
Hyperequivalence of Logic Programs with Respect to Supported Models∗

Mirosław Truszczyński
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Abstract

Recent research in nonmonotonic logic programming has fo-
cused on certain types of program equivalence, which we
refer to here ashyperequivalence, that are relevant for pro-
gram optimization and modular programming. So far, most
results concern hyperequivalence relative to the stable-model
semantics. However, other semantics for logic programs are
also of interest, especially the semantics of supported models
which, when properly generalized, is closely related to theau-
toepistemic logic of Moore. In this paper, we consider a fam-
ily of hyperequivalencerelations for programs based on the
semantics of supported and supported minimal models. We
characterize these relations in model-theoretic terms. Weuse
the characterizations to derive complexity results concerning
testing whether two programs are hyperequivalent relativeto
supported and supported minimal models.

1 Introduction
The problem of the equivalence of logic programs with re-
spect to the stable-model semantics has received substantial
attention in the answer-set programming research commu-
nity in the past several years (Lifschitz, Pearce, & Valverde
2001; Lin 2002; Turner 2003; de Jongh & Hendriks 2003;
Inoue & Sakama 2004; Eiter, Tompits, & Woltran 2005;
Ferraris 2005; Eiter, Fink, & Woltran 2007; Oikarinen &
Janhunen 2006; Lin & Chen 2007; Oetsch, Tompits, &
Woltran 2007; Woltran 2008; Wong 2008; Gebseret al.
2008). The problem can be stated as follows. LetC be a
class of logic programscontaining the empty program. We
say that programsP andQ areequivalent with respect to
C if for every programR ∈ C, P ∪ R and Q ∪ R have
the samestable models. We refer to programs inC ascon-
texts. Clearly, as the empty program is always assumed to
be one of the context programs, the equivalence with respect
to C implies the standard nonmonotonic equivalence of pro-
grams, where two programsP andQ arenonmonotonically
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equivalentif they have the same stable models. Therefore,
we will refer to these stronger versions of equivalence col-
lectively ashyperequivalence.

Understanding hyperequivalence is fundamental for the
development of modular answer-set programs and knowl-
edge bases. The problem is non-trivial due to the nonmono-
tonic nature of the stable-model semantics. IfS is a module
within a larger programT , replacingS with S′ results in
the programT ′ = (T \ S) ∪ S′, which must have the same
meaning (the same stable models) asT . The nonmonotonic
equivalence ofS andS′ does not guarantee it. The hyper-
equivalence ofS andS′ relative to the class of all programs
does. However, the latter may be too restrictive an approach
in certain application scenarios, in particular if properties of
possible instantiations ofT are known in advance.

Thus, several notions of hyperequivalence that impose re-
strictions on the context classC have been studied. IfC
is unrestricted, that is, any program is a possible context,
we obtainstrongequivalence (Lifschitz, Pearce, & Valverde
2001). If C is the collection of all sets of facts, we obtain
uniformequivalence (Eiter, Fink, & Woltran 2007). Another
direction is to restrict the alphabet over which contexts are
given. The resulting notions of hyperequivalence are called
relativized (with respect to the context alphabet), and can
be combined with strong and uniformly equivalence (Eiter,
Fink, & Woltran 2007). Even more generally, we can spec-
ify different alphabets for bodies and heads of rules in con-
texts. This gives rise to a unifying view on strong and uni-
form equivalence (Woltran 2008). A yet different approach
to hyperequivalence is to compare only some dedicated pro-
jected output atoms rather than entire stable models (Eiter,
Tompits, & Woltran 2005; Oikarinen & Janhunen 2006;
Oetsch, Tompits, & Woltran 2007).

All those results concern hyperequivalence with respect
to the stable-model semantics of programs. There has been
little work on other semantics, with (Cabalaret al. 2006) be-
ing a notable exception. In this paper, we address the prob-
lem of the hyperequivalence with respect to two other major
semantics of programs, those of supported models (Clark
1978) and supported minimal models.

We are motivated in our studies by the role both seman-
tics play in logic programing and, more generally, in non-
monotonic reasoning. The supported model semantics was
the first major step leading to a formal account of default



negation operator in logic programming and a springboard
towards the stable-model semantics. Through the notions
of program completion(Clark 1978) andloop formula(Lin
& Zhao 2002), it links stable models of programs with
models of propositional theories and facilitates the use of
SAT solvers to compute stable models. The link is es-
pecially direct for the class of tight programs, for which
supported and stable models coincide. Next, logic pro-
gramming with the semantics of supported models, under
the interpretation proposed by Konolige (Konolige 1988;
1989), forms a significant fragment of the autoepistemic
logic (Moore 1985) — one of the key formalisms of non-
monotonic reasoning.

Since the minimality property is fundamental from the
perspective of knowledge representation, we also consider
in the paper the semantics of supported minimal models,
that is, supported models that are minimal as models. While
it seems to have received little attention in the area of
logic programming, it has been studied extensively in a
more general setting of modal nonmonotonic logics, first
under the name of the semantics ofmoderately grounded
expansionsfor autoepistemic logic (Konolige 1988; 1989)
and then, under the name ofgroundS-expansions, for an
arbitrary nonmonotonic modal logicS (Kaminski 1991;
Truszczyński 1991). The complexity of reasoning with
moderately grounded expansions was established in (Eiter
& Gottlob 1992) to be complete for classes at the third level
of the polynomial hierarchy. As before, under the inter-
pretation of Konolige, logic programming with the seman-
tics of supported minimal models forms an important frag-
ment of autoepistemic logic with the semantics of moder-
ately grounded expansions.

In the paper, we define several concepts of hyperequiva-
lence, depending on the class of programs allowed as con-
texts. We obtain characterizations of hyperequivalence with
respect to supported (minimal) models in terms of semantic
objects, similar to SE-models (Turner 2003) or UE-models
(Eiter, Fink, & Woltran 2007), that one can attribute to pro-
grams.

The characterizations allow us to derive results on the
complexity of problems to decide whether two programs are
hyperequivalent with respect to supported (minimal) mod-
els. They are especially useful in establishing upper bounds
which, typically, are easy to derive but in the context of hy-
perequivalence are not obvious. Our results paint a detailed
picture of the complexity landscape for relativized hyper-
equivalence with respect to supported (minimal) models.

The impact of our results goes beyond logic programming
with the semantics of supported and supported models. For
tight programs, they imply new characterizations of certain
notions of hyperequivalence with respect tostable-modelse-
mantics. They also yield characterizations of hyperequiva-
lence of some autoepistemic theories with respect to the se-
mantics of expansions and moderately grounded expansions,
that can be derived based on the Konolige’s interpretation of
programs as modal (autoepistemic) theories.

2 Preliminaries
We fix a countable setAt of atoms (possibly infinite). All
programs we consider here consist ofrulesof the form

a1| . . . |ak ← b1, . . . , bm,not c1, . . . ,not cn,

whereai, bi andci are atoms inAt , ‘ |’ stands for the dis-
junction, ‘,’ stands for the conjunction, andnot is thede-
fault negation. Ifk = 0, the rule is aconstraint. If k ≤ 1,
the rule isnormal.

For a ruler of the form given above, we call the set
{a1, . . . , ak} the head ofr and denote it byhd(r). Similarly,
we call the conjunctionb1, . . . , bm,not c1, . . . ,not cn the
body ofr and denote it bybd(r). We also writebd+(r) =
{b1, . . . , bm} and bd

−(r) = {c1, . . . , cn}, and denote by
bd

±(r) the set of all atoms occurring in the body ofr, that is,
bd

±(r) = bd
+(r)∪bd

−(r). Moreover, for a programP , we
sethd(P ) =

⋃
r∈P hd(r), andbd

±(P ) =
⋃

r∈P bd
±(r).

An interpretationM ⊆ At is a modelof a ruler, writ-
tenM |= r, if wheneverM satisfies every literal inbd(r),
written M |= bd(r), we have thathd(r) ∩M 6= ∅, written
M |= hd(r).

An interpretationM ⊆ At is a modelof a programP ,
writtenM |= P , if M |= r for everyr ∈ P . If, in addition,
M is a minimal hitting set of{hd(r) | r ∈ P and M |=
bd(r)}, thenM is a supportedmodel ofP (Brass & Dix
1997; Inoue & Sakama 1998). It is well known thatM ⊆ At

is a supported model ofP if and only if M is a model of
P and for everya ∈ M there is a ruler ∈ P such that
M |= bd(r) and{a} = hd(r) ∩M . We say that each such
ruler supportsa with respect toM .

For a ruler = a1| . . . |ak ← bd , wherek ≥ 1, ashift of r
is a normal program rule of the form

ai ← bd ,not a1, . . . ,not ai−1,not ai+1, . . . ,not ak,

wherei = 1, . . . , k. If r is a normal rule, the onlyshift of
r is r itself. A program consisting of all shifts of rules in a
programP is theshift of P . We denote it bysh(P ). It is
evident that a setY of atoms is a (minimal) model ofP if
and only ifY is a (minimal) model ofsh(P ). It is also easy
to check thatY is a supported model ofP if and only if it is
a supported model ofsh(P ).

Supported models of anormal logic programP have
a useful characterization in terms of the (partial) one-step
provability operatorTP (van Emden & Kowalski 1976), de-
fined as follows. ForM ⊆ At , if there is a constraintr ∈ P
such thatM |= bd(r) (that is, M 6|= r), thenTP (M) is
undefined. Otherwise,

TP (M) = {hd(r) | r ∈ P and M |= bd(r)}.

Whenever we useTP (M) in a relation such as (proper) in-
clusion, equality or inequality, we always implicitly assume
thatTP (M) is defined.

It is well known thatM is a model ofP if and only if
TP (M) ⊆ M (that is, TP is defined forM and satisfies
TP (M) ⊆ M ). Similarly, M is a supportedmodel ofP
if TP (M) = M (that is,TP is defined forM and satisfies
TP (M) = M ) (Apt 1990).



It follows thatM is a model of a disjunctive programP if
and only ifTsh(P )(M) ⊆ M . Moreover,M is a supported
model ofP if and only if Tsh(P )(M) = M .

In the paper we will also consider an important variant
of the semantics of supported models, combining it with the
principle of minimality. A setM of atoms is asupported
minimal model(suppminmodel, for short) of a logic pro-
gramP if it is a supported model ofP and a minimal model
of P .

To illustrate the relationships between the semantics, we
recall that stable models are suppmin models. Moreover,
directly from the definition we have that suppmin models
are supported models. Lastly, supported models are models.
However, these implications cannot be reversed as demon-
strated by the following example.

Example 2.1 Let P = {a ← a}. Then every interpreta-
tion is a model ofP . One can check thatTP (∅) = ∅ and
TP ({a}) = {a}. Thus,∅ and{a} are supported models of
P . In fact, they are the only supported models ofP . More-
over,∅ is the only stable and also the only suppmin model of
P .

Next, letQ = {a ← b; b ← a; ← not a}. ThenQ has
no stable models but{a, b} is a suppmin model ofQ.

3 Hyperequivalence with respect to
supported models

Let C be a class of programs (contexts) containing the
empty program, the assumption we adopt throughout the
paper. Two disjunctive logic programsP andQ aresupp-
equivalentrelative toC if for everyR ∈ C, P ∪R andQ∪R
have the same supported models. Since∅ ∈ C, if programs
P and Q are supp-equivalent relative toC, they have the
same supported models. In other words, supp-equivalence
implies standard equivalence with respect to supported mod-
els.

Supp-equivalence is a non-trivial concept, different than
equivalence with respect to models, supported models, sta-
ble models, and different than hyperequivalencewith respect
to stable models.

Example 3.1 Let P0 = {a} and Q0 = {a ← not b}.
ThenP0 and Q0 have the same supported models ({a} is
the unique supported model of each program), that is, they
are equivalent with respect to supported models. However,
P0∪{b} andQ0∪{b} have different supported models ({b}
and {a, b}, respectively). Thus,P0 and Q0 are not supp-
equivalent relative to any classC containing{b}. It follows
that the two variants of equivalence are different (but, as we
just noted above, our restriction onC guarantees that supp-
equivalence implies equivalence with respect to supported
models).

Next, letP1 = {a← a} andQ1 = ∅. Clearly,P1 andQ1

have the same models and the same stable models. More-
over, for every programR, P1 ∪ R and Q1 ∪ R have the
same stable models, that is,P1 and Q1 are strongly (and
so, also uniformly) equivalent with respect to stable mod-
els. However,P1 andQ1 have different supported models.
Thus, they are not supp-equivalent relative toany class of
programs that contains the empty program.

Next, letP2 = {a← a; a← not a} andQ2 = {a}. One
can check that for every programR, P2∪R andQ2∪R have
the same supported models, that is,P2 and Q2 are supp-
equivalent relative toany class of programs. However,P2

andQ2 do not have the same stable models and so, they are
not equivalent with respect to stable models nor hyperequiv-
alent with respect to stable models relative toany class of
programs (containing the empty program).

Finally, let P3 = {← b} ∪ P2 andQ3 = Q2. Then,P3

and Q3 are neither hyperequivalent with respect to stable
models relative to any class of programs nor equivalent with
respect to classical models. However, for any programR
such thatb does not appear in rule heads ofR, P3 ∪ R and
Q3 ∪ R have the same supported models, that is,P3 and
Q3 are supp-equivalent with respect to each such class of
programs (we will verify this claim independently later by
using our characterization of supp-equivalence).

As we will see, supp-equivalence with respect toall pro-
grams implies equivalence with respect to models and so,
it is not a coincidence that in the last example we used a
restricted class of contexts. To see thatP3 andQ3 are not
supp-equivalent with respect to the class of all programs,
one can considerR = {b}. Then,{a, b} is a supported
model ofQ3 ∪R, but not ofP3 ∪R.

We observe that supp-equivalence relative toC implies
supp-equivalence relative to anyC′, such thatC′ ⊆ C, but
the converse is not true in general as illustrated by programs
P3 andQ3.

In this section we characterize supp-equivalence relative
to classes of programs defined in terms of atoms that can ap-
pear in the heads and in the bodies of rules. LetA, B ⊆ At .
By HBd(A, B) we denote the class of all disjunctive pro-
gramsP such thathd(P ) ⊆ A (atoms in the heads of rules
in P must be fromA) andbd

±(P ) ⊆ B (atoms in the bodies
of rules inP must be fromB). We denote byHBn(A, B)

the class of all normal programs inHBd(A, B) (possibly
with constraints). These classes of programs were consid-
ered in the context of hyperequivalence of programs with
respect to the stable-model semantics in (Woltran 2008).

