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Abstract

Recent research in nonmonotonic logic programming has fo-
cused on certain types of program equivalence, which we
refer to here afiyperequivalencethat are relevant for pro-
gram optimization and modular programming. So far, most
results concern hyperequivalence relative to the staloléemn
semantics. However, other semantics for logic programs are
also of interest, especially the semantics of supportedetsod
which, when properly generalized, is closely related tcaitire
toepistemic logic of Moore. In this paper, we consider a fam-
ily of hyperequivalenceelations for programs based on the
semantics of supported and supported minimal models. We
characterize these relations in model-theoretic termsu¥ge
the characterizations to derive complexity results camoer
testing whether two programs are hyperequivalent relaive
supported and supported minimal models.

1 Introduction

The problem of the equivalence of logic programs with re-
spect to the stable-model semantics has received sulastanti
attention in the answer-set programming research commu-
nity in the past several years (Lifschitz, Pearce, & Valeerd
2001; Lin 2002; Turner 2003; de Jongh & Hendriks 2003;
Inoue & Sakama 2004; Eiter, Tompits, & Woltran 2005;
Ferraris 2005; Eiter, Fink, & Woltran 2007; Oikarinen &
Janhunen 2006; Lin & Chen 2007; Oetsch, Tompits, &
Woltran 2007; Woltran 2008; Wong 2008; Gebsaral.
2008). The problem can be stated as follows. Cdie a
class of logic programeontaining the empty programie

say that program# and @) are equivalent with respect to

C if for every programR € C, P U R and@ U R have

the samestable modelsWe refer to programs iff ascon-
texts Clearly, as the empty program is always assumed to
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equivalentif they have the same stable models. Therefore,
we will refer to these stronger versions of equivalence col-
lectively ashyperequivalence

Understanding hyperequivalence is fundamental for the
development of modular answer-set programs and knowl-
edge bases. The problem is non-trivial due to the nonmono-
tonic nature of the stable-model semanticsS i a module
within a larger progran?’, replacingsS with S’ results in
the progrant” = (T'\ S) U S’, which must have the same
meaning (the same stable models)asThe nonmonotonic
equivalence ofS and .S’ does not guarantee it. The hyper-
equivalence of andS’ relative to the class of all programs
does. However, the latter may be too restrictive an approach
in certain application scenarios, in particular if propesof
possible instantiations @ are known in advance.

Thus, several notions of hyperequivalence that impose re-
strictions on the context clags have been studied. f
is unrestricted, that is, any program is a possible context,
we obtainstrongequivalence (Lifschitz, Pearce, & Valverde
2001). IfC is the collection of all sets of facts, we obtain
uniformequivalence (Eiter, Fink, & Woltran 2007). Another
direction is to restrict the alphabet over which contexts ar
given. The resulting notions of hyperequivalence are dalle
relativized (with respect to the context alphabet), and can
be combined with strong and uniformly equivalence (Eiter,
Fink, & Woltran 2007). Even more generally, we can spec-
ify different alphabets for bodies and heads of rules in con-
texts. This gives rise to a unifying view on strong and uni-
form equivalence (Woltran 2008). A yet different approach
to hyperequivalence is to compare only some dedicated pro-
jected output atoms rather than entire stable models (Eiter
Tompits, & Woltran 2005; Oikarinen & Janhunen 2006;
Oetsch, Tompits, & Woltran 2007).

All those results concern hyperequivalence with respect
to the stable-model semantics of programs. There has been
little work on other semantics, with (Cabaletral. 2006) be-

be one of the context programs, the equivalence with respect ing a notable exception. In this paper, we address the prob-

to C implies the standard nonmonotonic equivalence of pro-
grams, where two progranfd and( arenonmonotonically
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lem of the hyperequivalence with respect to two other major
semantics of programs, those of supported models (Clark
1978) and supported minimal models.

We are motivated in our studies by the role both seman-
tics play in logic programing and, more generally, in non-
monotonic reasoning. The supported model semantics was
the first major step leading to a formal account of default



negation operator in logic programming and a springboard 2 Preliminaries

towards the stable-model semantics. Through the notions \yss fix 5 countable setit of atoms (possibly infinite). Al
of program completiorfClark 1978) andoop formula(Lin programs we consider here consistates of the form

& Zhao 2002), it links stable models of programs with
models of propositional theories and facilitates the use of ai|...lag < b1,... by, notcy, ..., notcy,

SAT solvers to compute stable models. The link is es- i _
pecially direct for the class of tight programs, for which Wherea;, b; andc; are atoms ind¢, ‘|" stands for the dis-
supported and stable models coincide. Next, logic pro- junction, *; stands for the conjunction, antb¢ is thede-
gramming with the semantics of supported models, under fault negation. Ifi = 0, the rule is aconstraint If £ < 1,
the interpretation proposed by Konolige (Konolige 1988; the rule isnormal .

1989), forms a significant fragment of the autoepistemic ~ For a ruler of the form given above, we call the set

logic (Moore 1985) — one of the key formalisms of non-  {a1, ..., ax} the head of and denote it byid(r). Similarly,
monotonic reasoning_ we call the conjunctiorby, ..., by, notcy, ..., notc, the
body ofr and denote it byxd(r). We also writebd* (r) =

Since the minimality property is fundamental from the {4, ... b,,} andbd~(r) = {c1,...,c,}, and denote by

perspective of knowledge representation, we also consider y4= ;) the set of all atoms occurring in the bodyrgthat is,
in the paper the semantics of supported minimal models, bdﬁ:(r) = bd* (r)Ubd ™ (r). Moreover, for a prograr®?, we
that is, supported models that are minimal as models. While sethd(P) = ... » hd(r) andbdi(P),: U bdi(r,)

it seems to have received little attention in the area of rep ! repP '
logic programming, it has been studied extensively in a
more general setting of modal nonmonotonic logics, first
under the name of the semanticsmbderately grounded
expansiondor autoepistemic logic (Konolige 1988; 1989)
and then, under the name gfound S-expansions, for an
arbitrary nonmonotonic modal logi§ (Kaminski 1991;
Truszczyhski 1991). The complexity of reasoning with
moderately grounded expansions was established in (Eiter
& Gottlob 1992) to be complete for classes at the third level
of the polynomial hierarchy. As before, under the inter-
pretation of Konolige, logic programming with the seman-
tics of supported minimal models forms an important frag-
ment of autoepistemic logic with the semantics of moder-
ately grounded expansions.

An interpretationV/ C At is amodelof a ruler, writ-
ten M = r, if wheneverM satisfies every literal id(r),
written M = bd(r), we have thatd(r) N M # (), written
M = hd(r).

An interpretationV/ C At is amodelof a programpP,
written M |= P, if M = r for everyr € P. If, in addition,
M is a minimal hitting set of hd(r) |r € P and M E
bd(r)}, then M is a supportedmodel of P (Brass & Dix
1997; Inoue & Sakama 1998). Itis well known thdt C At
is a supported model af if and only if M is a model of
P and for everya € M there is a ruler € P such that
M [ bd(r) and{a} = hd(r) N M. We say that each such
ruler supportsa with respect ta\/.

Foraruler = aq|...|ax « bd, wherek > 1, ashiftof r
is a normal program rule of the form

In the paper, we define several concepts of hyperequiva-
lence, depending on the class of programs allowed as con-
texts. We obtain characterizations of hyperequivalente wi  wherei = 1,...,k. If » is a normal rule, the onlghift of
respect to supported (minimal) models in terms of semantic 1 js r itself. A program consisting of all shifts of rules in a
objects, similar to SE-models (Turner 2003) or UE-models programP is theshift of P. We denote it bysh(P). Itis
(Eiter, Fink, & Woltran 2007), that one can attribute to pro-  evident that a se¥” of atoms is a (minimal) model aP if
grams. and only ifY" is a (minimal) model okh(P). Itis also easy
to check thal” is a supported model d@? if and only if it is
a supported model ofz(P).

Supported models of aormal logic programP have
a useful characterization in terms of the (partial) ong-ste

a; < bd,notay,...,nota;_1,nota;4+1,...,notay,

The characterizations allow us to derive results on the
complexity of problems to decide whether two programs are
hyperequivalent with respect to supported (minimal) mod-

els. They are especially useful in establishing upper bsund - .o\ 4 pijity operatofr» (van Emden & Kowalski 1976), de-
which, typically, are easy to derive butin the context of hy-  gineq as follows. Fon/ C At, if there is a constraint € P
perequivalence are not obvious. Our results paint a ddtaile ¢, thatas = bd(r) (?hat is, M [~ 1), thenTp(M) is
picture of the complexity landscape for relativized hyper- | jefined. Otherwise ' '

equivalence with respect to supported (minimal) models.
Tp(M) ={hd(r) |r € P and M = bd(r)}.

The impact of our results goes beyond logic programming
with the semantics of supported and supported models. For Whenever we us&p (M) in a relation such as (proper) in-
tight programs, they imply new characterizations of certai  clusion, equality or inequality, we always implicitly asse
notions of hyperequivalence with respecstable-modese- thatTp (M) is defined.
mantics. They also yield characterizations of hypereguiva It is well known thatM is a model ofP if and only if
lence of some autoepistemic theories with respect to the se-Tp(M) C M (that is, Tp is defined forM and satisfies
mantics of expansions and moderately grounded expansions,Tp(M) C M). Similarly, M is a supportedmodel of P
that can be derived based on the Konolige's interpretafion o if Tp(M) = M (thatis,Tp is defined forM and satisfies
programs as modal (autoepistemic) theories. Tp(M) = M) (Apt 1990).



It follows that M is a model of a disjunctive program if
and only if T, py (M) C M. Moreover,M is a supported
model of P if and only if T, p) (M) = M.

In the paper we will also consider an important variant
of the semantics of supported models, combining it with the
principle of minimality. A setM of atoms is asupported
minimal model(suppminmodel, for short) of a logic pro-
gramP if itis a supported model aP and a minimal model
of P.

To illustrate the relationships between the semantics, we
recall that stable models are suppmin models. Moreover,
directly from the definition we have that suppmin models

Next, letP, = {a <« a;a < nota} and@Q2 = {a}. One
can check that for every progra®, P, UR and@;UR have
the same supported models, that 13, and Q> are supp-
equivalent relative tany class of programs. Howevek,
and(@- do not have the same stable models and so, they are
not equivalent with respect to stable models nor hyperequiv
alent with respect to stable models relativeay class of
programs (containing the empty program).

Finally, let P; = {«— b} U P, andQ3 = Q2. Then,P;
and Q3 are neither hyperequivalent with respect to stable
models relative to any class of programs nor equivalent with
respect to classical models. However, for any progrBm

are supported models. Lastly, supported models are models.such thath does not appear in rule heads &f P; U R and

However, these implications cannot be reversed as demon-

strated by the following example.

Example 2.1 Let P = {a < a}. Then every interpreta-
tion is a model ofP. One can check thafp () = () and
Tp({a}) = {a}. Thus,p and{a} are supported models of
P. In fact, they are the only supported modelsgbfMore-
over,( is the only stable and also the only suppmin model of
P.

Next, letQ = {a «— b; b < a; < nota}. Then@ has
no stable models bdts, b} is a suppmin model @.

3 Hyperequivalence with respect to
supported models

Let C be a class of programs (contexts) containing the
empty program, the assumption we adopt throughout the
paper. Two disjunctive logic prograni3 and(@ aresupp-
equivalentelative toC if for everyR € C, PUR andQUR
have the same supported models. Sifice C, if programs

P and @ are supp-equivalent relative tg they have the

@3 U R have the same supported models, thatfis,and

Q3 are supp-equivalent with respect to each such class of
programs (we will verify this claim independently later by
using our characterization of supp-equivalence).

As we will see, supp-equivalence with respedciltgro-
grams implies equivalence with respect to models and so,
it is not a coincidence that in the last example we used a
restricted class of contexts. To see tligtand Q3 are not
supp-equivalent with respect to the class of all programs,
one can conside? = {b}. Then,{a,b} is a supported
model of@Q3; U R, but not ofP; U R.

We observe that supp-equivalence relativeCtimplies
supp-equivalence relative to ady, such thaC’ C C, but
the converse is not true in general as illustrated by program
Ps anng.

In this section we characterize supp-equivalence relative
to classes of programs defined in terms of atoms that can ap-
pear in the heads and in the bodies of rules. AeB C At.

By HBY(A, B) we denote the class of all disjunctive pro-

same supported models. In other words, supp-equivalence 9ramsP such thathd(P) C A (atoms in the heads of rules

implies standard equivalence with respect to supported mod
els.
Supp-equivalence is a non-trivial concept, different than

in P must be fromA) andbd® (P) C B (atoms in the bodies
of rules in P must be fromB). We denote byH{B" (A, B)

the class of all normal programs HB%(A, B) (possibly

equivalence with respect to models, supported models, sta- with constraints). These classes of programs were consid-

ble models, and different than hyperequivalence with retspe
to stable models.

