
f f f f
fff fff fff ff

f
f f ff

Flyspeck II: The Basic Linear Programs

Steven Obua
Lehrstuhl für Software & Systems Engineering

Institut für Informatik
Technische Universität München

Lehrstuhl für Software & Systems Engineering
Institut für Informatik

Technische Universität München

Flyspeck II: The Basic Linear Programs

Steven Obua

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation: 1. Univ.-Prof. Tobias Nipkow, Ph.D.

2. Prof. Thomas C. Hales
University of Pittsburgh / USA

Die Dissertation wurde am 31. Januar 2008 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 8. Mai 2008 ange-
nommen.

To Frank Feuerstein,

who was the first to teach me
what mathematics is all about.

Contents

1 Introduction 1

2 The HOL Computing Library 3
2.1 What is the HCL? . 3
2.2 Arithmetic in Commutative Rings with Unity 4
2.3 Performance Showdown: Factorials 8
2.4 Controlling Evaluation . 10

2.4.1 Conditional Rules . 11
2.4.2 Strict or Lazy Evaluation? . 11

2.5 Modes of the HCL . 13
2.5.1 An Abstract Machine Interface 13
2.5.2 The Barras Machine . 16
2.5.3 The SML Machine . 23
2.5.4 The Haskell Machine . 33

2.6 The HCL Cokernel . 33
2.6.1 A Bird’s-Eye View of the Isabelle Kernel 33
2.6.2 Removing and Attaching Types 36
2.6.3 Computing Equations . 37
2.6.4 Mixing Modus Ponens, Instantiation, and Computation 39
2.6.5 Polymorphic Linking . 40

3 Proving Bounds for Real Linear Programs 41
3.1 Overview . 41
3.2 The Basic Idea . 42

3.2.1 Reducing the case M = −∞ to the case −∞ <M <∞ 43
3.2.2 The case −∞ <M <∞ . 44

3.3 Finite Matrices . 45
3.3.1 Dimension of a Finite Matrix 47
3.3.2 Lifting Unary Operators . 48
3.3.3 Lifting Binary Operators . 49
3.3.4 Matrix Multiplication . 50

3.3.4.1 Distributivity . 51
3.3.4.2 Associativity . 51

3.3.5 Lattice-Ordered Rings . 51
3.3.6 Positive Part and Negative Part 53

3.4 Proving Bounds by Duality . 54
3.5 Proving Infeasibility by Modified Duality 55
3.6 Sparse Matrices . 56
3.7 Interval Arithmetic . 57

4 Contents

3.7.1 Floats . 57
3.7.2 Division of Floats . 58
3.7.3 Basic Interval Arithmetic for Floats 60
3.7.4 Approximation of Matrices . 63

3.8 Calculating A Priori Bounds . 63

4 The Basic Linear Programs 65
4.1 The Archive Of Tame Graphs . 65
4.2 Graph Systems . 67

4.2.1 Topology of a Graph System 68
4.2.2 3-Space Interpretation of a Graph System 69
4.2.3 Additional Constraints of a Graph System 72

4.3 Generating and Running the Basic Linear Programs 73

A Graph System Axioms from the Inequality Database 75

B Results of Running the Basic LPs 79

List of Figures 87

Bibliography 89

C H A P T E R 1

Introduction

There are two conflicting primal impulses of
the human mind – one to simplify a thing to
its essentials, the other to see through the

essentials to the greater implications.
— Robert B. Laughlin

The Flyspeck project [14] has as its goal the complete formalization of Hales’
proof [15, 16] of the Kepler conjecture which states that the best density one can
hope for when packing infinitely many congruent balls is

π
√

18
≈ 0.74

The formalization has to be carried out within a mechanical theorem prover. For
our work described in this thesis, we have chosen the interactive proof assistant
Isabelle [25].

The proof of the Kepler conjecture proceeds in reducing the problem to a finite
number of possible counter examples, the tame graphs. In a previous research
effort [23], the enumeration of all tame graphs has been formalized and verified.

The final computational step of the Kepler conjecture is to prove by linear pro-
gramming that all of these tame graphs cannot correspond to optimal packings,
except those corresponding to the face-centered cubic or hexagonal-close packing.