We focus first on the case when programs compared for
equivalence, as well as the contexts, are normal. The restric-
tion will allow us to take advantage of the one-step prov-
ability operator. Later, we will obtain a characterizationof
supp-equivalence for the general disjunctive case as a corol-
lary.

Given a normal programP , and a setA ⊆ At , we define

ModA(P ) = {Y ⊆ At |Y |= P andY \ TP (Y ) ⊆ A}.

We call interpretations inModA(P ) A-modelsof P . An
A-modelY of P can be viewed as acandidatefor becom-
ing a supported model of an extension ofP with some pro-
gramR ∈ HBn(A, B). Indeed, such a candidate set has
to be classical model ofP (otherwise it cannot be a sup-
ported model, no matter howP is extended). Moreover, the
elements fromY \TP (Y ) have to be contained inA. Other-
wise programs fromHBn(A, B) cannot close this gap. In-
tuitively, if there is anA-model of a programP that is not
anA-model of a programQ, we are able to find a context



R ∈ HBn(A, B) such thatY is a supported model ofP ∪R
but not ofQ∪R. Thus,P andQ cannot be supp-equivalent
relative toHBn(A, B). Similarly, if P andQ have the same
A-models but, for one of them, sayY , TP (Y ) 6= TQ(Y ),
then again it is possible to extendP and Q by a context
R ∈ HBn(A, B) so thatY is a supported model of one
of these programs only. Thus, having the sameA-models,
and revising eachA-model in the same way by means of
the one-step provability operator are two necessary condi-
tions for supp-equivalence with respect toHBn(A, B). It
turns out that the two conditions together are also sufficient.
More precisely, we have the following characterization of
the supp-equivalence relative toHBn(A, B).

Theorem 3.2 Let P andQ be normal programs,A ⊆ At ,
and C a class of programs such thatHBn(A, ∅) ⊆ C ⊆
HBn(A,At). Then,P andQ are supp-equivalent relative
to C if and only if ModA(P ) = ModA(Q) and for every
Y ∈ ModA(P ), TP (Y ) = TQ(Y ).

Proof. (⇒) SinceHBn(A, ∅) ⊆ C, P and Q are supp-
equivalent relative toHBn(A, ∅).

Let Y ∈ ModA(P ). It follows that Y |= P and Y \
TP (Y ) ⊆ A. Let us considerP ∪ (Y \ TP (Y )) Then

TP∪(Y \TP (Y ))(Y ) = TP (Y ) ∪ (Y \ TP (Y )).

SinceY |= P , TP (Y ) ⊆ Y . Hence,TP∪(Y \TP (Y ))(Y ) =
Y . It follows thatY is a supported model ofP∪(Y \TP (Y )).
SinceY \ TP (Y ) ⊆ A, Y \ TP (Y ) ∈ HBn(A, ∅). Thus,Y
is a supported model ofQ∪(Y \TP (Y )) and, consequently,

Y = TQ∪(Y \TP (Y ))(Y ) = TQ(Y ) ∪ (Y \ TP (Y )).

It follows that TQ(Y ) ⊆ Y andTP (Y ) ⊆ TQ(Y ). Thus,
Y \TQ(Y ) ⊆ Y \TP (Y ) ⊆ A and so,Y ∈ ModA(Q). The
converse inclusion follows by the symmetry argument and
so, we haveModA(P ) = ModA(Q).

Next, letY ∈ ModA(P ) (and so,Y ∈ ModA(Q), too).
We have seen thatTP (Y ) ⊆ TQ(Y ). By the symmetry,
TQ(Y ) ⊆ TP (Y ). Thus,TP (Y ) = TQ(Y ).
(⇐) Let R be a logic program fromC and Y be a sup-
ported model ofP ∪ R. It follows thatY = TP∪R(Y ) =
TP (Y ) ∪ TR(Y ). Thus,TP (Y ) ⊆ Y (that is, Y |= P )
andY \ TP (Y ) ⊆ A (becausehd(R) ⊆ A). We obtain
Y ∈ ModA(P ) and, by the assumption,TQ(Y ) = TP (Y ).
Hence,Y = TQ(Y ) ∪ TR(Y ) = TQ∪R(Y ). That is,Y is a
supported model ofQ ∪R. 2

We note that our characterization for supp-equivalence
relative to HBn(A, B) does not depend on the body-
alphabetB of the context. Thus, Theorem 3.2 applies, in
particular, toC = HBn(At , ∅) and C = HBn(At ,At).
Consequently, it characterizes strong and uniform supp-
equivalence of normal programs. It also has several corollar-
ies concerned with special cases forA. The first one deals
with the case whenA = At , in which the characterizing
condition simplifies.

Corollary 3.3 Let P and Q be normal programs andC
a class of programs such thatHBn(At , ∅) ⊆ C ⊆
HBn(At ,At). Then,P andQ are supp-equivalent relative
to C if and only if P andQ have the same models and for
every modelY of P , TP (Y ) = TQ(Y ).

Proof. WhenA = At , ModA(P ) andModA(Q) consist of
models ofP andQ, respectively. Thus, the result follows
directly from Theorem 3.2. 2

At the other extreme, we have the caseA = ∅. In that
case, all context programs consist of constraints (rules with
the empty head) only.

Corollary 3.4 Let P and Q be normal programs andC a
class of programs such thatHBn(∅, ∅) ⊆ C ⊆ HBn(∅,At).
The following conditions are equivalent:

1. P andQ are supp-equivalent relative toC
2. P andQ have the same supported models
3. Mod∅(P ) = Mod∅(Q).

Proof. [(1) implies (2)]: Since∅ ∈ HBn(∅, ∅), the assertion
is obvious.

[(2) implies (3)]: LetY ∈ Mod∅(P ). Then,Y |= P , that is,
TP (Y ) ⊆ Y , andY \ TP (Y ) = ∅. Thus,Y = TP (Y ) and,
consequently,Y is a supported model ofP . By the assump-
tion, Y is a supported model ofQ, that isY = TQ(Y ). It
follows thatY ∈ Mod∅(Q). The converse inclusion follows
by the symmetry argument.

[(3) implies (1)]: LetR ∈ C and letY be a supported model
of P ∪R. ThenY |= P ∪R andY = TP∪R(Y ) = TP (Y )∪
TR(Y ) = TP (Y ) (indeed, asY |= R and every rule inR
is a constraint,TR(Y ) = ∅). ThusY ∈ Mod∅(P ) and so,
alsoY ∈ Mod∅(Q). From the latter we obtainY = TQ(Y ).
SinceTR(Y ) = ∅, Y = TQ(Y ) ∪ TR(Y ) = TQ∪R(Y ),
that is,Y is a supported model ofQ ∪ R. Again, the other
implication follows by the symmetry argument. 2

We will now apply our results to some pairs of programs
discussed in Example 3.1.

Example 3.5 First, we note thatP1 andQ1 have the same
models. In particular,{a} is a model of both programs.
However,TP1

({a}) = {a} and TQ1
({a}) = ∅. Thus,

TP1
({a}) 6= TQ1

({a}) and so,P1 and Q1 are not supp-
equivalent relative toHBn(At , ∅) (by Corollary 3.3).

On the other hand,P2 andQ2 have the same models and
for everyY (in particular, for everymodelY of P2 andQ2),
TP2

(Y ) = {a} = TQ2
(Y ). Thus,P2 and Q2 are supp-

equivalent relative toHBn(At ,At).
Finally, Y ∈ ModAt\{b}(P3) if and only ifY |= P3 and

Y \ TP3
(Y ) ⊆ At \ {b}. Clearly, if Y |= P3, thenTP3

(Y )
is defined andb /∈ Y . Thus,Y \ TP3

(Y ) ⊆ At \ {b}. It
follows thatY ∈ ModAt\{b}(P3) if and only if Y |= P3,
that is, if and only ifa ∈ Y and b /∈ Y . One can check
that this condition also characterizesY ∈ ModAt\{b}(Q3).
Indeed,Y |= Q3 if and only ifa ∈ Y , andY \ TQ3

(Y ) ⊆
At \ {b} if and only if b /∈ Y . Thus,ModAt\{b}(P3) =
ModAt\{b}(Q3). Moreover, ifY ∈ ModAt\{b}(P3) (a ∈ Y
andb /∈ Y ), TP3

(Y ) = {a} = TQ3
(Y ). Consequently,P3

andQ3 are supp-equivalent relative toHBn(At \ {b},At).

We conclude this section by generalizing our results to the
disjunctive case.

Corollary 3.6 Let P and Q be disjunctive programs, and
A ⊆ At . Then, the following conditions are equivalent:



1. P andQ are supp-equivalent relative toHBd(A,At)

2. For every classC of context programs such that
HBn(A, ∅) ⊆ C ⊆ HBd(A,At), P and Q are supp-
equivalent relative toC

3. sh(P ) and sh(Q) are supp-equivalent relative to
HBn(A,At)

4. ModA(sh(P )) = ModA(sh(Q)) and for everyY ∈
ModA(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

Proof. SinceC ⊆ HBd(A,At), (1) implies (2). Thus, let
us assume (2). TakingC = HBn(A,At), we obtain thatP
andQ are supp-equivalent relative toHBn(A,At). Since
shifting does not affect supported models, and since for ev-
ery normal programR, sh(R) = R, we have (3). To show
that (3) implies (1), letR ∈ HBd(A,At) and letM be a
supported model ofP ∪R. As supported models are not af-
fected by shifting,M is a supported model ofsh(P ∪R) =
sh(P ) ∪ sh(R). Clearly,sh(R) ∈ HBn(A,At). Thus, by
(3), M is a supported model ofsh(Q) ∪ sh(R). Conse-
quently,M is a supported model ofQ∪R. By the symmetry
argument,P ∪R andQ∪R have the same supported models
and that proves (1). It follows that (1), (2) and (3) are equiv-
alent. To complete the proof, we note that the equivalence
of (3) and (4) follows by Theorems 3.2. 2

Corollary 3.6 applies, in particular, to the cases whenC
is any of the following classes:HBd(A,At), HBn(A,At),
HBd(A, ∅), andHBn(A, ∅). It also implies an observation,
already noted above, that the alphabet allowed for the bod-
ies of context programs plays no role in the case of supp-
equivalence, unlike in the case of hyperequivalence with re-
spect to stable models (Woltran 2008). In particular, for the
semantics of supported models, there is no difference be-
tween strong and uniform equivalence (even for disjunctive
programs).

Finally, we note that Theorem 3.2 also implies a charac-
terization of uniform hyperequivalencewith respect to stable
models fortight logic programs (Fages 1994), as for such
programs stable and supported models coincide (we refer
to (Lee & Lifschitz 2003) for a more detailed discussion of
tight disjunctive logic programs and relevant results).

Corollary 3.7 Let P andQ be tight disjunctive programs,
A ⊆ At , andC a class of programs such thatHBn(A, ∅) ⊆
C ⊆ HBd(A, ∅). Then,P andQ are uniformly equivalent
(with respect to the stable-model semantics) relative toC if
and only ifModA(sh(P )) = ModA(sh(Q)) and for every
Y ∈ ModA(sh(P )), Tsh(P )(Y ) = Tsh(Q)(Y ).

Proof. Let R ∈ HBd(A, ∅). SinceR consists of rules with
the empty body, bothP ∪ R andQ ∪ R are tight. Thus,
they have the same stable models if and only if they have
the same supported models. The assertion follows now from
Corollary 3.6. 2

The characterization given by Corollary 3.7 provides an
alternative to the characterization given in (Gebseret al.
2008).

4 Hyperequivalence with respect to
supported minimal models

We move on to the semantics of supported minimal models.
Let C be a class of programs. Disjunctive programsP and
Q aresuppmin-equivalentrelative to a classC of disjunctive
programs if for every programR ∈ C, P ∪ R andQ ∪ R
have the same suppmin models. As in the case of supp-
equivalence, we restrict attention to classesC that contain
the empty program. This restriction ensures that suppmin-
equivalence implies the equivalence with respect to suppmin
models.

We note that suppmin-equivalence is a different concept
than other types of equivalence we considered.

Example 4.1 The programsP2 and Q2 from Example 3.1
are suppmin-equivalent with respect to any class of pro-
grams, as for every programR, programsP2∪R andQ2∪R
have the same models and the same supported models. How-
ever, as we pointed out earlier, they are not equivalent with
respect to stable models nor hyperequivalent with respect to
stable models relative toanyclass of programs.

ProgramsP4 = P2 and Q4 = {a ← not a} have the
same models, stable models, and are hyperequivalent with
respect to stable models relative to an arbitrary class of pro-
grams. However,P4 and Q4 are not suppmin-equivalent
(they have different suppmin models).

Next, one can show that for every setU of atoms, pro-
gramsP1 ∪ U andQ1 ∪ U have the same suppmin models,
but the programs themselves have different supported mod-
els. Thus,P1 andQ1 are suppmin-equivalent relative to the
classHBn(At , ∅) of all programs consisting of facts, but
they are not supp-equivalent relative to the same class. We
note thatP1 andQ1 are not suppmin-equivalent relative to
HBn(At ,At), as witnessed by the contextR = {← not a}.

Finally, P5 = {a ← b; b ← b; ← not a,not b} and
Q5 = {a ← b; b ← a; ← not a,not b} have the same
supported models but different suppmin models ({a, b} is
the only supported model ofP5 and Q5, and a suppmin
model forQ5 but not forP5). Thus, the programs are supp-
equivalent relative toHBn(∅, ∅) (which contains the empty
program only) but not suppmin-equivalent with respect to
that class.

Our examples distinguishing between supp- and suppmin-
equivalence refer to restricted classes of contexts. As we
show later, it is not coincidental. The two types of equiva-
lence are the same if all programs are allowed as contexts.

To characterize suppmin-equivalence relative to contexts
in HBn(A, B) andHBd(A, B), whereA, B ⊆ At , we use
a refinement of the method from the previous section. As
before, we focus first on the case of normal logic programs
(and restrict the context to normal logic programs, as well).
We recall that the characterization of supp-equivalence in
that case is based on a relatively simple concept of anA-
model of a program. For suppmin-equivalence, the second
alphabet,B, has to be taken into consideration. Its role
is reflected in the concepts of an(A, B)-model and anex-
tended(A, B)-model, that generalize the earlier notion of
anA-model.



We say that a setY of atoms is an(A, B)-modelof a
programP if it satisfies the following two conditions:
1. Y ∈ ModA(P ), that is,Y is anA-model ofP

2. for eachZ ⊂ Y such thatZ|A∪B = Y |A∪B, Z 6|= P .
We say that apair (X, Y ) of sets of atoms is anextended
(A, B)-modelof a normal programP if Y is an (A, B)-
model ofP (satisfies conditions (1) and (2) above), and
3. X ⊆ Y |A∪B

4. for eachZ ⊂ Y such thatZ|B = X |B andZ|A ⊇ X |A,
Z 6|= P

5. if X |B = Y |B , thenY \ TP (Y ) ⊆ X .
We denote the set of all extended(A, B)-models ofP by
Mod

B
A(P ).