Example 3.1Let Py, = {a} and Qo = {a < notbd}.
Then P, and @y have the same supported modefa}( is

the unique supported model of each program), that is, they
are equivalent with respect to supported models. However,
PyU{b} andQo U {b} have different supported mode{§

and {a, b}, respectively). ThusP and @, are not supp-
equivalent relative to any clagscontaining{b}. It follows

that the two variants of equivalence are different (but, @ w
just noted above, our restriction @ghguarantees that supp-

ered in the context of hyperequivalence of programs with
respect to the stable-model semantics in (Woltran 2008).

We focus first on the case when programs compared for
equivalence, as well as the contexts, are normal. Thecestri
tion will allow us to take advantage of the one-step prov-
ability operator. Later, we will obtain a characterizatioi
supp-equivalence for the general disjunctive case as &coro
lary.

Given a normal progran®?, and a sefd C At, we define

Mod4(P) = {Y C At |Y £ PandY \ Tp(Y) C A}.

equivalence implies equivalence with respect to supported We call interpretations ifod 4(P) A-modelsof P. An

models).
Next, letP; = {a « a} andQ; = (. Clearly, P, andQ;

A-modelY of P can be viewed as eandidatefor becom-
ing a supported model of an extensionfofvith some pro-

have the same models and the same stable models. More-gram R € HB"(A, B). Indeed, such a candidate set has

over, for every progranRk, P, U R and @, U R have the
same stable models, that i&; and @, are strongly (and
so, also uniformly) equivalent with respect to stable mod-
els. HoweverP; and @, have different supported models.
Thus, they are not supp-equivalent relativeatoy class of
programs that contains the empty program.

to be classical model of (otherwise it cannot be a sup-
ported model, no matter how is extended). Moreover, the
elements fromY” \ T»(Y") have to be contained iA. Other-
wise programs fronHB" (A, B) cannot close this gap. In-
tuitively, if there is anA-model of a progran® that is not
an A-model of a progrand), we are able to find a context



R € HB" (A, B) suchthat” is a supported model d? U R
but not of @ U R. Thus,P and@ cannot be supp-equivalent
relative toHB" (A, B). Similarly, if P and@ have the same
A-models but, for one of them, say, Tp(Y) # To(Y),
then again it is possible to exterfd and @) by a context
R € HB"(A, B) so thatY is a supported model of one
of these programs only. Thus, having the sasmodels,
and revising eacti-model in the same way by means of

the one-step provability operator are two necessary condi-

tions for supp-equivalence with respectiB" (A, B). It
turns out that the two conditions together are also sufficien
More precisely, we have the following characterization of
the supp-equivalence relative 3™ (A, B).

Theorem 3.2 Let P and @@ be normal programsA C At,
and C a class of programs such th&{B"(A,0) C C C
HB"(A, At). Then,P and @ are supp-equivalent relative
to C if and only if Mod 4(P) = Mod 4(Q) and for every
Y € Moda(P), Tp(Y) = To(Y).
Proof. (=) SinceHB"(A,0) C C, P andQ are supp-
equivalent relative t¢{B" (A, 0).

LetY € Moda(P). It follows thatY = P andY \
Tp(Y) C A. Letus consideP U (Y \ Tp(Y)) Then

Tro\try)(Y) =Tp(Y)U (Y \Tp(Y)).

SinceY = P, Tp(Y) C Y. Hence,Tpup\1p(v)(Y) =
Y. Itfollows thatY is a supported model d?U(Y \Tp(Y)).
SinceY \Tp(Y) C A, Y\ Tp(Y) € HB"(A,0). Thus,Y
is a supported model @@ U (Y \ T»(Y")) and, consequently,

Y =Tounre)(Y) = Te(Y) U (Y \ Tp(Y)).
It follows thatTo(Y) C Y andTp(Y) C Tp(Y). Thus,
Y\To(Y) CY\Tp(Y) C AandsoY € Moda(Q). The
converse inclusion follows by the symmetry argument and
s0, we haveéllod 4 (P) = Mod 4(Q).

Next, letY € Mod 4(P) (and so,Y € Mod 4(Q), t00).
We have seen thalp(Y) C To(Y). By the symmetry,
To(Y) CTp(Y). Thus,Tp(Y) = Tg(Y).

(<) Let R be a logic program fron€ andY be a sup-
ported model ofP U R. It follows thatY = Tpyr(Y) =
Tp(Y)UTR(Y). Thus,Tp(Y) C Y (thatis,Y | P)
andY \ Tp(Y) C A (becauseid(R) C A). We obtain
Y € Mod 4(P) and, by the assumptiofiiy(Y) = Tp(Y).
HenceY =To(Y)UTR(Y) = Tour(Y). Thatis,Y is a
supported model of) U R. ]

We note that our characterization for supp-equivalence
relative to HB™ (A, B) does not depend on the body-
alphabetB of the context. Thus, Theorem 3.2 applies, in
particular, toC = HB"(At,0) andC = HB"(At, At).
Consequently, it characterizes strong and uniform supp-
equivalence of normal programs. It also has several carolla
ies concerned with special cases fbr The first one deals
with the case whemd = At, in which the characterizing
condition simplifies.

Corollary 3.3 Let P and Q be normal programs and

a class of programs such thakB"(At,0) € C C
HB"™(At, At). Then,P and @ are supp-equivalent relative
to C if and only if P and @ have the same models and for
every modeY of P, Tp(Y) = Tg(Y).

Proof. WhenA = At, Mod 4(P) andMod 4(Q) consist of
models of P and Q, respectively. Thus, the result follows
directly from Theorem 3.2. O

At the other extreme, we have the cage= (). In that
case, all context programs consist of constraints (rulés wi
the empty head) only.

Corollary 3.4 Let P and @ be normal programs and a
class of programs such thatB" (0, 0) C C C HB" (0, At).
The following conditions are equivalent:

1. P and(@ are supp-equivalent relative
2. P and(@ have the same supported models
3. Mody(P) = Mody(Q).

Proof. [(1) implies (2)]: Since) € HB" (0, (), the assertion
is obvious.

[(2) implies (3)]: LetY € Mody(P). ThenY | P, thatis,
Tp(Y) CY,andY \ Tp(Y) = 0. Thus,Y = Tp(Y) and,
consequentlyy” is a supported model @?. By the assump-
tion, Y is a supported model @, that isY = Tg(Y). It
follows thatY” € Mody(Q). The converse inclusion follows
by the symmetry argument.

[(3) implies (1)]: LetR € C and letY” be a supported model
of PUR. ThenY = PURandY = Tpur(Y) =Tp(Y)U
Tr(Y) = Tp(Y) (indeed, ag&” = R and every rule inR
is a constraint/’zr(Y) = 0). ThusY € Mody(P) and so,
alsoY € Mody(Q). From the latter we obtaili = T (Y).
SinceTr(Y) = 0, Y = To(Y) UTr(Y) = Tour(Y),
thatis,Y is a supported model @) U R. Again, the other
implication follows by the symmetry argument. |

We will now apply our results to some pairs of programs
discussed in Example 3.1.

Example 3.5 First, we note that”?, and@; have the same
models. In particular{a} is a model of both programs.
However,Tp, ({a}) = {a} and Tg,({a}) = 0. Thus,
Tp,({a}) # Tg,({a}) and so,P, and Q; are not supp-
equivalent relative ta{B" (At, ) (by Corollary 3.3).

On the other hand» and @ have the same models and
for everyY (in particular, for everymodelY” of P, and@s),
Tp,(Y) = {a} = Tg,(Y). Thus,P, and Q. are supp-
equivalent relative ta{B" (At, At).

Finally, Y € Mod a4\ ¢} (P3) if and only ifY" = P; and
Y\ Tp,(Y) C At\ {b}. Clearly, if Y |= Ps, thenTp,(Y)
is defined and ¢ Y. Thus,Y \ Tp,(Y) C At \ {b}. It
follows thatY € Mod a4\ 5 (P3) if and only if Y = P,
that is, if and only ifa € Y andb ¢ Y. One can check
that this condition also characteriz&s € Mod 44\ (1} (@3).
IndeedY = Qs ifand only ifa € Y, andY \ T, (Y) C
At \ {b} if and only ifb ¢ Y. Thus, Mod 4\ (41 (P3) =
Mod g4\ (3 (Q3). Moreover, ifY € Mod g4\ vy (P3) (a € Y
andb ¢ V), Tp,(Y) = {a} = T, (Y). ConsequentlyP;
and@s are supp-equivalent relative tHB"™ (At \ {b}, At).

We conclude this section by generalizing our results to the
disjunctive case.

Corollary 3.6 Let P and @ be disjunctive programs, and
A C At. Then, the following conditions are equivalent:



. P andQ are supp-equivalent relative tHB% (A, At)

. For every classC of context programs such that
HB™(A,0) € C C HBYA, At), P and Q are supp-
equivalent relative t@

. sh(P) and sh(Q) are supp-equivalent relative to
HB" (A, At)

. ModA(sh(P)) = Moda(sh(Q)) and for everyY €
Mod a(sh(P)), Tsnp)(Y) = Tanq)(Y)-

Proof. SinceC C HBY(A, At), (1) implies (2). Thus, let

us assume (2). Taking = HB" (A, At), we obtain thatP
and @ are supp-equivalent relative 888" (A, At). Since
shifting does not affect supported models, and since for ev-
ery normal progranR, sh(R) = R, we have (3). To show
that (3) implies (1), letR € HB%(A, At) and letM be a
supported model aP U R. As supported models are not af-
fected by shifting M is a supported model ah(P U R) =
sh(P) U sh(R). Clearly,sh(R) € HB" (A, At). Thus, by

(3), M is a supported model ofh(Q) U sh(R). Conse-
quently,M is a supported model @) U R. By the symmetry
argumentP U R andQU R have the same supported models
and that proves (1). It follows that (1), (2) and (3) are equiv
alent. To complete the proof, we note that the equivalence
of (3) and (4) follows by Theorems 3.2. |

Corollary 3.6 applies, in particular, to the cases wlien
is any of the following classe$(B% (A, At), HB™ (A, At),
HBY(A, ), andHB" (A, ). It also implies an observation,
already noted above, that the alphabet allowed for the bod-
ies of context programs plays no role in the case of supp-
equivalence, unlike in the case of hyperequivalence with re
spect to stable models (Woltran 2008). In particular, fer th
semantics of supported models, there is no difference be-
tween strong and uniform equivalence (even for disjunctive
programs).

Finally, we note that Theorem 3.2 also implies a charac-
terization of uniform hyperequivalence with respect tokta
models fortight logic programs (Fages 1994), as for such

4 Hyperequivalence with respect to
supported minimal models

We move on to the semantics of supported minimal models.
Let C be a class of programs. Disjunctive prografand
@ aresuppmin-equivalentlative to a clas€ of disjunctive
programs if for every progralk € C, PU R andQ U R
have the same suppmin models. As in the case of supp-
equivalence, we restrict attention to classethat contain
the empty program. This restriction ensures that suppmin-
equivalence implies the equivalence with respect to suppmi
models.

We note that suppmin-equivalence is a different concept
than other types of equivalence we considered.

Example 4.1 The programsP, and @Q; from Example 3.1

are suppmin-equivalent with respect to any class of pro-
grams, as for every program, programsP,UR andQ,UR

have the same models and the same supported models. How-
ever, as we pointed out earlier, they are not equivalent with
respect to stable models nor hyperequivalent with respect t
stable models relative tanyclass of programs.

ProgramsP,; = P> and @4 = {a < nota} have the
same models, stable models, and are hyperequivalent with
respect to stable models relative to an arbitrary class ofpr
grams. HoweverP; and Q, are not suppmin-equivalent
(they have different suppmin models).

Next, one can show that for every gétof atoms pro-
gramsP; U U and@; U U have the same suppmin models,
but the programs themselves have different supported mod-
els. ThusP; and@; are suppmin-equivalent relative to the
classHB™ (At, () of all programs consisting of facts, but
they are not supp-equivalent relative to the same class. We
note thatP; and ), are notsuppmin-equivalent relative to
HB"(At, At), as witnessed by the contdkt= {— not a}.

Finally, P = {a < b; b «— b; «— nota,notb} and
Qs = {a < b; b — a; <« nota,notb} have the same
supported models but different suppmin modé¢ls &} is
the only supported model df; and 5, and a suppmin
model for@Qs but not for P5). Thus, the programs are supp-

programs stable and supported models coincide (we refer equivalent relative t6<B" (0, ) (which contains the empty

to (Lee & Lifschitz 2003) for a more detailed discussion of
tight disjunctive logic programs and relevant results).

Corollary 3.7 Let P and @ be tight disjunctive programs,
A C At, andC a class of programs such that3" (A, () C
C C HB%(A,0). Then,P andQ are uniformly equivalent
(with respect to the stable-model semantics) relativé tb
and only if Mod 4 (sh(P)) = Mod 4(sh(Q)) and for every
Y e MOdA(Sh(P)), Tsh(P) (Y) Tsh(Q) (Y)

Proof. Let R € HB%(A, ). SinceR consists of rules with
the empty body, both? U R and@ U R are tight. Thus,
they have the same stable models if and only if they have
the same supported models. The assertion follows now from
Corollary 3.6. ]

The characterization given by Corollary 3.7 provides an
alternative to the characterization given in (Gebstml.
2008).

program only) but not suppmin-equivalent with respect to
that class.

