clause (2) is unit: this is possible if nr has been assigned to True by clause (3)
because {p1, . . . , pm, pm+1, . . . , pn} ⊆ (T(I) ∪ F(I)), and p0 is unit and is added
to T(I′).
Correspondingly, in AtLeast, p0 is assigned and added to T(I) because rule (14)
is applied, and thus the thesis holds.

2. clause (3) is unit: this is possible if nr has been assigned to False, and
{p1, . . . , pm, pm+1, . . . , pn} \ (T(I′) ∪ F(I′)) = {l}, thus l is unit, and it is added to
F(I′) if l = p, otherwise l is added to T(I′). Note that in this case nr could have
been assigned to False only because of clause (2), because all clauses in (4) but
the one containing l are deleted, thus p0 ∈ F(I′).
Correspondingly, in AtLeast, rule (17) is applied, l is added to F(I) if l = p, and
l is added to T(I) otherwise, and the thesis again holds.

3. (at least) one of the clauses in (4) is unit: this is possible if nr has been assigned
to True, thus each pi, 1 ≤ i ≤ m (resp. pj, m + 1 ≤ j ≤ n) which are not assigned
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by I′, is assigned to True (resp. False), and added to T(I′) (resp. F(I′)). Note
that, clause (2) was canceled by p0, thus the only possibility to assign nr was from
clause (5), which did hold because only one rule with p0 as the head was not
canceled by �I′ .
Correspondingly, in AtLeast, rule (16) applies, and the undefined atoms in
posBody(r) are added to T(I) and the undefined atoms in negBody(r) are added
to F(I), thus the thesis holds.

4. clause (5) is unit: this is possible if each nri , 1 ≤ i ≤ q has been assigned to False,
thus {p0} is unit and p0 is added to F(I′).
Correspondingly, in AtLeast, all rules which could support p0 to be assigned have
been deleted in �I , because the nri variables can be assigned to False only from
clauses (4), i.e., the related rule was canceled. Thus, rule (15) applies, and p0 is
added to F(I). ��

We continue with a lemma confirming that a program is simplified (i.e., rules are
canceled) “accordingly” by smodels and dlv, if all Mbt literals in dlv correspond to
True atoms in smodels.

Lemma 2 Let � be a program, J and I be an interpretation for smodels and dlv,
respectively, such that F(J) = F(I) and T(J) = T(I) ∪ M(I). Then, �J = �I .

Proof It follows from the definitions of �J and �I . ��

Lemma 2 allows us, when working on the relation between smodels and dlv, and
when its hypothesis hold (and this will be always the case), to consider that if a rule
r ∈ �J , this implies r ∈ �I ; and vice versa. Ultimately, we do not have to check this
condition when comparing, e.g., the application of rules in AtLeast vs. DetConsInf.

We now prove a lemma which shows the “equivalence” between AtLeast and
DetConsInf - its dlv analogous.

Lemma 3 Let � be a program, J and I be an interpretation for smodels and dlv,
respectively, such that F(J) = F(I) and T(J) = T(I) ∪ M(I). Then, F(AtLeast(�,

J)) = F(DetConsInf(�, I)) and T(AtLeast(�, J)) = T(DetConsInf(�, I)) ∪ M
(DetConsInf(�, I)).

Proof Let n be the number of atoms assigned to True or to False in smodels and,
respectively, assigned to True,Mbt or False in dlv, i.e., n = |T(J)| + |F(J)| = |T(I)| +
|M(I)| + |F(I)|. The proof is by induction on n.

Base Case. n = 0. In both AtLeast and DetConsInf , there are only two possibilities
to make inferences at this point:

a if “facts”, i.e., rules of type (1) with m = n = 0 exists in �, which corresponds to
an application of rules (14) in AtLeast and DetConsInf where the body is trivially
true.



On the relation among answer set solvers 185

Assuming such rules ri, 1 ≤ i ≤ q, exist, each p0 := head(ri) is then added to T(J)

by AtLeast and to T(I) by DetConsInf, and the thesis holds.
b if, for an not yet false atom p0 there is no rule having p0 in the head. Assuming

such atoms exist, rule (15) applies in both AtLeast and DetConsInf , where p0 is
added to both F(J) and F(I), and the thesis holds.

If items a and b do not hold, then the thesis trivially holds.

Step case. Suppose now that n = |T(J)| + |F(J)| = |T(I)| + |M(I)| + |F(I)| and the
thesis holds for n. In the following, we show that each rule application in AtLeast
corresponds to a rule application in DetConsInf , and vice versa, and they make
corresponding assignments. Ultimately, given the hypothesis, the two procedures
assign the same set of atoms with corresponding values. Since the hypothesis of
Lemma 2 hold, in the following we assume that �J and �I coincide and the two
procedures deal precisely with the same sets of rules.

Consider now each line of AtLeast. If rule

(14) applies, J + true(head(r)) is assigned because head(r) /∈ T(J), posBody(r) ⊆
T(J) and negBody(r) ⊆ F(J).
Correspondingly, in DetConsInf, for each pi, 1 ≤ i ≤ m, val(pi) ≥ Mbt
and for each pj, m + 1 ≤ j ≤ n, val(pj) = False, val(head(r)) < Mbt thus
val(body(r)) > val(head(r)) holds. Thus, if each pi is such that val(pi) =
True, val(body(r)) = True and I + true(head(r)) is assigned otherwise
val(body(r)) = Mbt and I + mbt(head(r)) is assigned by rule (14), and the
thesis holds in both cases.

(15) applies, val(p) is not False, � ∃r ∈ �J such that head(r) = p and J + false(p) is
assigned.
Correspondingly, val(p) is not False by induction hypothesis, � ∃r ∈ �I such
that head(r) = p also in DetConsInf by Lemma 2, thus I + false(p) is assigned
by rule (15) in the dlv algorithm, keeping the same behavior of AtLeast. The
thesis thus holds.