In this thesis we focus on the basic linear programs, which are an important first
milestone of taking this final step. With their help, we can eliminate 2565 of the 2771
tame graphs.

How reliable is this result? The major source of potential mayhem is that some
mistake might have been introduced in the specification of the basic linear programs.
The correctness of this specification will only be established after using the obtained
results in the larger context of a complete formal proof of the Kepler conjecture. But
even if there is such an error, we can console ourselves that the methods presented
in this thesis are general enough so that a transfer to a corrected specification should
be possible, and probably easy.

Another potential source of mistakes is the use of the HOL Computing Library

2 Chapter 1 — Introduction

which we introduce and describe in the next chapter. After all, it is just a piece of
unverified software which has been tested by only one person.

Apart from that, the usual claims of computer-checked proofs hold.

C H A P T E R 2

The HOL Computing Library

Fast is fine, but accuracy is everything.
— Wyatt Earp

Contents
2.1 What is the HCL? . 3
2.2 Arithmetic in Commutative Rings with Unity 4
2.3 Performance Showdown: Factorials 8
2.4 Controlling Evaluation . 10

2.4.1 Conditional Rules . 11
2.4.2 Strict or Lazy Evaluation? 11

2.5 Modes of the HCL . 13
2.5.1 An Abstract Machine Interface 13
2.5.2 The Barras Machine . 16
2.5.3 The SML Machine . 23
2.5.4 The Haskell Machine . 33

2.6 The HCL Cokernel . 33
2.6.1 A Bird’s-Eye View of the Isabelle Kernel 33
2.6.2 Removing and Attaching Types 36
2.6.3 Computing Equations . 37
2.6.4 Mixing Modus Ponens, Instantiation, and Computation . . 39
2.6.5 Polymorphic Linking . 40

2.1 What is the HCL?

The Higher-Order Logic Computing Library (HCL) is an extension of the Isabelle
system [25] for fast and trusted computing. Work on it started in 2004 when it
became clear that the Flyspeck project [14] demanded a flexible combination of
computing power and theorem proving not available in the Isabelle system. Higher-
Order Logic (HOL) contains a functional programming language; several research
efforts have exposed and exploited this fact. Among these efforts has been to come

4 Chapter 2 — The HOL Computing Library

up with ever more powerful and clever packages for defining functions in this
language [33], most recently the function package [19] in Isabelle. The major output
of these packages is a list of proven equations about the defined functions which
looks very much like a definition of these functions in a functional programming
language like Standard ML (SML) [21, 29]. As you are working with a theorem
prover, you would like to be able to execute those functions just like in SML, but
with the goal of obtaining a theorem or parts of a theorem. Actually, you might
want to do so for any list of proven equations which look like a functional program,
no matter what their origin might be.

The established way of doing this in Isabelle is the Simplifier, which is a tool
for doing trusted higher-order rewriting. How does the Simplifier gain your trust?
By following a principle that the Edinburgh LCF theorem prover pioneered [9],
and which also forms the heart of the Isabelle theorem prover. Theorems are
represented as an abstract datatype, and the logic is encoded as operations on
this abstract datatype. The Simplifier uses only those operations to generate and
manipulate theorems. No matter how complex the implementation of the Simplifier
is, all theorems that it generates are guaranteed to be correct as long as the abstract
datatype of theorems is implemented correctly.

Obviously there is a price to pay for this combination of power and safety:
performance. Compared to running an SML program, the Simplifier incurs a slow-
down factor of 1000 and more. In many applications it is worth paying this price,
but for the computations in this thesis such a performance penalty is prohibitive.
The HCL closes this performance gap, so that computations resulting in theorems
are possible with the speed of SML programs. Of course, there is again a price to
pay for this performance increase: power and safety. The HCL is less powerful
than the Simplifier: it has no congruence rules, but only weaker conditional rewrite
rules, and there are no simplification procedures. Currently, the HCL is also not as
safe as the Simplifier: there is no formal proof that the implementation of the HCL
is correct, therefore you have to trust the HCL just as you trust the implementation
of the abstract datatype of theorems. So when you use the HCL, you in fact view it
as an extension of the trusted kernel of the Isabelle system. Assuming that the HCL
has been implemented correctly, there is no way that using the HCL will produce
incorrect theorems 1.