Our examples distinguishing between supp- and suppmin-
equivalence refer to restricted classes of contexts. As we
show later, it is not coincidental. The two types of equiva-
lence are the same if all programs are allowed as contexts.

To characterize suppmin-equivalence relative to contexts
in HB"(A, B) andHB%(A, B), whereA, B C At, we use
a refinement of the method from the previous section. As
before, we focus first on the case of normal logic programs
(and restrict the context to normal logic programs, as well)
We recall that the characterization of supp-equivalence in
that case is based on a relatively simple concept ofian
model of a program. For suppmin-equivalence, the second
alphabet,B, has to be taken into consideration. Its role
is reflected in the concepts of ddl, B)-model and arex-
tended(A, B)-model, that generalize the earlier notion of
an A-model.



We say that a seY” of atoms is an(A, B)-modelof a
programp if it satisfies the following two conditions:

1. Y € Mod z(P), thatis,Y is an A-model of P
2. foreachZ C Y suchthatZ|sup = Y|aus, Z = P.

We say that gair (X,Y") of sets of atoms is aaxtended
(A, B)-modelof a normal progranP if Y is an (A, B)-
model of P (satisfies conditions (1) and (2) above), and

3. X g YlAuB

4. foreachZ C Y such thatZ|p = X|g andZ|4 2 X]|a,

ZWP
5. IfX|B = Y|B,thenY\Tp(Y) C X.

We denote the set of all extendéd, B)-models of P by
Mod% (P).

We start by discussing the intuitions behirid, B)-
models, extendedA, B)-models, and the conditions that
define them. The role of the requirement thabe anA-
model (the condition (1)) is the same as before. It captures
the property that an interpretation can be turned into a sup-
ported model of an extension of a program with some pro-
gram fromHB" (A, B). Thus, we focus here on the remain-
ing conditions, which are meant to ensure that the require-
ment of minimality of models affects the programs under
comparison in the same way.

First, we note thatA, B)-models of a progran® are pre-
cisely those interpretations that can be turned into a supp-
min models of P by extending it with a program from
HB"(A, B). More precisely, we have the following lemma.

Lemma 4.2 Let P be a normal program, andl, B C At.
Then, there exists a progra® € HB" (A, B) such thatt’
is a suppmin model aP U R if and only ifY is an (A, B)-
model ofP.

Proof. (=) Let us assume that is a suppmin model of
P U R, whereR € HB"(A,B). Then,Y is a supported
model of P U R. It follows thatY is model of P andY =
TpuR(Y) = TP(Y) @] TR(Y) SinceR € HB”(A, B),
Y\ Tr(Y) C A and, consequently, is an A-model of P
(we used this argument already in Section 3). Next, let us
considerZ C Y such thatZ|sup = Y|aup. SinceY E R
andR € HB"(A, B), Z |= R. SinceY is a minimal model
of PUR, Z ~ PUR. Thus,Z [~ P follows and proves that
Y satisfies the condition (2) of the definition of &A, B)-
model of P.

(<) For the “if” direction, let

R=Y\Tp(Y))|pUY|s\pU{—noty|yecY|p}.

Itis easy to check thatf |= R. Next, sinceY” is anA-model
of P, Y £ P. ThusY | P U R. Moreover, we have
Y\ Tp(Y) C A. It follows that
Tp(Y)UTR(Y)=Tp(Y)U(Y\Tp(Y))|sUY|a\5 =Y,
which shows that” is a supported model a? U R. Now,
let Z C Y be such thaZ = P U R. Clearly,Y|[4\p € Z
(Z = R andR containsY’| 4\ ). Moreover, the constraints
in Rimply thatY|z C Z|g. ASZ CY,Y|aun = Z|aus-
SinceZ = P andY satisfies the condition (2) of the defini-

tion of an(A, B)-model of P, Y = Z. Hence/Y is also a
minimal model ofP U R. g

Lemma 4.2 and its proof imply immediately the follow-
ing corollary providing a necessary condition for suppmin-
equivalence of normal programs.

Corollary 4.3 Let P and (¢ be normal programs and
A, B C At. If P and@ are suppmin-equivalent relative to
HB" (A, B), then P and @ have the saméA, B)-models.
Moreover, for each( A, B)-modelY of P (and so, also of
Q) Tp(Y)ls =To(Y)|s.

Proof. The first part of the assertion follows directly from
Lemma 4.2. To prove the second part of the assertion, let
Y be an(A, B)-model of P and R the program constructed
in the proof of Lemma 4.2. We note thak(Y) = (Y \
Tp(Y))B UY|a\5-

By the proof of Lemma 4.2 is a suppmin model aP U
R. SinceP and(@ are suppmin-equivaleny; is a suppmin
model of @, as well. It follows thaty” = To(Y) U Tr(Y)
and so,

Y|s To(Y)|ls UTR(Y)|B
= To(V)|pU ¥ \Te(Y))|s
To(Y)|ls U (Y]s\Tp(Y)|B).
SinceY = P,

TP(Y) cY. ThUS,Tp(Y)|B - TQ(Y)|B.
By the symmetryI'p(Y)|p = To(Y)| 5. O

The requirement stated in Corollary 4.3 is not sufficient.
We still have to ensure that whenever adding a program
R € HB"(A, B) to P turns an(A, B)-modelY of P into a
suppmin model of? U R, Y (which, by our earlier discus-
sion, must also be af¥, B)-model of@Q) becomes a supp-
min model ofQ U R, as well (andrice versa. That is when
extended A, B)-models come into play. With eaghl, B)-
modelY they associate some subs&t®f Y that are needed
to enforce the minimality of the model condition in extended
programs. Due to the form of contexts, only those subsets
of that are also subsets dfU B are important. This restric-
tion is reflected in the condition (3) of the definition of an
extended A, B)-model.

The essential part of the specification is provided by the
conditions (4) and (5). They are designed so that each
(A, B)-model (X, Y) of a programP would give rise to a
particular context prograr® with the following properties:

Y is a suppmin model o U R; and for every prograny
either(X,Y) is an extendedA, B)-model ofQ or Y is not
a suppmin model of). The construction o2 depends on
whetherX |z C Y|p or X|g = Y|p. There are no other
possibilities asX' C Y follows from the condition (3) of the
definition of an extende(A, B)-model.

Let (X,Y) be an extendedA, B)-model of a normal
logic programP, and let us assume that|z C Yp. We
fix somet € Y|p \ X|p and define

RS {y=tlye Y \Tp(Y))|pUY|a\p}U
{x —nott|xz € X|a}U{—notx|xze X|pg}U
{—u,notz|u,zeY|p\ X|p}

Clearly, R € HB(A, B). We will show thatR- has the
required properties.



Lemma 4.4 Let A, B be subsets ofi¢, P, normal pro-
grams with the samé¢A, B)-models, and(X,Y’) an ex-
tended(A, B)-model of P such thatX |z C Y|g. ThenY
is a suppmin model aP U R<, and(X,Y') is an extended
(A, B)-model of@ or Y is nota suppmin model @) U R-.

Proof. Since(X,Y) is an extendedA, B)-model of P, Y
is anA-model of P. Thus,Y = P andTp(Y) C Y. Since
X CY,Y E R-. Moreover, again by the fact that is an
A-model of P, Y \ Tp(Y) C A. Finally, sincet € Y, the
rules{y — t |y € (Y \Tp(Y))|p UY]|a\p}in R- are
applicable with respect t&. It now follows that

Tp(Y)UTpe (V) = To(Y)U(Y\Tp(Y))|5UY a5 = Y,

which shows that” is a supported model @? U R®.

Now, letZ C Y be suchthaZ = PURC. Itfollows that
Z|B - YlB SinceZ lZ {<— not x |£E S X|B},X|B -
Z|g. Thus, sinc&Z | {«— u,notz | v,z € Y|p \ X|g},
we obtainthatZ|p = Y| or Z|p = X|5.

First, we consider the casg|p = Y|g. SinceZ E
RS-, we haveY|4\p C Z (thanks to the ruley « t,
y € Y|a\ 5, in R<). It follows thatY|4sup € Z. Con-
sequentlyY |aus € Z|aup. On the other hand C Y
and so,Z|aup C Y|aus. Thus,Y|aup = Z|aup- Since
Z = P andY satisfies the condition (2) of the definition of
an(A, B)-model of P, Y = Z.

Next, we consider the casfl z = X|. We haveX |4 C
Z (thanks to the rules « nott, z € X|4, in R<). Since
Z E P and(X,Y) is an extendedA, B)-model of P, the
condition (4) impliesY’ = Z. Thus, in each casé, = Z
and, consequentlyy” is a minimal model ofP U R<. It
follows thatY is a suppmin model oP U R®.

To show the second part of the assertion, let us assumeY = Tougr=(Y)

that (X,Y) is not an extendedX, Y)-model of@. Since
P and@ have the saméA, B)-models,(X,Y) violates the
condition (4) of the definition of afX, Y)-model. That is,
there isZ C Y such thatX|z = Z|p, Z|a 2 X|a and
Z = Q.

We observe thaf = R“. Indeedt ¢ Z (we havet € B,
Z|p = X|pandt ¢ X|p). Thus,Z is a model of all rules in
R with a positive occurrence d@fin the body. SinceX |4 C
Z|a, the rulest — not ¢ are satisfied by, too. Finally, as
Z|g = X|B, the constraints if « notx |z € X|gtU{«
u,notz | u,z € Y|p\ X|p}in R- are satisfied, as well. It
follows thatZ = QURS. Consequentlyy” is not a minimal
model ofQ U R®. O

The next lemma addresses the ca8g = Y|p. Here,
the condition (5) comes into play and we need to use a differ-
ent context. Le{X,Y") be an extende@A, B)-model of a
normal logic progran®, and let us assume that| s = Y.
We define

R=

= (Y\Tp(Y))|pUX[a\pU
{—noty|lyeY|s}
Again itis evident thaR= € HB" (A, B).

Lemma 4.5 Let A, B be subsets ofi¢, P, normal pro-
grams with the saméA, B)-models, and(X,Y) an ex-
tended(A, B)-model of P such thatX |z = Y|g. Then,

Y is a suppmin model d?U R=, and(X,Y) is an extended
(A, B)-model of@ or Y is nota suppmin model @) U R=.

Proof. Since(X,Y) is an extendedA, B)-model of P, Y
is an A-model of P, and henc&” = P. One can check that
Y = R=,aswell. Sinc& = PUR=, Tpup=(Y) CY. To
show thafY” is a supported model d? U R=, we now prove
Y CTpug=(Y). Lety € Y\Tp(Y). Itfollows thaty € X
(by the condition (5) of the definition of an extendet] B)-
model for P) andy € A (by the fact thalt” is an A-model
of P). If y ¢ B, theny € X[, p and soy € Tr=(Y). If
y € B,theny € Y \Tp(Y))|s. Thus,y € Tr=(Y) in this
case, too. Itfollows thatif € Y theny € Tp(Y)UTr=(Y)
and consequentlyy C Tp(Y)UTr=(Y) = Tpur=(Y).

We will now show thatt” is a minimal model of” U R=.
To this end, let us considef C Y such thatZ = P U R~.
It follows that Z|g = Y'|5 (sinceZ is a model of the con-
straints inR=). Moreover,X| g € Z. If y € X|ans,
theny € X|p andy € Y|p. Thus,y € Z|g. It follows
that X |4 C Z and, consequentlyX|4 C Z|4. Moreover,
X|p = Y|p implies thatZ|s = X|p. SinceZ = P and
(X,Y) is an extendedA, B)-model of P (satisfies, in par-
ticular, the condition (4))7Z = Y. Thus,Y is a minimal
model of P U R~.

To prove the second part of the assertion, let us assume
thatY is a suppmin model of) U R=. We will show that
(X,Y) is an extendedA, B)-model of@. SinceP andQ@
have the sameA, B)-models andX C Y|aup (by the fact
that (X,Y) is an extendedA, B)-model of P), it suffices
to show that the conditions (4) and (5) hold.

For the condition (5), we proceed as follows. By the
assumptionY is a supported model of) U R=. Thus,
=To(Y)UTg=(Y). Lety € Y\ To(Y).
We havey € Tr-(Y). Consequentlyy € Y \ Tp(Y) or
y € X. Since(X,Y) is an extendedA, B)-model of P
andX|p =Y|p, Y\ Tp(Y) C X. Thus,y € X and so
Y\ To(Y) C X.

For the condition (4), we consider a sétC Y such that
Z|B = X|B andZ|A ) X|A SinceY|B = X|B, Z|B =
Y|p. Thus,Z |= R=. SinceY is a minimal model OQUR
Z = Q follows.

Our discussion provided some insights into the conditions
defining the notion of an extenddd!, B)-model and the
role they play. Along the way we also derived several neces-
sary conditions foi? and@ to be suppmin-equivalent. The
following theorem, our main result of this section, shows
that these conditions together are also sufficient.