(16) applies, head(r) ∈ T(J), for each p ∈ posBody(r), p ∈ T(J) ∪ U(J) and for
each p′ ∈ negBody(r), p ∈ F(J) ∪ U(J). Thus, from assignToTrue, for each
p ∈ posBody(r) s.t. p ∈ U(J), J + true(p) is assigned, and, from assignToFalse,
for each p′ ∈ negBody(r) s.t. p′ ∈ U(J), J + false(p′) is assigned.
Correspondingly, in DetConsInf , val(head(r)) ≥ Mbt and each p ∈ posBody(r)
with val(p) �= Undef is such that val(p) ≥ Mbt, and each p′ ∈ negBody(r),
with val(p′) �= Undef is such that val(p′) = False. Consequently, by rule (16),
from assignToMBT, for each p ∈ posBody(r) s.t. val(p) = Undef, I + mbt(p)

is assigned, and, from assignToFalse, for each p′ ∈ negBody(r) s.t. val(p′) =
Undef, I + false(p′) is assigned, and the thesis again holds.

(17) applies, head(r) ∈ F(J) and (body(r) \ (T(J) ∪ F(J))) = {l}. Thus, if l = p,
with p ∈ posBody(r) then J + false(p) is assigned, otherwise J + true(p) is
assigned.
Correspondingly, in DetConsInf , val(head(r)) = False, val(body(r) \ {l}) ≥
Mbt, and thus if l = p, with p ∈ posBody(r) then, by rule (17), I + false(p)

is assigned, otherwise I + mbt(p) is assigned, and the thesis still holds.
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Conversely, consider now each line of DetConsInf. If rule

(14) applies, each p ∈ negBody(r) is such that val(p) = False, and for each pi, 1 ≤
i ≤ m, it is true that pi ∈ T(I) ∪ M(I), i.e., val(pi) ≥ Mbt. There are three
options for the head: (a) val(head(r)) = False; (b) val(head(r)) = Undef; or
(c) val(head(r)) = Mbt.
In the case (a) or (b), if each pi, 1 ≤ i ≤ m, is such that val(pi) = True, I +
true(head(r)) is assigned, otherwise I + mbt(head(r)) is assigned.
Correspondingly, in AtLeast, head(r) /∈ T(J), {p1, . . . , pm} ⊆ T(J) and
{pm+1, . . . , pn} ⊆ F(J), thus J + true(head(r)) is assigned by rule (14), and the
thesis still holds.
In the case (c), from the second condition val(body(r)) > val(head(r)) we
know that val(body(r)) = True, thus I + true(head(r)) is assigned, Note that
this assignment does not alter the set T(I) ∪ M(I) and, obviously, F(I).
Correspondingly, in AtLeast no rule is applied, and the thesis holds.

(15) applies, val(p) is not False, � ∃r ∈ �I such that head(r) = p and I + false(p) is
assigned.
Correspondingly, val(p) is not False by induction hypothesis, � ∃r ∈ �J such
that head(r) = p also in AtLeast by Lemma 2, thus J + false(p) is assigned by
rule (15) in the smodels algorithm, keeping the same behavior of DetConsInf .
The thesis thus holds.

(16) applies, val(head(r)) ≥ Mbt, for each p ∈ posBody(r) s.t. val(p) �= Undef,
val(p) ≥ Mbt, and each p′ ∈ negBody(r), with val(p′) �= Undef is such that
val(p′) = False. Consequently, from assignToMBT, for each p ∈ posBody(r)
s.t. val(p) = Undef, I + mbt(p) is assigned, and, from assignToFalse, for each
p′ ∈ negBody(r) s.t. val(p′) = Undef, I + false(p′) is assigned.
Correspondingly, head(r) ∈ T(J), for each p ∈ posBody(r), p ∈ T(J) ∪ U(J)

and for each p′ ∈ negBody(r), p ∈ F(J) ∪ U(J). Thus, from assignToTrue,
for each p ∈ posBody(r) s.t. p ∈ U(J), J + true(p) is assigned, and, from
assignToFalse, for each p′ ∈ negBody(r) s.t. p′ ∈ U(J), J + false(p′) is
assigned, and the thesis again holds.

(17) applies, val(head(r)) = False, val(body(r) \ {l}) ≥ Mbt and thus, if l = p, with
p ∈ posBody(r), I + false(p) is assigned, otherwise I + mbt(p).
Correspondingly, in AtLeast, head(r) ∈ F(J), (body(r) \ (T(J) ∪ F(J))) = {l}
and thus, by rule (17), if l = p, with p ∈ posBody(r) then p is added to F(J),
otherwise is added to T(J), and the thesis holds. ��

We finally show a lemma which states the “equivalence” between lp2sat and
DetConsInf .

Lemma 4 Let � be a program, J and I be an interpretation for cmodels and
dlv, respectively, such that F(I) = F(J) ∩ P and T(I) ∪ M(I) = T(J) ∩ P. Then,
F(DetConsInf(�, I)) = F(unit-propagate(lp2sat(�), J)) ∩ P and T(DetConsInf(�,

I)) ∪ M(DetConsInf(�, I)) = T(unit-propagate(lp2sat(�), J)) ∩ P.

Proof It follows from Lemma 1 and 3. ��
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4.3 Tight programs

In this subsection, we show equivalence results for cmodels, smodels and dlv on
tight programs. We reach such results by comparing two systems at a time. We
devote one subsection to each comparison, where we prove equivalence (in the sense
explained in Section 4.1) of the search trees of the systems involved. We also show
some complexity results that hold for cmodels, smodels and dlv on some classes of
tight programs.

4.3.1 Relating cmodels and smodels

By using Lemma 1, we are now ready to state and prove our main result on the
relation between cmodels and smodels procedures.

Theorem 2 Let cmodels and smodels be the procedures in Figs. 1 and 2, respectively.
Then, for each tight program �, cmodels(�) and smodels(�) are equivalent.

Proof We have to show that

Branches(smodels(�)) = Branches(cmodels(�)),

where Branches(smodels(�)) is a sequence of branching nodes s1, . . . , sn and
Branches(cmodels(�)) is the sequence s′

1, . . . , s′
n.

The proof is by induction on n.

Base case. For n = 0, the thesis obviously holds, since both s1 and s′
1 equal ∅ (they

are the nodes of the initial calls smodels-rec(�, I∅) and dll-rec(lp2sat(�),�, I′
∅)).

Step case. By induction hypothesis we know that sn = s′
n holds. We have to show

that sn+1 = s′
n+1 holds as well.