We start by discussing the intuitions behind(A, B)-
models, extended(A, B)-models, and the conditions that
define them. The role of the requirement thatY be anA-
model (the condition (1)) is the same as before. It captures
the property that an interpretation can be turned into a sup-
ported model of an extension of a program with some pro-
gram fromHBn(A, B). Thus, we focus here on the remain-
ing conditions, which are meant to ensure that the require-
ment of minimality of models affects the programs under
comparison in the same way.

First, we note that(A, B)-models of a programP are pre-
cisely those interpretations that can be turned into a supp-
min models ofP by extending it with a program from
HBn(A, B). More precisely, we have the following lemma.

Lemma 4.2 Let P be a normal program, andA, B ⊆ At .
Then, there exists a programR ∈ HBn(A, B) such thatY
is a suppmin model ofP ∪ R if and only ifY is an(A, B)-
model ofP .

Proof. (⇒) Let us assume thatY is a suppmin model of
P ∪ R, whereR ∈ HBn(A, B). Then,Y is a supported
model ofP ∪ R. It follows thatY is model ofP andY =
TP∪R(Y ) = TP (Y ) ∪ TR(Y ). SinceR ∈ HBn(A, B),
Y \ TP (Y ) ⊆ A and, consequently,Y is anA-model ofP
(we used this argument already in Section 3). Next, let us
considerZ ⊂ Y such thatZ|A∪B = Y |A∪B. SinceY |= R
andR ∈ HBn(A, B), Z |= R. SinceY is a minimal model
of P ∪R, Z 6|= P ∪R. Thus,Z 6|= P follows and proves that
Y satisfies the condition (2) of the definition of an(A, B)-
model ofP .
(⇐) For the “if” direction, let

R = (Y \ TP (Y ))|B ∪ Y |A\B ∪ {← not y | y ∈ Y |B}.

It is easy to check thatY |= R. Next, sinceY is anA-model
of P , Y |= P . ThusY |= P ∪ R. Moreover, we have
Y \ TP (Y ) ⊆ A. It follows that

TP (Y )∪TR(Y ) = TP (Y )∪ (Y \TP (Y ))|B ∪Y |A\B = Y,

which shows thatY is a supported model ofP ∪ R. Now,
let Z ⊆ Y be such thatZ |= P ∪ R. Clearly,Y |A\B ⊆ Z
(Z |= R andR containsY |A\B). Moreover, the constraints
in R imply thatY |B ⊆ Z|B. As Z ⊆ Y , Y |A∪B = Z|A∪B.
SinceZ |= P andY satisfies the condition (2) of the defini-
tion of an(A, B)-model ofP , Y = Z. Hence,Y is also a
minimal model ofP ∪R. 2

Lemma 4.2 and its proof imply immediately the follow-
ing corollary providing a necessary condition for suppmin-
equivalence of normal programs.

Corollary 4.3 Let P and Q be normal programs and
A, B ⊆ At . If P andQ are suppmin-equivalent relative to
HBn(A, B), thenP andQ have the same(A, B)-models.
Moreover, for each(A, B)-modelY of P (and so, also of
Q), TP (Y )|B = TQ(Y )|B .

Proof. The first part of the assertion follows directly from
Lemma 4.2. To prove the second part of the assertion, let
Y be an(A, B)-model ofP andR the program constructed
in the proof of Lemma 4.2. We note thatTR(Y ) = (Y \
TP (Y ))|B ∪ Y |A\B.

By the proof of Lemma 4.2,Y is a suppmin model ofP ∪
R. SinceP andQ are suppmin-equivalent,Y is a suppmin
model ofQ, as well. It follows thatY = TQ(Y ) ∪ TR(Y )
and so,

Y |B = TQ(Y )|B ∪ TR(Y )|B
= TQ(Y )|B ∪ (Y \ TP (Y ))|B
= TQ(Y )|B ∪ (Y |B \ TP (Y )|B).

SinceY |= P , TP (Y ) ⊆ Y . Thus,TP (Y )|B ⊆ TQ(Y )|B.
By the symmetry,TP (Y )|B = TQ(Y )|B . 2

The requirement stated in Corollary 4.3 is not sufficient.
We still have to ensure that whenever adding a program
R ∈ HBn(A, B) to P turns an(A, B)-modelY of P into a
suppmin model ofP ∪ R, Y (which, by our earlier discus-
sion, must also be an(A, B)-model ofQ) becomes a supp-
min model ofQ ∪R, as well (andvice versa). That is when
extended(A, B)-models come into play. With each(A, B)-
modelY they associate some subsetsX of Y that are needed
to enforce the minimality of the model condition in extended
programs. Due to the form of contexts, only those subsets
of that are also subsets ofA∪B are important. This restric-
tion is reflected in the condition (3) of the definition of an
extended(A, B)-model.

The essential part of the specification is provided by the
conditions (4) and (5). They are designed so that each
(A, B)-model(X, Y ) of a programP would give rise to a
particular context programR with the following properties:
Y is a suppmin model ofP ∪ R; and for every programQ
either(X, Y ) is an extended(A, B)-model ofQ or Y is not
a suppmin model ofQ. The construction ofR depends on
whetherX |B ⊂ Y |B or X |B = Y |B. There are no other
possibilities asX ⊆ Y follows from the condition (3) of the
definition of an extended(A, B)-model.

Let (X, Y ) be an extended(A, B)-model of a normal
logic programP , and let us assume thatX |B ⊂ YB . We
fix somet ∈ Y |B \X |B and define

R⊂ = {y ← t | y ∈ (Y \ TP (Y ))|B ∪ Y |A\B} ∪

{x← not t | x ∈ X |A} ∪ { ← not x |x ∈ X |B} ∪

{← u,not z | u, z ∈ Y |B \X |B}.

Clearly,R⊂ ∈ HB(A, B). We will show thatR⊂ has the
required properties.



Lemma 4.4 Let A, B be subsets ofAt , P, Q normal pro-
grams with the same(A, B)-models, and(X, Y ) an ex-
tended(A, B)-model ofP such thatX |B ⊂ Y |B . Then,Y
is a suppmin model ofP ∪ R⊂, and(X, Y ) is an extended
(A, B)-model ofQ or Y is nota suppmin model ofQ∪R⊂.

Proof. Since(X, Y ) is an extended(A, B)-model ofP , Y
is anA-model ofP . Thus,Y |= P andTP (Y ) ⊆ Y . Since
X ⊆ Y , Y |= R⊂. Moreover, again by the fact thatY is an
A-model ofP , Y \ TP (Y ) ⊆ A. Finally, sincet ∈ Y , the
rules{y ← t | y ∈ (Y \ TP (Y ))|B ∪ Y |A\B} in R⊂ are
applicable with respect toY . It now follows that

TP (Y )∪TR⊂ (Y ) = TP (Y )∪(Y \TP (Y ))|B∪Y |A\B = Y,

which shows thatY is a supported model ofP ∪R⊂.
Now, letZ ⊆ Y be such thatZ |= P ∪R⊂. It follows that

Z|B ⊆ Y |B. SinceZ |= { ← not x |x ∈ X |B}, X |B ⊆
Z|B. Thus, sinceZ |= {← u,not z | u, z ∈ Y |B \ X |B},
we obtain thatZ|B = Y |B or Z|B = X |B.

First, we consider the caseZ|B = Y |B. SinceZ |=
R⊂, we haveY |A\B ⊆ Z (thanks to the rulesy ← t,
y ∈ Y |A\B, in R⊂). It follows that Y |A∪B ⊆ Z. Con-
sequently,Y |A∪B ⊆ Z|A∪B. On the other handZ ⊆ Y
and so,Z|A∪B ⊆ Y |A∪B. Thus,Y |A∪B = Z|A∪B. Since
Z |= P andY satisfies the condition (2) of the definition of
an(A, B)-model ofP , Y = Z.

Next, we consider the caseZ|B = X |B. We haveX |A ⊆
Z (thanks to the rulesx ← not t, x ∈ X |A, in R⊂). Since
Z |= P and(X, Y ) is an extended(A, B)-model ofP , the
condition (4) impliesY = Z. Thus, in each case,Y = Z
and, consequently,Y is a minimal model ofP ∪ R⊂. It
follows thatY is a suppmin model ofP ∪R⊂.

To show the second part of the assertion, let us assume
that (X, Y ) is not an extended(X, Y )-model ofQ. Since
P andQ have the same(A, B)-models,(X, Y ) violates the
condition (4) of the definition of an(X, Y )-model. That is,
there isZ ⊂ Y such thatX |B = Z|B, Z|A ⊇ X |A and
Z |= Q.

We observe thatZ |= R⊂. Indeed,t /∈ Z (we havet ∈ B,
Z|B = X |B andt /∈ X |B). Thus,Z is a model of all rules in
R with a positive occurrence oft in the body. SinceX |A ⊆
Z|A, the rulesx← not t are satisfied byZ, too. Finally, as
Z|B = X |B, the constraints in{← not x |x ∈ X |B}∪{←
u,not z | u, z ∈ Y |B \X |B} in R⊂ are satisfied, as well. It
follows thatZ |= Q∪R⊂. Consequently,Y is not a minimal
model ofQ ∪R⊂. 2

The next lemma addresses the caseX |B = Y |B. Here,
the condition (5) comes into play and we need to use a differ-
ent context. Let(X, Y ) be an extended(A, B)-model of a
normal logic programP , and let us assume thatX |B = YB .
We define

R= = (Y \ TP (Y ))|B ∪X |A\B ∪

{ ← not y | y ∈ Y |B}.

Again it is evident thatR= ∈ HBn(A, B).

Lemma 4.5 Let A, B be subsets ofAt , P, Q normal pro-
grams with the same(A, B)-models, and(X, Y ) an ex-
tended(A, B)-model ofP such thatX |B = Y |B. Then,

Y is a suppmin model ofP ∪R=, and(X, Y ) is an extended
(A, B)-model ofQ or Y is nota suppmin model ofQ∪R=.

Proof. Since(X, Y ) is an extended(A, B)-model ofP , Y
is anA-model ofP , and henceY |= P . One can check that
Y |= R=, as well. SinceY |= P ∪R=, TP∪R=(Y ) ⊆ Y . To
show thatY is a supported model ofP ∪R=, we now prove
Y ⊆ TP∪R=(Y ). Lety ∈ Y \TP (Y ). It follows thaty ∈ X
(by the condition (5) of the definition of an extended(A, B)-
model forP ) andy ∈ A (by the fact thatY is anA-model
of P ). If y /∈ B, theny ∈ X |A\B and so,y ∈ TR=(Y ). If
y ∈ B, theny ∈ (Y \ TP (Y ))|B. Thus,y ∈ TR=(Y ) in this
case, too. It follows that ify ∈ Y theny ∈ TP (Y )∪TR=(Y )
and consequently,Y ⊆ TP (Y ) ∪ TR=(Y ) = TP∪R=(Y ).

We will now show thatY is a minimal model ofP ∪R=.
To this end, let us considerZ ⊆ Y such thatZ |= P ∪R=.
It follows thatZ|B = Y |B (sinceZ is a model of the con-
straints inR=). Moreover,X |A\B ⊆ Z. If y ∈ X |A∩B,
theny ∈ X |B andy ∈ Y |B. Thus,y ∈ Z|B. It follows
thatX |A ⊆ Z and, consequently,X |A ⊆ Z|A. Moreover,
X |B = Y |B implies thatZ|B = X |B. SinceZ |= P and
(X, Y ) is an extended(A, B)-model ofP (satisfies, in par-
ticular, the condition (4)),Z = Y . Thus,Y is a minimal
model ofP ∪R=.

To prove the second part of the assertion, let us assume
thatY is a suppmin model ofQ ∪ R=. We will show that
(X, Y ) is an extended(A, B)-model ofQ. SinceP andQ
have the same(A, B)-models andX ⊆ Y |A∪B (by the fact
that (X, Y ) is an extended(A, B)-model ofP ), it suffices
to show that the conditions (4) and (5) hold.

For the condition (5), we proceed as follows. By the
assumption,Y is a supported model ofQ ∪ R=. Thus,
Y = TQ∪R=(Y ) = TQ(Y )∪ TR=(Y ). Let y ∈ Y \ TQ(Y ).
We havey ∈ TR=(Y ). Consequently,y ∈ Y \ TP (Y ) or
y ∈ X . Since(X, Y ) is an extended(A, B)-model ofP
andX |B = Y |B, Y \ TP (Y ) ⊆ X . Thus,y ∈ X and so
Y \ TQ(Y ) ⊆ X .

For the condition (4), we consider a setZ ⊂ Y such that
Z|B = X |B andZ|A ⊇ X |A. SinceY |B = X |B, Z|B =
Y |B. Thus,Z |= R=. SinceY is a minimal model ofQ∪R,
Z 6|= Q follows. 2

Our discussion provided some insights into the conditions
defining the notion of an extended(A, B)-model and the
role they play. Along the way we also derived several neces-
sary conditions forP andQ to be suppmin-equivalent. The
following theorem, our main result of this section, shows
that these conditions together are also sufficient.

Theorem 4.6 Let A, B ⊆ At and letP, Q be normal pro-
grams. The following conditions are equivalent

1. P andQ are suppmin-equivalent relative toHBn(A, B)

2. Mod
B
A(P ) = Mod

B
A(Q) and for every (X, Y ) ∈

Mod
B
A(P ), TP (Y )|B = TQ(Y )|B

3. Mod
B
A(P ) = Mod

B
A(Q) and for every (X, Y ) ∈

Mod
B
A(P ), TP (Y ) \ (A \B) = TQ(Y ) \ (A \B).

Proof. We start by showing that (2) and (3) are equiv-
alent. Indeed, in either case, if(X, Y ) ∈ Mod

B
A(P ),



then TP (Y ) ⊆ Y , Y \ TP (Y ) ⊆ A, TQ(Y ) ⊆ Y and
Y \ TQ(Y ) ⊆ A. Consequently, we have

TP (Y ) \ (A \B) = TP (Y )|B ∪ (Y \ (A ∪B))

and

TQ(Y ) \ (A \B) = TQ(Y )|B ∪ (Y \ (A ∪B)).

Since in either case the sets involved in the union are dis-
joint, TP (Y )|B = TQ(Y )|B if and only ifTP (Y )\(A\B) =
TQ(Y ) \ (A \ B). Thus, the equivalence of (2) and (3) fol-
lows. We complete the proof by showing the equivalence of
(1) and (2).

