
Ann Math Artif Intell (2009) 55:3–34
DOI 10.1007/s10472-009-9150-9

Labelled splitting

Arnaud Fietzke · Christoph Weidenbach

Published online: 23 July 2009
© Springer Science + Business Media B.V. 2009

Abstract We define a superposition calculus with explicit splitting on the basis of
labelled clauses. For the first time we show a superposition calculus with an explicit
non-chronological backtracking rule sound and complete. The new backtracking rule
advances backtracking with branch condensing known from Spass. An experimental
evaluation of an implementation of the new rule shows that it improves considerably
on the previous Spass splitting implementation. Finally, we discuss the relationship
between labelled first-order splitting and DPLL style splitting with intelligent back-
tracking and clause learning.

Keywords Superposition · Splitting · Labels

Mathematics Subject Classification (2000) 68T15

1 Introduction

Splitting is an inference rule for case analysis. It is well-known from the Davis-
Putnam-Logemann-Loveland (DPLL) [6] decision procedure for propositional logic,
where a propositional clause set N is split into the clause sets N ∪ {A} and N ∪
{¬A} for some propositional variable A occurring positively and negatively in N.
Obviously, N is satisfiable iff one of the two split clause sets N ∪ {A} or N ∪ {¬A}
is satisfiable. Furthermore, both split clause sets are strict subsets of N1 after unit
propagation and subsumption with A and ¬A, respectively. Both clause sets are
also smaller in the sense of the standard superposition ordering for clauses and

1We compare clauses by the subset relation as well.

A. Fietzke (B) · C. Weidenbach
Max-Planck-Institut für Informatik, Campus E1 4, 66123 Saarbrücken, Germany
e-mail: fietzke@mpi-inf.mpg.de

C. Weidenbach
e-mail: weidenbach@mpi-inf.mpg.de

4 A. Fietzke, C. Weidenbach

clause sets [2, 15]. Therefore, from a superposition perspective splitting can be
considered as a simplification rule as well and has in particular shown to be useful
in turning the superposition calculus into a decision procedure for certain first-
order fragments [3, 9, 11]. This is our main motivation to have explicit splitting in
Spass [20–22].

The DPLL decision procedure does not consider the two split clause sets in
parallel by duplicating N, but traverses the tree generated by splitting and backtrack-
ing in a depth-first way. By appropriate implementation mechanisms, backtracking
then becomes quite cheap. As any clause set resulting from splitting is a subset of
subclauses after reduction with the split variable, updates can be made by marking
techniques and there is no need to generate new clauses.2 Nieuwenhuis et al. [14]
presented the DPLL procedure performing depth-first search by an abstract calculus.
The main contribution of this paper is a calculus for first-order superposition with
explicit splitting, generalizing the DPLL procedure to the full first-order case with
equality.

In first-order logic the DPLL splitting style does typically not make sense, because
for a given first-order atom A there exist infinitely many ground instances Aσ of
A and it is not a priori known which instances eventually contribute to a proof or
a model. In case of models having infinite domains, such a style of splitting won’t
terminate for satisfiable clause sets. Furthermore, the split clause sets N ∪ {Aσ } and
N ∪ {¬Aσ } are only strict subsets of N after unit propagation and subsumption
if Aσ already occurs in N. Therefore, in the context of clauses with variables a
different style of splitting is used: given a clause C ∈ N that can be decomposed
into two non-trivial variable disjoint subclauses C1, C2, we split into the clause sets
N ∪ {C1} and N ∪ {C2}. As C1 and C2 both subsume C, the split clause sets are again
strict subsets of N and smaller with respect to the standard superposition ordering
for clause sets. Furthermore, both clauses C1 and C2 contain strictly less different
variables than C. This property is quite useful in making superposition a decision
procedure for certain first-order clause fragments. The superposition calculus is a
decision procedure for a particular clause fragment if the maximal term depth as well
as the number of different variables in clauses is finitely bounded in the course of a
superposition saturation. If this is the case for a fixed finite signature of a given clause
set, then superposition only generates finitely many clauses modulo subsumption, i.e.,
saturation terminates and superposition becomes a decision procedure. As the above
style of splitting reduces the number of different variables in a clause, it is often an
indispensable ingredient of superposition based decision procedures [3, 9, 11].

In the current Spass implementation the rule is further restricted to require
that both C1 and C2 contain at least one positive literal, i.e., we split into clause
sets that are closer to Horn. The first rationale behind this restriction is that for
Horn clause sets decidability results are typically “easier” to establish and more
efficient algorithms exist. For example, satisfiability of propositional Horn clause
sets can be decided in linear time, whereas satisfiability of arbitrary propositional
clause sets is an NP-complete problem. Secondly, as argued above, we always like
to limit the number of different variables in clauses. The superposition inference
rules that potentially generate clauses with a growing number of different variables

2Learning clauses is a separate issue.

Labelled splitting 5

rely on inference steps with positive literals. Therefore, the restriction to non-trivial
of positive literals typically suffices to prevent the generation of clauses with more
different variables.

A further major difference between first-order splitting and propositional split-
ting is that in the first-order case effective theorem proving typically relies on
the generation of new clauses, either via inferences or simplifications. Therefore,
the bookkeeping for backtracking of a depth-first approach to splitting gets more
involved, because marking algorithms on existing clauses are no longer sufficient to
track changes. We need to extend the labels used in the abstract DPLL calculus that
are sequences of decision and propagation literals, to a sequence of split elements,
called the split stack, where any split element stores in particular the potential second
part of the split clause and all clauses that became redundant in the course of splitting
and may have to be reactivated. A further consequence of the generation of new
clauses is that the number of possible splits cannot be finitely bounded for the first
order case. Therefore, any calculus preferring splitting rules over other inference
rules has to take into account a new dimension of fairness, going beyond the fairness
notions developed for superposition without splitting. Our second contribution is
an extended notion of fairness enabling the soundness and completeness results
for labelled splitting to be proven. In particular, to the best of our knowledge, this
represents the first soundness and completeness result for a proof procedure using a
form of non-chronological backtracking outside the areas of constraint solving and
propositional logic.

There are two previously presented “splitting” calculi for first-order logic [7, 17].
They suggest to replace a clause C in some clause set N that can be decomposed into
two variable disjoint components C1, C2 by two clauses q ∨ C1 and ¬q ∨ C2 where
q is a new propositional symbol. If then ¬q is selected in ¬q ∨ C2 and q is made
the smallest atom in the ordering no inference step between q and ¬q is done as
long as C1 or C2 have not been “resolved away”, giving a flavor of explicit splitting.
Obviously, the transformation preserves satisfiability, but does not constitute an
explicit case analysis, nor is the new clause set (N \ {C}) ∪ {q ∨ C1,¬q ∨ C2} a
strict subset of N. Therefore, from the superposition perspective this rule is not a
simplification but an inference that introduces a new propositional variable. Actually,
this technique is much closer to definitional extensions [16, 19] than to splitting.
This was already pointed out by one of the authors [7]. As a consequence this
technique cannot replace the explicit splitting needed for decidability results, because
the introduction of new propositional symbols violates the termination argument.
Related to the introduction of new propositional symbols there are also fairness
and completeness issues that have not been considered by the authors. First, the
introduction of up to infinitely many new propositional symbols potentially violates
the well-foundedness requirement for orderings in the superposition context, hence
leading to completeness issues. This can be resolved, but the price to pay is that
the propositional symbols must not be totally ordered, leading to a prolific search
space or a loss of completeness, if one doesn’t a priori finitely limit the number of
definitional extensions. If the number of definitional extensions is not limited, then
also fairness becomes an issue similar to the way it shows up in our calculus. This
is not discussed in the above mentioned papers but an original contribution of ours.
Definitional extensions are a very useful technique for finding proofs but not for
obtaining decision results or finding models.

6 A. Fietzke, C. Weidenbach

The model evolution calculus [5] also includes an explicit splitting rule. As a
different generalization of DPLL to what is suggested in our contribution, the
calculus splits a clause set N into the clause sets N ∪ {A} and N ∪ {skolem(¬A)}
where A is a first-order atom potentially including variables that are replaced by
fresh Skolem constants in skolem(¬A). The new Skolem constants are not treated
naively but special refinements of the calculus ensure that they can be reused to a
certain extend. The clause set N ∪ {skolem(¬A)} is not a strict subset of N,3 so this
rule is also not a simplification but an inference rule, and it is therefore not obvious
whether the model evolution calculus can be turned into a decision procedure for all
the fragments for which we know superposition with explicit splitting to be a decision
procedure. Eventually, the paper does not take a deep investigation into fairness
issues, but rather suggests an iterative deepening approach, where the number of
splits for any round is finitely bounded.

For the general methodology of labelled clauses there is a huge literature, see [4]
for an overview. In particular, the use of clause labels to model explicit case analysis
was first suggested in [12], which provided the basis for the work presented here. We
refined the abstract labelled splitting rule presented there with explicit backtracking
and redundancy handling.

Our starting point is the splitting approach as it was implemented in Spass
[20, 21]. On the basis of this calculus we develop the labelled splitting calculus that
in particular refines the previously implemented one with an improved backtracking
rule, Right-collapse (Section 2), which allows larger parts of the split tree to be
pruned (see Fig. 2). We show the labelled splitting calculus to be sound and complete
where we introduce a new notion of fairness, taking into account an infinite path in
the split tree. Labelled splitting is implemented in Spass (http://spass-prover.org/)
and improves significantly on the previous implementation (Section 3). In addition
to the above discussion on related work, we compare the calculus in detail to the
DPLL approach with intelligent backtracking and clause learning (Section 3). The
paper ends with a summary of the achieved results and directions for future work
(Section 4). This article is an extended version of [10].

2 Labelled splitting

2.1 Preliminaries

We employ the usual notions and notations of first-order logic and superposition in
a way consistent with [20]. When traversing the split tree, the conclusions of splits
that were used in deriving a clause determine the clause’s scope in the tree, i.e., those
parts of the tree in which the clause may participate in proof search. In order to
capture this information, we identify each case of a splitting application on a given
path through the tree with a unique integer, its split level, and label each clause with a
set of integers, representing all splits that contributed to the derivation of the clause.

Formally, a labelled clause L : C consists of a finite set L ⊆ N and a clause
C = Γ → Δ where Γ and Δ contain the negatively and positively occurring atoms,

3In our usual sense, i.e., after redundancy elimination.

http://spass-prover.org/

Labelled splitting 7

respectively. The empty clause with label L is denoted by L: �. We call the greatest
element in L the split level of the clause. We say that L : C depends on l if l ∈ L. We
extend the usual notions for clause sets to sets of labelled clauses by ignoring the
labels: for example, we will say that a set N of labelled clauses entails some formula
φ (written N |= φ) if and only if the corresponding set of unlabelled clauses entails
φ. In the same way, we also extend clause orderings [20] to labelled clauses.