Let I1 and I′
1 to be the interpretations corresponding to the branching nodes sn and

s′
n, respectively, such that F(I1) = F(I′

1) ∩ P and T(I1) = T(I′
1) ∩ P. We next trace,

step by step, the computations of smodels-rec(�, I1) and dll-rec(�,�, I′
1), showing

that they lead to equal branching nodes sn+1 and s′
n+1.

a smodels-rec(�, I1) calls expand(�, I1), which returns I2 := AtLeast(�, I1). In-
deed: (a) the instructions of lines 10 and 11 in the algorithm of smodels (Fig. 2)
are not executed since � is tight; (b) the recursive call to expand (line 12) is
not executed because the if condition does not hold; (c) the return statement at
line 13 is executed. dll-rec(�,�, I′

1) generates I′
2 := unit-propagate(�, I′

1). Thus,
from Lemma 1, we can conclude that T(I2) = T(I′

2) ∩ P and F(I2) = F(I′
2) ∩ P

hold.
b Then, both procedures execute precisely the same instruction (namely, instruc-

tion 2). If (T(I2) ∩ F(I2)) �= ∅, from our hypothesis and the structure of lp2sat
an empty clause appears in �I′

2
, and vice versa: thus both algorithms backtrack;

otherwise step to the respective instruction 3.
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c if (P \ (T(I2) ∪ F(I2)) = ∅) in smodels, obviously the same holds for cmodels
w.r.t. I′

2. Moreover, by definition, test(�, I′
2) returns True on tight programs. Thus

both algorithms returns True.
d If the above mentioned if conditions of the instructions 3 are not satisfied, then

both procedures choose a literal l (which is precisely the same and belongs to P ∪
P, as we assumed that the same heuristic is used), and call smodels-rec(�, I2 +
true(l)) and dll-rec(�,�, I′

2 + true(l)), respectively. Thus, the next branching
nodes of the two procedures are sn+1 = T(I2 + true(l)) ∪ F(I2 + true(l)) and
s′

n+1 = (T(I′
2 + true(l)) ∪ F(I′

2 + true(l))) ∩ (P ∪ P). We can therefore conclude
that sn+1 = s′

n+1 (i.e., the induction is proven), as l ∈ P ∪ P and we know that
T(I2) = T(I′

2) ∩ P and F(I2) = F(I′
2) ∩ P from item b above. ��

In the following we comment about the impact of restricting cmodels heuristic to
a subset of the atoms that appear in lp2sat(�).

From one side, this restriction is not a limitation, not only because of the results
in [26] we cited above, but also because we can reach similar results to Lemma 1 and
Theorem 2 by considering a (simple) modification of the logic program at hand, in
the spirit of the one in [3], and by avoiding to limit cmodels’ splitting heuristic.

Consider a rewriting �′ of a program � with |�| rules where, for each rule r ∈ �

of type (1) there exist two rules in �′:

1. p0 ← nri .
2. nri ← p1, . . . , pm, pm+1, . . . pn.

with 1 ≤ i ≤ |�|, where nri is a newly introduced atom for the rule.

Let � be a program, �′ be the program constructed from � as showed before, and
I be an interpretation. Then, AtLeast(�′, I) = unit-propagate(lp2sat(�), I).

Such a result could be then used for an alternative, but similar, proof of
Theorem 2.

But from another side, instead, the restriction is a significant limitation. cmodels,
if not restricted to choose on the atoms in �, can be implicitly seen as a procedure
which allows the decision of the heuristic not only on atoms, but also on bodies, if an
atom nr is selected. Given this, [2, 3] and, in particular, Corollary 1 in [18] show that
by not restricting to the atoms in � can significantly contribute to the efficiency of
the procedure.

In the relation between cmodels and smodels, we have considered cmodels
heuristic restricted to atoms in �, because of our assumption on the branching
heuristics. Obviously, the same holds in the comparison with dlv.

4.3.2 Relating smodels and dlv

By using Lemma 3 (and Lemma 2), we can state and prove our main result on the
relation between smodels and dlv procedures on tight programs.

Theorem 3 Let smodels and dlv be the procedures in Figs. 2 and 3, respectively.
Then, for each tight program �, smodels(�) and dlv(�) are equivalent.
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Proof We have to show that

Branches(smodels(�)) = Branches(dlv(�)),

where Branches(smodels(�)) is a sequence of branching nodes s1, . . . , sn and
Branches(dlv(�)) is the sequence s′

1, . . . , s′
n.

The proof is by induction on n.

Base case. For n = 0, the thesis obviously holds, since both s1 and s′
1 equal ∅ (they

are the nodes of the initial calls smodels-rec(�, J∅) and dlv-rec(�, I∅)).

Step case. By induction hypothesis we know that sn = s′
n holds. We have to show

that sn+1 = s′
n+1 holds as well.

Let J1 (resp. I1) to be the interpretation for smodels (resp. dlv) corresponding
to the branching node sn (resp. s′

n). We next trace, step by step, the computations of
smodels-rec(�, J1) and dlv-rec(�, I1), showing that they lead to equals branching
node sn+1 and s′

n+1.

a smodels-rec(�, J1) calls expand(�, J1), which returns J2 := AtLeast(�, J1). In-
deed: (a) the instructions of lines 10 and 11 in the algorithm of smodels (Fig. 2)
are not executed since � is tight; (b) the recursive call to expand (line 12) is
not executed because the if condition does not hold; (c) the return statement
at line 13 is executed. dlv-rec(�, I1) calls DetCons(�, I1), which returns I2 :=
DetConsInf(�, I1). Indeed: (a) the instructions of lines 10 and 11 in the algorithm
of dlv (Fig. 3) are not executed since � is tight; (b) the recursive call to DetCons
(line 12) is not executed because the if condition does not hold; (c) the return
statement at line 13 is executed. Thus, from Lemma 3, we can conclude that
F(J2) = F(I2) and T(J2) = T(I2) ∪ M(I2) hold.

b Then, both procedures execute precisely the same instruction (namely, instruc-
tion 2). If (T(J2) ∩ F(J2)) �= ∅ in smodels-rec, this means that the same atom p
belongs to both T(J2) and F(J2). From item a, this means that this atom p belongs
to both T(I2) ∪ M(I2) and F(I2) in dlv-rec, and thus both algorithms backtrack;
otherwise the procedures step to the respective instruction 3.