[(1) implies (2)]: By Corollary 4.3,P andQ have the same
(A, B)-models. Let(X, Y ) ∈ Mod

B
A(P ) be an extended

(A, B)-model ofP . SinceP andQ are suppmin-equivalent,
Lemmas 4.4 and 4.5 imply that(X, Y ) ∈ Mod

B
A(Q). By

the symmetry,Mod
B
A(P ) = Mod

B
A(Q) follows. Moreover,

if (X, Y ) ∈ Mod
B
A(P ) thenY is an(A, B)-model ofP and

so, by Corollary 4.3,TP (Y )|B = TQ(Y )|B .

[(2) implies (1)]: Let R be a logic program from
HBn(A, B), and letY be a supported minimal model of
P ∪ R. Next, letX = TR(Y ) ∪ Y |B . We note that since
Y |= R, TR(Y ) ⊆ Y . Thus,X |B = Y |B.

We will show that(X, Y ) ∈ Mod
B
A(P ). SinceY is a

suppmin model ofP ∪ R, it follows thatY |= P , Y |= R,
andY = TP (Y )∪TR(Y ). We haveR ∈ HBn(A, B). Thus,
the latter identity shows thatY \TP (Y ) ⊆ A. SinceY |= P ,
we obtain thatY ∈ ModA(P ), that is, the condition (1) for
(X, Y ) ∈ Mod

B
A(P ) holds.

SinceTR(Y ) ⊆ Y andTR(Y ) ⊆ A (we recall thatR ∈
HBn(A, B)), TR(Y ) ⊆ Y |A ⊆ Y |A∪B. Clearly,Y |B ⊆
Y |A∪B. Thus,X ⊆ Y |A∪B. This proves that the condition
(3) for (X, Y ) ∈ Mod

B
A(P ) holds.

We also haveTR(Y ) ⊆ X (by the definition ofX). Since
Y \ TP (Y ) ⊆ TR(Y ), Y \ TP (Y ) ⊆ X follows. Conse-
quently, the condition (5) for(X, Y ) ∈ Mod

B
A(P ) holds,

too.
Next, let Z ⊂ Y and Z|A∪B = Y |A∪B. SinceR ∈
HBn(A, B) andY |= R, Z |= R. We have thatY is a
minimal model ofP ∪R. Thus,Z 6|= P and, consequently,
the condition (2) for(X, Y ) ∈ Mod

B
A(P ) follows.

Finally, letZ ⊂ Y , Z|B = X |B andZ|A ⊇ X |A. Since
X |B = Y |B, Z|B = Y |B. We haveR ∈ HBn(A, B).
Thus,TR(Z) = TR(Y ) ⊆ X (the inclusion holds by the
definition ofX). Moreover,TR(Y ) ⊆ A and so,TR(Z) ⊆
X |A ⊆ Z|A ⊆ Z. Consequently,Z |= R in this case, too.
As before, we obtain thatZ 6|= P . This shows the condition
(4) for (X, Y ) ∈ Mod

B
A(P ).

Thus, we have established that(X, Y ) ∈ Mod
B
A(P ). By

the assumption,(X, Y ) ∈ Mod
B
A(Q) and alsoTP (Y )|B =

TQ(Y )|B. We will now show thatY = TQ(Y ) ∪ TR(Y ),
that is, thatY is a supported model ofQ ∪ R. SinceY ∈
ModA(Q), Y |= Q. Hence,Y |= Q ∪ R (we recall that
Y |= R) and so,TQ(Y ) ∪ TR(Y ) ⊆ Y .

To showY ⊆ TQ(Y ) ∪ TR(Y ), let y ∈ Y . We recall that
TR(Y ) ⊆ A. We distinguish three cases:

(i) y /∈ A: Since(X, Y ) ∈ Mod
B
A(Q), Y ∈ ModA(Q) and

so,Y \ TQ(Y ) ⊆ A. Thus,y ∈ TQ(Y ) follows.
(ii) y ∈ B: If y ∈ TR(Y ) we are done; otherwise (sinceY =

TP (Y ) ∪ TR(Y )), we obtainy ∈ TP (Y ). It follows that
y ∈ TP (Y )|B . Thus,y ∈ TQ(Y )|B and, consequently,
y ∈ TQ(Y ).

(iii) y ∈ A \ B: If y ∈ X , theny ∈ TR(Y ) (we recall that
X = TR(Y ) ∪ Y |B); if y /∈ X , theny /∈ Y \ TQ(Y )

(indeed, since(X, Y ) ∈ Mod
B
A(Q) and X |B = Y |B,

Y \ TQ(Y ) ⊆ X), and thus,y ∈ TQ(Y ).

It follows thatY = TQ(Y )∪TR(Y ), that is,Y is a supported
model ofQ ∪R.

It remains to show thatY is a minimal model of
Q ∪ R. Let Y ′ ⊂ Y be a model ofQ ∪ R. Since
Y ′ |= Q, (Y ′|A∪B, Y ) /∈ Mod

B
A(Q) (it violates condi-

tion (4) of the definition ofMod
B
A(Q)). By the assumption,

(Y ′|A∪B, Y ) /∈ Mod
B
A(P ). Since(X, Y ) ∈ Mod

B
A(P ),

(Y ′|A∪B, Y ) satisfies condition (1) of the definition of
Mod

B
A(P ). Moreover,Y ′ ⊂ Y impliesY ′|A∪B ⊆ Y |A∪B.

Thus, condition (3) holds, too.
Let Y |B = (Y ′|A∪B)|B . Then,Y |B = Y ′|B. Since

Y ′ |= R andR ∈ HBn(A, B), TR(Y ′) ⊆ Y ′ andTR(Y ′) =
TR(Y ). Thus,TR(Y ) ⊆ Y ′ and, consequently,X ⊆ Y ′.
We proved above thatY \ TP (Y ) ⊆ X . Consequently, con-
dition (5) for (Y ′|A∪B, Y ) ∈ Mod

B
A(P ) holds, as well. It

follows that at least one of the conditions (2) and (4) is vio-
lated. That is, there isU ⊂ Y , such thatU |= P , and either
U |A∪B = Y |A∪B or U |B = Y ′|B andU |A ⊇ Y ′|A. Since
both Y |= R andY ′ |= R, U |= R (we recall here that
R ∈ HBn(A, B)). Thus,U |= P ∪ R andY is not a mini-
mal model ofP ∪R, a contradiction. It follows that there is
noY ′ ⊂ Y such thatY ′ |= Q∪R. That is,Y is a supported
minimal model ofQ ∪R. 2

We have several corollaries for some special choices of
A andB. The first one concerns the case whenB = ∅,
that is, the case of relativized uniform suppmin-equivalence.
Since the conditionTP (Y )|B = TQ(Y )|B is now trivially
satisfied, Theorem 4.6 implies the following result.

Corollary 4.7 Let A ⊆ At . Normal programsP and Q
are suppmin-equivalent relative toHBn(A, ∅) if and only if
Mod

∅
A(P ) = Mod

∅
A(Q).

Proof. The result follows by the equivalence of the condi-
tions (1) and (2) in Theorem 4.6. 2

Moreover, the description ofMod
B
A(P ), whenB = ∅

simplifies. In fact,(X, Y ) ∈ Mod
∅
A(P ) if and only if

1. Y ∈ ModA(P )

2. X ⊆ Y |A

3. for eachZ with X ⊆ Z ⊂ Y , Z 6|= P

4. Y \ TP (Y ) ⊆ X .

When A = B = At (strong suppmin-equivalence), it
turns out that supp-equivalence and suppmin-equivalence
coincide (cf. comments at the end of Example 4.1).



Corollary 4.8 Normal programsP and Q are suppmin-
equivalent relative toHBn(At ,At) if and only ifP andQ
are supp-equivalent relative toHBn(At ,At).

Proof. We note that(X, Y ) ∈ Mod
At

At (P ) if and only if
Y ∈ ModAt (P ), and eitherX = Y , orX ⊂ Y andX 6|= P .
Thus,Mod

At

At (P ) = Mod
At

At (Q) if and only if ModAt (P ) =

ModAt (Q). Moreover,(Y, Y ) ∈ Mod
At

At (P ) if and only if
Y ∈ ModAt (P ). Thus, the result follows from Corollary
3.3 and Theorem 4.6. 2

We will discuss additional special-cases for instantiating
Mod

B
A(P ) as part of our complexity analysis in Lemma 6.1.

We will now use our results to resolve the issue of
suppmin-equivalence of programs discussed earlier.

Example 4.9 If P is a program such that every set of atoms
is a model ofP , thenMod

∅
At (P ) = {(Y, Y ) |Y ⊆ At}.

This observation applies both toP1 and Q1. Thus, by
Corollary 4.7,P1 and Q1 are suppmin-equivalent relative
to HBn(At , ∅). We note thatP1 andQ1 are not suppmin-
equivalent relative toHBn(At ,At). Indeed, they are not
supp-equivalent (cf. Example 3.5) and so, not suppmin-
equivalent (by Corollary 4.8).

Next, we consider programsP5 andQ5. We note that for
every programP , Mod

∅
∅(P ) consists of pairs(∅, Y ), where

Y is a suppmin model ofP . Thus,Mod
∅
∅(P5) = ∅ and

Mod
∅
∅(Q5) = {(∅, {a, b})}. By Corollary 4.7,P5 andQ5

are not suppmin-equivalent relative toHBn(∅, ∅).

We will now consider the general case of disjunctive pro-
gramsP andQ, and the class of contextsHBd(A, B). We
will first show that when considering suppmin-equivalence
with respect toHBd(A, B), we can restrict to contexts in
HBn(A, B).

Lemma 4.10 Let A, B ⊆ At and letP andQ be disjunc-
tive programs. Then,P andQ are suppmin-equivalent with
respect toHBd(A, B) if and only ifP andQ are suppmin-
equivalent with respect toHBn(A, B).

Proof. The “only-if” part of the assertion is evident. We
will prove the “if” part only. Thus, let us assume thatP and
Q are suppmin-equivalent with respect toHBn(A, B). Let
R ∈ HBd(A, B) and letY be a suppmin model ofP ∪ R.
We will show thatY is a suppmin model ofQ ∪R.

A normal ruler′ is a Y -split of a ruler if (i) bd(r′) =
bd(r), and (ii)hd(r′) = ⊥ if hd(r) ∩ Y = ∅, andhd(r′) ∈
Y , otherwise. A normal programR′ if a Y -split of R if R′

is obtained fromR by replacing each rule inR by one of its
Y -splits.
Observation 1: For everyY -split R′ of R, Y is a model of
R′, and for everyZ ⊆ At , if Z |= R′, thenZ |= R.
Observation 2: For everyY -split R′ of R, Y is a suppmin
model ofP ∪R′.
To prove that, we argue as follows. First,Y |= P (asY
is a suppmin model ofP ∪ R) and so, by Observation 1,
Y |= P ∪ R′. Let y ∈ Y . SinceY is a supported model
of P ∪ R, there is a ruler ∈ P ∪ R such thatY |= bd(r)
and{y} = hd(r) ∩ Y . If r ∈ R, y ← bd(r) belongs toR′

(as it is the onlyY -split of r). It follows that there is a rule
r′ ∈ P ∪ R′ such thatY |= bd(r′) and{y} = hd(r′) ∩ Y
(r, if r ∈ P ; the split ofr, y ← bd(r), otherwise). Thus,Y
is a supported model ofP ∪R′. If Z ⊆ Y andZ |= P ∪R′,
then, by Observation 1,Z |= P ∪ R. SinceY is a suppmin
model ofP ∪ R, Z = Y . Thus,Y is a suppmin model of
P ∪R′, as claimed.

SinceY -splits are normal programs inHBn(A, B), and
since P and Q are suppmin-equivalent with respect to
HBn(A, B), it follows that for everyY -split R′ of R, Y
is a suppmin model ofQ ∪ R′. We will show thatY is a
supported model ofQ ∪R.

Since the set ofY -splits ofR is nonempty, it follows from
the statement above thatY is a model ofQ. Thus,Y |=
Q ∪ R (we recall thatY is a suppmin model ofP ∪ R and
so,Y is a model ofR). We will now show that everyy ∈ Y
there is a ruler ∈ Q ∪ R such thatY |= bd(r) and{y} =
hd(r)∩Y . To this end, let us assume thatR contains no such
rule. SinceY |= R, for everyr ∈ R such thatY |= bd(r),
there isyr ∈ Y such thaty 6= yr andyr ∈ hd(r). Let us
consider the splitR′ of R that replaces each such ruler with
the ruleyr ← bd(r). It follows thaty /∈ hd(R). SinceY is
a supported model ofQ∪R′, there is a ruler ∈ Q such that
Y |= bd(r) and{y} = hd(r) ∩ Y . Thus,Y is a supported
model ofQ ∪R.

Finally, we will show thatY is a minimal model ofQ∪R.
Let Z ⊆ Y be a model ofQ∪R. For every ruler ∈ R such
thatZ |= bd(r), let yr be an element in the head ofr such
thatyr ∈ Z. Let R′ be anyY -split of R which, for every
such ruler uses itsY -split yr ← bd(r). Then,Z |= Q∪R′.
SinceY is a suppmin model ofQ ∪ R′, Z = Y . Thus,Y is
a minimal model ofQ ∪R.

It follows thatY is a suppmin model ofQ ∪ R. By the
symmetry argument,P ∪R andQ∪R have the same supp-
min models. That is,P andQ are suppmin-equivalent with
respect toHBd(A, B). 2

We recall that shifting does not affect models and sup-
ported models of a program . Moreover, for every program
R ∈ HBn(A, B), sh(R) = R. Thus, we have the following
result.

Corollary 4.11 LetA, B ⊆ At and letP andQ be disjunc-
tive programs. Then,P andQ are suppmin-equivalent with
respect toHBd(A, B) if and only if sh(P ) and sh(Q) are
suppmin-equivalent with respect toHBn(A, B).

Thanks to Corollary 4.11, all results concerning suppmin-
equivalence of normal programs with respect to normal con-
texts lift to the disjunctive case. We present two such results
below.

Corollary 4.12 Let A, B ⊆ At . The following conditions
are equivalent.

1. Disjunctive programsP and Q are suppmin-equivalent
relative toHBd(A, B)

2. Mod
B
A(sh(P )) = Mod

B
A(sh(Q)) and for every(X, Y ) ∈

Mod
B
A(sh(P )), Tsh(P )(Y )|B = Tsh(Q)(Y )|B.