Theorem 4.6 Let A, B C At and let P, Q be normal pro-
grams. The following conditions are equivalent

1. P and@ are suppmin-equivalent relative #85" (A, B)

2. Mod%(P) Mod%(Q) and for every(X,Y) e
ModZ(P), Tp(Y)|p = To(Y)|s

3. Mod%3(P) = Mod%(Q) and for every(X,Y)
Mod3(P), Tp(Y)\ (A\ B) = To(Y) \ (A\ B).

We start by showing that (2) and (3) are equiv-

Indeed, in either case, {X,Y) € Mod%(P),

€

Proof.
alent.



thenTp(Y) C Y, Y\ Tp(Y) C A Tp(Y) C Y and
Y\ Tg(Y) C A. Consequently, we have

Tp(Y)\ (A\B) =Tp(Y)[pU (Y \ (AU B))
and

To(Y)\ (A\ B) =To(Y)|pU (Y \ (AU B)). (

Since in either case the sets involved in the union are dis-
joint, Tp(Y)|p = To(Y)|gifand only if Tp(Y)\ (A\B) =
To(Y) \ (A \ B). Thus, the equivalence of (2) and (3) fol-
lows. We complete the proof by showing the equivalence of
(1) and (2).

[(2) implies (2)]: By Corollary 4.3 P and@ have the same
(A, B)-models. Let(X,Y) € Mod%(P) be an extended
(A, B)-model of P. SinceP and( are suppmin-equivalent,
Lemmas 4.4 and 4.5 imply thd,Y) € Mod5(Q). By

the symmetryMod’ (P) = Mod%(Q) follows. Moreover,

if (X,Y) e Mod%(P)thenY is an(A, B)-model of P and

so, by Corollary 4.37»(Y) | = Tq(Y)| 5.

[(2) implies (1)]: Let R be a logic program from
HB"(A, B), and letY be a supported minimal model of
P UR. Next, letX = Tr(Y) UY|g. We note that since

Y ': R, TR(Y) cY. ThUS,X|B = Y|B.

We will show that(X,Y) € Mod%(P). SinceY is a
suppmin model of? U R, it follows thatY = P, Y E R,
andY = Tp(Y)UTR(Y). We haveR € HB"(A, B). Thus,
the latter identity shows thaf\Tp(Y") C A. SinceY = P,
we obtain thal” € Mod 4(P), that is, the condition (1) for
(X,Y) € Mod5(P) holds.

SinceTr(Y) C Y andTxr(Y) C A (we recall thatkR €
HB"(A,B)), Tr(Y) C Y|a C Yl|aup. Clearly, Y|z C
Y|aus. Thus,X C Y|aup. This proves that the condition
(3) for (X,Y) € Mod%(P) holds.

We also havdr(Y') C X (by the definition ofX). Since
Y\Tp(Y) CTr(Y), Y\ Tp(Y) C X follows. Conse-
quently, the condition (5) fotX,Y) € Mod%(P) holds,
too.

Next, letZ C Y and Z|aug = Y|aup. SinceR €
HB"(A,B) andY = R, Z E R. We have thal” is a
minimal model ofP U R. Thus,Z [~ P and, consequently,
the condition (2) fo X,Y") € Mod® (P) follows.

Finally,letZ C Y, Z|p = X|g andZ|4 2 X|a. Since
X|B = Y|B, Z|B = Y|B. We haveR < HB”(A,B)
Thus,Tr(Z) = Tr(Y) C X (the inclusion holds by the
definition of X). Moreover,Tz(Y) C A and so,lr(Z) C
Xl|a C Z|a C Z. ConsequentlyZ = R in this case, too.
As before, we obtain that [~ P. This shows the condition
(4) for (X,Y) € Mod3(P).

Thus, we have established tH&,Y) € Mod5(P). By
the assumption(X,Y) € Mod%(Q) and alsal’»(Y)|p =
To(Y)|s. We will now show thatt” = T (Y) U Tr(Y),
that is, thatY” is a supported model @ U R. SinceY €
Moda(Q), Y E Q. HenceY = QU R (we recall that
Y = R)andsoTg(Y)UTr(Y)CY.

ToshowY C TH(Y)UTR(Y), lety € Y. We recall that
Tr(Y) C A. We distinguish three cases:

(ii)

(i) y ¢ A: Since(X,Y) € Mod5(Q),Y € Mod 4(Q) and
s0,Y \ To(Y) C A. Thus,y € To(Y) follows.

y € B: If y € Tr(Y') we are done; otherwise (sinte=
Tp(Y)UTRr(Y)), we obtainy € Tp(Y). It follows that
y € Tp(Y)|p. Thus,y € To(Y)|s and, consequently,
(VRS TQ(Y).

y € A\ B: If y € X, theny € Tr(Y) (we recall that
X =Tr(Y)UY|p), ify ¢ X, theny ¢ Y \ To(Y
(indeed, sincgX,Y) € Mod53(Q) andX|5 = Y|,
Y\ To(Y) C X),and thusy € T (Y).

Itfollows thatY = To(Y)UTR(Y), thatis,Y is a supported
model ofQ U R.

It remains to show thafy” is a minimal model of
Q UR. LetY' C Y be a model ofQ U R. Since
Y' = Q, (Y)aus,Y) ¢ Mod5(Q) (it violates condi-
tion (4) of the definition ofMod %5 (Q)). By the assumption,
(Y'|aup,Y) ¢ Mod5(P). Since(X,Y) € Mod5(P),
(Y'|aus,Y) satisfies condition (1) of the definition of
Mod% (P). Moreover,Y’ C Y impliesY’|aus C Y|aus.
Thus, condition (3) holds, too.

LetY|s = (Y'|aun)|s- Then, Y| = Y'|p. Since
Y' = RandR € HB" (A, B), Tr(Y') CY andTr(Y') =
Tr(Y). Thus,Tr(Y) C Y’ and, consequenthy’ C Y.
We proved above that \ Tp(Y) C X. Consequently, con-
dition (5) for (Y'|aup,Y) € Mod%(P) holds, as well. It
follows that at least one of the conditions (2) and (4) is vio-
lated. That is, there i§ C Y, such thal/ = P, and either
U|AuB = Y|AuB or U|B = YI|B andU|A D) Y/|A. Since
bothY = R andY’ = R, U E R (we recall here that
R € HB"(A, B)). Thus,U E P U R andY is not a mini-
mal model of P U R, a contradiction. It follows that there is
noY’ C Y suchthal” = QU R. Thatis,Y is a supported
minimal model of@Q U R. a

i)

We have several corollaries for some special choices of
A and B. The first one concerns the case when= 0,
that is, the case of relativized uniform suppmin-equiveéen
Since the conditiof’s(Y)|p = To(Y)|s is now trivially
satisfied, Theorem 4.6 implies the following result.

Corollary 4.7 Let A C At. Normal programsP and @
are suppmin-equivalent relative #@5" (A, 0) if and only if

Mod" (P) = Mod",(Q).
Proof. The result follows by the equivalence of the condi-
tions (1) and (2) in Theorem 4.6. O

Moreover, the description offod%(P), whenB = ()
simplifies. In fact(X,Y) € Mod",(P) if and only if

1. Y € Mod4(P)

2. XCYla

3. foreachZwithX CZCY,Z P

4. Y\Tp(Y) C X.

When A = B = At (strong suppmin-equivalence), it
turns out that supp-equivalence and suppmin-equivalence
coincide (cf. comments at the end of Example 4.1).



Corollary 4.8 Normal programsP and Q are suppmin-
equivalent relative td{B" (At, At) if and only if P and @
are supp-equivalent relative ®B" (At, At).

Proof. We note that(X,Y) € Mod4:(P) if and only if
Y € Mod 4+(P),and eithetX =Y,orX C Y andX [~ P.
Thus,Mod4(P) = Mod4!(Q) if and only if Mod 4,(P) =
Mod 4;(Q). Moreover,(Y,Y) € Mod4!(P) if and only if
Y € Moda;(P). Thus, the result follows from Corollary
3.3 and Theorem 4.6. O

We will discuss additional special-cases for instantgtin
Mod% (P) as part of our complexity analysis in Lemma 6.1.

We will how use our results to resolve the issue of
suppmin-equivalence of programs discussed earlier.

Example 4.9 If P is a program such that every set of atoms
is a model ofP, then Mod%,(P) = {(V,Y) |Y C At}.
This observation applies both t&, and ;. Thus, by
Corollary 4.7, P, and ; are suppmin-equivalent relative
to HB"(At, D). We note tha?’, and ), are not suppmin-
equivalent relative ta{B"(At, At). Indeed, they are not

supp-equivalent (cf. Example 3.5) and so, not suppmin-

equivalent (by Corollary 4.8).
Next, we consider program and Q5. We note that for

every programP, Modg(P) consists of pairgf, Y), where
Y is a suppmin model oP. Thus, Mod)(P;) = § and

MOdg(Qg,) = {(0,{a,b})}. By Corollary 4.7,P; and Q;
are not suppmin-equivalent relative 18" (0, ).

We will now consider the general case of disjunctive pro-
gramsP andQ, and the class of context$B3%(A, B). We
will first show that when considering suppmin-equivalence
with respect toHB%(A, B), we can restrict to contexts in
HB" (A, B).

Lemma 4.10 Let A, B C At and let P and @ be disjunc-
tive programs. Then? and @ are suppmin-equivalent with
respect thBd(A, B) if and only if P and @ are suppmin-
equivalent with respect th(5" (A, B).

Proof. The “only-if” part of the assertion is evident. We
will prove the “if” part only. Thus, let us assume thatand
@ are suppmin-equivalent with respecti3”™ (A, B). Let
R € HB%(A, B) and letY be a suppmin model aP U R.
We will show thatY” is a suppmin model of) U R.

A normal ruler’ is aY-split of a ruler if (i) bd(r') =
bd(r), and (i) hd(r') = Lif hd(r)NY = 0, andhd(r') €
Y, otherwise. A normal progra’ if a Y-split of R if R’
is obtained fromR by replacing each rule iR by one of its
Y -splits.

Observation 1: For every-split R’ of R, Y is a model of
R’, and for everyZ C At,if Z = R/, thenZ = R.
Observation 2: For every-split R’ of R, Y is a suppmin
model of P U R'.

To prove that, we argue as follows. Firsf, = P (asY
is a suppmin model of” U R) and so, by Observation 1,
Y = PUR' Lety € Y. SinceY is a supported model
of PU R, there is a rule € P U R such that” |= bd(r)
and{y} = hd(r) NY. If r € R, y — bd(r) belongs toR’

(as itis the onlyY -split of ). It follows that there is a rule
" € PUR' suchthaty” &= bd(r') and{y} = hd(*')NY
(r, if » € P; the split ofr, y « bd(r), otherwise). Thusy
is a supported modeldPUR'. If ZCYandZ E PUR/,
then, by Observation 7 = P U R. SinceY is a suppmin
model of PU R, Z = Y. Thus,Y is a suppmin model of
P U R/, as claimed.

SinceY -splits are normal programs iHB" (A, B), and
since P and Q are suppmin-equivalent with respect to
HB"(A, B), it follows that for everyY-split R’ of R, YV’
is a suppmin model of) U R’. We will show thatY is a
supported model of) U R.

Since the set of -splits of R is nonempty, it follows from
the statement above that is a model of@. Thus,Y =
Q U R (we recall thatt” is a suppmin model o U R and
s0,Y is a model ofR). We will now show that every € Y’
thereis arule € Q U R such thaty” |= bd(r) and{y} =
hd(r)NY. To this end, let us assume tHatontains no such
rule. SinceY” = R, for everyr € R such tha®y” = bd(r),
there isy,. € Y such thaty # y, andy, € hd(r). Letus
consider the splif?’ of R that replaces each such rulaith
the ruley, < bd(r). It follows thaty ¢ hd(R). SinceY is
a supported model @) U R’, there is a rule € @) such that
Y & bd(r) and{y} = hd(r) NY. Thus,Y is a supported
model of @ U R.

Finally, we will show thatt” is a minimal model o) U R.
LetZ C Y be amodel of) U R. For every rule- € R such
thatZ = bd(r), lety, be an element in the head okuch
thaty, € Z. Let R’ be anyY -split of R which, for every
such ruler uses itsY-splity, < bd(r). Then,Z £ QUR'.
SinceY is a suppmin modelo) U R, Z =Y. Thus,Y is
a minimal model ofp U R.

It follows thatY” is a suppmin model of) U R. By the
symmetry argumen’ U R and@ U R have the same supp-
min models. That isP and@ are suppmin-equivalent with
respect ta{B%(A, B). m

We recall that shifting does not affect models and sup-
ported models of a program . Moreover, for every program
R € HB"(A, B), sh(R) = R. Thus, we have the following
result.

Corollary 4.11 Let A, B C At and letP and( be disjunc-
tive programs. Then?” and @ are suppmin-equivalent with
respect toHB%(A, B) if and only if sh(P) and sh(Q) are
suppmin-equivalent with respectB™ (A, B).

Thanks to Corollary 4.11, all results concerning suppmin-
equivalence of normal programs with respect to normal con-
texts lift to the disjunctive case. We present two such tesul
below.

Corollary 4.12 Let A, B C At. The following conditions
are equivalent.