c if (P \ (T(J2) ∪ F(J2)) = ∅) in smodels-rec the procedure returns True. In this
case, M(I2) = ∅ in dlv-rec, as we know that F(J2) = F(I2) and T(J2) = T(I2) ∪
M(I2) from item a above. We next show that no atom in I2 is assigned to Mbt and
dlv-rec returns True.
From Remark 2, it follows that T(I2) = {r ∈ � | valI2(body(r)) ≥ Mbt}T(I2)∪M(I2).12

Since F(J2) = F(I2) and T(J2) = T(I2) ∪ M(I2), we have that T(I2) = {r ∈
�|body(r) ⊆ (T(J2) ∪ F(J2))}T(J2), which is, in turn, equal to T(J2) since we
know that J2 is an answer set from the correctness of smodels procedure.
Consequently, M(I2) is empty, and dlv-rec returns True.

d If the above mentioned if conditions of the instructions 3 are not satisfied,
then both procedures choose a literal l (which is precisely the same from

12Note that, since I2 is consistent, {r ∈ � | valI2 (body(r)) ≥ Mbt}∅ is equal to {r ∈ � |
valI2 (body(r)) ≥ Mbt}T(I2)∪M(I2).
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our assumptions), and call smodels-rec(�, J2 + true(l)) and dlv-rec(�, I2 +
mbt(l)), respectively. Thus, the next branching nodes of the two procedures
are sn+1 = T(J2 + true(l)) ∪ F(J2 + true(l)) and s′

n+1 = T(I2 + mbt(l)) ∪ M(I2 +
mbt(l)) ∪ F(I2 + mbt(l)). We can therefore conclude that sn+1 = s′

n+1 (i.e., the
induction is proven), as we know that F(J2) = F(I2) and T(J2) = T(I2) ∪ M(I2)

from item a above. ��

It should be also noted that, on tight programs, WFInf does not make inferences.

4.3.3 Relating cmodels and dlv

By using Theorems 2 and 3, we can now state a result on the relation between
cmodels and dlv procedures, on tight programs.

Corollary 1 Let cmodels and dlv be the procedures in Figs. 1 and 3, respectively.
Then, for each tight program �, cmodels(�) and dlv(�) are equivalent.

The above corollary readily follows from Theorems 2 and 3.

Remark 5 Here we would like to underline that the use of a further value to be
assigned to atoms by dlv is in some sense “too powerful” for tight programs, because
it does not bring any relevant advantage. We will see that this is not the case on
nontight programs.

4.3.4 Some complexity results for ASP procedures on tight programs

Theorems 2 and 3 and Corollary 1 state a strong relation between cmodels, smodels
and dlv algorithms. The established correspondence between cmodels, smodels and
dlv, and the fact the cmodels is based on dll, i.e., one of the most studied procedures
in Artificial Intelligence, gives us the possibility to derive new lower/upper bounds
for the ASP systems involved. In particular, those bounds (a) are known for dll, (b)
thus immediately generalize to cmodels, and (c) thanks to our results, can be shown
to hold also for smodels and dlv.

First, observe that the search tree explored by cmodels, smodels and dlv, when
run on a program �, critically depends on the specific heuristic used, i.e., in our
terminology and with reference to Figs. 1, 2 and 3, by the ordering on the set P ∪ P
induced by ChooseLiteral. In order to highlight the dependency from the particular
heuristic used, we now write Branchesh(proc) to indicate the set of branching nodes
of proc when run on a program �, using heuristic h. We are now ready to define the
complexity of proc on a program � as the smallest number in

{|Branchesh(proc)| : h is the heuristic which returns a value in P ∪ P}.
Intuitively, the complexity of proc on � is the minimum number of branching

nodes that proc has to explore for solving �.

In the following, we show some of the new complexity results for ASP systems
that can be derived thanks to our study and from the corresponding SAT references
cited below in the explanation of the results.
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We now define the translation of a set of clauses into a logic program we will use
in the rest of the paper.

Definition 1 Given a clause C = {l1, . . . , ll} (l ≥ 0), sat2tlp(C) is the rule f ←
l1, . . . , ll, f . Given a CNF formula �, the translation of �, denoted with sat2tlp(�),
is composed by the following set of rules:

a ∪C∈�sat2tlp(C); and
b ∪p∈P{p ← p′, p′ ← p}, where, for each atom p ∈ P, p′ is a newly introduced

atom associated to p.

� is satisfiable iff sat2tlp(�) has an answer set. Note that, in the definition, item
a corresponds to the direct translation of every clause in � into a rule, while item b
is the “guessing” part, where values for the atoms are guessed. Moreover, note that
sat2tlp(�) is tight.

We now define randomly generated formulas.

Definition 2 A formula � is a k-CNF if each clause in � consists of k literals. The
random family of k-CNF formulas consists of k-CNFs whose clauses have been
randomly selected with uniform distribution among all the clauses C of k literals
and such that, for each two distinct literals l and l′ in C, l �= l′.

The following result states the behavior of cmodels, smodels and dlv on random
k-CNF benchmarks with particular ratio between clauses and variables.

Proposition 4 Consider a random k-CNF formula � with n atoms and m clauses. With
probability tending to one as n tends to infinity, the complexity of cmodels, smodels
and dlv on sat2tlp(�) is exponential in n if the density d = m/n is d ≥ 0.7 × 2k.

Proof Given that sat2tlp(�) is tight, the result holds for cmodels starting from [6],
and then it follows for smodels and dlv from Theorem 2 and Corollary 1. ��

Programs corresponding to random k-CNF formulas have been widely used in
literature, e.g., in [15, 27, 50, 54].

Other results on tight programs, which have been proved for dll, can be easily
shown to hold also for cmodels (because it is based on dll), and for smodels and
dlv (thanks to our “equivalence” results on tight programs).

Following [34], we next define the notion of “optimal” literal to branch on,
intuitively representing the best choice for the heuristic.

Definition 3 A literal l is defined as optimal for a program � and procedure proc if
there exists a minimal search tree of proc whose root is labeled with l.

Proposition 5 In cmodels, smodels and dlv, deciding the optimal literal to branch
on is both NP-hard and co-NP hard, and in PSPACE for tight programs.
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Proof Given that we consider tight programs, the result holds for cmodels starting
from [34] where it is shown to hold for dll, and then it follows for smodels and dlv
from Theorem 2 and Corollary 1. ��

In the following, we show a third result which, again, is known to hold for dll and
can be extended to cmodels, smodels and dlv. We consider a class of CNF formulas
that has been widely studied in the SAT literature.