A labelled clause set is of the form Ψ : N where N is a set of labelled clauses and
Ψ is the split stack. Split stacks are sequences Ψ = 〈ψn, . . . , ψ1〉 of length n ≥ 0 and
correspond to paths in the split tree. The ψi are tuples of the form (li, Bi, Di, ϕi)

called splits, where li ∈ N is the split level, Bi is the set of blocked clauses, Di is
the set of deleted clauses and ϕi ∈ {∅, {L}} with L ⊆ N, is the leaf marker. Splitting
a clause results in a new split being put onto the stack, which can be thought of
as entering the corresponding left branch in the split tree. Once the branch has
been refuted, the split is removed and possibly replaced by a split representing
the right branch of the splitting step, as shown in Fig. 1. We call i the index of
split ψi in Ψ . We define the function levelΨ that for any valid index of Ψ returns
the split level levelΨ (i) = li of the corresponding split ψi. We refer to the inverse
of levelΨ as indexΨ , i.e., indexΨ (li) = i. Label-validity (Proposition 1) ensures that
indexΨ is well-defined. The reason we distinguish split levels from indices is that
the levels of Ψ in general will not form a contiguous sequence (contrary to the
indices). This is because splits are removed from the stack during backtracking,
leaving "holes" in the level sequence. Splits corresponding to left branches will be
assigned odd levels, while splits corresponding to right branches will have even levels.
This is captured by two predicates, left(l) = true iff l mod 2 = 1 and right(l) = true iff
l mod 2 = 0. We call ψ = (l, B, D, ϕ) a left split if left(l), and a right split otherwise.
Furthermore we define the set levels(Ψ) to be the set of all split levels of splits in
Ψ , i.e., levels(Ψ) := {levelΨ (1), . . . , levelΨ (n)}. For any set N of labelled clauses and
set of split levels K ⊆ N we define N

∣
∣

K := {L: Γ → Δ ∈ N | L ⊆ K} and N
∣
∣

K := {L:
Γ → Δ ∈ N | L ∩ K = ∅}.

The leaf marker ϕ records which splits were involved in refuting a branch and
is used during backtracking to get rid of unnecessary splits. In a left split, the leaf
marker will be empty, and the set B will contain clauses to be reinserted when
entering the right branch. In the present framework, B will always consist of just
the second split clause. However using a set allows for additional clauses to be added
to the right branch, for example the negation of the first split clause in case it is
ground. In a right split, ϕ will contain the label of the empty clause with which the
corresponding left branch was refuted. We distinguish ϕ = {∅} from ϕ = ∅ because
the former implies the existence of an empty clause that does not depend on any splits
(the toplevel empty clause), while the latter means no empty clause was derived yet.

1 2

1 1

1 2

2 1

1 2

3 4

3 2, 1

Fig. 1 Split trees and corresponding stacks. ψ1 and ψ2 are left splits, ψ ′
1 is a right split, and

levelΨ1 (1) = 1, levelΨ2 (1) = levelΨ3 (1) = 2 and levelΨ3 (2) = 3

8 A. Fietzke, C. Weidenbach

The set D is used to record reduced clauses that may have to be reinserted when the
split is removed. For better readability, we use the notation ψ[x := v] where x is one
of l, B, D, ϕ to denote a split identical to ψ up to component x, which has value v.
We write ψ[x1 := v1, x2 := v2] instead of ψ[x1 := v1][x2 := v2].

For the definition of the labelled calculus we distinguish inference rules

I Ψ : N
Ψ ′ : N′

L1: Γ1 → Δ1 . . . Ln: Γn → Δn

K: Π → Λ

which produce new clauses, and reduction rules

R Ψ : N
Ψ ′ : N′

L1: Γ1 → Δ1 . . . Ln: Γn → Δn

K1: Π1 → Λ1
...

Kk: Πk → Λk

which replace or remove clauses. The clauses Li: Γi → Δi are called the premises and
the clauses K(i): Π(i) → Λ(i) the conclusions of the respective rule. A rule is applicable
to a labelled clause set Ψ : N if the premises of the rule are contained in N. In the
case of an inference, the resulting labelled clause set is Ψ ′ :(N′ ∪ {K: Π → Λ}). In
the case of a reduction, the resulting labelled clause set is Ψ ′ :(N′ \ {Li: Γi → Δi |
1 ≤ i ≤ n} ∪ {K j: Π j → Λ j | 1 ≤ j ≤ k}). Reduction rules which replace clauses, i.e.,
where k > 0, are often called simplifications. Because simplifications can be viewed
as combinations of inferences and reductions (removing some of the premises, while
adding some new clauses), we will not distinguish simplifications from reductions and
instead refer to all rules of the second form as reductions. Furthermore, we say that a
clause C is redundant in N if it follows from smaller clauses in N, and an inference is
redundant in N, if its conclusion follows logically from clauses in N that are smaller
than its maximal premise.

2.2 Labelled calculus

We present a basic set of inference and reduction rules which together yield a sound
and refutationally complete calculus for first-order logic without equality. All other
rules, i.e., equality inference rules or more advanced reduction rules [20] can be easily
defined accordingly and are contained in our implementation. Since our emphasis
lies on the modelling of the splitting process, we omit these rules here. In fact, any
inference or reduction can be integrated into our framework analogously to the
rules presented here, as long as that rule satisfies the following basic assumptions:
an inference or reduction should only produce logical consequences of its premises,
while a reduction may only remove clauses that are redundant with respect to its
premises. The two exceptions to this requirement are the splitting rule (Definition
1) and the backtracking rule (Definition 12), which have no unlabelled equivalent.
Since these rules not only operate on clauses but also manipulate the stack, their
soundness follows from the fact that they preserve labelled clause set satisfiability
(Definition 13). This is a notion of satisfiability lifted to labelled clause sets to take
the structure of the split stack into account.

Labelled splitting 9

Definition 1 (Splitting) The inference

I Ψ : N
Ψ ′ : N

L: Γ1, Γ2 → Δ1,Δ2

L′: Γ1 → Δ1

where Ψ = 〈ψn, . . . , ψ1〉 (ln = 0 if n = 0), ln+1 = 2
⌈

ln
2

⌉

+ 1, L′ = L ∪ {ln+1}, L′′ =
L ∪ {ln+1 + 1}, Ψ ′ = 〈ψn+1, ψn, . . . , ψ1〉 with ψn+1 = (ln+1, {L′′: Γ2 → Δ2},∅, ∅),
vars(Γ1 → Δ1) ∩ vars(Γ2 → Δ2) = ∅, and Δ1 �= ∅ and Δ2 �= ∅ is called splitting.

Splitting creates a new split representing the left branch Γ1 → Δ1 on the stack.
The remainder is kept in the new split’s blocked clause set to be restored upon
backtracking. The new split level ln+1 is the smallest odd number larger than ln, so
that left(ln+1) and right(ln+1 + 1) hold. Furthermore, note that splitting is an inference
and the parent clause Γ1,Δ1 → Γ2,Δ2 is not removed from the clause set. A concrete
proof strategy may require to apply subsumption deletion to the parent clause
immediately after each splitting step (and after each backtracking step, when the
corresponding right branch is entered), thus turning splitting into a reduction. In the
current Spass implementation, splitting is a reduction in this sense.

In case the first split part L′: Γ1 → Δ1 is ground, the clauses resulting from its
negation can be added to the set of blocked clauses, which will be reinserted when
the second split part is considered. With this modification, the above splitting rule is
as powerful as the DPLL splitting rule concerning proof complexity.

If we generalize the splitting rule such that the clause L: Γ1, Γ2 → Δ1,Δ2 is
a a consequence of N (N |= L: Γ1, Γ2 → Δ1,Δ2) instead of being required to be
contained in N, then DPLL-style splitting is an instance of this generalized rule.
As this condition applies to any tautology, we may split ∅: A → A in the standard
DPLL-like fashion for any ground atom A.

Definition 2 (Resolution) The inference

I Ψ : N
Ψ : N

L1: Γ1 → Δ1, A L2: Γ2, B → Δ2

L1 ∪ L2: (Γ1, Γ2 → Δ1,Δ2)σ

where (i) σ is the most general unifier of A and B, (ii) no literal in Γ1 is selected,
(iii) Aσ is strictly maximal in (Γ1 → Δ1, A)σ , (iv) Bσ is selected or maximal in
(Γ2, B → Δ2)σ and no literal is selected in Γ2 is called resolution.

Definition 3 (Factoring) The inference

I Ψ : N
Ψ : N

L: Γ → Δ, A, B
L: (Γ → Δ, A)σ

where (i) σ is the most general unifier of A and B, (ii) A and B occur positively,
(iii) A is maximal and no literal is selected in Γ is called factoring.

Reduction rules remove clauses that are redundant with respect to their premises.
In the presence of splitting, these reducing clauses may themselves be removed
during a subsequent backtracking step, in which case the reduced clauses may cease
to be redundant and have to be reactivated. Therefore, reduced clauses can not be
thrown away but must be kept on the split stack as long as there is a chance of them

10 A. Fietzke, C. Weidenbach

becoming non-redundant again. The role of the deleted sets D in splits is to store
reduced clauses for later reinsertion. When a clause with label L1 is used to reduce
a clause L2 : C, the reduced clause is stored in the deleted set at the split level of the
reducing clause, that is, in the deleted set of the split at indexΨ (max(L1)). There are
two special cases in which we are allowed to remove L2 : C for good: if L1 = ∅, then
the reducing clause does not depend on any split and thus will never be removed by
backtracking; similarly, if both reducing and reduced clause have the same split level,
i.e., max(L1) = max(L2), then backtracking removes either both clauses, or none of
them. We define a function keep(Ψ, L1, L2 : C) which backs up the reduced clause
L2 : C in Ψ :

Definition 4 Let Ψ : N be a labelled clause set with Ψ = 〈ψn, . . . , ψ1〉, L1 ⊆ levels(Ψ),
and L2 : C a clause in N. Then we define

keep(Ψ, L1, L2 : C) :=
{

Ψ if L1 = ∅ or max(L1) = max(L2)

〈ψn, . . . , ψ
′
i1 , . . . , ψ1〉 otherwise,

where ψ ′
i1 = ψi1 [D := Di1 ∪ {L2 : C}] with i1 = indexΨ (max(L1)).

Definition 5 (Subsumption deletion) The reduction

R Ψ : N
Ψ ′ : N

L1: Γ1 → Δ1 L2: Γ2 → Δ2

L1: Γ1 → Δ1

where Γ2 → Δ2 is subsumed by Γ1 → Δ1, and Ψ ′ = keep(Ψ, L1, L2: Γ2 → Δ2) is
called subsumption deletion.

The following rules for matching replacement resolution illustrate how simplifica-
tions can be viewed as combinations of inferences and reductions.

Definition 6 (Matching replacement resolution) The reductions

R Ψ : N
Ψ ′

L : N
L1: Γ1 → Δ1, A1 L2: Γ2, A2 → Δ2

L1: Γ1 → Δ1, A1

L1 ∪ L2: Γ2 → Δ2

and

R Ψ : N
Ψ ′

R : N
L1: Γ1, A1 → Δ1 L2: Γ2 → Δ2, A2

L1: Γ1, A1 → Δ1

L1 ∪ L2: Γ2 → Δ2

where A1σ = A2, Γ1σ ⊆ Γ2 and Δ1σ ⊆ Δ2 for some matcher σ , Ψ ′
L = keep(Ψ, L1,

L2: Γ2, A2 → Δ2) and Ψ ′
R = keep(Ψ, L1, L2: Γ2 → Δ2, A2) are called matching re-

placement resolution.

Matching replacement resolution is a restricted variant of replacement resolution,
itself a restricted form of resolution where the conclusion must subsume one of its
parent clauses.

Labelled splitting 11

In general, any rule based on the standard notion of superposition redundancy
can be lifted in this way. For the binary case this amounts to the following situation:
if L1: Γ1 → Δ1 together with L2: Γ2 → Δ2 logically imply Γ ′

2 → Δ′
2 and Γ ′

2 → Δ′
2 is

smaller than Γ2 → Δ2, then we replace L2: Γ2 → Δ2 by L1 ∪ L2: Γ ′
2 → Δ′

2 but take
care of L2: Γ2 → Δ2 according to the keep function for the split stack.