1. Disjunctive programg”® and ) are suppmin-equivalent
relative toHB%(A, B)

2. Mod% (sh(P)) = Mod% (sh(Q)) and for every(X,Y) e
MOdﬁ(Sh(P)), Tsh(P) (Y)|B = Tsh(Q) (Y)|B



3. Mod® (sh(P)) = Mod”% (sh(Q)) and for every X,Y) €
M)Otiﬁ(sh(P)). Tonp)(Y)\ (A\ B) = Tn() (Y) \ (A
B
Proof. This result follows by Corollary 4.11 from Theorem
4.6. a

Corollary 4.13 Disjunctive programs P and @ are
suppmin-equivalent relative tb[Bd(At, At) if and only if
P and(Q are supp-equivalent relative fHBd(At, At).

Proof. This result follows by Corollaries 4.11, 3.6, and 4.8.
O

5 Complexity of Supp-Equivalence

We focus entirely on the case of normal programs and nor-
mal contexts. As we noted, it is hot an essential restriction
and all results we obtain hold without it. We will study
deciding hyperequivalence relative to clas$es™ (A, B).
Specifically, we will consider the following problems:

1. supr given programsP, Q (over At) and A, B C At,
decide whethel” and @ are supp-equivalent relative to
HB™(A, B)

2. SUPP4: given programsP, Q (over At) and B C At,
decide whether” and @ are supp-equivalent relative to
HB" (A, B)

3. supP?: given programsP, Q (over At) and A C At,
decide whethe” and @ are supp-equivalent relative to
HB™(A, B)

. SUPF;: given programsP, ) (over At), decide whether
P and@ are supp-equivalent relative 195" (A, B).

We emphasize the changing roles of the sétand B.
In some cases, they are used to specify a probldnin(
SUPF; and suPR,); in others, they belong to the specifi-
cation of an instance4 in supF® andsuPB. In the first
role, they can be finite or infinite. For instansayPp,, de-
notes the problem to decide, given prografhg) (over At)
andB C At, whetherP and( are supp-equivalent relative
to HB" (At, B). In the second role, they need to have finite
representations.

To establish the complexity of a problem, we derive an

2
3.
4

. SUPPy, for every finited C At
SUPPE, for every finiteA C At, and for everyB C At
. SUPF?, for everyB C At

5. supr;,, for everyB C At.

Proof. (1) Theorem 3.2 implies that the complement of the
problem is in the class NP. Indeed, given two progrdms
and @ and setsA, B C At, if there is a seft” such that

Y belongs to exactly one a¥fod 4(P) and Mod 4(Q), or

Y € Moda(P) N Mod4(Q) andTp(Y) # Tg(Y), then
Y\Tp(Y) C AorY \ To(Y) C A. Itfollows thaty C
At(PUQ)U A. Since for sucly” verifying the membership
in Mod 4(P) and Mod 4(Q), and testingl'p(Y) # To(Y)
can be done in polynomial time in the sizedf(PUQ)U A,

our claim and, consequently, the assertion, follows.

(2) Each of these problems reduces to the problem (1) (ex-
tend an instance of a problem in (2) with, the set that
defines the problem, to specify an instance of the problem
(1)). Thus, the bound follows.

(3) and (4) Each of these problems is equivalent to the prob-
lem with B = () and so, can be reduced to the problem (1).

(5) Corollary 3.3 implies that the complement of the prob-
lem is in the class NP. Indeed, given two normal programs
P and @, if there is a sel” such that (a)Y" is a model of
exactly one ofP and@, or (b)Y is a model of bothP and

Q, andTp(Y) # To(Y), then there i” C At(P U Q)
with the same property. Since verifying conditions (a) and
(b) forY’ C A¢(P U Q) can be done in polynomial time in
the size ofPUQ, our claim and, consequently, the assertion,
follows. O

In problems (3) - (5) we do not need any explicit or im-
plicit representation of3, as the supp-equivalence relative
to HB" (A, B) depends o only.

We move on to the lower bound (hardness). In several
proofs in this and the next sections, we use the following
concepts and notation. We consider a CNF formgulaver
a set of atom¥’, or a QBF formulavY 3X ¢, whereyp is
a CNF formula over the set of atords U Y. For every
such atomz € Y orz € X UY, respectively, we denote
by 2’ a new atom not appearing anywhereyn possibly
also different from some other atoms that might be named

upper and a lower bound (membership and hardness). We explicitly, and different from other “primed” atoms. Given

start by pointing out that establishing an upper bound is not
entirely straightforward. A natural withess against supp-
equivalence (relative to a clag$ is a pair(R, Y'), whereR

is a finite program ir€ andY  is finite set of atoms such that
Y is a supported model of exactly oneBfu R and@ U R.

The problem is that the size of such a progrBmmight not

be bounded by a polynomial in the size Bf (), and possi-

bly alsoA and B, depending on the problem. Thus, the most
direct attempt to prove the membership of the problem in the
class coNP fails. The bound can, however, be derived from
our characterization theorem for several classes of contex
programs.

Theorem 5.1 The following problems are in the class
coNP:

1. suprP

set of “non-primed” atom&, we defineZ’ = {2’ | z € Z}.
Finally, foraclause = 21 V- -V zp V—ozppe1 V-V oz,
we denote by: the sequence, ..., 2, zx+1, . ..

Theorem 5.2 For every finiteA C At and A = At, and for
everyB C At, the problensuPF; is coNP-hard.

Proof. Let us consider a CNE and letY” be the set of atoms
in . We define

P(p)

’Zm'

{y = noty’; y —mnoty|yeY}U
{—vy|lyeY}u
{« ¢| cisaclause inp}

To simplify the notation, we write”® for P(p). One can
check thaty has a model if and only if? has a model.
Moreover, for every model{ of P such thatM C At(P),



M is astablemodel of P. Thus, each such model @
is also asupportedmodel of P and, consequently, satisfies
M =Tp(M).

Next, we defineQ to consist of two rules: f and «
f. Clearly, @ has no models. By Theorem 3.2) is
supp-equivalent tdP relative toHB" (A, B) if and only if
Mod 4(Q) = ModA(P) and for everyM € Mod 4(Q),
To(M) = Tp(M). SinceMod 4(Q) = 0, we have that
Q is supp-equivalent td relative to HB" (A, B) if and
only if Moda(P) = 0. If M € Mod(P), then there is
M’ C At(P) suchthatM’ € Mod o(P). Since every model
M’ of P such thatM’ C A¢(P) satisfiesM’ = Tp(M'), it
follows thatMod 4 (P) = 0 if and only if P has no models.

Thus,y is unsatisfiable if and only i) is supp-equivalent
to P relative toHB" (A, B), and the assertion follows. O

We observe that for the result to hold we do not need to
know B. Putting together Theorems 5.1 and 5.2 we obtain
the following result.

Corollary 5.3 The problems listed in Theorem 5.1 are
coNP-complete.

Proof. The hardness of problems in Theorem 5.1 follows
from Theorem 5.2. Thus, the coNP-completeness follows.
O

Problems we considered so far do not impose restrictions
on input programd” and(@. In particular, they contain in-
stances, in whichlod 4 (P) # Mod 4(Q), a property ex-
ploited by the proof we presented above. We will now con-
sider the problem to decide whether normal prograhasd
Q@ such thatMod o(P) = Mod(Q) are supp-equivalent
relative toHB" (A, B). It turns out that this additional in-
formation is of no help as the complexity does not go down.

We start with an auxiliary result.

Lemmab5.4 Let A C At be a fixed finite non-empty set
or A = At. The following problem is coNP-complete.
Given a normal logic programP, decide whether every
M € Mod o(P) suchthatM C A¢(P)is asupported model
of P.

Proof. Let us select and fix an element.ih sayg, and let
 be a CNF formula ove¥. Wlog we may assume that
does not contaip. We define

S(e)

{y —noty’; ¥y —mnoty|yeY}uU
{—yylyeY}u
{g < ¢ | cisaclause i}

In the remainder of the proof, we writgfor S(y).

We note that for every/ C At(S), if M = S then
Ts(M) = MorTs(M)= M\ {g}. Inparticular, ifM C
At(S)andM = S, thenM \ Ts(M) C {g} C A. Thus,
for M C At(S), M € Mod4(S) ifand only if M |= S.

If ¢ is unsatisfiable then, for evefd C At(.S) such that
M E S, we haveg € M. Consequently, each sudil
is a supported model of. It follows that for everyM ¢
Mod 4(S) such thatV C At(S), M is a supported model
of S.

If ¢ is satisfiable, every model of gives rise to a sup-
ported model, sayX, of S, such thay ¢ X. Itis easy to see

thatM = X U {g} is a model ofS but not a supported one.
SinceM C At(S) andM is a model ofS, M € Mod 4(S).

Thus, ¢ is unsatisfiable if and only if evenM €
Mod 4(S) such thatM C At(S) is a supported model of
S. Consequently, the hardness follows.

The membership part is evident. Indeed, the complemen-
tary problem can be decided by the following algorithm:
nondeterministically gues3/ C At(S); verify that (1)
M € Mod 4(S) and that (2)M is not supported model of
S. Clearly both (1) and (2) can be done in polynomial time
(both for A finite and non-empty, and fad = At, where
the conditionM \ Ts(M) C A trivializes). Thus, the com-
plementary problem is in NP and the assertion follows]

Applying Lemma 5.4 to the casé = At¢, we obtain the
following result of some interest in its own right.

Theorem 5.5 The following problem is coNP-complete:
given a finite normal logic prograr®, decide whether every
modelY of P such thafy” C A¢(P) is supported.

However, the primary application of Lemma 5.4 is in de-
termining the complexity of hyperequivalence for programs
P and@ with Mod 4(P) = Mod 4(Q), the problem we al-
ready mentioned above.

Theorem 5.6 Let A be a fixed finite non-empty subsetAif
orlet A = At. Forevery seB C At, the following problem
is coNP-complete: given two normal programsand @
such thatMod 4 (P) = Mod 4(Q), decide whether they are
supp-equivalent relative t/ 3" (A, B).

Proof. We restrict to the cas® = ) (we recall that supp-
equivalence does not depend B

The membership part follows from Theorem 5.1. For the
hardness part, we will proceed as follows. Given a normal
logic programP, we will construct a normal logic program
P’ so that (1)Mod o(P) = Mod 4(P'), and (2)P and P’
are supp-equivalent relative #8" (A, 0) if and only if for
everyM € Mod 4(P) such thatM C At(P), M is a sup-
ported model forP. Since it will be the case thd’ can be
constructed in polynomial time in the size Bfand A, the
assertion will follow from Lemma 5.4.

Thus, let P be a normal logic program. Let us define
P'=PU{g < gl|g e At(P)n A}. Itis evident thatP’
can be constructed in polynomial time in the sizefbénd
A. We also note that for everyf C At(P), Tp/ (M) =
Tp(M)U (M N A).

We will first prove (1), that isMod 4 (P) = Mod 4 (P").
Let M € Mod 4(P). ThenM = P (and soTp(M) C M)
andM \ Tp(M) C A. One can verify thal'p/ (M) = M N
At(P). Thus,M | P'. Moreover, adp(M) C Tp/ (M),
M\ Tp: (M) C A. ConsequentlyM € Mod 4(P’). Con-
versely, letM € Mod 4(P’). It follows thatM = P. Next,
lety € M\ Tp(M). If y € M \ Tp/(M), theny € A (as
M\ Tp/(M) C A). Otherwisey € Tp/(M)\ Tp(M).

It follows thaty € A N A¢(P) and so,y € A in this
case, too. Thus, we obtai/ \ Tp(M) C A and, con-
sequently,M € Mod(P). That concludes the proof of
Mod 5 (P) = Mod 4(P").

To prove the equivalence (2), let us first assume that for
every M € Moda(P) such thatM C At¢(P), M is a



supported model fo?. We will show thatP and P’ are
supp-equivalent relative tt(3" (A, ). To this end, it suf-
fices to show that for every € Mod A(P), Tp(M)
Tp/(M) (cf. Theorem 3.2). Thus, le¥ € Moda(P).
Then, M N At(P) € Moda(P) and, by the assumption,
Tp(M N At(P)) = M N At(P). SinceTp(M) = Tp(M N
At(P)), Tp(M) = M N At(P). We also hav€'p/ (M)
Tp (MNAt(P)) = Tp(MNAt(P))U[(MNAL(P))NA] =
M N At(P). Thus,Tp(M) = Tp/(M) and so,P and P’
are supp-equivalent relative 83" (A, 0)).

Conversely, letP and P’ be supp-equivalent relative to
HB™(A,0). Let M € Mod 4(P) be such thatl C At(P).
We proved earlier that fa¥/ € Mod 4(P), Tp/ (M) = MnN
At(P). SinceM C At(P), Tp/(M) = M. Thus,M is
a supported model of’ and so (ag) € HB"(A4,0) and
P and P’ are supp-equivalent relative 65" (A, (0)), of P,
too. Thus, for everW/ € Mod 4(P) such that\l C At(P),
M is a supported model aP, as required to complete the
proof of (2). By our earlier comments, the result follovs.