Definition 4 Define PH Pm
n (n ≥ 0, m ≥ 0) to be the CNF formula consisting of the

following clauses:

{pi,1, pi,2, . . . , pi,n} (i ≤ m), {pi,k, pj,k} (i, j ≤ m, k ≤ n, i �= j).

The formulas PH Pm
n are from [28] and encode the pigeonhole principle. If n < m,

PH Pm
n is unsatisfiable and it is well known that any procedure based on resolution

(like dll) has an exponential behavior. For each n, sat2tlp(PH Pn
n−1) is tight and has

no answer sets.

Proposition 6 The complexity of cmodels, smodels and dlv on sat2tlp(PH Pn
n−1) is

exponential in n.

Proof This result holds for cmodels starting from [28], and then it follows for
smodels and dlv from Theorem 2 and Corollary 1. ��

There are many other results, known for dll, that can be easily shown to apply
to cmodels, and thanks to our results, could be applicable to smodels and dlv
algorithms, e.g., [44] about the average complexity of coloring randomly generated
graphs, and [1] on lower bounds on random 3-CNF formulas also for densities
significantly below the satisfiability threshold d ≈ 4.23.

Finally, we remind that [31] gives an alternative way for producing the complexity
results presented in this subsection.

4.4 Nontight programs

In this subsection we compare cmodels, smodels, and dlv on the class of nontight
programs. Similarly to Subsection 4.3, at the end of the subsection we also show a
result about the complexity of these systems on nontight programs.

To start, we observe that, considering J and I be an interpretation for smodels
and dlv, respectively, such that F(J) = F(I) and T(J) = T(I) ∪ M(I), the WFInf
functions in the smodels and dlv algorithms are invoked with the same parameters,
thus return the same set.

Now we are ready to state another main theoretical result of our work, on nontight
programs. We use the result about smodels and dlv procedures in Theorem 3, and
the observation we made before.
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Theorem 4 Let smodels and dlv be the procedures in Figs. 2 and 3, respectively.
Then, for each nontight program �, smodels(�) and dlv(�) are equivalent.

Proof Theorem 3 has already shown that smodels and dlv procedures are equiv-
alent on tight programs. On nontight programs, the two procedures keep a very
similar behaviour as in the tight case, the only difference being that instructions 10–11
are executed on nontight programs, as the “if” condition of instruction 9 is verified.
WFInf (called in instruction 10 of both algorithms) computes precisely the same set
of atoms, and both procedures switch the same set of atoms to False in instruction 11.

��

We can also show that, on nontight programs, cmodels is not equivalent to
smodels and dlv. The reason of such difference is that cmodels does not employ
the well-founded operator, thus its negative inferences are weaker than the ones of
smodels and dlv. The difference shows up when loops are involved in the program,
and this fact has an impact also on the computational side: there exist families of
logic programs which are easy for smodels and dlv, but “difficult” for cmodels. An
example will be presented below in Proposition 7.

However, it is important to note that, given that the difference is solely due to
well-founded inferences, if we disable the well-founded operator in both smodels
and dlv (by disabling lines 10–11 in Figs. 2 and 3, respectively), resulting in two
systems that we call dlvF and smodelsF in the next sections, then the three systems
are “equivalent” on nontight programs (apart for the presence of Mbt atoms in dlv,
which allow for some properties of the dlv algorithm as shown in Theorem 7 below).

In particular, Lemma 4 holds as well if we substitute dlv with dlvF , and it could
be then used to state the equivalence between cmodels and dlvF also on nontight
programs.

Regarding this last result, we have nonetheless to stress, about the usefulness of
Mbt atoms, that the difference betweenMbt and True atoms allows to perform several
optimizations, e.g., in [14] Mbt atoms are effectively used to guide the dlv heuristic,
besides the fact that Mbt atoms also allow to avoid useless “stability” checks both
on disjunctive and on nondisjunctive programs when dealing with consistent leaf
interpretations, as we will see in the next section.

4.4.1 Some complexity results for ASP procedures on nontight programs

In this subsection, we infer new complexity results for smodels and dlv (and
cmodels) on nontight programs.

First note that if we consider the logic program which corresponds to only the
rules in item a of the Definition 1 (i.e., no guess), both cmodels, smodels and dlv
solve the program easily.

In the following definition, instead, we define a logic program which is exponen-
tially more difficult for cmodels in comparison to smodels and dlv.

Definition 5 Given a CNF formula �, define sat2nlp(�) to be the program
∪C∈�sat2tlp(C) ∪ ∪p∈P{p ← p}.
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The following result states the complexity of cmodels, smodels and dlv on the
sat2nlp(�) program.

Proposition 7 The complexity of smodels and dlv on sat2nlp(PH Pn
n−1) is 3, while it

is exponential in n for cmodels.13

Proof For cmodels, the result again follows from the behavior of dll on PH Pn
n−1

formulas [28]. For smodels and dlv, the result holds thanks to the WFInf procedure,
as we show in the following.

To see why this is the case for smodels notice that � = sat2nlp(PH Pn
n−1) is

nontight and corresponds to the set of rules (where P denotes now the set of atoms
of type pi, j):

f ← pi,1, pi,2, . . . , pi,n−1, f (1 ≤ i ≤ n),

f ← pi,k, pj,k, f (1 ≤ i, j ≤ n, 1 ≤ k ≤ n − 1, i �= j)
pi,k ← pi,k (1 ≤ i ≤ n, 1 ≤ k ≤ n − 1)

Then, following smodels behavior step by step:

– smodels(�) calls smodels-rec(�, J∅).
– AtLeast(�, J∅) returns ∅ = J (line 7).
– J′ = J = ∅ in AtLeast.
– � is nontight, thus WFInf is called (line 10) where �∅

J consists of the rules

f ; f ← pi,k, pj,k (1 ≤ i, j ≤ n, 1 ≤ k ≤ n − 1, i �= j);
pi,k ← pi,k (1 ≤ i ≤ n, 1 ≤ k ≤ n − 1)

and thus WFInf(�∅
J,∅) returns { f } at line 20.