3. Mod
B
A(sh(P )) = Mod

B
A(sh(Q)) and for every(X, Y ) ∈

Mod
B
A(sh(P )), Tsh(P )(Y ) \ (A \B) = Tsh(Q)(Y ) \ (A \

B)

Proof. This result follows by Corollary 4.11 from Theorem
4.6. 2

Corollary 4.13 Disjunctive programs P and Q are
suppmin-equivalent relative toHBd(At ,At) if and only if
P andQ are supp-equivalent relative toHBd(At ,At).

Proof. This result follows by Corollaries 4.11, 3.6, and 4.8.
2

5 Complexity of Supp-Equivalence
We focus entirely on the case of normal programs and nor-
mal contexts. As we noted, it is not an essential restriction,
and all results we obtain hold without it. We will study
deciding hyperequivalence relative to classesHBn(A, B).
Specifically, we will consider the following problems:

1. SUPP: given programsP, Q (overAt) andA, B ⊆ At ,
decide whetherP andQ are supp-equivalent relative to
HBn(A, B)

2. SUPPA: given programsP, Q (over At ) and B ⊆ At ,
decide whetherP andQ are supp-equivalent relative to
HBn(A, B)

3. SUPPB: given programsP, Q (over At) and A ⊆ At ,
decide whetherP andQ are supp-equivalent relative to
HBn(A, B)

4. SUPPBA : given programsP, Q (overAt), decide whether
P andQ are supp-equivalent relative toHBn(A, B).

We emphasize the changing roles of the setsA and B.
In some cases, they are used to specify a problem (A in
SUPPBA and SUPPA); in others, they belong to the specifi-
cation of an instance (A in SUPPB and SUPP). In the first
role, they can be finite or infinite. For instance,SUPPAt de-
notes the problem to decide, given programsP, Q (overAt)
andB ⊆ At , whetherP andQ are supp-equivalent relative
toHBn(At , B). In the second role, they need to have finite
representations.

To establish the complexity of a problem, we derive an
upper and a lower bound (membership and hardness). We
start by pointing out that establishing an upper bound is not
entirely straightforward. A natural witness against supp-
equivalence (relative to a classC) is a pair(R, Y ), whereR
is a finite program inC andY is finite set of atoms such that
Y is a supported model of exactly one ofP ∪R andQ∪R.
The problem is that the size of such a programR might not
be bounded by a polynomial in the size ofP , Q, and possi-
bly alsoA andB, depending on the problem. Thus, the most
direct attempt to prove the membership of the problem in the
class coNP fails. The bound can, however, be derived from
our characterization theorem for several classes of context
programs.

Theorem 5.1 The following problems are in the class
coNP:

1. SUPP

2. SUPPA, for every finiteA ⊆ At

3. SUPPBA , for every finiteA ⊆ At , and for everyB ⊆ At

4. SUPPB, for everyB ⊆ At

5. SUPPB
At

, for everyB ⊆ At .

Proof. (1) Theorem 3.2 implies that the complement of the
problem is in the class NP. Indeed, given two programsP
andQ and setsA, B ⊆ At , if there is a setY such that
Y belongs to exactly one ofModA(P ) andModA(Q), or
Y ∈ ModA(P ) ∩ ModA(Q) andTP (Y ) 6= TQ(Y ), then
Y \ TP (Y ) ⊆ A or Y \ TQ(Y ) ⊆ A. It follows thatY ⊆
At(P ∪Q)∪A. Since for suchY verifying the membership
in ModA(P ) andModA(Q), and testingTP (Y ) 6= TQ(Y )
can be done in polynomial time in the size ofAt(P ∪Q)∪A,
our claim and, consequently, the assertion, follows.

(2) Each of these problems reduces to the problem (1) (ex-
tend an instance of a problem in (2) withA, the set that
defines the problem, to specify an instance of the problem
(1)). Thus, the bound follows.
(3) and (4) Each of these problems is equivalent to the prob-
lem withB = ∅ and so, can be reduced to the problem (1).
(5) Corollary 3.3 implies that the complement of the prob-
lem is in the class NP. Indeed, given two normal programs
P andQ, if there is a setY such that (a)Y is a model of
exactly one ofP andQ, or (b)Y is a model of bothP and
Q, andTP (Y ) 6= TQ(Y ), then there isY ′ ⊆ At(P ∪ Q)
with the same property. Since verifying conditions (a) and
(b) for Y ′ ⊆ At(P ∪Q) can be done in polynomial time in
the size ofP ∪Q, our claim and, consequently, the assertion,
follows. 2

In problems (3) - (5) we do not need any explicit or im-
plicit representation ofB, as the supp-equivalence relative
toHBn(A, B) depends onA only.

We move on to the lower bound (hardness). In several
proofs in this and the next sections, we use the following
concepts and notation. We consider a CNF formulaϕ over
a set of atomsY , or a QBF formula∀Y ∃Xϕ, whereϕ is
a CNF formula over the set of atomsX ∪ Y . For every
such atomz ∈ Y or z ∈ X ∪ Y , respectively, we denote
by z′ a new atom not appearing anywhere inϕ, possibly
also different from some other atoms that might be named
explicitly, and different from other “primed” atoms. Givena
set of “non-primed” atomsZ, we defineZ ′ = {z′ | z ∈ Z}.
Finally, for a clausec = z1 ∨ · · · ∨ zk ∨¬zk+1 ∨ · · · ∨ ¬zm,
we denote bŷc the sequencez′1, . . . , z

′
k, zk+1, . . . , zm.

Theorem 5.2 For every finiteA ⊆ At andA = At , and for
everyB ⊆ At , the problemSUPPBA is coNP-hard.

Proof. Let us consider a CNFϕ and letY be the set of atoms
in ϕ. We define

P (ϕ) = {y ← not y′; y′ ← not y | y ∈ Y } ∪

{← y, y′ | y ∈ Y } ∪

{← ĉ | c is a clause inϕ}

To simplify the notation, we writeP for P (ϕ). One can
check thatϕ has a model if and only ifP has a model.
Moreover, for every modelM of P such thatM ⊆ At(P ),



M is a stablemodel of P . Thus, each such model ofP
is also asupportedmodel ofP and, consequently, satisfies
M = TP (M).

Next, we defineQ to consist of two rules:f and←
f . Clearly, Q has no models. By Theorem 3.2,Q is
supp-equivalent toP relative toHBn(A, B) if and only if
ModA(Q) = ModA(P ) and for everyM ∈ ModA(Q),
TQ(M) = TP (M). SinceModA(Q) = ∅, we have that
Q is supp-equivalent toP relative toHBn(A, B) if and
only if ModA(P ) = ∅. If M ∈ ModA(P ), then there is
M ′ ⊆ At(P ) such thatM ′ ∈ ModA(P ). Since every model
M ′ of P such thatM ′ ⊆ At(P ) satisfiesM ′ = TP (M ′), it
follows thatModA(P ) = ∅ if and only if P has no models.

Thus,ϕ is unsatisfiable if and only ifQ is supp-equivalent
to P relative toHBn(A, B), and the assertion follows. 2

We observe that for the result to hold we do not need to
know B. Putting together Theorems 5.1 and 5.2 we obtain
the following result.

Corollary 5.3 The problems listed in Theorem 5.1 are
coNP-complete.

Proof. The hardness of problems in Theorem 5.1 follows
from Theorem 5.2. Thus, the coNP-completeness follows.
2

Problems we considered so far do not impose restrictions
on input programsP andQ. In particular, they contain in-
stances, in whichModA(P ) 6= ModA(Q), a property ex-
ploited by the proof we presented above. We will now con-
sider the problem to decide whether normal programsP and
Q such thatModA(P ) = ModA(Q) are supp-equivalent
relative toHBn(A, B). It turns out that this additional in-
formation is of no help as the complexity does not go down.

We start with an auxiliary result.

Lemma 5.4 Let A ⊆ At be a fixed finite non-empty set
or A = At . The following problem is coNP-complete.
Given a normal logic programP , decide whether every
M ∈ ModA(P ) such thatM ⊆ At(P ) is a supported model
of P .

Proof. Let us select and fix an element inA, sayg, and let
ϕ be a CNF formula overY . Wlog we may assume thatϕ
does not containg. We define

S(ϕ) = {y ← not y′; y′ ← not y | y ∈ Y } ∪

{← y, y′ | y ∈ Y } ∪

{g ← ĉ | c is a clause inϕ}

In the remainder of the proof, we writeS for S(ϕ).
We note that for everyM ⊆ At(S), if M |= S then

TS(M) = M or TS(M) = M \ {g}. In particular, ifM ⊆
At(S) andM |= S, thenM \ TS(M) ⊆ {g} ⊆ A. Thus,
for M ⊆ At(S), M ∈ ModA(S) if and only if M |= S.

If ϕ is unsatisfiable then, for everyM ⊆ At(S) such that
M |= S, we haveg ∈ M . Consequently, each suchM
is a supported model ofS. It follows that for everyM ∈
ModA(S) such thatM ⊆ At(S), M is a supported model
of S.

If ϕ is satisfiable, every model ofϕ gives rise to a sup-
ported model, sayX , of S, such thatg /∈ X . It is easy to see

thatM = X ∪ {g} is a model ofS but not a supported one.
SinceM ⊆ At(S) andM is a model ofS, M ∈ ModA(S).

Thus, ϕ is unsatisfiable if and only if everyM ∈
ModA(S) such thatM ⊆ At(S) is a supported model of
S. Consequently, the hardness follows.

The membership part is evident. Indeed, the complemen-
tary problem can be decided by the following algorithm:
nondeterministically guessM ⊆ At(S); verify that (1)
M ∈ ModA(S) and that (2)M is not supported model of
S. Clearly both (1) and (2) can be done in polynomial time
(both forA finite and non-empty, and forA = At , where
the conditionM \ TS(M) ⊆ A trivializes). Thus, the com-
plementary problem is in NP and the assertion follows.2

Applying Lemma 5.4 to the caseA = At , we obtain the
following result of some interest in its own right.

Theorem 5.5 The following problem is coNP-complete:
given a finite normal logic programP , decide whether every
modelY of P such thatY ⊆ At(P ) is supported.

However, the primary application of Lemma 5.4 is in de-
termining the complexity of hyperequivalence for programs
P andQ with ModA(P ) = ModA(Q), the problem we al-
ready mentioned above.

Theorem 5.6 LetA be a fixed finite non-empty subset ofAt

or let A = At . For every setB ⊆ At , the following problem
is coNP-complete: given two normal programsP and Q
such thatModA(P ) = ModA(Q), decide whether they are
supp-equivalent relative toHBn(A, B).

Proof. We restrict to the caseB = ∅ (we recall that supp-
equivalence does not depend onB).

The membership part follows from Theorem 5.1. For the
hardness part, we will proceed as follows. Given a normal
logic programP , we will construct a normal logic program
P ′ so that (1)ModA(P ) = ModA(P ′), and (2)P andP ′

are supp-equivalent relative toHBn(A, ∅) if and only if for
everyM ∈ ModA(P ) such thatM ⊆ At(P ), M is a sup-
ported model forP . Since it will be the case thatP ′ can be
constructed in polynomial time in the size ofP andA, the
assertion will follow from Lemma 5.4.

Thus, letP be a normal logic program. Let us define
P ′ = P ∪ {g ← g | g ∈ At(P ) ∩ A}. It is evident thatP ′

can be constructed in polynomial time in the size ofP and
A. We also note that for everyM ⊆ At(P ), TP ′(M) =
TP (M) ∪ (M ∩A).

We will first prove (1), that is,ModA(P ) = ModA(P ′).
Let M ∈ ModA(P ). ThenM |= P (and so,TP (M) ⊆ M )
andM \ TP (M) ⊆ A. One can verify thatTP ′(M) = M ∩
At(P ). Thus,M |= P ′. Moreover, asTP (M) ⊆ TP ′(M),
M \ TP ′(M) ⊆ A. Consequently,M ∈ ModA(P ′). Con-
versely, letM ∈ ModA(P ′). It follows thatM |= P . Next,
let y ∈ M \ TP (M). If y ∈ M \ TP ′(M), theny ∈ A (as
M \ TP ′(M) ⊆ A). Otherwise,y ∈ TP ′(M) \ TP (M).
It follows that y ∈ A ∩ At(P ) and so,y ∈ A in this
case, too. Thus, we obtainM \ TP (M) ⊆ A and, con-
sequently,M ∈ ModA(P ). That concludes the proof of
ModA(P ) = ModA(P ′).

To prove the equivalence (2), let us first assume that for
every M ∈ ModA(P ) such thatM ⊆ At(P ), M is a



supported model forP . We will show thatP andP ′ are
supp-equivalent relative toHBn(A, ∅). To this end, it suf-
fices to show that for everyM ∈ ModA(P ), TP (M) =
TP ′(M) (cf. Theorem 3.2). Thus, letM ∈ ModA(P ).
Then,M ∩ At(P ) ∈ ModA(P ) and, by the assumption,
TP (M ∩At(P )) = M ∩At(P ). SinceTP (M) = TP (M ∩
At(P )), TP (M) = M ∩ At(P ). We also haveTP ′(M) =
TP ′(M∩At(P )) = TP (M∩At(P ))∪[(M∩At(P ))∩A] =
M ∩ At(P ). Thus,TP (M) = TP ′(M) and so,P andP ′

are supp-equivalent relative toHBn(A, ∅).
Conversely, letP andP ′ be supp-equivalent relative to
HBn(A, ∅). Let M ∈ ModA(P ) be such thatM ⊆ At(P ).
We proved earlier that forM ∈ ModA(P ), TP ′(M) = M ∩
At(P ). SinceM ⊆ At(P ), TP ′(M) = M . Thus,M is
a supported model ofP ′ and so (as∅ ∈ HBn(A, ∅) and
P andP ′ are supp-equivalent relative toHBn(A, ∅)), of P ,
too. Thus, for everyM ∈ ModA(P ) such thatM ⊆ At(P ),
M is a supported model ofP , as required to complete the
proof of (2). By our earlier comments, the result follows.2

There seems to be no simple reduction from any problem
considered in Corollary 5.3 to the problem from Theorem
5.6 and so, a direct proof is needed. The requirement that
A 6= ∅ is necessary for the complexity result of Theorem 5.6.
Indeed, by Corollary 3.4, ifA = ∅, programsP andQ with
ModA(P ) = ModA(Q) are necessarily supp-equivalent.

6 Complexity of Suppmin-Equivalence
We will use here the same notational schema as in the pre-
vious section, but replace supp-equivalence with suppmin-
equivalence and writeSUPPMIN instead ofSUPP. For in-
stance, we writeSUPPMINB (for B fixed and not part of the
input) to denote the following problem: given normal pro-
gramsP andQ, andA ⊆ At , decide whetherP andQ are
suppmin-equivalent relative toHBn(A, B).