2.2 Arithmetic in Commutative Rings with Unity

Arithmetic is the archetypal computational task and therefore a good first example
for computing with the HCL. We choose the abstract setting of commutative rings
with unity for doing arithmetic. We introduce an axiomatic type class Number
which describes such rings. It assumes the presence of the familiar constants and
axioms of ring theory (fig. 2.1). All these constants and axioms are polymorphic in
α, where α is a type variable of sort Number.

We also need a representation for numerals like 67. We adopt the standard ap-
proach of Isabelle which is based on [5] and choose a binary representation which
can encode both positive and negative numbers. This has the advantage of a uni-
form addition algorithm which works for any combination of positive and negative
operands. Such numerals are built up from four constants (fig. 2.2). Examples are

1The true content of this statement probably is: there is a way to implement the HCL correctly.

2.2 Arithmetic in Commutative Rings with Unity 5

Name Type
Zero α
One α
add α→ α→ α
mult α→ α→ α
neg α→ α

add Zero x = x
add x y = add y x
add (add x y) z = add x (add y z)
add (neg x) x = Zero
mult One x = x
mult x y = mult y x
mult (mult x y) z = mult x (mult y z)
mult x (add y z) = add (mult x y) (mult x z)

Figure 2.1: Number Constants and Axioms

Name Type Definition
Zero α
Neg1 α Neg1 = neg One

B0 α→ α B0 x = add x x
B1 α→ α B1 x = add (add x x) One

Figure 2.2: Numeral Building Blocks

shown in Figure 2.3.
Negation is a little bit more difficult with this representation compared to a

representation where you store the sign separately; it takes linear time instead of
constant time. Linear-time addition is also a little bit tricky for the special case when
you add two numerals which have both the shape B1(. . .). An obvious solution seems
to be

add (B1 x) (B1 y) = B0 (add (add x y) One),

but it is not clear that this is a linear-time rule as computing the successor is worst-
case linear-time itself which could lead to a quadratic-time rule for add. We define
two helper functions neg1 and add1 to deal with these difficulties:

neg1 x = neg (add x One),
add1 x y = add (add x y) One .

It is then straightforward to prove theorems about negation (fig. 2.4), addition
(fig. 2.5) and multiplication (fig. 2.6) which actually look like a functional program for
computing these operations on numerals. There are also theorems for normalizing
numerals (fig. 2.7).

Decimal Binary Numeral
0 0 Zero
1 1 B1 Zero
−1 −1 Neg1
2 10 B0 (B1 Zero)
−2 −10 B0 Neg1
67 1000011 B1 (B1 (B0 (B0 (B0 (B0 (B1 Zero))))))
−67 −1000011 B1 (B0 (B1 (B1 (B1 (B1 (B0 Neg1))))))

Figure 2.3: Numeral Examples

6 Chapter 2 — The HOL Computing Library

neg Zero = Zero
neg Neg1 = B1 Zero
neg (B0 x) = B0 (neg x)
neg (B1 x) = B1 (neg1 x)

neg1 Zero = Neg1
neg1 Neg1 = Zero
neg1 (B0 x) = B1 (neg1 x)
neg1 (B1 x) = B0 (neg1 x)

Figure 2.4: Computing Negation

add (B0 x) (B0 y) = B0 (add x y)
add (B0 x) (B1 y) = B1 (add x y)
add (B1 x) (B0 y) = B1 (add x y)
add (B1 x) (B1 y) = B0 (add1 x y)
add Zero x = x
add x Zero = x
add Neg1 (B0 x) = B1 (add Neg1 x)
add Neg1 (B1 x) = B0 x
add (B0 x) Neg1 = B1 (add x Neg1)
add (B1 x) Neg1 = B0 x
add Neg1 Neg1 = B0 Neg1

add1 (B0 x) (B0 y) = B1 (add x y)
add1 (B0 x) (B1 y) = B0 (add1 x y)
add1 (B1 x) (B0 y) = B0 (add1 x y)
add1 (B1 x) (B1 y) = B1 (add1 x y)
add1 Neg1 x = x
add1 x Neg1 = x
add1 Zero (B0 x) = B1 x
add1 Zero (B1 x) = B0 (add1 Zero x)
add1 (B0 x) Zero = B1 x
add1 (B1 x) Zero = B0 (add1 x Zero)
add1 Zero Zero = B1 Zero