– At line 11 of Fig. 2, F(J) = P and T(J) = ∅.
– J′ �= J causes a recursive call to expand(�, J) (line 12).
– �J corresponds to the set of rules

f ← pi,1, pi,2, . . . , pi,n−1, f (1 ≤ i ≤ n)

and AtLeast(�, J) returns the same interpretation (line 7).
– J′ = J.
– �∅

J consists of the rule f.. but J = J′, thus J is returned by expand at line 13 and
assigned at line 1 of Fig. 2.

– Now, the conditions at line 2 and 3 do not hold, the literal l = f is chosen at line
4, and smodels-rec(�, J + true( f )), expand(�, J + true( f )) and AtLeast(�, J +
true( f )) are called in sequence;

– in AtLeast(�, J + true( f )), �J+true( f ) is the empty program: thus there is no rule
with f in the head (and f is not false), and f is added to F(J);

13Rules like p ← p can be removed during pre-processing, resulting in cmodels having same
complexity. However, we could have replaced p ← p with, e.g., p ← p′, p′ ← p, (where p′ is a
newly introduced atom associated to p) and the result in the proposition would still hold.
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– after one recursive call to AtLeast, J is checked for consistency at line 2 of
smodels algorithm, and False is returned because an inconsistency is detected
given that f appears in both F(J) and T(J);

– upon backtracking, AtLeast(�, J + false( f )) is invoked, and �J+false( f ) corre-
sponds to the set of rules

f ← pi,1, pi,2, . . . , pi,n−1, f (1 ≤ i ≤ n),

which, from rule (14), assigns f to True from J + true( f ). Another inconsistency
will be detected, and the algorithm stops returning False.

Thus, Branches(smodels) is the following sequence of branching nodes: ∅, P ∪
f, P ∪ f ; and the complexity of smodels on sat2nlp(PH Pn

n−1) is indeed 3. Similarly
for dlv, by Theorem 4. ��

Intuitively, on this program cmodels algorithm is “confused” by the added loops,
while smodels and dlv maintain their good behavior thanks to WFInf . On the
theoretical side, the work of [37], which shows that, given a nontight program,
exponentially many formulas might be required to discard all supported models
that are not answer sets, explains the same effects of the cmodels behavior in an
alternative way.

5 On the need of loop detection

We discuss on some properties of the algorithms we have shown in the previous
sections. In particular, we will point out that, when a leaf of the computation
is reached (i.e., a total consistent interpretation is generated), the native ASP
procedures do not need to make a stability check. The computed interpretation is
guaranteed to be an answer set. This is not true for cmodels, as for native procedures
this feature is mainly due to the employment of the well-founded operator which,
besides pruning the search space, implicitly performs also a check of the stability
condition. We extend our analysis observing the behaviour of the native procedures
when the well-founded operator is disabled and negative inferences are performed
by Fitting’s operator only (which is incorporated in both DetConsInf and AtLeast). It
turns out that consistent leaf interpretations are still guaranteed to be answer sets for
dlv; while they are not such for smodels. This relevant property of the dlv system is
due to the exploitation of “must-be-true”—the fourth truth value of dlv.

To start, we formalize the concept of “consistent” leaf interpretation, which is of
fundamental importance for the rest of this section.

Definition 6 A “consistent” leaf interpretation is a total14 interpretation which is
reached at line 3 of cmodels, smodels or dlv computation.15

14An interpretation is total if all atoms are assigned either to True or to False.
15Note that in cmodels, when each p ∈ P is assigned (to True or to False), then also all the added
atoms get assigned by unit propagation.
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Note that, following the computation of the three algorithms, when they reach
the instruction at line 3, we are guaranteed that there is no inconsistency in the
interpretation, because the condition at line 2 was not satisfied. Moreover, for
dlv, given a consistent leaf interpretation Jt, the condition that for each p ∈ P,
p ∈ T(Jt) ∪ F(Jt), implies that no atom is assigned to Mbt.

Observe also that, given a consistent leaf interpretation Jt for smodels, cmodels
and dlv, for a program �, a “candidate” answer set is the set T(Jt) for all the systems.

Our first result concerns tight programs.

Theorem 5 Let � be a tight program, and consider a consistent leaf interpretation Jt

of �. Then, the set of its true atoms T(Jt) is guaranteed to be an answer set of � for
dlv, smodels and cmodels.

Proof Immediate for smodels and dlv, from the correctness of the algorithms
(lines 3 are satisfied); and for cmodels, from the correctness of its algorithm and
the fact that on tight programs test always succeeds. ��

The second result on consistent leaf interpretations deals with nontight programs.

Theorem 6 Let � be a nontight program, and consider a consistent leaf interpretation
Jt of �. Then, the set of its true atoms T(Jt) is guaranteed to be an answer set of � for
dlv and smodels, but it is not guaranteed to be an answer set for cmodels.

Proof Immediate for smodels and dlv, from the correctness of the algorithms
(lines 3 are satisfied). To show that the property does not hold for cmodels we exhibit
the following counter example:

�c : b ← a, b .

a ← a.

In fact, lp2sat(�c) is

{b , n1}, (6)

{n1, a, b}, (7)

{n1, a}, {n1, b}, (8)

{b , n1}, (9)

{a, n2}, (10)

{n2, a}, (11)

{n2, a}, (12)

{a, n2} (13)

clauses (6)–(9) being the translation of the first rule, and clauses (10)–(13) the
translation of the second rule.

Consider that cmodels chooses “b” at line 4, clause (9) and the second clause
of (8) are deleted, while clauses (6) and (7) are simplified. unit-propagate then assigns
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“n1” from clause (6), that causes (6) and the first clause in (8) to be deleted, and
clause (7) to be simplified. Again, unit-propagate assigns “a” from clause (7) (which
is thus deleted): this causes clauses (10) and (12) to be deleted and clauses (11)
and (13) to be simplified. Now “n2” is assigned by unit-propagate, all clauses have
been deleted, Jt = 〈{a, n2}, {b, n1}〉, test(Jt,�c) is invoked and returns False because
of the loop on “a” in the second rule. ��

Note that the result of cmodels on �c would have been the same even if applying
simplifications adopted (i) by all SAT solvers; and/or (ii) for the “optimization” of
the completion:

(i) SAT solvers delete repeated clauses (like (12) and (13)). In this case Jt would
be the same as without simplifications.