There seems to be no simple reduction from any problem
considered in Corollary 5.3 to the problem from Theorem

5.6 and so, a direct proof is needed. The requirement that Mod%,(P) and Mod%,(Q)

A # (is necessary for the complexity result of Theorem 5.6.
Indeed, by Corollary 3.4, ifi = (), programsP and@ with
Mod 4 (P) = Mod 4(Q) are necessarily supp-equivalent.

6 Complexity of Suppmin-Equivalence

We will use here the same notational schema as in the pre-

vious section, but replace supp-equivalence with suppmin-
equivalence and writsuPPMIN instead ofsupr For in-
stance, we writsuPPMIN? (for B fixed and not part of the
input) to denote the following problem: given normal pro-
gramsP and(@, andA C At, decide whetheP and( are
suppmin-equivalent relative 5" (A, B).

Deciding suppmin-equivalence relative 165" (A, B),
whereA = At or B = At, remains in the class coNP
and turns out to be coNP-complete. To prove that, we first
simplify the conditions fof X, Y) € Mod% if A = At or
B = At.

Lemma 6.1 Let P be a normal logic program and, B C
At. Then,

1. (X,Y) € Mod®%,(P) if and only if the following condi-
tions hold:
@YEP
(b) XCY
(c) foreveryZ C Y, suchthatZ|p = X|gpandZ D X,
ZWEP
(d) |fX|B = Y|B, thenY\Tp(Y) C X.
2. (X,Y) € Mod4*(P) if and only if the following condi-
tions hold:
(@) Y € Mod A(P)
(b) XCY
() If X CYthenX }£ P.

Proof. If A = At, the condition (1) fofX,Y) € Mod5 (P)
specializes to (1a) &8 € Mod 4+(P) ifand only if Y = P.

AssumingB = At has no effect on the condition (1). Thus,
it appears without any change as the condition (2a).
SinceAU B At, the condition (2) for(X,Y) €
Mod®% (P) is trivially true, in both cases. For the same rea-
son, the condition (3) fotX,Y) € Mod%(P) specializes
to (1b) or (2b), respectively. The conditions (4) and (5) for
(X,Y) € Mod5(P) specialize to the conditions (1c) and
(1d) in caseA = At. If B = At, the condition (4) for
(X,Y) € Mod%(P) specializes to (2c). The condition (5)
for (X,Y) € Mod%(P) holds true (ifX = Y then, trivially,
Y\ Tp(Y) CY)and can be dropped. O

Lemma 6.1 plays a key role in establishing the mem-
bership in the class coNP of the relativized suppmin-
equivalence problems for which = At or B = At. How-
ever, forthe casd = At we need one more important prop-
erty.

Lemma 6.2 Let P, @ be normal programs an@ C At. If
Mod%,(P) # Mod%,(Q), thentherei§” C At(PUQ)UB
such thatY” is a model of exactly one @ and @, or there
isa € Y such that(Y \ {a},Y) belongs to exactly one of

Proof. Let us assume tha? and(@ have the same models
(otherwise, there i C At(P U Q) that is a model of ex-
actly one of P and@, and the assertion follows). Wlog we
can assume that there(i&, Y') € Mod%,(P)\ Mod%,(Q).
Moreover, we can assume thet C A¢(P U Q) U B. It
follows that (X, Y") satisfies the conditions (1a)-(1d) from
Lemma 6.1 for(X,Y) € Mod%,(P). Moreover, sinceP
and@ have the same modelgX,Y") already satisfies con-
ditions (1a)—(1c) fo X,Y) € Mod%,(Q). HenceX|p =
Y| andY \ Tp(Y) ¢ X have to hold. Thus, there is
a€ (Y\Tg(Y)) \ X. We will show that(Y \ {a},Y) €
Mod,(P) and(Y'\ {a},Y) ¢ Mod},(Q).

Since(X,Y) € Mod%,(P), Y is a model ofP. Next,
obviously,Y \ {a} C Y. Thus, the conditions (1a) and (1b)
of Lemma 6.1 hold. LeZ C Y be suchthaZ 2> Y \ {a}.
ThenZ = Y \ {a}. We haveY |z = X|p,a € Y, and
a ¢ X.Thus,a ¢ B. Itfollows that(Y'\{a})|s = X|s and
X C Y\ {a}. Since(X,Y) € Mod5,(P), Y \ {a} £ P,
that is, Z = P. Thus, the condition (1c) of Lemma 6.1
holds.

Sincea ¢ B, (Y \ {a})|s = Y|s. Thus, we also
have to verify the condition (1d) of Lemma 6.1. We have
Y\Tp(Y) C X (we recall thatt’|z = X|p) and soY \
Tp(Y) C Y\ {a}. Hence, the condition (1d) of Lemma 6.1
holds, forP and, consequentlyy \ {a},Y) € Mod%,(P).
On the other hand, € Y \ T(Y') anda ¢ Y \ {a}. Thus,
the condition (1d) of Lemma 6.1 does not hold pand so,

(Y \{a},Y) ¢ Mod3,(Q). o

We are now ready to show the promised coNP-
completeness results.

Theorem 6.3 The following problems are coNP-complete:
1. surPMINS,, for every finiteB C At,
2. SUPPMIN;!, for every finited C At,



3. SUPPMIN?, SUPPMIN4;, andSUPPMINAL.

Proof. The case obUPPMIN;! is already clear by Corol-
lary 4.8 and Theorem 5.2.

To establish the other cases, we will show coNP-
membership foisupPMIN' and SUPPMIN,;. From these
two results, the membership results feuPPmING, and
supPPMING? (for finite A, B C At) follow easily.

Likewise, we will show coNP-hardness fSUPPM|N§t
and suppmiNg? (for finite A,B C At). That im-
plies the corresponding lower bounds fwpPpPmiNA® and
SUPPMINg¢.

We start with coNP-membership f@uPPMINg;. The
following nondeterministic algorithm verifies, given pro-
gramsP, Q and B C At, that P and( are not suppmin-
equivalent relative ta{3" (At, B). We guess a paifa,Y),
whereY C A#(P U Q) U B, anda € At such that (1)
Y is a model of exactly one oP andQ; or 2)a € Y
and (Y \ {a},Y) belongs to exactly one oMod%,(P)
and Mod%,(Q); or (3) Y is model of bothP andQ and
Tp(Y)|s #To(Y)|s.

Such a pair exists if and only #? and@ are not suppmin-
equivalent relative td{B" (At, B). Indeed, let us assume
that such a paifa,Y) exists. If (1) holds for(a,Y’), say
Y is a model of P but not@Q, then(Y,Y) € Mod%,(P) \
Mod%,(Q) (easy to verify by means of Lemma 6.1). Thus,
Mod%,(P) # Mod%,(Q) and, by Theorem 4.6° andQ
are not suppmin-equivalent relative #3" (At, B). If (2)
holds for (a,Y), Mod%,(P) # Mod%,(Q) again, and we
reason as above. Finally, if neither (1) nor (2) holds, Lemma
6.2 impliesMod%, (P) = Mod%,(Q). Inthis case, (3) holds
for (a,Y). SinceY = P, we have(Y,Y) € Mod5,(P).
Moreover,Tp(Y)|p # Tg(Y)|s. Thus, again by Theo-
rem 4.6, P and () are not suppmin-equivalent relative to
HB"(At, B).

Conversely, ifP and@ are not suppmin-equivalent rela-
tive toHB" (At, B), thenMod®,(P) # Mod%,(Q) or there
is (X,Y) € Mod5,(P) such thatTp(Y)|p # To(Y)|s.
The former implies (by Lemma 6.2) that there(is Y),
with Y C A¢(P U Q) U B), that satisfies (1) or (2). Thus,
let us assume thatlod%,(P) = Mod%,(Q) and that there
is (X,Y) € Mod%,(P) such thatTp(Y)|p # To(Y)|s-
Since(X,Y) € Mod%,(Q), too,Y is a model of bothP
and@ andTp(Y)|p # Tg(Y)|s. Clearly, Y = Y N
(A¢t(P U Q) U B) is a model of bothP? and @, too, and
Tp(Y')|p # To(Y')|s. Picking anya € At yields a pair
(a,Y"),withY’ C At(P U Q) U B, for which (3) holds.

It follows that the algorithm is correct. Moreover, check-
ing whetherY = P andY E @ can clearly be done
in polynomial time in the total size oP, @, and B; the
same holds for checkingp(Y)|p # To(Y)|s. Finally,
by Lemma 6.1, testindY \ {a},Y) € Mod%,(P) and
(Y \ {a},Y) € Mod%,(Q) are polynomial-time (with re-
spect to the size of the input) tasks, too; the only prob-
lematic condition is (1c) from Lemma 6.1. However, we
need to test thaZ [~ P there for only oneZ such that
Y \{a} C Z CY,namelyZ =Y \ {a}. Thus, the algo-

rithm runs in polynomial time. It follows that the comple-
ment of our problem is in the class NP and so the assertion
follows.

We continue by showing thatuppPmIN®? is in the class
coNP. By Theorem 4.6P and @ are suppmin-equivalent
relative to HB"(A, At) if and only if Mod4'(P)
Mod4"(Q) and for every(X,Y) € Mod4'(Y), Tp(Y)
To(Y). It follows that to decide tha® and @) are not
suppmin-equivalent relative ta{B" (A, At), it suffices to
guess a pai(X,Y), whereX C Y C At{(PUQ)U
A, and verify that (a)(X,Y") belongs to exactly one of
Mod*4"(P) and Mod“}' (P), or (b) that(X,Y) belongs to
both Mod " (P) and Mod ' (P), andTr(Y) # To(Y). In-
deed, if(X,Y) € Mod4'(P)U Mod4'(Q), thenX C Y C
At(P U Q) U A (the latter inclusion following from the fact
thatY € Mod 4(P)UMod 4(Q)). By Lemma 6.1, and since
X CY C At(PUQ)U A, all these tests can be executed in
polynomial time in the total size aP, @@ and A. Thus, the
complementary problem is in NP and so, the membership in
coNP follows.

We now switch over to the hardness results and start this
time with supPMINS®. In the proof of Theorem 5.6, we have
shown that for every program®, and any finiteA C At,

Mod A(P) = Mod 4(P'), whereP’ = PU{g«—g| g€

AN At(P)}. Moreover, in the same proof, we have shown
thatP andP’ are supp-equivalent relative 105" (A, At) if

and only if for eaci” € Mod 4(P) withY C At(P),Y is

a supported model aP. We will now show thatP and P’

are supp-equivalent relative @B" (A, At), if and only if

P and P’ are suppmin-equivalent relative ¥68" (A, At).

The only-if direction follows from the fact thaP and P’
have the same models. Indeed, this property implies that for
everyR € HB"(A, At), P U R and@ U R have the same
supported models and the same models. Consequently, they
have the same supported minimal models.

For the if-direction, we recall that suppmin-equivalence
relative toHB™ (A, At) betweenP andP’ implies (by Theo-
rem 4.6)Mod' (P) = Mod4'(P") andTp(Y) = Tp:/(Y),
for every (X,Y) € Mod’'(P). In view of Lemma 6.1,
it is easy to see thallods(P) = Moda(P") follows.
Moreover, by the same lemma, ¥ € Mod4(P) then
(Y,Y) € Mod4'(P). Thus,Tp(Y) = Tp:/(Y), for ev-
eryY € Mod4(P). By Theorem 3.2P and P’ are supp-
equivalent relative ta{B™ (A, At).

It follows that for everyy” € Mod 4(P)withY C At(P),

Y is a supported model faP if and only if P and P’ are
suppmin-equivalent relative t{ 5" (A, At). Thus, the as-
sertion follows from Lemma 5.4.

To prove the coNP-hardness PPMING,, we proceed as
follows. Letp be a CNF formula, and It be the set of
atoms inp. We defineP and@ as in the proof of Theorem

5.2. Since has no models)/od%,(Q) = 0.
LetY be a model ofP. Clearly,(Y,Y) satisfies the con-

ditions (1a)-(1d) from Lemma 6.1. ThusfodZ,(P) # 0.

Conversely, if Mod,(P) # 0, then there is(X,Y) ¢

Mod%,(P). By Lemma 6.1(1a)} is a model ofP.
Thus, P has models if and only iffod5,(P) # 0. By



Theorem 4.6 P has models if and only i? and@ are not
suppmin-equivalent relative 5" (At, B).

In the proof of Theorem 5.2, we already showed tRat
has models if and only ip has models. Thug; has models
if and only if P and@ are not suppmin-equivalent relative
to HB" (At, B). Consequently, the claim follows. a

We will now establish the complexity of deciding rela-
tivized suppmin-equivalence whehand B are finite (fixed
as part of the problem specification, or given as part of
instance specification). We start with an auxiliary result
needed to derive upper bounds for the complexity.

Lemma 6.4 The following problem is in coNP: given a nor-
mal logic programP and setsX,Y, A, B C At, decide
whether(X,Y) € Mod% (P).

Proof. We already established earlier that deciding whether

Y ¢ Mod 4(P) (condition (1)) can be done in polynomial
time in the size ofP, Y and A. The same is evident for
decidingX ¢ Y| aup (condition (3)) andv \ Tp(Y) € X,

in case X |p = Y| (condition (5)).