2.2.1 Backtracking

We now formalize backtracking. In particular, we focus our attention on the deletion
of splits from the split stack to ensure that all the bookkeeping is done correctly.
When removing a split ψk from the stack, we have to take care to undo all reductions
that involved a clause depending on (the level of) ψk. In particular, if a clause C
depending on ψk was used to reduce some other clause D, then D must be reinserted,
from the deleted set at C’s level, back into the current clause set. The reason is that
C will be removed, and D may then no longer be redundant. Although C depends
on ψk, C may also depend on other splits and thus have a split level greater than
lk. Furthermore, C itself, after having reduced D, may have been reduced by some
clause C′, hence C will not necessarily be in the current clause set, but in the deleted
set at the level of C′. Therefore, we have to look both into the current clause set
as well as into all deleted sets on the stack, gather all clauses depending on ψk,
determine their split levels, and reinsert the deleted clauses from those levels.

Let Ψ : N be an arbitrary labelled clause set with Ψ of length n. For 1 ≤ k ≤ n let
R(Ψ : N, k) be the set

⎧

⎪⎨

⎪⎩

indexΨ (max(L))

∣
∣
∣
∣
∣
∣
∣

L : C ∈ N ∪
n

⋃

i=1
i �=k

Di ∧ levelΨ (k) ∈ L

⎫

⎪⎬

⎪⎭

For every j ∈ R(Ψ : N, k), there is a clause with level levelΨ (j), either in N or some
deleted set of Ψ , that also depends on ψk.

Definition 7 (Split deletion) For any labelled clause set Ψ : N with Ψ =
〈ψn, . . . , ψ1〉, and for 1 ≤ k ≤ n, we define delete(Ψ : N, k) := Ψ ′ : N′ with

Ψ ′ = 〈ψ ′
n, . . . , ψ

′
k+1, ψ

′
k−1, . . . , ψ

′
1〉

and

N′ =
⎛

⎝N ∪ Dk ∪
⋃

j∈R(Ψ:N, k)

Dj

⎞

⎠

∣
∣
∣
∣
∣
∣{levelΨ (k)}

where

ψ ′
j =

{

ψ j[D := ∅] if j ∈ R(Ψ : N, k)

ψ j
[

D := {L: Γ → Δ ∈ Dj | levelΨ (k) �∈ L}] otherwise,

which removes split ψk, all clauses depending on ψk, and reinserts all clauses reduced
by a clause depending on ψk.

The set
⋃

j∈R(Ψ:N, k) Dj contains all clauses that may have been reduced by a clause
depending on ψk (except those in Dk, which are reinserted anyway). Reinserting

12 A. Fietzke, C. Weidenbach

all those clauses is an over-approximation, since not every clause in every Dj was
necessarily reduced by a clause depending on ψk. In fact, it may well be that in some
Dj, no clause was reduced by a clause depending on ψk. If we wanted to reinsert only
clauses reduced by clauses depending on ψk, we would have to record which clause
was used in each reduction step, not only the reducing clause’s split level. It is not
clear whether that additional effort would pay off in practice.

We now define a reduction4 relation → on labelled clause sets to capture the
structural transformations of the stack that take place during backtracking. Let Ψ : N
be a labelled clause set with Ψ is of length n. We denote by maxr(Ψ) := max({1 ≤ i ≤
n | right(levelΨ (i))} ∪ {0}) the last right split in Ψ . The reduction relation is defined by
the following four rules, where write lk for levelΨ (k).

Definition 8 (Backjump) If n > 0, L: � ∈ N and max(L) < ln, then

Ψ : N → delete(Ψ : N, n).

The Backjump rule removes the toplevel split if it did not contribute to the empty
clause L: �. Applying Backjump exhaustively yields a split stack that is either empty
(if L = ∅) or has a toplevel split with a split level l ∈ L.

Definition 9 (Branch-condense) If n > 0, L: � ∈ N, max(L) = ln, left(ln) and kmax :=
max {k | maxr(Ψ) < k ≤ n and lk �∈ L} exists, then

Ψ : N → delete(Ψ : N, kmax).

The rule Branch-condense removes an inner (i.e., non-toplevel) split if it did not
contribute to the empty clause. However, only splits up to the last right split are
considered. Dropping this restriction results in an unsound procedure, since the splits
used to close a left branch (represented by the leaf marker) must be taken into
consideration when analyzing the dependencies of the corresponding right branch.
This analysis is performed by the following rule.

Definition 10 (Right-collapse) If n > 0, L2: � ∈ N, max(L2) = ln and right(ln), and
ϕn = {L1}, then

Ψ : N → Ψ ′ :(N′ ∪ {L: �}),
where Ψ ′ : N′ = delete(Ψ : N, n) and L = L1 ∪ L2 \ {ln − 1, ln}.

The Right-collapse rule analyzes the dependencies involved in refuting left and
right branches and computes a newly labelled empty clause by removing comple-
mentary split levels. The rule improves upon previous backtracking mechanisms by
allowing consecutive sequences of Backjump steps (interleaved by applications of
Right-collapse) to take place within a single Backtracking step, thus possibly pruning
larger parts of the split tree.

4Not to be confused with reduction rules for clause sets. See [1] for a discussion of abstract reduction
systems.

Labelled splitting 13

Definition 11 (Enter-right) If n > 0, L: � ∈ N, max(L) = ln, left(ln) and lk ∈ L for
all k with maxr(Ψ) < k ≤ n, then Ψ ′′ : N′′ := delete(Ψ : N, n) and

Ψ : N → Ψ ′ : N′,

where Ψ ′ = 〈(ln + 1,∅,∅, {L}), ψ ′′
n−1, . . . , ψ

′′
1 〉 and N′ = N′′ ∪ Bn.

Finally, Enter-right replaces a toplevel left split by a right split representing the
second case of the corresponding splitting step.

At most one rule is applicable to any given labelled clause set containing one
empty clause, since the preconditions are mutually exclusive. Furthermore, the
length of the split stack together with the number of empty clauses in a labelled clause
set induce a well-founded partial ordering on labelled clause sets, with respect to
which each rule is decreasing. Hence any sequence Ψ : N → Ψ ′ : N′ → . . . terminates
and each labelled clause set Ψ : N has a unique normal form with respect to →, which
we write Ψ : N↓ . We are now ready to give the definition of the backtracking rule:

Definition 12 (Backtracking) The reduction

R Ψ : N
(Ψ : N′)↓

L: �

where N′ = {L′ : C ∈ N | C �= �} ∪ {L: �} is called backtracking.

Since we have not placed any restrictions on when to apply backtracking, there may
be more than one empty clause in Ψ : N. Choosing one and removing all others before
applying stack reductions ensures that the result of backtracking is uniquely defined.
In a practical system, one would typically choose the most general empty clause for
backtracking, i.e., the one whose label represents a minimal scope in the split tree.
The following example shows the stack reduction rules in action.

Example 1 Consider the clause set

{→P(a), Q(b); P(x)→P(f (x)), R(c); P(f (f (a))) →;
→Q(x), S(y); Q(x), P(x)→;
→R(a), R(b); S(x), P(x)→ }

where we omit empty labels. We perform the following operations:

– clause → P(a), Q(b) is split,
– resolution is applied to P(a) and P(x) → P(f (x)), R(c),
– the resulting clause {1}:→ P(f (a)), R(c) is split,
– clause → R(a), R(b) is split,
– resolution is applied to {1, 3} : P(f (a)) and P(x) → P(f (x)), R(c), resulting in

{1, 3}:→ P(f (f (a))), R(c),
– which is again split,
– finally the empty clause {1, 3, 7}: � is derived by resolving {1, 3, 7} : P(f (f (a)))

and P(f (f (a))) →.

14 A. Fietzke, C. Weidenbach

The resulting split tree is shown in Fig. 2 (first tree). The corresponding split stack is

〈 (7, {{8} : R(c)},∅, ∅), (5, {{6} : R(b)},∅, ∅),

(3, {{4} : R(c)},∅, ∅), (1, {{2} : Q(b)},∅,∅) 〉.

We now apply backtracking.

– The third split did not contribute to the contradiction, so it is removed by Branch-
condense in step 1,

– followed by Enter-right, which produces (8,∅, ∅, {{1, 3, 7}}) as toplevel split.
– The clause → Q(x), S(y) is then split, resolution is applied to {1} : P(a)

and Q(x), P(x) → to derive {1}: Q(x) →, which is resolved with {9} : Q(x)

to yield {1, 9}: �. Enter-right is applied (step 3), producing toplevel split
(10,∅,∅, {{1, 9}}), and the empty clause {1, 10}: � is derived using clauses {1, 10} :
S(y) and S(x), P(x) → and {1} : P(a).

– In step 4, the clause labels {1, 9} and {1, 10} are collapsed into {1}.
– Finally, two Backjump steps followed by Enter-right yield the last tree, which

corresponds to the split stack 〈(2,∅,∅, {{1}})〉.
Observe how the empty clause generated in step 4 allows us to skip branch 4 and
jump directly to branch 2, which would not be possible without the Right-collapse
rule.

P(a) 1 2 Q (b)

P(f (a)) 3 4 R (c)

R (a) 5 6 R (b)

P(f (f (a))) 7 8 R (c)

{1, 3, 7}:

1

Branch-
condense

1 2

3 4

7 8

{1, 3, 7}:

2

Enter-
right

1 2

3 4

7 8

1 2

3 4

7 8

Q (x) 9 10 S(y)

{1, 9}:

3

Enter-
right

1 2

3 4

7 8

9 10

{1, 10}:

4

Right-
collapse

1 2

3 4

7 8

{1}:

5

Backjump

1 2

3 4

{1}:

6

Backjump

1 2

{1}:

7

Enter-
right

1 2

Fig. 2 Split tree development from Example 2.13

Labelled splitting 15

2.3 Correctness

In the following, we introduce the concept of satisfiability of labelled clause sets, and
prove soundness of the calculus. In Section 2.3.5, we present a notion of fairness that
takes splitting into account, and we prove refutational completeness of the calculus
with respect to the fairness property.

A derivation in the labelled calculus is a sequence of labelled clause sets

D = Ψ0 : N0 � Ψ1 : N1 � Ψ2 : N2 � . . .

such that Ψ0 = 〈〉, N0 is the initial labelled clause set and for each i ≥ 1, the labelled
clause set Ψi : Ni is the result of applying a rule of the calculus to Ψi−1 : Ni−1. We call
the step Ψi−1 : Ni−1 � Ψi : Ni the ith step of D. We write Ψ : N �∗ Ψ ′ : N′ to indicate
that Ψ ′ : N′ is obtained from Ψ : N by zero or more steps. We use superscripts to make
explicit that a split belongs to a particular split stack in a derivation: for example, we
write ψ i

j for the split of Ψi with index j, and Di
j for the deleted set of ψ i

j. Furthermore,
we write Di for

⋃n
j=1 Di

j, where n is the length of Ψi.
When a split ψ j is created by splitting a clause Γ1, Γ2 → Δ1,Δ2 into components

Γ1 → Δ1 and Γ2 → Δ2, its level l j is an odd number and it is easy to show that it
is different from all other split levels in the stack. During backtracking, ψ j is either
removed (by Backjump or Branch-condense), or replaced by a split ψ ′

j with level
l j + 1 (by Enter-right). Thus for any split stack Ψ containing ψ j, the levels l j and
l j + 1 uniquely correspond to clauses Γ1 → Δ1 and Γ2 → Δ2, respectively. We
capture this correspondence in the function clauseΨ :

clauseΨ (l j) = Γ1 → Δ1

clauseΨ (l j + 1) = Γ2 → Δ2

In general, clauseΨ (l) returns the first or second component associated with the split
at indexΨ (l), depending on whether left(l) or right(l) holds. Clearly, for any Ψi : Ni

occurring in a derivation, and where step i + 1 is not a backtracking step applying
Backjump or Branch-condense to the split at indexΨi(l), it holds that clauseΨi(l) =
clauseΨi+1(l). We use clausesΨ (L) as shorthand for {clauseΨ (l) | l ∈ L}.