(ii) for rule like a ← a. the introduction of a new atom can be avoided, with the
rule translated as {a, a}. There are now two possibilities: the clause is deleted in
pre-processing, and the computation is similar to the first part of the behavior
above, leading to Jt = 〈{a}, {b, n1}〉 which does not correspond to an answer set
of �c, or it is not deleted, but again Jt = 〈{a}, {b, n1}〉.

In the real implementation of cmodels, rules like a ← a (and more in general rules
r like a ← body(r), with a ∈ body(r)) can be deleted from the logic program because
this transformation does not alter its answer sets. For �c, lp2sat(�c) would have now
clauses (6)–(9) plus the unit clause {a}, and thus the program would be correctly
determined not to have answer sets. Nonetheless, as pointed out before, it is enough
to slightly modify �c by replacing the rule a ← a. with the rules a ← a′. a′ ← a.,
where a′ is a newly introduced atom associated to a, to let cmodels to not satisfy the
property.

Let us now define dlvF (resp. smodelsF) to be the algorithm in Fig. 3 (resp.
Fig. 2) where lines 10–11 are inactive, i.e., only Fitting’s operator for negative
inferences is used and the system is deprived of WFInf (note that Fitting’s operator
is implemented by line 15 of DetConsInf and AtLeast).

The last result on consistent leaf interpretations deals with dlvF and smodelsF .

Theorem 7 Let � be a nontight program, and consider a consistent leaf interpretation
Jt of �. Then, the set of its true atoms T(Jt) is guaranteed to be an answer set of � for
dlvF, but it is not guaranteed to be an answer set for smodelsF.

Proof For smodelsF , it is sufficient to show that the property does not hold for some
logic program. This is the case for program �c defined in the proof of Theorem 6. In
fact, suppose that smodelsF initially chooses “b” at line 4, then AtLeast will assign
“a” at line 17 from the first rule, obtaining Jt = 〈{a}, {b}〉. Now, Jt is a consistent leaf
interpretation, but it does not correspond to an answer set, since a has only a “self
support”.

Consider now a consistent leaf interpretation Jt for dlvF . Since Jt is a total
consistent interpretation which has been returned by DetCons, Jt satisfies all rules of
�, otherwise DetCons would have returned some inconsistency in Jt. Thus, we know
that Jt is a model of �, and only the stability of Jt remains to be proven. (Actually, Jt
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is a model of � also for smodels, but it misses the stability property.) From the results
in [32], we can equivalently prove that T(Jt) does not contain any atom belonging to
an unfounded set for � w.r.t. T(Jt). To this end, we proceed by induction and show
that, at each step of dlvF computation, each atom in the positive part T(J) of the
interpretation J computed by dlvF is not unfounded in any total interpretation Jt

extending J. The base case is trivial, since J = ∅. For the step case, assuming that
the property holds for J, we have to show that it still holds after the application of
rule (14), since the application of (14) is the only case where an atom is made True in
dlvF computation. Let p be the atom which is set to True in the application of (14)
on a rule r. Then, the body of r is True w.r.t. J. Consequently, the body cannot be
False in any (consistent) extension Jt of J (thus the first unfoundedness condition is
inapplicable to this rule in Jt). Moreover, each positive body literal of r is in T(J) and,
by inductive hypothesis, is not unfounded in any total interpretation Jt extending J.
Thus, p is not unfounded in any total interpretation Jt extending J, and we are done,
as the property holds by inductive hypothesis for the other atoms in T(J + true(p)).

��

Note that part of this property has been recently established also in [35], where
it is discussed that consistent leaf interpretations are supported models for smodels,
thus they are not guaranteed to be answer sets.

At this point, it is important to underline two factors:

1. on tight programs, the systems are in some sense “too powerful”. This is clear
from the fact that for smodelsF and dlvF (and also cmodelsF , i.e., cmodels
modified in line 3 to return True instead of “test(�, J)”) the related Theorems
would still hold.

2. well-founded operator WFInf is a checking operator and makes also inferences.

We want also to stress that there are classes of programs in which SAT-based
procedures have advantages vs. native procedure. In particular, on the class of tight
programs SAT-based systems are very efficient, often more efficient than native
solvers, see, e.g., [27, 38] and the results of the First Answer Set Programming
competition.

We have studied so far some computational advantages of dlv and smodels with
respect to cmodels. In the rest of the section we focus on some final observations on
the computational cost of loop detection.

We have seen that a main difference between dlv/smodels and cmodels in the
“computation” of loops is that while the first two systems deal with them as soon as
they appear (thus eagerly), cmodels has a “lazy” evaluation (delegated to the test
procedure).

The question is:

“What is the cost of performing an eager evaluation of loops w.r.t. a lazy
evaluation?”.
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Let � be a program. The cost16 of computing a consistent leaf interpretation in
smodels, cmodels and dlv depends on the “tightness” of �.

If � is tight, the cost is

– O(|P|) for dlv, smodels and cmodels.

In the more general case when � is nontight

1. O(|P|2) for dlv and smodels; and
2. O(|P|) for dlvF , smodelsF and cmodels.

Thus, in the case � is tight the cost corresponds to the assignments to the atoms in
� which lead from the root of the search to a leaf where the computation ends (i.e.,
to a consistent leaf interpretation). Given this, exactly |P| atoms are assigned.

In the case that � is nontight, the same complexity as in the case of tight programs
holds for dlvF , smodelsF and cmodels, because (a) dlvF and smodelsF on nontight
programs do the same amount of work as dlv and smodels on tight programs, and
(b) cmodels does not “add” any inference rule in dll-rec in the case of nontight
programs. For dlv and smodels, function WFInf assigns up to P atoms each time,
thus reaching the above mentioned cost.

6 Results application to other ASP systems

In the previous sections, we have taken into account cmodels, smodels and dlv in
our comparison. In this section, we discuss to what extent the results presented for
such systems are applicable to other ASP solvers.

The other SAT-based system, assat [38] also computes a set � of clauses cor-
responding to the Clark’s completion of the input program �, and then invokes a
SAT solver on �. � can be safely considered to be computed as lp2sat(�).17 assat
and cmodels have different behavior only if � is nontight: thus, if we assume that
the same heuristic is used, Propositions 4, 5 and 6 hold also for assat, as well as
Theorem 5 and the complexity results on tight programs in Section 5.

About splitting heuristic, we have to note that, in their real implementations,
cmodels, assat, clasp and NoMore++ can also choose atoms which represent
bodies: following [2, 3, 18], this fact can lead to significant improvements w.r.t. the
setting we have analyzed in the paper.