The remaining two conditions definindX,Y) €
Mod% (P), that is, (2) and (4), can be checked for viola-
tion as follows. We guesg C Y such that eitheZ| 4,5 =
Y|aus, orjointly Z|p = X|g andZ|4 2 X|a. Then, we
check whetheZ = P. Thus, deciding whethdrX,Y") ¢
Mod% (P), for given setsX,Y, A, B C At, is in the class
NP. Consequently, deciding whethe¥,Y) € Mod%(P),
for given setsX, Y, A, B C At, isinthe class coNP. O

With this result in hand[I4’ -membership ofuPPMINcan
be shown by suitably guessing paitX,Y) in Mod5 (P)
andMod?% (P), respectively.

Theorem 6.5 The problensuPPMmINis in I1%.

Proof. The complementary problem can be decided in non-
deterministic polynomial time with an access to an NP-

oracle. Indeed, we note that(f{,Y) € Mod%(P), then
Y C At(P)U A. Thus, if there exist§X,Y") that be-

longs to exactly one of\fod5(P) and Mod%(Q), then
there is(X’,Y") with that property and such that’ C

At(P U Q) U A. Moreover, if Mod%(P) = Mod5(Q)
and there iS(X,Y) € Mod5(P) such thatTp(Y)|p #
To(Y)|p, then there i X', Y') € Mod%(P) such that
Y CA(PUQ)UAandTp(Y')|p # To(Y')|s. Thus,

to decide the complementary problem, it suffices to guess

setsX,Y C At(PUQ)U A and check thatX,Y) isin ex-
actly one ofMod 5 (P) and inMod% (Q), or that(X, Y) is in
both Mod’ (P) and Mod " (Q), andTp(Y)| # To(Y)|5.
By Lemma 6.4, the tests for the membershiplind’ (P)

andMod % (Q) can be accomplished by an NP-oracle and all
other tasks are evidently in the class P. o

We show the matching lower bound for the more special-
ized problemsuPPMING.

Theorem 6.6 The problemsuPPMING is TT -hard, for ev-
ery finite A, B C At.

Proof. Let VY3X ¢ be a QBF, where is a CNF formula
over X UY. We can assume thal U B) N X = 0 (if
not, variables inX can be renamed). Next, we can assume
that4, B C Y. Indeed* obtained by expanding with
clauses: v -z, for eachz € A U B, has the property that
VY3X is true if and only ifYYT3X o™ is true, where
Yt=YUAUB.

We will construct programsP(p) and Q(¢) so that
VY 3Xpis true if and only if P(p) andQ(y) are suppmin-
equivalent relative ta{B8™ (A, B). Since it will be possible
to implement the construction to run in polynomial time in
the size ofyp, and since the problem to decide whether a
given QBFYY3Xy is true isIIf-complete, the assertion
will follow.

We use priming and as discussed above and define the
following programs:

P(p) = {z+<mnotz'; 2 —notz|z2€ XUY}U
{—vylyeY}u
{z —u,u; 2/ —u,u' | z,ue X}U
{zx ¢ o’ —¢é|xe X, cisaclause inp};
Qlp) = {2z mnot2'; 2 «—notz]2€ XUY}U

{27 ]|2zeXUY}U
{« ¢ |cisaclauseinp}.

To simplify notation, from now on we writ& for P(y) and
Q for Q(v). We observe thatlt(P) = At(Q) = W, where
W=XUXUYuY’

One can check that the models@fcontained ini¥ are

sets
TUY\D'UJuU(X\J), (1)
whereJ C X, I C Y andl U J | ¢. Each model of) is

also a model of? but P has additional models contained in
W. They are of the form:

TuY\DN)uxuXx/, (2)

for eachl C Y. Clearly, for each model/ of @ such that
M CW,To(M) = M. Similarly, for each modeM of P
suchthat/ C W, Tp(M) = M.

From these comments, it follows that for every modél
of Q (resp.P), To(M) = M NW (resp.Tp(M) = M N
W). SinceB C W, for every modelM of both P and @,
To(M)lp=MnNWnNB=Tp(M)|g. Thus,P andQ are
suppmin-equivalent if and only i#/od (P) = Mod%(Q)
(indeed, we recall that ifN, M) € Mod5(R) thenM is a
model of R).

Let us assume thatY'3X ¢ is false. We will first show
that Mod5(P) # Mod5(Q), that is, P and Q are not
suppmin-equivalent relative 88" (A, B). SinceVY3X ¢
is false, there exists an assignmdntC Y to atomsY
such that for everyJ C X, TUJ [~ ¢. Let N =
Tu(Y\I)yuXuXx'

We note that N|4up, N) € Mod5 (P). Indeed, sinceV
is a supported model dP, N € Mod 4(P). The require-
ment (3) for(N|aup, N) € Mod%(P) is evident. The re-
quirement (5) holds, sinc® \ T (V) = ). By the property
of I, N is a minimal model ofP. Thus, the requirements



(2) and (4) hold, too, andN| 4,5, N) € Mod%(P) fol-
lows. However, sinc&V is nota model of), (N|aup, N) ¢
Mod%(Q). Thus,Mod® (P) # Mod%(Q) andP andQ are
not suppmin-equivalent relative #85" (A, B), as claimed.

Let us assume now th&y'3X ¢ is true. We will show
that Mod 5 (P) = Mod" (Q), that is,P andQ are suppmin-
equivalent relative ta4{B" (A, B). First, we observe that
Mod5(Q) € Mod% (P). Indeed, le{ M, N) € Mod5(Q).

It follows that N is a model of@ and, consequently, of
P. From our earlier comments, it follows thdp (V) =
Tp(N). SinceN \ To(N) € A, N\ Tp(N) C A.
Thus, N € Mods(P). Moreover, if M|p = N|p then
N\ Th(N) € M and, consequentlyy \ Tp(N) C M.
Thus, the requirement (5) fdi\/, N) € Mod®% (P) holds.
The conditionM C N|4p is evident (itholdsaéM, N) €
Mod%(Q)). Since N is a model ofQ, N = N’ UV,
where N’ is of the form (1) and/ C At \ W. Thus, ev-
ery modelZ C N of P is also a model of). It implies
that the requirements (2) and (4) fa¥f, N) € Modﬁ(P)
hold. Hence,(M,N) € Mod%(P) and, consequently,
Mod’3(Q) € Mod (P).

The assumption thatY3X ¢ is true is needed to prove
the converse inclusion. Léi/, N) € Mod5(P). If N =
N'"UV,whereN'is of the form (1) and” C At \ W, then
arguing as above, one can show thaf, N) € Mod5(Q).
Therefore, let us assume thdt = N’ UV, whereN’ is
of the form (2) andi” C A¢ \ W. More specifically, let
N =T1TU (Y \I)UXuUX' Byourassumption, there is
J C X suchthatl UJ | ¢. Thatis,Z =TU (Y \I)' U
JU (X \ J) is a model ofP. Clearly,Z C N. Moreover,
sinceA, B C Y, it follows that Z| aup = N|aup. Since
(M,N) € Modff(P), the requirement (2) implies that

Proof. The problem reduces to the one considered in The-
orem 6.5. Thus, it belongs 2. To provell-hardness
we proceed as follows. L&ty 3X o be a QBF, where is a
CNF overXUY. We can assume thalUB)N(XUY) = 0)
(as we can always rename variablesin We also choose
and fix an elemeng € AN B.

We use priming and as before, and select an atamg €
X. We define the following program3(¢) andQ(y):

P(p) = {z+mnotz; 2 «mnotz|2z€ XUY}U
{—yv |yeY}u

{z —u,v's o/ —uu' |z,ue XU

{r ¢ o' —¢é|xe X, cisaclausein} U
{« not g; g < xo, not xy; g < x(,, not xo};
Qlp) = P(p)U{g < o, 20}

Clearly, the program#®(y) and Q(¢) can be constructed
in polynomial time in the size op. To simplify notation,
from now on we writeP for P(¢) and@ for Q(y). We set
W=XUX'UYUY' U{g}.

We will first prove thatP and@ form an instance to the
problem in question, that islod 5 (P) = Mod5(Q). We
will then show that'Y' 3 X ¢ is true if and only ifP andQ are
suppmin-equivalentrelative 5" (A, B). That will imply
theI14’-hardness of the problem considered in the assertion
and will complete the proof.

Clearly, every model of? containsg. It follows that P
and Q have the same models. To describe them, we first
observe that every model &f (andQ) contained iV is of
one of the following two types:

L{gtuITu (¥ \I)YuJu(X\J),foreachl CY and
J C X suchthaf U J = ¢;

is not a model ofP, a contradiction. Hence, the latter case 2- {9} UZU (Y \I)’UX U X', foreachl CY.

is impossible andod5 (P) € Mod%5(Q) follows. Con-
sequently,Mod5 (P) = Mod5(Q), that is, P andQ are
suppmin-equivalent relative 5" (A, B).

We proved that'Y 3X p s true if and only ifMod 5 (P) =
Mod%(Q). This completes the proof of the assertion. O

Thus, every model of? (and ofQ) is of the formN U S,
whereN C W is of type 1 or type 2, above, arfiC At \
W. We refer toN as thelV-core of the modelN U S. We
refer to a model of? (andQ) as type 1 or type 2, according
to the form of itslW-core.

Next, we observe that for every C At¢, Tp(N) C

Putting together Theorems 6.5 and 6.6 yields the follow- T,(N) andTo(N) \ Tp(N) C {g}. Let N € Mod 4(P).

ing corollary.
Theorem 6.7 The following problems ar8%’ -complete:

1. SUPPMIN

2. SUPPMIN®, SUPPMIN4, SUPPMING, for every finite
A, B C At.

Similarly as for supp-equivalence, having additional in-

formation that setd/od’; (P) and Mod’ (Q) coincide does

not make the problem of deciding suppmin-equivalence eas-

ier.

Theorem 6.8 Let A, B C At be finite and such thatl N
B # (). The following problem i$I%’-complete: given nor-

mal programsP, @ such thatMod® (P) = Mod%(Q), de-

cide whetherP and Q are suppmin-equivalent relative to

HB"(A, B).

It follows that NV is a model of P and so, ofQ, too. We
also haveN \ To(N) € N\ Tp(N) C A. It follows
that N € Moda(Q). Conversely, letN € Moda(Q).
Then,N E @ and so,N | P, Moreover,N \ Tp(N) C
(N\Tg(N))u{g} € Au{g} = A. Thus,N € Mod A(P).

It follows that Mod 4 (P) = Mod 4(Q).

Let (M,N) € Mod%(P). ThenN € Mod(P) and
S0, N € Moda(Q). We also havel C N|aug. Thus,
the conditions (1) and (3) required fakZ, N) € Mod5 (Q)
hold. The conditions (2) and (4) fqiM, N) € Mod5(Q)
hold as they hold foP, and P and@ have the same models.
Finally, the condition (5) fo M, N) € Mod5(Q) holds,
too, asN \ To(N) € N\ Tp(N). Thus, Mod5(P) C
Mod(Q).

Conversely, let(M,N) € Mod%(Q). Reasoning as
above, we show that the conditions (1)-(4) {d/, N) €



Mod% (P) hold. To prove the condition (5), let us assume
that N|p = M|p. SinceN € Mod 4(Q), N is a model of
@, and thug; € N. Moreover, sincg € B, g € M as well.
We haveN \ T (N) € M. Thus,N\Tp(N) C M follows
from our previous observations. Consequently, the condi-
tion (5) for (M, N) € Mod%(P) holds, and the inclusion
Mod5(Q) € Mod% (P) follows.

Thus, Mod5 (P) = Mod%(Q) and so,P and Q form
a valid instance to the problem we are considering. Fol-
lowing the proof outline given above, we will now show
that VY3 X ¢ is true if and only if P and @ are suppmin-
equivalent relative t6{5" (A, B).

Let us first assume thatY'3X ¢ is false. Then, there
is I C Y such that foreveryy) C X, TUJ [~ ¢. Let
N={gtulIuX\I)UXuUX’' WehavethalV = Q,
andT,(N) = N. Thus,N \ To(N) = @ C A and, con-
sequentlyN € Mod 4(Q). Let M = N|aup. By the def-
inition, M C N|aup. Thus, the conditions (1) and (3) for
(M, N) € Mod%(Q) hold. Next, by the property af, N is
a minimal model of@. It follows that (M, N) satisfies the
conditions (2) and (4) fofM, N) € Mod%(Q). Finally, we
have N \ To(N) = 0 € M. Thus, the condition (5) for
(M,N) € Mod%(Q) holds and so(M, N) € Mod5(Q).
We observe thaf'p(N) = N\ {g} andTg(N) = N. Since
g € Bandg € N, Tp(N)|p # Tg(N)|g follows. Hence,
by Theorem 4.6 (we recall thad/, N) € Mod % (Q) and so,
(M,N) e Modﬁ(p)), P and(@ are not suppmin-equivalent
relative toHB" (A, B).