2.3.1 Satisfiability of labelled clause sets

In order to prove soundness and completeness results for our labelled calculus, we
need to extend the notion of satisfiability from clause sets to labelled clause sets.
Since we are exploring a tree whose branches represent alternatives of successive
case distinctions, we associate a clause set with each unexplored branch on the stack.
Formally, let Ψi : Ni be a labelled clause set occurring in a derivation where Ψi is of
length n. For each 1 ≤ k ≤ n with left(levelΨi(k)), we define

Nk
i := (

Ni ∪ Di)
∣
∣

Lk
∪ Bk

where Lk = {levelΨi(1), . . . , levelΨi(k − 1)}. We call Ni the active clause set of Ψi : Ni,
and the Nk

i the inactive clause sets of Ψi : Ni. We denote by Ni the set of all inactive
sets of Ψi : Ni.

Definition 13 (Satisfiability of labelled clause sets) We say that Ψi : Ni is satisfiable, if
and only if Ni is satisfiable, or some Nk

i ∈ Ni is satisfiable.

16 A. Fietzke, C. Weidenbach

In the following, we show the labelled calculus to be sound, that is, we show that the
rules of the labelled calculus preserve satisfiability of labelled clause sets.

2.3.2 Label-validity

The label-validity property says that clause labels and leaf markers in a labelled
clause set only refer to existing splits. The property implies that indexΨ (l) is well-
defined for any l ∈ L whenever L is a clause label or {L} is a leaf marker in Ψ .

Definition 14 (Label-validity) Let Ψi : Ni be a labelled clause set.

1. We call the active set Ni label-valid, if L ⊆ levels(Ψi) for every L : C ∈ Ni,
2. we call some inactive set Nk

i ∈ Ni label-valid, if L ⊆ {levelΨi(1), . . . , levelΨi(k)} for
every L : C ∈ Nk

i ,
3. we call a leaf-marker ϕ j = {L} label-valid, if L ⊆ {levelΨi(1), . . . , levelΨi(j −

1), levelΨi(j) − 1}.
We call the labelled clause set Ψi : Ni label-valid, if its active set, all its inactive sets
and all its leaf markers are label-valid.

The following Lemma states that clause labels are correctly inherited throughout
derivations:

Lemma 1 (Label monotonicity) Let D be a derivation, Ψi : Ni an arbitrary labelled
clause set in D, and l ∈ levels(Ψi), and let k be maximal such that k ≤ i and the splitting
rule was applied at step k of D with l as the split level of the conclusion. Furthermore,
let L be the label of the premise at step k. Then for any L′ : C ∈ Ni ∪ Di with l ∈ L′,
we have L ⊆ L′.

Proof It is easy to see that the property is maintained by all stack reduction rules,
since no new clauses are added, except for rule Right-collapse, in which case the
statement easily follows from the definition of the new empty clause’s label. Now
consider the calculus rules. The only interesting cases are inferences, but again, it
is easy to see that the property is maintained by the definition of the label of the
conclusion. ��

Lemma 2 (Split deletion and label-validity) Let Ψ : N be an arbitrary labelled clause
set, let m ∈ {1, . . . , n} be arbitrary and assume that for all j > m, the parent clause of
split j does not depend on lm, and that ϕ j = ∅. Then delete(Ψ : N, m) is label-valid if
Ψ : N is label-valid.

Proof Let Ψ ′ : N′ := delete(Ψ : N, m).

1. Label-validity of N′ is trivial.
2. Let k ∈ {1, . . . , n − 1} \ {m} be arbitrary. Splitting is the only rule extending the

blocked set B′
k, and by definition of the splitting rule, all clauses in B′

k have
the label L ∪ {lk + 1}, where L is the label of the parent clause of split k.
Hence by assumption, no clause in B′

k depends on lm. Therefore N′k = (N′ ∪
⋃n

j=1 D′
j)
∣
∣
levels(Ψ ′) ∪ B′

k is label-valid.

Labelled splitting 17

3. Let k ∈ {1, . . . , n − 1} \ {m} again be arbitrary. If k < m, then ϕ′
k is label-valid by

assumption. If k ≥ m, then ϕ′
k = ∅ by assumption, and hence ϕ′ is trivially label-

valid. ��

Lemma 3 (Stack reductions maintain label-validity) Let Ψi : Ni be an arbitrary la-
belled clause set in a derivation, and assume that Ψi : Ni → Ψ ′

i : N′
i . Then Ψ ′

i : N′
i is label-

valid if Ψi : Ni is label-valid.

Proof Assume Ψi : Ni is label-valid. The cases Backjump, Branch-condense and
Enter-right follow directly by Lemma 2. Note that for the Branch-condense case,
the assumptions of Lemma 2 are fulfilled: since lkmax = levelΨi(kmax) is the greatest
left level that the empty clause doesn’t depend on, it follows by Lemma 1 that
the parent clauses of all splits with indices greater than kmax don’t depend on lkmax

either. Furthermore we have ϕ j = ∅, since left(l j) holds for all j > kmax, (the only
rule modifying leaf markers, Enter-right, only produces right splits). For the Right-
collapse case, note that L ⊆ levels(Ψ ′) for the new empty clause L: �, since both L1

and L2 are subsets of levels(Ψ). ��

We now show that label-validity is an invariant of any derivation.

Proposition 1 (Label-validity in derivations) Any labelled clause set in any derivation
is label-valid.

Proof Let Ψ0 : N0 � Ψ1 : N1 � . . . be an arbitrary derivation. We show that any
Ψi : Ni is label-valid by induction over the derivation. Clearly, Ψ0 : N0 is label-valid,
since Ψ0 is empty. For the inductive case, we assume Ψi−1 : Ni−1 is label-valid and
distinguish which calculus rule was applied to obtain Ψi : Ni. For backtracking,
the result follows from Lemma 3. In the case of splitting, we know by induction
hypothesis that L ⊆ levels(Ψi−1), hence also L′ ⊆ levels(Ψi). Label-validity of the Nk

i
and the leaf markers is obvious. For inferences, note that the union of two valid labels
is again valid. The case for reductions is trivial. ��

2.3.3 Path-validity

We now define a property of labelled clause sets, path-validity, which states that every
clause in a labelled clause set follows logically from the initial clause set and the split
components described by its label, and that the initial clause set together with the
split components described by a leaf marker is unsatisfiable.

Definition 15 (Path-validity) Let Ψi : Ni be a labelled clause set in a derivation. We
call Ψi : Ni path-valid, if

1. N0 ∪ clausesΨi(L) |= C for every L : C in N or some deleted set of Ψi, and
2. N0 ∪ clausesΨi(L) |= ⊥ for every leaf marker {L} in Ψi.

Lemma 4 (Stack reductions maintain path-validity) Let Ψi : Ni be an arbitrary la-
belled clause set in a derivation, and assume that Ψi : Ni → Ψ ′

i : N′
i . Then Ψ ′

i : N′
i is path-

valid if all Ψ j : N j, j ≤ i are path-valid.

18 A. Fietzke, C. Weidenbach

Proof Assume all Ψ j : N j are path-valid, for j ≤ i. We distinguish which rule was
applied to obtain Ψ ′

i : N′
i . The cases Backjump and Branch-condense follow imme-

diately by assumption, since (N′
i ∪ ⋃n−1

j=1 D′
j) ⊆ (Ni ∪ ⋃n

j=1 Dj), and leaf markers are
not extended.

Right-collapse: We show that path-validity is maintained by the addition of the
new empty clause L: �, that is, N0 ∪ clausesΨ ′

i
(L1 ∪ L2 \ {ln − 1, ln}) |= ⊥. Assume

the kth step of the derivation was the splitting step that produced split n and let L′
be the label of the parent clause. Let ln denote levelΨi(n). Note that right(ln) holds,
the corresponding left level is ln − 1. By path-validity of Ψk−1 : Nk−1, and because
clausesΨi(L′) = clausesΨk−1(L′), it holds that

N0 ∪ clausesΨi

(

L′) |= clauseΨi

(

ln − 1
) ∨ clauseΨi

(

ln
)

.

By path-validity of Ψi : Ni, we have

N0 ∪ clausesΨi

(

L1
) |= ⊥ and N0 ∪ clausesΨi

(

L2
) |= ⊥.

Or, equivalently

N0 ∪ clausesΨi

(

L1 \ {ln − 1}) |= ¬ clauseΨ

(

ln − 1
)

and

N0 ∪ clausesΨi

(

L2 \ {ln}
) |= ¬ clauseΨ

(

ln
)

.

By label monotonicity, L′ ⊆ L1 and L′ ⊆ L2, therefore

N0 ∪ clausesΨi

(

L1 ∪ L2 \ {ln − 1, ln}
) |= clauseΨi

(

ln − 1
) ∨ clauseΨi

(

ln
)

∧¬ clauseΨ

(

ln − 1
)

∧¬ clauseΨ

(

ln
)

and thus N0 ∪ clausesΨi(L1 ∪ L2 \ {ln − 1, ln}) |= ⊥.

Enter-right: By assumption, N0 ∪ clausesΨi(L) |= ⊥ for the empty clause L: �,
hence the new leaf marker {L} in Ψ ′

i is also path-valid. ��

Proposition 2 (Path-validity in derivations) Let D = Ψ0 : N0 � Ψ1 : N1 � . . . be an
arbitrary derivation. Then any Ψi : Ni in D is path-valid.

Proof By induction over D. Clearly, Ψ0 : N0 is path-valid. Assume all Ψ j : N j, j < i are
path-valid and distinguish which rule was applied to obtain Ψi : Ni. The splitting case
is trivial, and the backtracking case follows from Lemma 4. For inferences, assume
the premises are L1 : C1, . . . , Lm : Cm and the conclusion is L : C. By assumption,
N0 ∪ clausesΨi(L1 ∪ · · · ∪ Lm) |= C1 ∧ · · · ∧ Cm. Since the conclusion follows logically
from the premises, N0 ∪ clausesΨi(L) |= C. For reductions, the statement follows
from the fact that Ni ∪ Di ⊆ Ni−1 ∪ Di−1. ��

Corollary 1 (Restriction expansion) Let Ψi : Ni be an arbitrary labelled clause set
in a derivation, M ⊆ levels(Ψi) and l ∈ levels(Ψi). If (Ni ∪ Di)

∣
∣

M ∪ {clauseΨi(l)} is
satisfiable, then (Ni ∪ Di)

∣
∣

M∪{l} is satisfiable.

Proof By Proposition 2, any clause L : C with l ∈ L in (Ni ∪ Di)
∣
∣

M∪{l} follows logi-

cally from (Ni ∪ Di)
∣
∣

M ∪ {clauseΨi(l)}. ��

Labelled splitting 19

Proposition 3 (Redundancy of deleted clauses) Let D be a derivation, Ψk : Nk an
arbitrary labelled clause set in D, and let L : C be a clause contained in some deleted
set of Ψk. Furthermore, let k′ be maximal such that L : C was reduced at step k′ of D.
Then for all k ≤ i ≤ k′, L : C is redundant with respect to Ni.