Deciding suppmin-equivalence relative toHBn(A, B),
whereA = At or B = At , remains in the class coNP
and turns out to be coNP-complete. To prove that, we first
simplify the conditions for(X, Y ) ∈ Mod

B
A if A = At or

B = At .

Lemma 6.1 Let P be a normal logic program andA, B ⊆
At . Then,

1. (X, Y ) ∈ Mod
B
At (P ) if and only if the following condi-

tions hold:
(a) Y |= P

(b) X ⊆ Y

(c) for everyZ ⊂ Y , such thatZ|B = X |B andZ ⊇ X ,
Z 6|= P

(d) if X |B = Y |B, thenY \ TP (Y ) ⊆ X .

2. (X, Y ) ∈ Mod
At

A (P ) if and only if the following condi-
tions hold:

(a) Y ∈ ModA(P )

(b) X ⊆ Y

(c) If X ⊂ Y thenX 6|= P .

Proof. If A = At , the condition (1) for(X, Y ) ∈ Mod
B
A(P )

specializes to (1a) asY ∈ ModAt (P ) if and only if Y |= P .

AssumingB = At has no effect on the condition (1). Thus,
it appears without any change as the condition (2a).

Since A ∪ B = At , the condition (2) for(X, Y ) ∈
Mod

B
A(P ) is trivially true, in both cases. For the same rea-

son, the condition (3) for(X, Y ) ∈ Mod
B
A(P ) specializes

to (1b) or (2b), respectively. The conditions (4) and (5) for
(X, Y ) ∈ Mod

B
A(P ) specialize to the conditions (1c) and

(1d) in caseA = At . If B = At , the condition (4) for
(X, Y ) ∈ Mod

B
A(P ) specializes to (2c). The condition (5)

for (X, Y ) ∈ Mod
B
A(P ) holds true (ifX = Y then, trivially,

Y \ TP (Y ) ⊆ Y ) and can be dropped. 2

Lemma 6.1 plays a key role in establishing the mem-
bership in the class coNP of the relativized suppmin-
equivalence problems for whichA = At or B = At . How-
ever, for the caseA = At we need one more important prop-
erty.

Lemma 6.2 Let P, Q be normal programs andB ⊆ At . If
Mod

B
At (P ) 6= Mod

B
At (Q), then there isY ⊆ At(P ∪Q)∪B

such thatY is a model of exactly one ofP andQ, or there
is a ∈ Y such that(Y \ {a}, Y ) belongs to exactly one of
Mod

B
At (P ) andMod

B
At (Q).

Proof. Let us assume thatP andQ have the same models
(otherwise, there isY ⊆ At(P ∪ Q) that is a model of ex-
actly one ofP andQ, and the assertion follows). Wlog we
can assume that there is(X, Y ) ∈ Mod

B
At (P ) \Mod

B
At (Q).

Moreover, we can assume thatY ⊆ At(P ∪ Q) ∪ B. It
follows that (X, Y ) satisfies the conditions (1a)-(1d) from
Lemma 6.1 for(X, Y ) ∈ Mod

B
At (P ). Moreover, sinceP

andQ have the same models,(X, Y ) already satisfies con-
ditions (1a)–(1c) for(X, Y ) ∈ Mod

B
At (Q). HenceX |B =

Y |B and Y \ TQ(Y ) 6⊆ X have to hold. Thus, there is
a ∈ (Y \ TQ(Y )) \X . We will show that(Y \ {a}, Y ) ∈

Mod
B
At (P ) and(Y \ {a}, Y ) /∈ Mod

B
At (Q).

Since(X, Y ) ∈ Mod
B
At (P ), Y is a model ofP . Next,

obviously,Y \ {a} ⊆ Y . Thus, the conditions (1a) and (1b)
of Lemma 6.1 hold. LetZ ⊂ Y be such thatZ ⊇ Y \ {a}.
ThenZ = Y \ {a}. We haveY |B = X |B, a ∈ Y , and
a /∈ X . Thus,a /∈ B. It follows that(Y \{a})|B = X |B and
X ⊆ Y \ {a}. Since(X, Y ) ∈ Mod

B
At (P ), Y \ {a} 6|= P ,

that is, Z 6|= P . Thus, the condition (1c) of Lemma 6.1
holds.

Since a /∈ B, (Y \ {a})|B = Y |B . Thus, we also
have to verify the condition (1d) of Lemma 6.1. We have
Y \ TP (Y ) ⊆ X (we recall thatY |B = X |B) and so,Y \
TP (Y ) ⊆ Y \ {a}. Hence, the condition (1d) of Lemma 6.1
holds, forP and, consequently,(Y \ {a}, Y ) ∈ Mod

B
At (P ).

On the other hand,a ∈ Y \ TQ(Y ) anda /∈ Y \ {a}. Thus,
the condition (1d) of Lemma 6.1 does not hold forQ and so,
(Y \ {a}, Y ) /∈ Mod

B
At (Q). 2

We are now ready to show the promised coNP-
completeness results.

Theorem 6.3 The following problems are coNP-complete:

1. SUPPMINB
At

, for every finiteB ⊆ At ,

2. SUPPMINAt

A , for every finiteA ⊆ At ,



3. SUPPMINAt , SUPPMINAt , andSUPPMINAt

At
.

Proof. The case ofSUPPMINAt

At
is already clear by Corol-

lary 4.8 and Theorem 5.2.
To establish the other cases, we will show coNP-

membership forSUPPMINAt and SUPPMINAt . From these
two results, the membership results forSUPPMINB

At
and

SUPPMINAt

A (for finite A, B ⊆ At) follow easily.
Likewise, we will show coNP-hardness forSUPPMINB

At

and SUPPMINAt

A (for finite A, B ⊆ At). That im-
plies the corresponding lower bounds forSUPPMINAt and
SUPPMINAt .

We start with coNP-membership forSUPPMINAt . The
following nondeterministic algorithm verifies, given pro-
gramsP , Q andB ⊆ At , thatP andQ are not suppmin-
equivalent relative toHBn(At , B). We guess a pair(a, Y ),
whereY ⊆ At(P ∪ Q) ∪ B, anda ∈ At such that (1)
Y is a model of exactly one ofP and Q; or (2) a ∈ Y
and (Y \ {a}, Y ) belongs to exactly one ofMod

B
At (P )

andMod
B
At (Q); or (3) Y is model of bothP andQ and

TP (Y )|B 6= TQ(Y )|B.
Such a pair exists if and only ifP andQ are not suppmin-

equivalent relative toHBn(At , B). Indeed, let us assume
that such a pair(a, Y ) exists. If (1) holds for(a, Y ), say
Y is a model ofP but notQ, then(Y, Y ) ∈ Mod

B
At (P ) \

Mod
B
At (Q) (easy to verify by means of Lemma 6.1). Thus,

Mod
B
At (P ) 6= Mod

B
At (Q) and, by Theorem 4.6,P andQ

are not suppmin-equivalent relative toHBn(At , B). If (2)
holds for(a, Y ), Mod

B
At (P ) 6= Mod

B
At (Q) again, and we

reason as above. Finally, if neither (1) nor (2) holds, Lemma
6.2 impliesMod

B
At (P ) = Mod

B
At (Q). In this case, (3) holds

for (a, Y ). SinceY |= P , we have(Y, Y ) ∈ Mod
B
At (P ).

Moreover,TP (Y )|B 6= TQ(Y )|B. Thus, again by Theo-
rem 4.6,P and Q are not suppmin-equivalent relative to
HBn(At , B).

Conversely, ifP andQ are not suppmin-equivalent rela-
tive toHBn(At , B), thenMod

B
At (P ) 6= Mod

B
At (Q) or there

is (X, Y ) ∈ Mod
B
At (P ) such thatTP (Y )|B 6= TQ(Y )|B .

The former implies (by Lemma 6.2) that there is(a, Y ),
with Y ⊆ At(P ∪ Q) ∪ B), that satisfies (1) or (2). Thus,
let us assume thatMod

B
At (P ) = Mod

B
At (Q) and that there

is (X, Y ) ∈ Mod
B
At (P ) such thatTP (Y )|B 6= TQ(Y )|B .

Since(X, Y ) ∈ Mod
B
At (Q), too, Y is a model of bothP

and Q and TP (Y )|B 6= TQ(Y )|B. Clearly, Y ′ = Y ∩
(At(P ∪ Q) ∪ B) is a model of bothP andQ, too, and
TP (Y ′)|B 6= TQ(Y ′)|B. Picking anya ∈ At yields a pair
(a, Y ′), with Y ′ ⊆ At(P ∪Q) ∪B, for which (3) holds.

It follows that the algorithm is correct. Moreover, check-
ing whetherY |= P and Y |= Q can clearly be done
in polynomial time in the total size ofP , Q, andB; the
same holds for checkingTP (Y )|B 6= TQ(Y )|B. Finally,
by Lemma 6.1, testing(Y \ {a}, Y ) ∈ Mod

B
At (P ) and

(Y \ {a}, Y ) ∈ Mod
B
At (Q) are polynomial-time (with re-

spect to the size of the input) tasks, too; the only prob-
lematic condition is (1c) from Lemma 6.1. However, we
need to test thatZ 6|= P there for only oneZ such that
Y \ {a} ⊆ Z ⊂ Y , namelyZ = Y \ {a}. Thus, the algo-

rithm runs in polynomial time. It follows that the comple-
ment of our problem is in the class NP and so the assertion
follows.

We continue by showing thatSUPPMINAt is in the class
coNP. By Theorem 4.6,P and Q are suppmin-equivalent
relative to HBn(A,At) if and only if Mod

At

A (P ) =

Mod
At

A (Q) and for every(X, Y ) ∈ Mod
At

A (Y ), TP (Y ) =
TQ(Y ). It follows that to decide thatP and Q are not
suppmin-equivalent relative toHBn(A,At), it suffices to
guess a pair(X, Y ), whereX ⊆ Y ⊆ At(P ∪ Q) ∪
A, and verify that (a)(X, Y ) belongs to exactly one of
Mod

At

A (P ) andMod
At

A (P ), or (b) that(X, Y ) belongs to
bothMod

At

A (P ) andMod
At

A (P ), andTP (Y ) 6= TQ(Y ). In-
deed, if(X, Y ) ∈ Mod

At

A (P )∪Mod
At

A (Q), thenX ⊆ Y ⊆
At(P ∪Q) ∪A (the latter inclusion following from the fact
thatY ∈ ModA(P )∪ModA(Q)). By Lemma 6.1, and since
X ⊆ Y ⊆ At(P ∪Q)∪A, all these tests can be executed in
polynomial time in the total size ofP , Q andA. Thus, the
complementary problem is in NP and so, the membership in
coNP follows.

We now switch over to the hardness results and start this
time withSUPPMINAt

A . In the proof of Theorem 5.6, we have
shown that for every programP , and any finiteA ⊆ At ,
ModA(P ) = ModA(P ′), whereP ′ = P ∪ {g ← g | g ∈
A ∩ At(P )}. Moreover, in the same proof, we have shown
thatP andP ′ are supp-equivalent relative toHBn(A,At) if
and only if for eachY ∈ ModA(P ) with Y ⊆ At(P ), Y is
a supported model ofP . We will now show thatP andP ′

are supp-equivalent relative toHBn(A,At), if and only if
P andP ′ are suppmin-equivalent relative toHBn(A,At).
The only-if direction follows from the fact thatP andP ′

have the same models. Indeed, this property implies that for
everyR ∈ HBn(A,At), P ∪ R andQ ∪ R have the same
supported models and the same models. Consequently, they
have the same supported minimal models.

For the if-direction, we recall that suppmin-equivalence
relative toHBn(A,At) betweenP andP ′ implies (by Theo-
rem 4.6)Mod

At

A (P ) = Mod
At

A (P ′) andTP (Y ) = TP ′(Y ),
for every (X, Y ) ∈ Mod

At

A (P ). In view of Lemma 6.1,
it is easy to see thatModA(P ) = ModA(P ′) follows.
Moreover, by the same lemma, ifY ∈ ModA(P ) then
(Y, Y ) ∈ Mod

At

A (P ). Thus,TP (Y ) = TP ′(Y ), for ev-
ery Y ∈ ModA(P ). By Theorem 3.2,P andP ′ are supp-
equivalent relative toHBn(A,At).

It follows that for everyY ∈ ModA(P ) with Y ⊆ At(P ),
Y is a supported model forP if and only if P andP ′ are
suppmin-equivalent relative toHBn(A,At). Thus, the as-
sertion follows from Lemma 5.4.
To prove the coNP-hardness ofSUPPMINB

At
, we proceed as

follows. Let ϕ be a CNF formula, and letY be the set of
atoms inϕ. We defineP andQ as in the proof of Theorem
5.2. SinceQ has no models,Mod

B
At (Q) = ∅.

Let Y be a model ofP . Clearly,(Y, Y ) satisfies the con-
ditions (1a)-(1d) from Lemma 6.1. Thus,Mod

B
At (P ) 6= ∅.

Conversely, ifMod
B
At (P ) 6= ∅, then there is(X, Y ) ∈

Mod
B
At (P ). By Lemma 6.1(1a),Y is a model ofP .

Thus,P has models if and only ifMod
B
At (P ) 6= ∅. By



Theorem 4.6,P has models if and only ifP andQ are not
suppmin-equivalent relative toHBn(At , B).

In the proof of Theorem 5.2, we already showed thatP
has models if and only ifϕ has models. Thus,ϕ has models
if and only if P andQ are not suppmin-equivalent relative
toHBn(At , B). Consequently, the claim follows. 2

We will now establish the complexity of deciding rela-
tivized suppmin-equivalence whenA andB are finite (fixed
as part of the problem specification, or given as part of
instance specification). We start with an auxiliary result
needed to derive upper bounds for the complexity.

Lemma 6.4 The following problem is in coNP: given a nor-
mal logic programP and setsX, Y, A, B ⊆ At , decide
whether(X, Y ) ∈ Mod

B
A(P ).

Proof. We already established earlier that deciding whether
Y /∈ ModA(P ) (condition (1)) can be done in polynomial
time in the size ofP , Y andA. The same is evident for
decidingX 6⊆ Y |A∪B (condition (3)) andY \ TP (Y ) 6⊆ X ,
in case,X |B = Y |B (condition (5)).