About learning, first notice that it is common practice in this context not to take
into account the specific learning strategies of the solvers, by focusing on solving
algorithms with plain backtracking. The question on how the results presented
extend to systems featuring learning, i.e., assat, clasp, smodels-cc and cmodels
with learning, depends on the particular learning strategies implemented by the
solvers, both on failed leaves of the search tree, and on failed test procedures (for

16Note that: (a) we consider the cost of computing a successful path of the computation tree, from
the root to a consistent leaf interpretation (no backtracking); (b) dlv has also a constant factor for
the transition from Mbt to True; (b) for cmodels P should be replaced by P ∪ N.
17Fangzhen Lin, personal communications at ASP’05.
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SAT-based systems): extending (or not) the results to the procedures with learning
would need further investigations. In general, assuming that the learning mechanism
implemented by native ASP systems resembles the learning mechanism implemented
in SAT-based ASP systems (based on dll), the results that hold for any systems
based on resolution, e.g., [28] and the one on random k-CNFs, hold also for native
procedures with learning. For SAT-based systems, we can consider that cmodels
and assat rely on SAT solvers that implement similar learning techniques, borrowed
from [45].

Finally, we have seen that the results we have shown hold for the ASP systems
presented, as long as they rely on the “same” ChooseLiteral function, which is
guaranteed to return the same literal at every point of the search trees for all systems.
Because of this, similar results would hold if we enhance the procedures with more
powerful look-ahead techniques based, e.g., on expand, DetCons and unit-propagate,
respectively. For instance, smodels (and dlv) has been enhanced with the “failed
literal” strategy. Using the same strategy in dll-rec (i.e., using a similar “failed
literal” strategy based on unit-propagate) would lead to an equivalent search tree.

7 Related work

The work in [24], starting from the equivalence results on tight programs, extends
cmodels with SAT heuristics and optimizations techniques, and evaluates its effec-
tiveness.

In [18] the authors have presented tableaux calculi for ASP. The algorithms and
techniques used by many of the solvers presented also in our paper are expressed
in the framework, leading to similar results we reported in Section 4, using similar
concepts for expressing “complexity” of algorithms (first used in this context in [25]).
Nonetheless, there are many differences with our work: (a) we use an algorithmic
view vs. a proof-theoretic account used in [18]. This, e.g., thanks to the dll algorithm,
allowed us to derive new complexity results for ASP procedures; (b) we carry out
an in-depth analysis on the relation among cmodels, smodels and dlv; and among
the systems without test/WFInf; and (c) we use a more detailed characterization
of the dlv behavior, by exploiting its peculiarities, while their work have fewer
simplifying assumptions, i.e., they allowed choosing atoms that represented bodies,
or bodies themselves. In [19], the same authors enhanced the tableaux calculi by
taking into account cardinality constraints (as used in smodels) and disjunction in
the rule heads. However, here the calculi is not used to express “real” ASP systems
and thus no comparison among systems is presented. Extended ASP tableaux [31] is
another extension of the tableaux calculi in [18] inspired by the Tseitin’s Extended
Resolution proof system [52]. In the same paper, the authors also showed how it
is possible to define a proof system for (nondisjunctive) logic programs which can
polynomially simulate tree resolution, and vice versa (assuming translations between
ASP and SAT similar to those we use in our paper). Given that cmodels (resp.
smodels) can be seen as an implementation of tree resolution (resp. of the proof
system for nondisjunctive programs), their work can be seen as an alternative way of
extending results known for dll to ASP systems. However, we strengthen this result
showing that the procedures produce exactly the same search trees (assuming the
same branching heuristics).



On the relation among answer set solvers 201

In [55] the authors present a detailed comparison of (the pruning power of) look-
ahead in smodels with local consistencies in CSP under two different encodings from
CSP to ASP. In comparison with our work, this is both (a) different, because the
relation is only on pruning techniques and not on solving procedures (thus our work
can be seen as a generalization); and (b) complementary, studying relations between
ASP and CSP instead of ASP vs. SAT (dll), and taking into account also look-ahead.

In [53], the author compares the relative power of unit-propagation and arc-
consistency in CSP on both SAT-encodings of CSP problems, and CSP-encodings
of SAT problems. These results are then used to understand the relative power
between (general) CSP algorithms which maintain arc-consistency at each node and
the dll algorithm, by using a similar concepts (with respect to our paper) of both
“equivalent” branching heuristics, and complexity of a procedure. More recently,
in [43] more CSP algorithms have been taken into account, by studying relative
power of such algorithms, by using again a similar concept about complexity of a
procedure w.r.t. our paper, and by identifying, similarly to our work, families of
instances which are easier for an algorithm with respect to another (with a limit on
super-polynomial differences).

In [35], the author presents an abstract framework for designing dll-like ASP
procedures in a precise mathematical way: the work adapts to logic programs under
the stable model semantics the work presented in [47] for SAT and Satisfiability
Modulo Theories (SMT).18 One of the results in the paper about the relation between
cmodels and smodels algorithms leads to similar conclusions as our Theorem 2;
another result gives a different characterization of part of Theorem 7. dlv and other
systems are not considered in the paper.

8 Conclusions

We have studied the existing relation among cmodels, smodels and dlv ASP solvers
from a computational point of view. We have shown that the ASP systems are
equivalent on tight programs, but not equivalent on nontight programs where native
procedures have advantages over SAT-based systems. We have also shown further
advantages of both native procedures, and dlv in particular, when dealing with
consistent leaf interpretations, and have studied the related cost.

We believe that our paper is relevant for ASP researchers who are interested in
formally establishing the computational behavior of systems, but also for developers,
because our theoretical results should foster the design of systems incorporating rea-
soning strategies that provably allow to easily solve problems otherwise exponential:
in SAT, this led to the development, e.g., of zap [9].

In the future, we plan first to extend the formal analysis in Section 4 to other
systems, e.g., clasp, and then to study similar relations on disjunctive logic programs,
with a comparison between disjunctive ASP solvers and solvers for quantified
Boolean formulas (QBF) when solving problems on the second level of the poly-
nomial hierarchy.

18http://combination.cs.uiowa.edu/smtlib/.

http://combination.cs.uiowa.edu/smtlib/
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