Proof Assume the clause L : C is contained in the deleted set of the split with index
j in Ψk, i.e., L : C ∈ Dk

j . Hence the clause reducing L : C in step k′, call it L1 : C1,
has split level l j := max(L1) = levelΨk′ (j). By maximality of k′, we know that for all
k ≤ i ≤ k′, L : C ∈ Di

ji with ji = indexΨi(l j). Therefore the split with level l j is never
deleted in steps k′ + 1 to k (otherwise L : C would be reinserted). Hence for all
k ≤ i ≤ k′, either L1 : D1 ∈ Ni, or some other clause L2 : D2 reduced L1 : D1. In
general, there may be several Lm : Dm (m ≥ 2) such that each Lm : Dm subsumes
Lm−1 : Dm−1. But any such Lm : Dm also subsumes L : C, hence L : C is redundant
in Ni. ��

Corollary 2 (Active clause sets and deleted clauses) Let Ψi : Ni be an arbitrary
labelled clause set in a derivation, where Ψi has length n. Then Ni is satisfiable if and
only if Ni ∪ Di is satisfiable.

Proof Follows directly from Proposition 3. ��

Lemma 5 (Split deletion and inactive clause sets) Let Ψ : N be an arbitrary labelled
clause set with Ψ of length n, and let m ∈ {1, . . . , n} be such that for all j > m, the
parent clause of split j does not depend on levelΨ (m). Then for Ψ ′ : N′ = delete(Ψ :
N, m) and for all 1 ≤ k < n,

N′k =
{

Nk if k < m

Nk+1
∣
∣{levelΨ (m)} if k ≥ m.

Proof We write li for levelΨ (i) and l′i for levelΨ ′(i). Assume k < m, and let L :=
{l′1, . . . , l′k−1} = {l1, . . . , lk−1}. Then

N′k =
⎛

⎝N′ ∪
n−1
⋃

j=1

D′
j

⎞

⎠

∣
∣
∣
∣
∣
∣

L

∪ B′
k

=
⎛

⎝

⎛

⎝N ∪ Dm ∪
⋃

l j∈R

Dj

⎞

⎠

∣
∣
∣
∣
∣
∣
levels(Ψ ′)

∪
n−1
⋃

j=1

D′
j

⎞

⎠

∣
∣
∣
∣
∣
∣

L

∪ Bk (1)

=
⎛

⎝

⎛

⎝N ∪ Dm ∪
⋃

l j∈R

Dj ∪
m−1
⋃

j=1

Dj ∪
n

⋃

j=m+1

Dj

⎞

⎠

∣
∣
∣
∣
∣
∣
levels(Ψ ′)

⎞

⎠

∣
∣
∣
∣
∣
∣

L

∪ Bk (2)

=
⎛

⎝N ∪
n

⋃

j=1

Dj

⎞

⎠

∣
∣
∣
∣
∣
∣

L

∪ Bk (3)

= Nk.

20 A. Fietzke, C. Weidenbach

Equation 1 is obtained by replacing N′ by its definition, and observing that B′
k = Bk.

For Eq. 2, we use the fact that

n−1
⋃

j=1

D′
j =

m−1
⋃

j=1

Dj
∣
∣
levels(Ψ ′) ∪

n
⋃

j=m+1

Dj
∣
∣
levels(Ψ ′)

because of level shifting. Finally, Eq. 3 follows from the fact that L ⊆ levels(Ψ ′).
Now assume k ≥ m, and let L := {l′1, . . . , l′k−1}. Note that

L =
{

{l1, . . . , lm−1} if k = m

{l1, . . . , lm−1, lm+1, . . . , lk} if k > m

or, in other words, L = {l1, . . . , lk} \ {lm}. Hence

N′k =
⎛

⎝N′ ∪
n−1
⋃

j=1

D′
j

⎞

⎠

∣
∣
∣
∣
∣
∣

L

∪ B′
k

=
⎛

⎝

⎛

⎝N ∪ Dm ∪
⋃

l j∈R

Dj ∪
m−1
⋃

j=1

Dj ∪
n

⋃

j=m+1

Dj

⎞

⎠

∣
∣
∣
∣
∣
∣
levels(Ψ ′)

⎞

⎠

∣
∣
∣
∣
∣
∣

L

∪ Bk+1 (4)

=
⎛

⎝N ∪
n

⋃

j=1

Dj

⎞

⎠

∣
∣
∣
∣
∣
∣{l1,...,lk}\{lm}

∪ Bk+1 (5)

= Nk+1
∣
∣{lm}.

We again use L ⊆ levels(Ψ ′) for Eq. 5, and the assumption that the splits below m do
not depend on lm. ��

2.3.4 Soundness

We now show that satisfiability of labelled clause set is preserved in derivations, as
discussed in Section 2.3.1. We again begin by showing that satisfiability is preserved
by each of the stack reduction rules.

Lemma 6 (Backjump maintains satisfiability) Let Ψi : Ni be an arbitrary labelled
clause set in a derivation, and assume Ψi : Ni → Ψ ′

i : N′
i with rule Backjump. Then

Ψi : Ni is satisfiable if and only if Ψ ′
i : N′

i is satisfiable.

Proof Clearly, Ni is unsatisfiable, since L: � ∈ Ni. Furthermore, if Nn
i ∈ Ni exists

(this is the case if left(ln)) then L: � ∈ Nn
i , since ln �∈ L, and thus Nn

i is unsatisfiable.
Hence Ψi : Ni is satisfiable if and only if some Nk

i ∈ Ni is satisfiable, for k < n. On the
other hand, L: � ∈ N′

i since ln �∈ L, thus N′
i is also unsatisfiable. Therefore, Ψ ′

i : N′
i

is satisfiable if and only if some N′k
i ∈ N ′

i is satisfiable. The statement then follows
directly with Lemma 5. ��

Labelled splitting 21

Lemma 7 (Branch-condense maintains satisfiability) Let Ψi : Ni be an arbitrary
labelled clause set in a derivation, and assume Ψi : Ni → Ψ ′

i : N′
i with rule Branch-

condense. Then Ψi : Ni is satisfiable if and only if Ψ ′
i : N′

i is satisfiable.

Proof We write lk for levelΨi(k). Again, Ni is unsatisfiable, since L: � ∈ Ni. Because
lkmax �∈ L, we also know L: � ∈ N′

i , and thus N′
i is unsatisfiable. By Lemma 5, we know

that Nk
i = N′k

i for k < kmax. Hence it suffices to show that there exists a satisfiable
Nk

i ∈ Ni with k ∈ {kmax, . . . , n} if and only if there exists a satisfiable N′k′
i ∈ N ′

i with
k′ ∈ {kmax, . . . , n − 1}. Also note that since left(lk) for all k ∈ {kmax, . . . , n}, we have
Ni = {Nkmax

i , Nkmax+1
i , . . . , Nn

i } (see Fig. 3).
For the forward direction, let us first assume that Nkmax

i is satisfiable. We show that
there exists a satisfiable N′k

i ∈ N ′
i with k ∈ {kmax, . . . , n − 1}, by induction on k. For

each k, we show that either

1. N′k
i is satisfiable, or

2. (Ni ∪ Di)
∣
∣{l1,...,lk+1}\{lkmax } is satisfiable.

Since we know (Ni ∪ Di)
∣
∣{l1,...,ln}\{lkmax } is unsatisfiable, it follows that there must be a

satisfiable N′k
i ∈ N ′

i .
We have assumed Nkmax

i = (Ni ∪ Di)
∣
∣{l1,...,lkmax−1} ∪ Bkmax to be satisfiable, hence also

Ni ∪ Di
∣
∣{l1,...,lkmax−1} is satisfiable – this provides the induction base.

For the inductive step, let k ≥ kmax and assume that

(

Ni ∪ Di)
∣
∣{l1,...,lk}\{lkmax }

is satisfiable. Let L′ be the label of the parent clause of split of the k + 1st split of
Ψ ′

i (i.e., the kth split of Ψi). Since lk+1 ∈ L, we know by Lemma 1 that L′ ⊆ L. Since
lkmax �∈ L, we also have lkmax �∈ L′. So by path-validity (Proposition 2), we know that

(

Ni ∪ Di)
∣
∣{l1,...,lk}\{lkmax } |= clauseΨi

(

lk+1
) ∨ clauseΨi

(

lk+1 + 1
)

N k max − 1
i

N k max
i

N k max + 1
i

. .
.

Ni N n
i

N
i
k max − 1 = N k max − 1

i

N
i
k max = N k max + 1

i | {lkmax }

. .
.

N
i N i

n− 1 = N n
i | {lkmax }

Fig. 3 Illustration of the proof of Lemma 7

22 A. Fietzke, C. Weidenbach

(remember that left(lk)). Hence either

1. (Ni ∪ Di)
∣
∣{l1,...,lk}\{lkmax } ∪ {clauseΨi(lk+1)} is satisfiable, but then by Corollary 1, also

(

Ni ∪ Di)
∣
∣{l1,...,lk,lk+1}\{lkmax }

is satisfiable.
2. Or (Ni ∪ Di)

∣
∣{l1,...,lk}\{lkmax } ∪ {clauseΨi(lk+1 + 1)} = Nk+1

i

∣
∣{lkmax } is satisfiable. By

Lemma 5, we have Nk+1
i

∣
∣{lkmax } = N′k

i , hence N′k
i is satisfiable.

Still for the forward direction, assume now that some Nk
i is satisfiable, for k ∈

{kmax + 1, . . . , n}. Then it immediately follows with Lemma 5 that N′k−1
i = Nk

i

∣
∣{lkmax }

is satisfiable.
For the backward direction, assume N′k

i is satisfiable, for some k ∈ {kmax, . . . ,

n − 1}. Again by Lemma 5,

N′k
i = Nk+1

i

∣
∣{lkmax } = (

Ni ∪ Di)
∣
∣{l1,...,lk}\{lkmax } ∪ Bk+1

is satisfiable. By path-validity (Proposition 2), we know that
(

Ni ∪ Di)
∣
∣{l1,...,lkmax−1} |= clauseΨi

(

kmax
) ∨ clauseΨi

(

kmax + 1
)

.

Hence we again distinguish two cases:

1. Either (Ni ∪ Di)
∣
∣{l1,...,lk}\{lkmax } ∪ {clauseΨi(kmax)} ∪ Bk+1 is satisfiable. But then

also
(

Ni ∪ Di)
∣
∣{l1,...,lk} ∪ Bk+1 = Nk+1

i

is satisfiable.
2. Or (Ni ∪ Di)

∣
∣{l1,...,lk}\{lkmax } ∪ {clauseΨi(kmax + 1)} ∪ Bk+1 is satisfiable, hence also

(

Ni ∪ Di)
∣
∣{l1,...,lkmax−1} ∪ Bkmax

is satisfiable, since Bkmax = {clauseΨi(kmax + 1)}. ��

Lemma 8 (Right-collapse maintains satisfiability) Let Ψi : Ni be an arbitrary la-
belled clause set in a derivation, and assume Ψi : Ni → Ψ ′

i : N′
i with rule Right-

collapse. Then Ψi : Ni is satisfiable if and only if Ψ ′
i : N′

i is satisfiable.

Proof First note that L2: � ∈ Ni and L: � ∈ N′
i , hence both Ni and N′

i are unsat-
isfiable. Thus it suffices to show that there exists a satisfiable N′k′

i ∈ N ′
i if and only

if there is a satisfiable Nk
i ∈ Ni. By Lemma 5 and definition of Right-collapse, we

obtain that for all N′k
i ∈ N ′

i ,

N′k
i =

{

Nk
i ∪ {L: �} if k > max(L)

Nk
i otherwise.