The remaining two conditions defining(X, Y ) ∈
Mod

B
A(P ), that is, (2) and (4), can be checked for viola-

tion as follows. We guessZ ⊂ Y such that eitherZ|A∪B =
Y |A∪B, or jointly Z|B = X |B andZ|A ⊇ X |A. Then, we
check whetherZ |= P . Thus, deciding whether(X, Y ) /∈
Mod

B
A(P ), for given setsX, Y, A, B ⊆ At , is in the class

NP. Consequently, deciding whether(X, Y ) ∈ Mod
B
A(P ),

for given setsX, Y, A, B ⊆ At , is in the class coNP. 2

With this result in hand,ΠP
2 -membership ofSUPPMINcan

be shown by suitably guessing pairs(X, Y ) in Mod
B
A(P )

andMod
B
A(P ), respectively.

Theorem 6.5 The problemSUPPMIN is in ΠP
2 .

Proof. The complementary problem can be decided in non-
deterministic polynomial time with an access to an NP-
oracle. Indeed, we note that if(X, Y ) ∈ Mod

B
A(P ), then

Y ⊆ At(P ) ∪ A. Thus, if there exists(X, Y ) that be-
longs to exactly one ofMod

B
A(P ) and Mod

B
A(Q), then

there is(X ′, Y ′) with that property and such thatY ′ ⊆
At(P ∪ Q) ∪ A. Moreover, if Mod

B
A(P ) = Mod

B
A(Q)

and there is(X, Y ) ∈ Mod
B
A(P ) such thatTP (Y )|B 6=

TQ(Y )|B, then there is(X ′, Y ′) ∈ Mod
B
A(P ) such that

Y ′ ⊆ At(P ∪ Q) ∪ A andTP (Y ′)|B 6= TQ(Y ′)|B. Thus,
to decide the complementary problem, it suffices to guess
setsX, Y ⊆ At(P ∪Q)∪A and check that(X, Y ) is in ex-
actly one ofMod

B
A(P ) and inMod

B
A(Q), or that(X, Y ) is in

bothMod
B
A(P ) andMod

B
A(Q), andTP (Y )|B 6= TQ(Y )|B .

By Lemma 6.4, the tests for the membership inMod
B
A(P )

andMod
B
A(Q) can be accomplished by an NP-oracle and all

other tasks are evidently in the class P. 2

We show the matching lower bound for the more special-
ized problemSUPPMINA

B.

Theorem 6.6 The problemSUPPMINA
B is ΠP

2 -hard, for ev-
ery finiteA, B ⊆ At .

Proof. Let ∀Y ∃Xϕ be a QBF, whereϕ is a CNF formula
over X ∪ Y . We can assume that(A ∪ B) ∩ X = ∅ (if
not, variables inX can be renamed). Next, we can assume
thatA, B ⊆ Y . Indeed,ϕ+ obtained by expandingϕ with
clausesz ∨ ¬z, for eachz ∈ A ∪ B, has the property that
∀Y ∃Xϕ is true if and only if∀Y +∃Xϕ+ is true, where
Y + = Y ∪A ∪B.

We will construct programsP (ϕ) and Q(ϕ) so that
∀Y ∃Xϕ is true if and only ifP (ϕ) andQ(ϕ) are suppmin-
equivalent relative toHBn(A, B). Since it will be possible
to implement the construction to run in polynomial time in
the size ofϕ, and since the problem to decide whether a
given QBF∀Y ∃Xϕ is true isΠP

2 -complete, the assertion
will follow.

We use priming and̂c as discussed above and define the
following programs:

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪

{← y, y′ | y ∈ Y } ∪

{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪

{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause inϕ};

Q(ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪

{← z, z′ | z ∈ X ∪ Y } ∪

{← ĉ | c is a clause inϕ}.

To simplify notation, from now on we writeP for P (ϕ) and
Q for Q(ϕ). We observe thatAt(P ) = At(Q) = W , where
W = X ∪X ′ ∪ Y ∪ Y ′.

One can check that the models ofQ contained inW are
sets

I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, (1)

whereJ ⊆ X , I ⊆ Y andI ∪ J |= ϕ. Each model ofQ is
also a model ofP butP has additional models contained in
W . They are of the form:

I ∪ (Y \ I)′ ∪X ∪X ′, (2)

for eachI ⊆ Y . Clearly, for each modelM of Q such that
M ⊆ W , TQ(M) = M . Similarly, for each modelM of P
such thatM ⊆W , TP (M) = M .

From these comments, it follows that for every modelM
of Q (resp.P ), TQ(M) = M ∩W (resp.TP (M) = M ∩
W ). SinceB ⊆ W , for every modelM of bothP andQ,
TQ(M)|B = M ∩W ∩B = TP (M)|B. Thus,P andQ are
suppmin-equivalent if and only ifMod

B
A(P ) = Mod

B
A(Q)

(indeed, we recall that if(N, M) ∈ Mod
B
A(R) thenM is a

model ofR).
Let us assume that∀Y ∃Xϕ is false. We will first show

that Mod
B
A(P ) 6= Mod

B
A(Q), that is, P and Q are not

suppmin-equivalent relative toHBn(A, B). Since∀Y ∃Xϕ
is false, there exists an assignmentI ⊆ Y to atomsY
such that for everyJ ⊆ X , I ∪ J 6|= ϕ. Let N =
I ∪ (Y \ I)′ ∪X ∪X ′.

We note that(N |A∪B, N) ∈ Mod
B
A(P ). Indeed, sinceN

is a supported model ofP , N ∈ ModA(P ). The require-
ment (3) for(N |A∪B, N) ∈ Mod

B
A(P ) is evident. The re-

quirement (5) holds, sinceN \TP (N) = ∅. By the property
of I, N is a minimal model ofP . Thus, the requirements



(2) and (4) hold, too, and(N |A∪B, N) ∈ Mod
B
A(P ) fol-

lows. However, sinceN is not a model ofQ, (N |A∪B, N) /∈
Mod

B
A(Q). Thus,Mod

B
A(P ) 6= Mod

B
A(Q) andP andQ are

not suppmin-equivalent relative toHBn(A, B), as claimed.
Let us assume now that∀Y ∃Xϕ is true. We will show

thatMod
B
A(P ) = Mod

B
A(Q), that is,P andQ are suppmin-

equivalent relative toHBn(A, B). First, we observe that
Mod

B
A(Q) ⊆ Mod

B
A(P ). Indeed, let(M, N) ∈ Mod

B
A(Q).

It follows that N is a model ofQ and, consequently, of
P . From our earlier comments, it follows thatTQ(N) =
TP (N). SinceN \ TQ(N) ⊆ A, N \ TP (N) ⊆ A.
Thus, N ∈ ModA(P ). Moreover, if M |B = N |B then
N \ TQ(N) ⊆ M and, consequently,N \ TP (N) ⊆ M .
Thus, the requirement (5) for(M, N) ∈ Mod

B
A(P ) holds.

The conditionM ⊆ N |A∪B is evident (it holds as(M, N) ∈
Mod

B
A(Q)). SinceN is a model ofQ, N = N ′ ∪ V ,

whereN ′ is of the form (1) andV ⊆ At \W . Thus, ev-
ery modelZ ⊂ N of P is also a model ofQ. It implies
that the requirements (2) and (4) for(M, N) ∈ Mod

B
A(P )

hold. Hence,(M, N) ∈ Mod
B
A(P ) and, consequently,

Mod
B
A(Q) ⊆ Mod

B
A(P ).

The assumption that∀Y ∃Xϕ is true is needed to prove
the converse inclusion. Let(M, N) ∈ Mod

B
A(P ). If N =

N ′ ∪ V , whereN ′ is of the form (1) andV ⊆ At \W , then
arguing as above, one can show that(M, N) ∈ Mod

B
A(Q).

Therefore, let us assume thatN = N ′ ∪ V , whereN ′ is
of the form (2) andV ⊆ At \ W . More specifically, let
N ′ = I ∪ (Y \ I)′ ∪ X ∪ X ′. By our assumption, there is
J ⊆ X such thatI ∪ J |= ϕ. That is,Z = I ∪ (Y \ I)′ ∪
J ∪ (X \ J)′ is a model ofP . Clearly,Z ⊂ N . Moreover,
sinceA, B ⊆ Y , it follows thatZ|A∪B = N |A∪B. Since
(M, N) ∈ Mod

B
A(P ), the requirement (2) implies thatZ

is not a model ofP , a contradiction. Hence, the latter case
is impossible andMod

B
A(P ) ⊆ Mod

B
A(Q) follows. Con-

sequently,Mod
B
A(P ) = Mod

B
A(Q), that is,P andQ are

suppmin-equivalent relative toHBn(A, B).
We proved that∀Y ∃Xϕ is true if and only ifMod

B
A(P ) =

Mod
B
A(Q). This completes the proof of the assertion. 2

Putting together Theorems 6.5 and 6.6 yields the follow-
ing corollary.

Theorem 6.7 The following problems areΠP
2 -complete:

1. SUPPMIN

2. SUPPMINB, SUPPMINA, SUPPMINB
A , for every finite

A, B ⊆ At .

Similarly as for supp-equivalence, having additional in-
formation that setsMod

B
A(P ) andMod

B
A(Q) coincide does

not make the problem of deciding suppmin-equivalence eas-
ier.

Theorem 6.8 Let A, B ⊆ At be finite and such thatA ∩
B 6= ∅. The following problem isΠP

2 -complete: given nor-
mal programsP , Q such thatMod

B
A(P ) = Mod

B
A(Q), de-

cide whetherP and Q are suppmin-equivalent relative to
HBn(A, B).

Proof. The problem reduces to the one considered in The-
orem 6.5. Thus, it belongs toΠP

2 . To proveΠP
2 -hardness

we proceed as follows. Let∀Y ∃Xϕ be a QBF, whereϕ is a
CNF overX∪Y . We can assume that(A∪B)∩(X∪Y ) = ∅
(as we can always rename variables inϕ). We also choose
and fix an elementg ∈ A ∩B.

We use priming and̂c as before, and select an atomx0 ∈
X . We define the following programsP (ϕ) andQ(ϕ):

P (ϕ) = {z ← not z′; z′ ← not z | z ∈ X ∪ Y } ∪

{← y, y′ | y ∈ Y } ∪

{x← u, u′; x′ ← u, u′ | x, u ∈ X} ∪

{x← ĉ; x′ ← ĉ | x ∈ X, c is a clause inϕ} ∪

{← not g; g ← x0,not x′
0; g ← x′

0,not x0};

Q(ϕ) = P (ϕ) ∪ {g ← x0, x
′
0};

Clearly, the programsP (ϕ) andQ(ϕ) can be constructed
in polynomial time in the size ofϕ. To simplify notation,
from now on we writeP for P (ϕ) andQ for Q(ϕ). We set
W = X ∪X ′ ∪ Y ∪ Y ′ ∪ {g}.

We will first prove thatP andQ form an instance to the
problem in question, that is,Mod

B
A(P ) = Mod

B
A(Q). We

will then show that∀Y ∃Xϕ is true if and only ifP andQ are
suppmin-equivalent relative toHBn(A, B). That will imply
theΠP

2 -hardness of the problem considered in the assertion
and will complete the proof.

Clearly, every model ofP containsg. It follows thatP
andQ have the same models. To describe them, we first
observe that every model ofP (andQ) contained inW is of
one of the following two types:

1. {g} ∪ I ∪ (Y \ I)′ ∪ J ∪ (X \ J)′, for eachI ⊆ Y and
J ⊆ X such thatI ∪ J |= ϕ;

2. {g} ∪ I ∪ (Y \ I)′ ∪X ∪X ′, for eachI ⊆ Y .

Thus, every model ofP (and ofQ) is of the formN ∪ S,
whereN ⊆ W is of type 1 or type 2, above, andS ⊆ At \
W . We refer toN as theW -coreof the modelN ∪ S. We
refer to a model ofP (andQ) as type 1 or type 2, according
to the form of itsW -core.

Next, we observe that for everyN ⊆ At , TP (N) ⊆
TQ(N) andTQ(N) \ TP (N) ⊆ {g}. Let N ∈ ModA(P ).
It follows that N is a model ofP and so, ofQ, too. We
also haveN \ TQ(N) ⊆ N \ TP (N) ⊆ A. It follows
that N ∈ ModA(Q). Conversely, letN ∈ ModA(Q).
Then,N |= Q and so,N |= P , Moreover,N \ TP (N) ⊆
(N \TQ(N))∪{g} ⊆ A∪{g} = A. Thus,N ∈ ModA(P ).
It follows thatModA(P ) = ModA(Q).

Let (M, N) ∈ Mod
B
A(P ). ThenN ∈ ModA(P ) and

so, N ∈ ModA(Q). We also haveM ⊆ N |A∪B. Thus,
the conditions (1) and (3) required for(M, N) ∈ Mod

B
A(Q)

hold. The conditions (2) and (4) for(M, N) ∈ Mod
B
A(Q)

hold as they hold forP , andP andQ have the same models.
Finally, the condition (5) for(M, N) ∈ Mod

B
A(Q) holds,

too, asN \ TQ(N) ⊆ N \ TP (N). Thus,Mod
B
A(P ) ⊆

Mod
B
A(Q).

Conversely, let(M, N) ∈ Mod
B
A(Q). Reasoning as

above, we show that the conditions (1)-(4) for(M, N) ∈



Mod
B
A(P ) hold. To prove the condition (5), let us assume

thatN |B = M |B. SinceN ∈ ModA(Q), N is a model of
Q, and thusg ∈ N . Moreover, sinceg ∈ B, g ∈M as well.
We haveN \TQ(N) ⊆M . Thus,N \TP (N) ⊆M follows
from our previous observations. Consequently, the condi-
tion (5) for (M, N) ∈ Mod

B
A(P ) holds, and the inclusion

Mod
B
A(Q) ⊆ Mod

B
A(P ) follows.

Thus, Mod
B
A(P ) = Mod

B
A(Q) and so,P and Q form

a valid instance to the problem we are considering. Fol-
lowing the proof outline given above, we will now show
that ∀Y ∃Xϕ is true if and only ifP andQ are suppmin-
equivalent relative toHBn(A, B).

Let us first assume that∀Y ∃Xϕ is false. Then, there
is I ⊆ Y such that for everyJ ⊆ X , I ∪ J 6|= ϕ. Let
N = {g} ∪ I ∪ (Y \ I)′ ∪X ∪X ′. We have thatN |= Q,
andTQ(N) = N . Thus,N \ TQ(N) = ∅ ⊆ A and, con-
sequently,N ∈ ModA(Q). Let M = N |A∪B. By the def-
inition, M ⊆ N |A∪B. Thus, the conditions (1) and (3) for
(M, N) ∈ Mod

B
A(Q) hold. Next, by the property ofI, N is

a minimal model ofQ. It follows that(M, N) satisfies the
conditions (2) and (4) for(M, N) ∈ Mod

B
A(Q). Finally, we

haveN \ TQ(N) = ∅ ⊆ M . Thus, the condition (5) for
(M, N) ∈ Mod

B
A(Q) holds and so,(M, N) ∈ Mod

B
A(Q).