Next, let us assume tha"3X ¢ is true. Let(M,N) €
Mod®% (P). Let us assume tha¥ is of the type 2. Le{g} U
TUu(Y\I)UXuX’ wherel CY, bethelV-core of N.
SinceVY3X p is true, there is/ C X such thal U J | .
We definek = {g}UIU(Y'\I)'UJU(Y'\J)'. Clearly,K |
P. We haveK C N andK|aup = {g9} = N|aup (we
recall thatt AU B) N (W \ {g} = 0). Thus, by the condition
(2) for (M, N) € Mod% (P), K - P, a contradiction.

It follows that NV is of type 1. Consequently;p(N) =
To(N)and soIp(N)|p = To(N)|s. By Theorem 4.6P
and@ are suppmin-equivalent relativetoB8™ (A, B). O

This theorem cannot be extended to a wider class of finite

setsA andB. Let AN B = () and P, Q be two normal
programs such that/od 5 (P) = Mod5(Q). Let (X,Y) €
Mod5 (P) andb € Tp(Y)|5. Thenb € Y (asTp(Y) C Y)
andb ¢ A (asb € BandANB = (). SinceY € Mod 4(Q),
Y\ Tp(Y) C A. Itfollows thatb € T(Y) and, ash €
B,b € To(Y)|g. Thus,Tp(Y)|s C To(Y)|s and, by
symmetry,Tp(Y)|p = To(Y)|s. ConsequentlyP andQ
are suppmin-equivalent.

7 Discussion

In this section, we discuss relations between the semantics
of supported models and stable models in the context of hy-
perequivalence. We start with a comparison of the charac-

terizations for the most important cases, strong and umifor
equivalence. We then move on to highlight some interesting
differences in the complexity.

First, let us compare characterizations of the notion of
strong equivalence, that is, hyperequivalence under the
supported-model and stable-model semantics relativesto th
class of all programsgi8%( At, At). To avoid references to
sh(P) andsh(Q), we limit our discussion to the case when
P and@ are normal.

According to Corollary 3.3, normal prograni3 and @
are supp-equivalentin this sense if and only if

1. P and@ have the same models, and for every madeif
P, Tp(Y)=Tg(Y).

We note that in this case suppmin-equivalence has the same
characterization (cf. Corollary 4.8).

Turning attention to strong equivalence under the stable-
model semantics, we recall that, as shown in (Turner 2003),
the notion can be characterized in terms of SE-models. A
pair of interpretation$ X, Y) with X C Y is an SE-model
of a programP if Y = P andX | PY. Two programs
are strongly equivalent under the stable-model semarftics i
and only if they have the same SE-models. A simple refor-
mulation yields that” and(@ are strongly equivalent in the
stable-model setting if and only if

2. P and@ have the same models, and for every madeif
P, Mod(P[Y]) = Mod(Q[Y)),

whereP[Y] = PY U{« z| 2 € At\Y}, PY = {hd(r) «—
bd*(r) | r € P)Y | bd(r)} is the reduct ofP with
respect toY’, and Mod(R) stand for the set of (classical)
models of a progrank.

Despite differences between the characterizations (1) and
(2), the basic intuition is quite similar in both setting&sk
one checks whether the candidate interpretationthat is,
interpretations that might become a supported/stable mode
once a program is suitably extended, are the same for the
two programs under consideration. In each case, these can-
didate interpretation®” are models of a program. Then, one
checks whether any such candidate interpretation has the
same effect on both programs. In the case of the supported-
model semantics, this effect &f on a programR is mea-
sured byTr(Y) (and so,Tp(Y) = Tg(Y) is required),
while in the case of the stable-model semantics, it is given
by Mod(R[Y]), the set of models of an “extended” reduct
of R with respct toY” (and so,Mod(P[Y]) = Mod(Q[Y)),
must hold).

Next, we will compare characterizations of uniform
equivalence under supported minimal and stable models (we
recall that, by Theorem 3.2, in case of supported mod-
els, strong and uniform equivalence coincide). Our char-
acterization of suppmin-equivalence uses the definition of
Mod% (P) as given in Section 4. This definition simplifies
for uniform equivalence (that is, fot = At andB = () as
follows: (X,Y) € Mod",(P) if and only if

1.YEP
2. X CY
3. foreachiZwith X CZCY,Z £ P

4. Y \Tp(Y) C X.



By Corollary 4.7, uniform suppmin-equivalence between
programsP and Q holds if and only if Mod",(P)
Mod3,(Q). |

To characterize uniform equivalence for the case of sta-
ble models, (Eiter, Fink, & Woltran 2007) introduced UE-
models as special SE-models. A pai¥, Y) is an UE-model
of P, if
1.YEP
2. XCY
3. foreachZ with X c Z C Y, Z = PY
4. X = PY.

Hence, in other words, UE-models &fare all SE-models

of P of the form(Y,Y") plus SE-model§$X,Y) of P, where

X is maximal among the proper subsetothat can appear
with Y in an SE-model. Finite prograni? and@ are uni-
formly equivalent with respect to stable models if and ofily i
the UE-models of” and@ coincide (Eiter, Fink, & Woltran
2007) (the case of uniform equivalence of infinite programs
has a slightly more elaborate characterization).

We will now compare the two characterizations for finite
programs. Again, we observe that in the suppmin model
case,Tp(Y) plays a major role, while in the stable case,
this role is taken over by the reduBt’. However, the re-
maining parts of the characterization show interesting sim
ilarities. On the one hand, as already discussed abdve,

normal / disjunctive] HB(At, At) HB(At,0) HB(A, B)
supp| coNP/coNP coNP/coNP coNP/coN
suppmin| coNP/coNP  coNP/coNP TIZ/MIY
stable| coNP/coNP  coNRIY  coNPIIY

Table 1: Complexity of hyperequivalence for different se-
mantics.

least one ofd and B consists of all atoms, for which the
corresponding problems of deciding hyperequivalence re-
main in coNP. Interestingly, this is not necessarily so & th
stable-semantics world. As mentioned above, this holds for
strong equivalenced{ = B = At), but uniform equivalence
(A = At, B = () with respect to stable models remalh§-
complete for disjunctive programs, while uniform suppmin-
equivalence, as we noted, drops back to coNP.

Table 1 highlights these results in terms of complete-
ness results, comparing the case of normal and disjunctive
programs with respect to the different semantics and dif-
ferent instantiation of the context class, including sgron
uniform-, and the general case of hyperequivalence.

8 Conclusions

In this paper we extended the concept of hyperequivalenceto
two other major semantics of logic programs: the supported-

serves as a candidate to become a supported/stable modefnodel semantics and the supported minimal model seman-

after some program extension. On the other hand, we ob-

tics. We characterized these concepts of hyperequivalence

serve that both characterizations depend on a very similar @nd derived several complexity results.

set of countermodels (either of the the program itself, or of
the reductPY) which are subsets of . For infinite pro-
grams, direct comparison of uniform equivalence under the

Our characterizations were mainly based on the (partial)
one-step provability operatdfr (van Emden & Kowalski
1976) and thus, unlike in the case of stable-model seman-

two semantics gets harder since, as we noted, the UE-modeltics, did not require any references to the reduct. However,

characterization of uniform equivalence for stable-magel
mantics does not hold any more (see (Eiter, Fink, & Woltran
2007) for details on this issue).

We now turn to the complexity results, where some in-
teresting differences can be observed (the complexity re-

sults for the stable model semantics we discuss below are

from (Eiter, Fink, & Woltran 2007; Woltran 2008)): First,
deciding hyperequivalence with respect to supported nsodel
is coNP-complete, no matter how the conte( A, B) is

some similarities to the case of the stable-model semantics
appeared for more complex versions of hyperequivalence we
studied, namely relativized supp- and suppmin-equivagenc
which required additional concepts such as étsl 4 (P)
andMod (P).

As concerns the complexity, the picture is uniform in the
case of hyperequivalence with respect to supported mod-
els — problems that arise naturally turn out to be coNP-
complete. The situation is different for hyperequivalence

specified, as shown in Section 5. The same complexity class with respect to suppmin models. When at least one of the

captures deciding hyperequivalence under stable maaels,
long as we restrict to normal programsdowever, for dis-

setsA and B consists of all atoms, the corresponding prob-
lems of deciding hyperequivalence are coNP-complete. As

junctive logic programs, deciding hyperequivalence in the soon as this is not the case, the complexity goes up and
stable-semantics setting is more complex for most instan- the decision problems beconig; -complete. The results
tiations of HB(A, B) (one exception is the case of strong we presented demonstrate that with problems in which the
equivalence, that is, the cage= B = At, which remains departure fromd = At and B = At is major: A and B
coNP-complete). On the other hand, for supported models, are required to be finite (either as a parameter of the prob-
disjunctions do not play a major role, and thus deciding hy- lem, or a part of the input). However, in some cases a much
perequivalence with respect to supported models remains in less drastic change has the same effect on the complexity.
coNP even for disjunctive programs. For instance, one can show that for every filteB C At
Changing the semantics to suppmin models has a more such thatd # (), the following problem isl1} -complete:
substantial effect, as we have shown in Section 6. Indeed, given normal program® and(@, decide whetheP and@

the complexity of deciding hyperequivalence with respect t
suppmin models goes up 16’ -completeness (already for

are suppmin-equivalent relative 15" (At \ A, B). Thus,
even if just one atom froml¢ is forbidden from appearing

normal programs). A notable exception is the case when at in heads of rules in context programs, the complexity jumps

f



one level up. For a detailed analysis of this behavior werrefe
to (Truszczyhski & Woltran 2008).

While to the best of our knowledge, this is the first pa-
per concerning hyperequivalence for supported (minimal)
semantics, hyperequivalence between programs with respec
to other semantics have been studied extensively. The con-
cept of uniform equivalence appeared first in the area of
databases in the setting of DATALOG. In that setting queries
are (non-ground) programs. Uniform equivalence of pro-
grams was introduced by (Sagiv 1988), as a decidable ap-
proximation to query equivalence, and thus as a tool for
qguery optimization. Several other equivalence notions in
that context were studied in (Maher 1988).

In the area of logic programming with the stable-model
semantics, the need for stronger (than ordinary) equicalen
was already recognized in (Brass & Dix 1997; Inoue &
Sakama 1998; Lifschitz, Tang, & Turner 1999), before (Lif-
schitz, Pearce, & Valverde 2001) coined the name of strong
equivalence for “equivalence for substitution.” In pantar,
(Brass & Dix 1997; Lifschitz, Tang, & Turner 1999) defined
local rule transformations which retained the semantics of
entire programs and thus provided first explicit resultéia t
area. Papers following (Lifschitz, Pearce, & Valverde 2001
dealt with characterizations of strong equivalence (Li620
Turner 2003; de Jongh & Hendriks 2003), studied other
forms of equivalence (Inoue & Sakama 2004; Eiter, Tompits,
& Woltran 2005; Oikarinen & Janhunen 2006; Oetsch, Tom-
pits, & Woltran 2007; Woltran 2008) or were concerned with
programs transformations (Eiter, Fink, & Woltran 2007;
Eiteret al. 2006; Lin & Chen 2007; Wong 2008).

We mentioned in the introduction that our work may have
implications for other nonmonotonic logics, most notably,
autoepistemic logic of Moore with the semantics of expan-
sions and moderately grounded expansions. We will now
discuss this issue in more detail. We recall that a normal
logic program rule

a+by,...,by,,notcy,...,notcy,
can be interpreted as a modal formula (cateadal rulg
Kb1/\.../\Kbm/\_‘Kcl/\.../\_'KCn D a.

This interpretation was first proposed by Konolige (Kono-
lige 1988). It is known (Marek & Truszczyhski 1993) that

there is a precise correspondence between supported mod-

els (supported minimal models) of a normal progrBrand
expansions (moderately grounded expansions) of the modal
interpretation ofP (the theory consisting of modal rules cor-
responding to rules i®).

By amodal programwe mean a theory in the modal lan-
guage that consists of modal rules. L&tB be two sets
of atoms. We denote b§{B™ (A, B) the set of all modal
programs consisting of modal rules with the antecedent con-
taining only atoms fromB and the consequent being an
atom fromA. Due to the correspondence discussed above
(and under a natural extension of the one-step provability
operator to the setting of modal programs), the charaeteriz
tions of supp-equivalence and suppmin-equivalence of nor-
mal programs relative t&{B3" (A, B) lift literally to hyper-

equivalence under expansions and moderately grounded ex-

pansions of modal programs relative to modal programs in
HB™(A, B).

While concerning only theories of some restricted syn-
tactic form, these characterizations suggest that therhype
equivalence in autoepistemic logic could be treated in full
generality. The fact that most arguments in this paper have a
strong algebraic flavor and thus may only loosely depend
on specific syntactic features of logic programs adds fur-
ther credibility to that contention. In our future work, we
will aim to develop algebraic generalizations of the charac
terizations presented in this paper (algebraic genetalizm
of hyperequivalence under the stable-model semantics were
developed in (Truszczynski 2006)), and we will study hyper-
equivalence in autoepistemic logic without imposing sgnta
tic restrictions on formulas.

Another interesting research direction concerns program
simplification, for which our characterizations serve aata n
ural starting point. Moreover, in combination with the afor
mentioned extensions to autoepistemic logic, such tech-
nigues might also help to study new normal-form transla-
tions within that logic.
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