For the first case, use the fact that for k > max(L), we have L ⊆ {1, . . . , k}, and path-
validity (Proposition 2). The second case is immediate. ��

Labelled splitting 23

Lemma 9 (Enter-right maintains satisfiability) Let Ψi : Ni be an arbitrary labelled
clause set in a derivation, and assume Ψi : Ni → Ψ ′

i : N′
i with rule Enter-right. Then

Ψi : Ni is satisfiable if and only if Ψ ′
i : N′

i is satisfiable.

Proof Again because of the empty clause, Ni is unsatisfiable. Furthermore, by
Lemma 5, N′k

i = Nk
i for k < n. Thus it suffices to show that Nn

i is satisfiable if and
only if N′

i is satisfiable. The forward direction is immediate since N′
i ⊆ Nn

i . The
backward direction follows from Proposition 3. ��

Theorem 1 (Soundness) Let N be an arbitrary clause set. Let N0 := {∅: C | C ∈ N}
be the associated set of labelled clauses, let Ψ0 := 〈〉, and let Ψ0 : N0 �∗ Ψm : Nm be an
arbitrary derivation starting with Ψ0 : N0. Then Ψm : Nm is satisfiable if and only if Ψ0 :
N0 is satisfiable.

Proof By induction over the derivation. Let i ≥ 0 and assume Ψi : Ni � Ψi+1 : Ni+1.
We distinguish which rule was applied to obtain Ψi+1 : Ni+1. For inferences and
reductions, the proof is trivial. For backtracking, the proof proceeds by induction
over the stack reductions, using Lemmata 6 to 9. For the splitting case, let us first
observe that Ψi+1 has length n + 1, and that for all 1 ≤ k ≤ n,

Nk
i+1 =

⎛

⎝Ni+1 ∪
n+1
⋃

j=1

Di+1
j

⎞

⎠

∣
∣
∣
∣
∣
∣{l1,...,lk−1}

∪ Bi+1
k

=
⎛

⎝Ni ∪
n

⋃

j=1

Di
j

⎞

⎠

∣
∣
∣
∣
∣
∣{l1,...,lk−1}

∪ Bi
k

= Nk
i .

Thus it suffices to show that Ni is satisfiable if and only if Ni+1 or Nn+1
i+1 is satisfiable.

By definition of the splitting rule, we have Ni+1 = Ni ∪ {L′: Γ1 → Δ1} and

Nn+1
i+1 =

⎛

⎝Ni+1 ∪
n+1
⋃

j=1

Di+1
j

⎞

⎠

∣
∣
∣
∣
∣
∣{l1,...,ln}

∪ Bi+1
n+1

=
⎛

⎝Ni ∪
n

⋃

j=1

Di
j

⎞

⎠

∣
∣
∣
∣
∣
∣{l1,...,ln}

∪ {

L′: Γ2 → Δ2
}

since ln + 1 ∈ L′ and thus Ni+1

∣
∣{l1,...,ln} = Ni, and the sets of deleted clauses are not

changed by splitting. By Corollary 2, satisfiability of Ni ∪ ⋃n
j=1 Di

j is equivalent
to satisfiability of Ni, hence Nn+1

i+1 is satisfiable if and only if Ni ∪ {L′: Γ2 → Δ2}.
Therefore, it suffices to show that Ni is satisfiable if and only if Ni ∪ {L′: Γ1 → Δ1} or
Ni ∪ {L′: Γ2 → Δ2} is satisfiable, and this is immediate since Γ1 → Δ1 and Γ2 → Δ2

are variable-disjoint. ��

24 A. Fietzke, C. Weidenbach

2.3.5 Completeness

When backtracking is modelled explicitly, as we have done here, classical model
construction techniques (as in [2, 15]) cannot directly be used to show completeness
of the calculus. In particular, defining a fair derivation to be a derivation in which any
non-redundant inference from persistent clauses is eventually computed, no longer
guarantees that any fair derivation from an inconsistent clause set eventually yields
a contradiction. The reason is that in our calculus, the changes to the clause set are
not monotonic (in the sense that in each step, only derived clauses are added or
redundant clauses are removed).

Example 2 Consider the unsatisfiable clause set

N0 = { S(a); ¬S(a); P(a);
P(x) → Q(y), P(f (x));
Q(y) → S(x) }

where all clauses have the empty label. We construct an infinite derivation D =
Ψ0 : N0 � Ψ1 : N1 � . . . as follows: we apply resolution to derive a clause → Q(y),

P(f n+1(a)) (initially, n = 0) which we then split. In the left branch, we use Q(y) to
infer S(x). We then apply subsumption deletion to S(x) and S(a), removing S(a) from
the clause set and storing it in the deleted set of the current split. We apply resolution
to infer the empty clause from S(x) and ¬S(a) and backtrack, entering the right
branch, reinserting clause S(a). We then repeat the procedure with n increased by
one (see Fig. 4). The classical definition of persistent clauses as N∞ = ⋃

i

⋂

j≥i N j

yields a set that does not contain S(a) (thus N∞ is satisfiable), because for each
subsumption deletion step k, we have S(a) �∈ Nk, hence S(a) is not "persistent" when
viewed over the whole derivation. Every inference from clauses in N∞ is computed,
thus D is fair in the classical sense, but never derives a contradiction.

In the above example, the non-persistent clause S(a) is redundant in all left branches.
However, every left branch is refuted at some point, causing S(a) to be reinserted
upon backtracking. Thus, the fact that the clause is redundant only in branches that
are eventually closed is irrelevant in an infinite derivation. In the example, the split
tree has an infinite path consisting of right branches, and along this path, the clause
S(a) is not redundant and should therefore eventually be considered for inferences.
Our goal is therefore to define a notion of fairness that ignores closed branches and

Fig. 4 Split tree of the
derivation of Example 2 P(f n(a)) P(x) Q (y) P(f (x))

Q (y) P(f n+ 1(a))

Q (y) Q (y) S(x)
S(x)

...

. . .

Labelled splitting 25

only talks about clauses on the infinite path of the split tree. In the following, we
use sufD(i) to denote the suffix Ψi : Ni � Ψi+1 : Ni+1 � . . . of an infinite derivation
D = Ψ0 : N0 � Ψ1 : N1 � Note that sufD(0) = D.

Definition 16 (Persistent split) Given an infinite derivation

D = Ψ0 : N0 � Ψ1 : N1 � . . . ,

and i ≥ 1, where Ψi = 〈ψni , . . . , ψ1〉, we call ψk (1 ≤ k ≤ ni) persistent in sufD(i), if
lk ∈ levels(Ψ j) for all j ≥ i.

Definition 17 (Weakly persistent clause) Given an infinite derivation

D = Ψ0 : N0 � Ψ1 : N1 � . . . ,

and i ≥ 0, where Ψi = 〈ψni , . . . , ψ1〉, we call a clause L : C ∈ (Ni ∪ Di) weakly persis-
tent in sufD(i), if for all l j ∈ L, ψ j is persistent in sufD(i).

Weakly persistent clauses are not necessarily contained in every clause set of the
derivation from some point on. However, if a clause is weakly persistent, then from
some point on, every clause set contains either the clause itself, or some clause that
subsumes it. Also note that any clause that is weakly persistent in D is contained in
N0, since no split is persistent in D.

Lemma 10 For any infinite derivation D and for i ≥ 1, if a clause L : C �∈ N0 is weakly
persistent in sufD(i), then it is also weakly persistent in sufD(k) where k ≤ i is maximal
such that step k of D has L : C as its conclusion.

Proof Let k be defined as above and assume L : C is not weakly persistent in sufD(k).
Then there exists k ≤ k′ < i such that some split with level in L was deleted in step k′
of D. Thus by Definition 7, L : C �∈ (Nk′ ∪ Dk′

). Hence there must exist k′′ > k such
that step k′′ has L : C as its conclusion, a contradiction. ��

Definition 18 (Persistent step) Given an infinite derivation

D = Ψ0 : N0 � Ψ1 : N1 � . . . ,

we say that step i ≥ 1 of D is persistent, if

1. step i is a splitting or backtracking step, Ψi = 〈ψni , . . . , ψ1〉, and ψni is persistent
in sufD(i), or

2. step i is an inference or reduction step and all premises of the applied inference
or reduction rule are weakly persistent in sufD(i − 1).

Definition 19 Given an infinite derivation

D = Ψ0 : N0 � Ψ1 : N1 � . . . ,

let i ≥ 0 be a backtracking step, let l be the split level of the toplevel split of Ψi, and
let k < i be maximal such that step k of D is a splitting step producing a split of level
l − 1. Then we define sptD(i) := k, the associated splitting step of backtracking step i.

26 A. Fietzke, C. Weidenbach

Lemma 11 For any infinite derivation D = Ψ0 : N0 � Ψ1 : N1 � . . . , if step i ≥ 1 is a
persistent splitting step with parent clause L : C (a persistent backtracking step with
L : C the parent clause of the associated splitting step), then L : C is weakly persistent in
sufD(i − 1).

Proof Let l be the level of the split produced at step i. Assume L : C is not weakly
persistent. Let k be minimal such that k > i and l′ �∈ levels(Ψk) for some l′ ∈ L. Then
step k of D is a backtracking step. Since the split produced at step i is persistent,
the split with level l′ must have been removed by application of Branch-condense.
Hence there is an empty clause L′: � ∈ Nk−1 with l ∈ L′ but l′ �∈ L′, a contradiction
to Lemma 1. ��

Lemma 12 For any infinite derivation D and for i ≥ 1, if the conclusion of step
i is weakly persistent in sufD(i), then all premises of step i are weakly persistent
in sufD(i − 1).

Proof Follows from Definition 17 and Lemma 11. ��

We will define the limit of an infinite derivation D to be the derivation obtained
by starting from the original labelled clause set and applying exactly the persistent
steps of D. Note that all left splits are created by splitting, whereas all right splits are
created by backtracking. The limit will contain no more applications of backtracking.
Instead, whenever a persistent right branch is created in the original derivation, the
limit will enter that branch directly, using the rule splitting right:

Definition 20 (Splitting right) The inference

I Ψ : N
Ψ ′ : N

L: Γ1, Γ2 → Δ1,Δ2

L′: Γ2 → Δ2

where Ψ =〈ψn, . . . , ψ1〉, L′ = L ∪ {ln+1}, Ψ ′ =〈ψn+1, ψn, . . . , ψ1〉 with ψn+1 =(ln + 1,

∅,∅,∅), vars(Γ1 → Δ1) ∩ vars(Γ2 → Δ2) = ∅, and Δ1 �= ∅ and Δ2 �= ∅ is called
splitting right.

Definition 21 (Limit of a derivation) Given an infinite derivation

D = Ψ0 : N0 � Ψ1 : N1 � . . . ,

let i ≥ 0 be a backtracking step, let l be the split level of the toplevel split of Ψi, and
let k < i be maximal such that step k of D is a splitting step producing a split of level
l − 1. We define the monotonic function fD : N → N as follows:

fD(0) := 0

fD(i + 1) := min{ j > fD(i) | step j of D is persistent}.

Labelled splitting 27

The limit of D is defined as

lim(D) := Ψ ′
0 : N′

0 � Ψ ′
1 : N′

1 � Ψ ′
2 : N′

2 � . . .

where Ψ ′
0 : N′

0 = Ψ0 : N0 and Ψ ′
i+1 : N′

i+1 is obtained from Ψ ′
i : N′

i as follows:

1. if step fD(i + 1) of D is a backtracking step, consider the associated splitting step
sptD(fD(i + 1)) with parent clause L: Γ1, Γ2 → Δ1, Δ2. Then step i + 1 of lim(D)

is the splitting right step

I Ψ ′
i : N′

i

Ψ ′
i+1 : N′

i+1

L: Γ1, Γ2 → Δ1,Δ2

L′: Γ2 → Δ2

2. otherwise, Ψ ′
i+1 : N′

i+1 is obtained by applying the same rule as in step fD(i + 1)

of D to Ψ ′
i : N′

i .