We observe thatTP (N) = N \ {g} andTQ(N) = N . Since
g ∈ B andg ∈ N , TP (N)|B 6= TQ(N)|B follows. Hence,
by Theorem 4.6 (we recall that(M, N) ∈ Mod

B
A(Q) and so,

(M, N) ∈ Mod
B
A(p)), P andQ are not suppmin-equivalent

relative toHBn(A, B).
Next, let us assume that∀Y ∃Xϕ is true. Let(M, N) ∈

Mod
B
A(P ). Let us assume thatN is of the type 2. Let{g}∪

I ∪ (Y \ I)′ ∪X ∪X ′, whereI ⊆ Y , be theW -core ofN .
Since∀Y ∃Xϕ is true, there isJ ⊆ X such thatI ∪ J |= ϕ.
We defineK = {g}∪I∪(Y \I)′∪J∪(Y \J)′. Clearly,K |=
P . We haveK ⊂ N andK|A∪B = {g} = N |A∪B (we
recall that(A∪B)∩ (W \ {g} = ∅). Thus, by the condition
(2) for (M, N) ∈ Mod

B
A(P ), K 6|= P , a contradiction.

It follows thatN is of type 1. Consequently,TP (N) =
TQ(N) and so,TP (N)|B = TQ(N)|B . By Theorem 4.6,P
andQ are suppmin-equivalent relative toHBn(A, B). 2

This theorem cannot be extended to a wider class of finite
setsA andB. Let A ∩ B = ∅ andP , Q be two normal
programs such thatMod

B
A(P ) = Mod

B
A(Q). Let (X, Y ) ∈

Mod
B
A(P ) andb ∈ TP (Y )|B. Thenb ∈ Y (asTP (Y ) ⊆ Y )

andb /∈ A (asb ∈ B andA∩B = ∅). SinceY ∈ ModA(Q),
Y \ TQ(Y ) ⊆ A. It follows thatb ∈ TQ(Y ) and, asb ∈
B, b ∈ TQ(Y )|B . Thus,TP (Y )|B ⊆ TQ(Y )|B and, by
symmetry,TP (Y )|B = TQ(Y )|B . Consequently,P andQ
are suppmin-equivalent.

7 Discussion
In this section, we discuss relations between the semantics
of supported models and stable models in the context of hy-
perequivalence. We start with a comparison of the charac-
terizations for the most important cases, strong and uniform
equivalence. We then move on to highlight some interesting
differences in the complexity.

First, let us compare characterizations of the notion of
strong equivalence, that is, hyperequivalence under the
supported-model and stable-model semantics relative to the
class of all programs,HBd(At ,At). To avoid references to
sh(P ) andsh(Q), we limit our discussion to the case when
P andQ are normal.

According to Corollary 3.3, normal programsP andQ
are supp-equivalent in this sense if and only if

1. P andQ have the same models, and for every modelY of
P , TP (Y ) = TQ(Y ).

We note that in this case suppmin-equivalence has the same
characterization (cf. Corollary 4.8).

Turning attention to strong equivalence under the stable-
model semantics, we recall that, as shown in (Turner 2003),
the notion can be characterized in terms of SE-models. A
pair of interpretations(X, Y ) with X ⊆ Y is an SE-model
of a programP if Y |= P andX |= PY . Two programs
are strongly equivalent under the stable-model semantics if
and only if they have the same SE-models. A simple refor-
mulation yields thatP andQ are strongly equivalent in the
stable-model setting if and only if

2. P andQ have the same models, and for every modelY of
P , Mod(P [Y ]) = Mod(Q[Y ]),

whereP [Y ] = PY ∪{← z | z ∈ At \Y }, PY = {hd(r)←
bd

+(r) | r ∈ P, Y |= bd
−(r)} is the reduct ofP with

respect toY , andMod(R) stand for the set of (classical)
models of a programR.

Despite differences between the characterizations (1) and
(2), the basic intuition is quite similar in both settings. First,
one checks whether the candidate interpretationsY , that is,
interpretations that might become a supported/stable model
once a program is suitably extended, are the same for the
two programs under consideration. In each case, these can-
didate interpretationsY are models of a program. Then, one
checks whether any such candidate interpretation has the
same effect on both programs. In the case of the supported-
model semantics, this effect ofY on a programR is mea-
sured byTR(Y ) (and so,TP (Y ) = TQ(Y ) is required),
while in the case of the stable-model semantics, it is given
by Mod(R[Y ]), the set of models of an “extended” reduct
of R with respct toY (and so,Mod(P [Y ]) = Mod(Q[Y ]),
must hold).

Next, we will compare characterizations of uniform
equivalence under supported minimal and stable models (we
recall that, by Theorem 3.2, in case of supported mod-
els, strong and uniform equivalence coincide). Our char-
acterization of suppmin-equivalence uses the definition of
Mod

B
A(P ) as given in Section 4. This definition simplifies

for uniform equivalence (that is, forA = At andB = ∅) as
follows: (X, Y ) ∈ Mod

∅
At (P ) if and only if

1. Y |= P

2. X ⊆ Y

3. for eachZ with X ⊆ Z ⊂ Y , Z 6|= P

4. Y \ TP (Y ) ⊆ X .



By Corollary 4.7, uniform suppmin-equivalence between
programsP and Q holds if and only if Mod

∅
At (P ) =

Mod
∅
At (Q).

To characterize uniform equivalence for the case of sta-
ble models, (Eiter, Fink, & Woltran 2007) introduced UE-
models as special SE-models. A pair(X, Y ) is an UE-model
of P , if

1. Y |= P

2. X ⊆ Y

3. for eachZ with X ⊂ Z ⊂ Y , Z 6|= PY

4. X |= PY .

Hence, in other words, UE-models ofP are all SE-models
of P of the form(Y, Y ) plus SE-models(X, Y ) of P , where
X is maximal among the proper subsets ofY that can appear
with Y in an SE-model. Finite programsP andQ are uni-
formly equivalent with respect to stable models if and only if
the UE-models ofP andQ coincide (Eiter, Fink, & Woltran
2007) (the case of uniform equivalence of infinite programs
has a slightly more elaborate characterization).

We will now compare the two characterizations for finite
programs. Again, we observe that in the suppmin model
case,TP (Y ) plays a major role, while in the stable case,
this role is taken over by the reductPY . However, the re-
maining parts of the characterization show interesting sim-
ilarities. On the one hand, as already discussed above,Y
serves as a candidate to become a supported/stable model
after some program extension. On the other hand, we ob-
serve that both characterizations depend on a very similar
set of countermodels (either of the the program itself, or of
the reductPY ) which are subsets ofY . For infinite pro-
grams, direct comparison of uniform equivalence under the
two semantics gets harder since, as we noted, the UE-model
characterization of uniform equivalence for stable-modelse-
mantics does not hold any more (see (Eiter, Fink, & Woltran
2007) for details on this issue).

We now turn to the complexity results, where some in-
teresting differences can be observed (the complexity re-
sults for the stable model semantics we discuss below are
from (Eiter, Fink, & Woltran 2007; Woltran 2008)): First,
deciding hyperequivalence with respect to supported models
is coNP-complete, no matter how the contextHB(A, B) is
specified, as shown in Section 5. The same complexity class
captures deciding hyperequivalence under stable models,as
long as we restrict to normal programs. However, for dis-
junctive logic programs, deciding hyperequivalence in the
stable-semantics setting is more complex for most instan-
tiations ofHB(A, B) (one exception is the case of strong
equivalence, that is, the caseA = B = At , which remains
coNP-complete). On the other hand, for supported models,
disjunctions do not play a major role, and thus deciding hy-
perequivalence with respect to supported models remains in
coNP even for disjunctive programs.

Changing the semantics to suppmin models has a more
substantial effect, as we have shown in Section 6. Indeed,
the complexity of deciding hyperequivalence with respect to
suppmin models goes up toΠP

2 -completeness (already for
normal programs). A notable exception is the case when at

normal / disjunctive HB(At ,At) HB(At , ∅) HB(A, B)
supp coNP/coNP coNP/coNP coNP/coNP

suppmin coNP/coNP coNP/coNP ΠP
2 /ΠP

2

stable coNP/coNP coNP/ΠP
2 coNP/ΠP

2

Table 1: Complexity of hyperequivalence for different se-
mantics.

least one ofA andB consists of all atoms, for which the
corresponding problems of deciding hyperequivalence re-
main in coNP. Interestingly, this is not necessarily so in the
stable-semantics world. As mentioned above, this holds for
strong equivalence (A = B = At), but uniform equivalence
(A = At , B = ∅) with respect to stable models remainsΠP

2 -
complete for disjunctive programs, while uniform suppmin-
equivalence, as we noted, drops back to coNP.

Table 1 highlights these results in terms of complete-
ness results, comparing the case of normal and disjunctive
programs with respect to the different semantics and dif-
ferent instantiation of the context class, including strong-,
uniform-, and the general case of hyperequivalence.

8 Conclusions
In this paper we extended the concept of hyperequivalence to
two other major semantics of logic programs: the supported-
model semantics and the supported minimal model seman-
tics. We characterized these concepts of hyperequivalence
and derived several complexity results.

Our characterizations were mainly based on the (partial)
one-step provability operatorTP (van Emden & Kowalski
1976) and thus, unlike in the case of stable-model seman-
tics, did not require any references to the reduct. However,
some similarities to the case of the stable-model semantics
appeared for more complex versions of hyperequivalencewe
studied, namely relativized supp- and suppmin-equivalence,
which required additional concepts such as setsModA(P )

andMod
B
A(P ).

As concerns the complexity, the picture is uniform in the
case of hyperequivalence with respect to supported mod-
els — problems that arise naturally turn out to be coNP-
complete. The situation is different for hyperequivalence
with respect to suppmin models. When at least one of the
setsA andB consists of all atoms, the corresponding prob-
lems of deciding hyperequivalence are coNP-complete. As
soon as this is not the case, the complexity goes up and
the decision problems becomeΠP

2 -complete. The results
we presented demonstrate that with problems in which the
departure fromA = At andB = At is major: A andB
are required to be finite (either as a parameter of the prob-
lem, or a part of the input). However, in some cases a much
less drastic change has the same effect on the complexity.
For instance, one can show that for every finiteA, B ⊆ At

such thatA 6= ∅, the following problem isΠP
2 -complete:

given normal programsP andQ, decide whetherP andQ
are suppmin-equivalent relative toHBn(At \ A, B). Thus,
even if just one atom fromAt is forbidden from appearing
in heads of rules in context programs, the complexity jumps



one level up. For a detailed analysis of this behavior we refer
to (Truszczyński & Woltran 2008).

While to the best of our knowledge, this is the first pa-
per concerning hyperequivalence for supported (minimal)
semantics, hyperequivalence between programs with respect
to other semantics have been studied extensively. The con-
cept of uniform equivalence appeared first in the area of
databases in the setting of DATALOG. In that setting queries
are (non-ground) programs. Uniform equivalence of pro-
grams was introduced by (Sagiv 1988), as a decidable ap-
proximation to query equivalence, and thus as a tool for
query optimization. Several other equivalence notions in
that context were studied in (Maher 1988).

In the area of logic programming with the stable-model
semantics, the need for stronger (than ordinary) equivalence
was already recognized in (Brass & Dix 1997; Inoue &
Sakama 1998; Lifschitz, Tang, & Turner 1999), before (Lif-
schitz, Pearce, & Valverde 2001) coined the name of strong
equivalence for “equivalence for substitution.” In particular,
(Brass & Dix 1997; Lifschitz, Tang, & Turner 1999) defined
local rule transformations which retained the semantics of
entire programs and thus provided first explicit results in this
area. Papers following (Lifschitz, Pearce, & Valverde 2001)
dealt with characterizations of strong equivalence (Lin 2002;
Turner 2003; de Jongh & Hendriks 2003), studied other
forms of equivalence (Inoue & Sakama 2004; Eiter, Tompits,
& Woltran 2005; Oikarinen & Janhunen 2006; Oetsch, Tom-
pits, & Woltran 2007; Woltran 2008) or were concerned with
programs transformations (Eiter, Fink, & Woltran 2007;
Eiteret al. 2006; Lin & Chen 2007; Wong 2008).

We mentioned in the introduction that our work may have
implications for other nonmonotonic logics, most notably,
autoepistemic logic of Moore with the semantics of expan-
sions and moderately grounded expansions. We will now
discuss this issue in more detail. We recall that a normal
logic program rule

a← b1, . . . , bm,not c1, . . . ,not cn,

can be interpreted as a modal formula (calledmodal rule)

Kb1 ∧ . . . ∧Kbm ∧ ¬Kc1 ∧ . . . ∧ ¬Kcn ⊃ a.

This interpretation was first proposed by Konolige (Kono-
lige 1988). It is known (Marek & Truszczyński 1993) that
there is a precise correspondence between supported mod-
els (supported minimal models) of a normal programP and
expansions (moderately grounded expansions) of the modal
interpretation ofP (the theory consisting of modal rules cor-
responding to rules inP ).

By a modal programwe mean a theory in the modal lan-
guage that consists of modal rules. LetA, B be two sets
of atoms. We denote byHBm(A, B) the set of all modal
programs consisting of modal rules with the antecedent con-
taining only atoms fromB and the consequent being an
atom fromA. Due to the correspondence discussed above
(and under a natural extension of the one-step provability
operator to the setting of modal programs), the characteriza-
tions of supp-equivalence and suppmin-equivalence of nor-
mal programs relative toHBn(A, B) lift literally to hyper-
equivalence under expansions and moderately grounded ex-

pansions of modal programs relative to modal programs in
HBm(A, B).

While concerning only theories of some restricted syn-
tactic form, these characterizations suggest that the hyper-
equivalence in autoepistemic logic could be treated in full
generality. The fact that most arguments in this paper have a
strong algebraic flavor and thus may only loosely depend
on specific syntactic features of logic programs adds fur-
ther credibility to that contention. In our future work, we
will aim to develop algebraic generalizations of the charac-
terizations presented in this paper (algebraic generalizations
of hyperequivalence under the stable-model semantics were
developed in (Truszczynski 2006)), and we will study hyper-
equivalence in autoepistemic logic without imposing syntac-
tic restrictions on formulas.

Another interesting research direction concerns program
simplification, for which our characterizations serve as a nat-
ural starting point. Moreover, in combination with the afore-
mentioned extensions to autoepistemic logic, such tech-
niques might also help to study new normal-form transla-
tions within that logic.
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