Lemma 13 For any infinite derivation D, lim(D) is well-defined.

Proof We show by induction on i ≥ 1 that every premise L : C of step i of lim(D) =
Ψ ′

0 : N′
0 � Ψ ′

1 : N′
1 � . . . is contained in N′

i−1. By definition of lim(D), step fD(i) of D
is persistent.

1. If step fD(i) of D is an inference or reduction step, then by Definition 18, L : C
is weakly persistent in sufD(fD(i) − 1).

2. If step fD(i) of D is a splitting or backtracking step, then by Lemma 11, L : C is
weakly persistent in sufD(fD(i) − 1)

Assume L : C �∈ N0. Lemma 10 tells us that L : C is weakly persistent in sufD(k),
where k < fD(i) is maximal with L : C the conclusion of step k of D. Hence by
Lemma 12, all premises of step k of D are weakly persistent, therefore step k is a
persistent step. For the base case i = 1, this is a contradiction, since fD(i) is the first
persistent step of D, and we can thus conclude that L : C ∈ N0 = N′

0. For i > 1, there
is j < i such that fD(j) = k and L : C is the conclusion of step j of lim(D). Since
L : C ∈ N fD(j)−1, we can conclude that L : C has not been persistently subsumed and
hence L : C ∈ N′

i−1. ��

Note that in general, neither N′
i ⊆ N fD(i) nor N′

i ⊇ N fD(i), because N fD(i) may
contain clauses that are not (weakly) persistent, and persistent clauses may have been
subsumed by non-persistent ones. Therefore we can not simply take the limit to be a
subsequence of the initial derivation.

Lemma 14 For every infinite derivation D = Ψ0 : N0 � Ψ1 : N1 � . . . , and every i ≥ 1,
if step i of lim(D) is an inference step, then its conclusion is contained in N fD(i).

Proof Follows directly from Definition 21. ��

For lim(D) = Ψ ′
0 : N′

0 � Ψ ′
1 : N′

1 � . . . we define Nlim(D)∞ := ⋃

i

⋂

j≥i N′
j.

28 A. Fietzke, C. Weidenbach

Definition 22 (Fairness) A derivation

D = Ψ0 : N0 � Ψ1 : N1 � . . .

is called fair if

1. either D is finite and in the final clause set Nk all resolution and factoring
inferences are redundant in Nk, or D is infinite and every resolution or factoring
inference from Nlim(D)∞ is redundant in some N′

i ∈ lim(D); and
2. for every i ≥ 0 with L: � ∈ Ni with L �= ∅, there exists j > i such that step j of D

is a backtracking step with premise L: �.

Lemma 15 For any fair infinite derivation D and any i ≥ 0, no L: � with L �= ∅ is
weakly persistent in sufD(i).

Proof Assume L �= ∅ and consider the backtracking step with L: � as premise
(which must exist by condition 2 of Definition 22). It follows from the definitions
of the stack reduction rules that the final rule applied is Enter-right, which deletes
the split with the greatest split level in L. ��

Our completeness proof will closely follow the one given in [2] (Theorem 4.9), with
the exception that we limit ourselves to showing that unsatisfiability of N0 implies
∅: � ∈ Nlim(D)∞ . We use the standard redundancy criterion that is based on a clause
ordering � [2] and we write R�

F (N) for the set of redundant clauses with respect to
N and R�

I(N) for the set of redundant inferences with respect to N. The standard
redundancy criterion satisfies the following four conditions:

(R1) if N ⊆ N′ then R�
F (N) ⊆ R�

F (N′) and R�
I(N) ⊆ R�

I(N′);
(R2) if N′ ⊆ R�

F (N) then R�
F (N) ⊆ R�

F (N \ N′) and R�
I(N) ⊆ R�

I(N \ N′);
(R3) if N is unsatisfiable, then N \ R�

F (N) is also unsatisfiable; and
(R4) a resolution or factoring inference γ is in R�

I(N) whenever its conclusion is in
N ∪ R�

F (N).

Lemma 16 Let lim(D) = Ψ ′
0 : N′

0 � Ψ ′
1 : N′

1 � . . . be the limit of a derivation D. Then
R�

F (
⋃

j N′
j) ⊆ R�

F (Nlim(D)∞) and R�
I(

⋃

j N′
j) ⊆ R�

I(Nlim(D)∞). Moreover, the set Nlim(D)∞
is unsatisfiable if N′

0 is unsatisfiable.

Proof Observe that for any i ≥ 0, one of the following holds:

(i) N′
i+1 = N′

i ∪ {C}, where C is the conclusion of a resolution or factoring step
from clauses in N′

i ; or
(ii) N′

i+1 = N′
i ∪ {C}, where C is a non-trivial subclause of a clause in N′

i ; or
(iii) N′

i+1 = N′
i \ {D}, where D ∈ R�

F (N′
i).

Hence by definition of Nlim(D)∞ , any clause in (
⋃

j N′
j) \ Nlim(D)∞ is in some R�

F (N′
i).

Therefore (
⋃

j N′
j)\Nlim(D)∞ ⊆⋃

j R�
F (N′

j). Moreover, by condition (R1),
⋃

j R�
F

(N′
j) ⊆ R�

F (
⋃

j N′
j). As a consequence, we have (

⋃

j N′
j) \ R�

F (
⋃

j N′
j) ⊆ Nlim(D)∞ .

Applying condition (R1) again, we may infer that R((
⋃

j N′
j) \ R�

F (
⋃

j N′
j)) ⊆

Labelled splitting 29

R(Nlim(D)∞) (where R may be either R�
F or R�

I). Using condition (R2), we obtain
R(

⋃

j N′
j) ⊆ R(Nlim(D)∞).

For the second part, assume N′
0 is unsatisfiable. Hence also

⋃

j N′
j is unsatisfi-

able, and by condition (R3), (
⋃

j N′
j) \ R�

F (
⋃

j N′
j) is unsatisfiable. Since (

⋃

j N′
j) \

R�
F (

⋃

j N′
j) ⊆ Nlim(D)∞ , we can infer that Nlim(D)∞ is unsatisfiable. ��

We say that a set of labelled clauses N is saturated up to redundancy, if every
resolution or factoring inference γ from N \ R�

F (N) is contained in R�
I(N).

Theorem 2 (Completeness) Let D = Ψ0 : N0 � Ψ1 : N1 � . . . be a fair derivation. If
∅: � �∈ Nlim(D)∞ , then N0 is satisfiable.

Proof Since D is fair, every inference from Nlim(D)∞ is redundant in some N′
i and

therefore, by Lemma 16, also redundant in Nlim(D)∞ . Hence Nlim(D)∞ is saturated up to
redundancy. It follows ([2], Theorem 4.9) that Nlim(D)∞ is satisfiable if and only if it
does not contain a contradiction. By Lemma 15, the only possible contradiction in
Nlim(D)∞ is ∅: �. Thus by Lemma 16, if ∅: � �∈ Nlim(D)∞ , then N0 = N′

0 is satisfiable. ��

3 Experiments and a comparison to DPLL

3.1 Experiments

Our enhanced backtracking process has been integrated into the Spass [22] theorem
prover on top of Spass version 3.0 for the overall superposition calculus including
equality. The basis for the implementation was Spass version 3.0. As we mentioned
before, the calculus presented in this article represents only a small set of inference
and reduction rules, sufficient for studying the specifics of the labelled splitting
calculus. Compared to Spass version 3.0 the data structures used to represent
the split stack were modified to allow storage of the dependencies of closed left
branches in order to support the refined backtracking rule. Minor modifications to
the implementation of reduction rules were made to ensure that reduced clauses are
always recorded for later reinsertion. These modifications were necessary since the
original branch condensation in Spass is performed only up to the last backtracking
level, hence a redundant clause is recorded only if it has been subsumed by a
clause with greater split level. Finally, a new backtracking procedure was written,
implementing the stack reduction rules.

The implementation was tested on the TPTP problem library, version 3.2.0 [18],
which consists of 8984 first-order problems. On 2513 of those problems, Spass (in
automatic mode) uses the splitting rule during proof search. For the experiments, an
Opteron Linux cluster was used, and Spass was given a time limit of 5 minutes per
problem.

Overall, the number of splits performed per problem decreased by about 10%
on average when using improved backtracking. In addition, Spass with improved
backtracking terminated with a solution for 24 problems (22 proofs, 2 completions)
that could not be solved by the version without improved backtracking within
the given time limit. The new version loses 4 problems because of the potentially

30 A. Fietzke, C. Weidenbach

different search space exploration caused by the new backtracking rule. These
problems are recovered by an increased time limit.

3.2 Comparing labelled splitting and DPLL

Our paper can be considered as an extension of the abstract DPLL calculus of
Nieuwenhuis et al. [14] for first-order logic. Due to the need to create new clauses
via inferences and reductions, the labelled splitting calculus is more involved.

The DPLL procedure [6], which lies at the core of most of today’s state-of-the-art
boolean satisfiability solvers, has received a great deal of attention in the past years.
In particular, a lot of research has gone into improving the backtracking process.
Thus it is natural to ask how, in the propositional domain, our backtracking scheme
compares to that of modern SAT solvers. Let us first clarify how our handling of
splitting and backtracking differs from the standard DPLL approach.

In basic DPLL, when exhaustive unit propagation has neither led to a conflict
nor yielded a complete truth assignment, a choice is made by assuming some yet
undefined literal to be true (typically a literal occurring in some clause). If this choice
leads to a conflict, the truth value of that literal is flipped, hence the two branches
of the case analysis are A and ¬A for some propositional variable A. This can be
simulated directly by the generalized version of the splitting rule, discussed after
Definition 1, where we would split the clause A → A. Independently, the refinement
for ground clause splits also introduced after Definition 1 enables a DPLL style
splitting if we split just one positive literal away. For example, we split Γ → Δ, A into
→ A and Γ → Δ, A →. The reason why this refinement is restricted to ground split
parts is that the negation of universally quantified clauses leads to the introduction
of new Skolem constants. For example, if we split into ∀x A(x) and ¬∀x A(x), then
for the second branch we introduce a fresh Skolem constant, say c, resulting in
the literal A(c). The literal ¬A(c) is not useful for reductions, because c is fresh
and therefore the clause set resulting from the second branch is not smaller in the
sense we discussed in the introduction. The introduction of fresh Skolem constants
can be avoided by remembering all ground terms instantiating the variables from
the left branch in the course of a refutation. For example, if the left split part was
A(x) and a refutation of the branch involved substituting x by both a and f (b) in
different subtrees, then ¬A(a)∨¬A(f (b)) could be used instead of ¬A(c) for the
fresh Skolem constant c. Although this approach avoids the introduction of new
symbols, tracking all instantiations adds overhead and the fact that the resulting
lemmata are again in general non-units diminishes their usefulness for reductions.
When dealing with purely propositional problems however, this lemma-generation
can be used to simulate DPLL-style case analysis: for any clause Γ → Δ, A choose
A as the first split part – the lemma ¬A is then available in addition on the second
branch.

Furthermore, there are two major differences between our backtracking mecha-
nism and the one used in SAT solvers. The first one is that the Branch-condense
rule has no equivalent in DPLL-style systems. The reason is that in such systems,
where the clause set is essentially fixed and progress is made by extending a partial
assignment of truth values to literals, the cost of keeping a decision literal that did
not contribute to a conflict in the partial assignment is negligible. On the other
hand, when proof search involves generating new clauses via inferences, keeping

Labelled splitting 31

unused splits on the stack comes at the price of a larger search space, since there
are potentially more clauses that can participate in proof search.

Example 3 Consider a propositional problem containing the clauses ¬B ∨ ¬C ∨ D
and ¬B ∨ ¬C ∨ ¬D, and some other clauses where the variable A occurs. Assume
our partial assignment is Ad BdCd, and we get D by unit propagation where we
use d as a mark for decision literals. Taking ¬B ∨ ¬C as the backjump clause,
the Backjump rule of [14] would revert the last decision Cd, yielding assignment
Ad Bd¬C. Note that the literal Ad did not contribute to this conflict, but because
it is above the first decision literal that did contribute (Bd), it is not removed. On the
other hand, in our framework, we would have derived an empty clause whose label
does not refer to the first split (of which Ad is the first component). Hence Branch-
condense could be applied, removing the first split and all clauses depending on it.

Secondly, modern SAT solvers usually rely on clause learning, meaning that con-
flicts are analyzed to yield a new clause (called the backjump or conflict clause) which
is added to the clause set. The conflict clause captures the underlying reason for the
conflict, so as to prevent the solver from following paths that would reproduce it. The
conflict clause is also used during backtracking (see Backjump rule of [14]), since it
contains information on what decision levels did (not) contribute to the conflict. If
one takes the conflict clause to consist of the negations of all decision literals that
contributed to the conflict, then its role during backtracking is comparable to that
of the empty clause’s label and the leaf markers in our framework. More precisely,
when we derive an empty clause with label L, then the split components described by
L correspond to the "decisions" that caused the conflict. Leaf markers can then be
thought of as conflict clauses learned after closing the corresponding left branches,
and the rule Right-collapse is equivalent to performing a resolution step between
two conflict clauses. Several Right-collapse steps may be performed in a row, in
the same way as propositional conflict analysis may take several backward steps
through the conflict graph [13]. The crucial difference between learned clauses and
clause labels is that a learned clause may be reused arbitrarily often, while the empty
clauses’ labels and leaf markers are consumed during backtracking.

We compared Spass implementing our new backtracking rule (Definition 12)
with MiniSat v1.14 [8] on SAT problems, by manipulating both systems such that
they essentially use the same propositional variable order for branching. Out of the
current SATLIB (http://www.satlib.org) library we selected about 200 problems that
Spasscould solve in a 5 min time limit. On more than 95% of all problems Minisat
needs less splits than Spass. Out of these problems, Spass performs three times more
splits than MiniSat, on the average. This result suggests that conflict-driven clause
learning can offer advantages over the Spass split backtracking mechanism. So there
is potential for exploring this mechanism also for the first-order case. However, again,
this requires at least a detailed analysis of the closed branches and a careful decision
when the generated lemmas help in closing branches, because split clauses may have
been used in several instantiations.

Although our backtracking rule does not include learning of conflict clauses, there
are cases where it is superior to the conflict driven clause learning of modern SAT
solvers, i.e., a proof requires less splits. This is documented by the 5% of examples
where Spass needed less splits than MiniSat and such examples can also be explicitly
constructed.

http://www.satlib.org

32 A. Fietzke, C. Weidenbach

The following example illustrates a clause set, where the labelled splitting style of
backtracking is in favor of the DPLL style of backtracking.

Example 4

{ ¬A1∨¬A2∨¬A3∨ A5, ¬A1∨¬A2∨¬A3∨¬A5, ¬A1∨¬A4∨ A6,

¬A1∨¬A4∨¬A6, ¬A1∨¬A2∨ A4∨ A7, ¬A1∨¬A2∨ A4∨¬A7,

A1∨C1, A2∨C2, A3∨C3,

A4∨C4, . . .}
The Ci stand for further disjuncts containing positive literals. To keep the ex-
ample small, it contains potential for simplification, e.g., the first two clauses can
be reduced to ¬A1∨¬A2∨¬A3 by a matching replacement resolution reduction
(Definition 6). Marking DPLL decision literals again with a d, the partial truth
assignment Ad

1 Ad
2 Ad

3 (corresponding to splittings of the clauses Ai ∨ Ci, 1 ≤ i ≤ 3)
is extended to Ad

1 Ad
2 Ad

3 A5 by unit propagation, leading to a conflict. In terms
of the labelled resolution calculus, this corresponds to an empty clause with label
{1, 3, 5} (remember that left branches have odd levels) with first split clause A1∨C1,
second split clause A2∨C2, and third split clause A3∨C3. Both DPLL and labelled
splitting then enter the right branch of the last split. In DPLL terms, we get the
assignment Ad

1 Ad
2 ¬A3, which we extend to Ad

1 Ad
2 ¬A3 Ad

4 via a further decision.
This corresponds to the new split level 7 by splitting A4∨C4 via the labelled splitting
calculus. Clause ¬A1∨¬A4∨ A6 propagates A6, after which clause ¬A1∨¬A4∨¬A6

becomes false. Resolving these two yields the conflict clause ¬A1∨¬A4, and DPLL
backjumps to decision level 1, i.e. to assignment Ad

1 ¬A4. If this branch cannot be
closed without repeating the decision on A2 that was just undone, this overall search
space needs to be explored again. On the other hand, in the labelled calculus, the
conflict clause corresponds to an empty clause with label {1, 7}, where we have split
A4∨C4. So Enter-right is the only applicable stack reduction rule. The right branch
of the corresponding split can be closed by the clauses ¬A1∨¬A2∨ A4∨ A7 and
¬A1∨¬A2∨ A4∨¬A7 without further splitting, since the split of clause A2∨C2 is
still available.

4 Conclusion

We have extended the abstract DPLL calculus by Nieuwenhuis et al. [14] to the full
first-order case, called labelled splitting. The calculus is sound and complete. We
established a completeness result by introducing a new notion of fairness taking into
account infinite paths in the split tree.

The calculus is implemented for the full superposition calculus [20] in Spass. It
shows a 10% average gain in the number of splits on all TPTP problems where
splitting is involved and Spass could decide 24 more problems compared to the
previous version.

The fairness notion of Definition 22 does not directly provide an effective strategy
for a fair inference selection. In Spass we mainly use two different strategies. For the
propositional case we employ exhaustive splitting, because splitting combined with
the reduction matching replacement resolution [20] constitutes already a complete
calculus and the number of splits is a priori finitely bound by the number of different

Labelled splitting 33

propositional variables. For the first-order case, clauses are selected for inferences
with respect to their “weight” composed out of the number of contained symbols and
their depth in the derivation. If such a clause can be split and the first split part has
a “sufficient” reduction potential for other clauses, splitting is preferred over other
inferences.

A comparison of the labelled splitting backtracking mechanism with DPLL
style backtracking based on conflict-driven clause learning reveals room for further
improvement. However, this is not a straightforward effort, because the negation
of a first-order clause is an existentially quantified conjunction of literals that via
Skolemization introduces new constants to the proof search. It is well known that
the addition of new constants causes an increased complexity of the unsatisfiability
problem and if potentially done infinitely often, can even cause completeness issues.
So it seems to us that in the case of a conflict, an analysis of the proof and the
used first-order terms in the proof is the most promising approach to enhance
the presented labelled splitting backtracking mechanism with conflict-driven clause
learning. This will be subject of future research.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge
(1998)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Automated
Reasoning, pp. 19–99 (2001)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a decision
procedure for the monadic class with equality. In: Gottlob, G., Leitsch, A., Mundici, D.
(eds.) Computational Logic and Proof Theory, Third Kurt Gödel Colloquium. LNCS, vol. 713,
pp. 83–96. Springer, New York (1993)

4. Basin, D., D’Agostino, M., Gabbay, D.M., Matthews, S., Viganó, L., (eds.) Labelled Deduction.
Kluwer, Dordrecht (2000)

5. Baumgartner, P., Tinelli, C.: The model evolution calculus as a first-order DPLL method. Artif.
Intell. 172(4–5), 591–632 (2008)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215
(1960)

7. de Nivelle, H.: Splitting through new proposition symbols. In: Logic for Programming, Artifi-
cial Intelligence, and Reasoning, 8th International Conference, LPAR 2001. LNAI, vol. 2250,
pp. 172–185. Springer, New York (2001)

8. Eén, N., Sörensson, N.: An extensible SAT solver. Theory and Applications of Satisfiability
Testing, pp. 502–518 (2004)

9. Fermüller, C.G., Leitsch, A., Hustadt, U., Tamet, T.: Resolution decision procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, chapter 25,
pp. 1791–1849. Elsevier, Amsterdam (2001)

10. Fietzke, A., Weidenbach, C.: Labelled splitting. In: 4th International Joint Conference on Auto-
mated Reasoning (IJCAR). LNAI, vol. 5195, pp. 459–474. Springer, New York (2008)

11. Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research report MPI-I-2007-
RG1-002, Max-Planck Institute for Informatics, Saarbrücken (2007)

12. Lev-Ami, T., Weidenbach, C., Reps, T., Sagiv, M.: Labelled clauses. In: 21st International Con-
ference on Automated Deduction (CADE-21). Lecture Notes in Computer Science, vol. 4603,
pp. 311–327. Springer, New York (2007)

13. Nieuwenhuis, R., Oliveras, A.: Decision procedures for SAT, SAT Modulo Theories and Be-
yond. The Barcelogic Tools. (Invited Paper). In: Sutcliffe, G., Voronkov, A. (eds.) 12th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR’05.
Lecture Notes in Computer Science, vol. 3835, pp. 23–46. Springer, New York (2005)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an ab-
stract Davis–Putnam–Logemann–Loveland procedure to DPLL. J. ACM 53(6), 937–977 (2006)

34 A. Fietzke, C. Weidenbach

15. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chapter 7, pp. 371–443. Elsevier,
Amsterdam (2001)

16. Nonnengart, A. Weidenbach, C.: Computing small clause normal forms. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, chapter 6, pp. 335–367.
Elsevier, Amsterdam (2001)

17. Riazanov, A., Voronkov, A.: Splitting without backtracking. In: IJCAI, pp. 611–617 (2001)
18. Sutcliffe, G., Suttner, C.: The TPTP problem library: CNF release v1.2.1. J Autom Reason 21(2),

177–203 (1998)
19. Tseitin, G.: On the complexity of derivations in propositional calculus. In: Siekmann, J., Wright-

son, G. (eds.) Automation of Reasoning: Classical Papers on Computational Logic, vol. 2,
pp. 466–483. Springer (1983). First published in: Studies in Constructive Mathematics and
Mathematical Logic, (Slisenko, A.O., ed.) (1968)

20. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov,
A. (eds.), Handbook of Automated Reasoning, vol. 2, chapter 27, pp. 1965–2012. Elsevier,
Amsterdam (2001)

21. Weidenbach, C., Gaede, B., Rock, G.: Spass and flotter, version 0.42. In: McRobbie, M., Slaney,
J. (eds.) 13th International Conference on Automated Deduction, CADE-13. LNAI, vol. 1104,
pp. 141–145. Springer, New York (1996)

22. Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: System description: SPASS
version 3.0. In: Pfenning, F. (ed.) CADE-21: 21st International Conference on Automated
Deduction. LNAI, vol. 4603, pp. 514–520. Springer, New York (2007)

	Labelled splitting
	Abstract
	Introduction
	Labelled splitting
	Preliminaries
	Labelled calculus
	Backtracking

	Correctness
	Satisfiability of labelled clause sets
	Label-validity
	Path-validity
	Soundness
	Completeness

	Experiments and a comparison to DPLL
	Experiments
	Comparing labelled splitting and DPLL

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