Figure 2.5: Computing Addition

mult x Zero = Zero
mult Zero x = Zero
mult Neg1 x = neg x
mult x Neg1 = neg x
mult (B0 x) y = B0 (mult x y)
mult x (B0 y) = B0 (mult x y)
mult (B1 x) (B1 y) = B1 (add (B0 (mult x y)) (add x y))

Figure 2.6: Computing Multiplication

B0 Zero = Zero
B1 Neg1 = Neg1

Figure 2.7: Normalizing Numerals

2.2 Arithmetic in Commutative Rings with Unity 7

signature NUMERAL = sig

datatype Numeral = Zero | Neg1
| B0 of Numeral | B1 of Numeral

val neg : Numeral -> Numeral
val add : Numeral -> Numeral -> Numeral
val mult : Numeral -> Numeral -> Numeral

val norm : Numeral -> Numeral

val test : Numeral -> bool
val fac : Numeral -> Numeral

end

structure Numeral : NUMERAL = struct

datatype Numeral = Zero | Neg1
| B0 of Numeral | B1 of Numeral

fun add (B0 x) (B0 y) = B0 (add x y)
| add (B0 x) (B1 y) = B1 (add x y)

| add (B1 x) (B0 y) = B1 (add x y)

| add (B1 x) (B1 y) = B0 (add1 x y)

| add Zero x = x

| add x Zero = x

| add Neg1 (B0 x) = B1 (add Neg1 x)

| add Neg1 (B1 x) = B0 x

| add (B0 x) Neg1 = B1 (add x Neg1)

| add (B1 x) Neg1 = B0 x

| add Neg1 Neg1 = B0 Neg1

and add1 (B0 x) (B0 y) = B1 (add x y)
| add1 (B0 x) (B1 y) = B0 (add1 x y)

| add1 (B1 x) (B0 y) = B0 (add1 x y)

| add1 (B1 x) (B1 y) = B1 (add1 x y)

| add1 Neg1 x = x

| add1 x Neg1 = x

| add1 Zero (B0 x) = B1 x

| add1 Zero (B1 x) = B0 (add1 Zero x)

| add1 (B0 x) Zero = B1 x

| add1 (B1 x) Zero = B0 (add1 x Zero)

| add1 Zero Zero = B1 Zero

fun neg Zero = Zero
| neg Neg1 = B1 Zero

| neg (B0 x) = B0 (neg x)

| neg (B1 x) = B1 (neg1 x)

and neg1 Zero = Neg1
| neg1 Neg1 = Zero

| neg1 (B0 x) = B1 (neg1 x)

| neg1 (B1 x) = B0 (neg1 x)

fun mult x Zero = Zero
| mult Zero x = Zero

| mult Neg1 x = neg x

| mult x Neg1 = neg x

| mult (B0 x) y = B0 (mult x y)

| mult x (B0 y) = B0 (mult x y)

| mult (B1 x) (B1 y) =

B1 (add (B0 (mult x y)) (add x y))

fun norm Zero = Zero
| norm Neg1 = Neg1

| norm (B0 x) =

(case norm x of
Zero => Zero

| x => B0 x)

| norm (B1 x) =

(case norm x of
Neg1 => Neg1

| x => B1 x)

fun test Zero = true
| test Neg1 = false
| test (B0 x) = test x

| test (B1 x) = false

fun fac n =
if test n then

B1 Zero

else
mult n (fac (add n Neg1))

end

Figure 2.8: Standard ML Module for Computing with Numerals

8 Chapter 2 — The HOL Computing Library

2.3 Performance Showdown: Factorials

We will now apply both the HCL and the Simplifier of Isabelle to the problem of
computing factorials using the list L of theorems displayed in Figures 2.4, 2.5, 2.6
and 2.7. Both HCL and Simplifier can be used as functions from L to a conversion.
This conversion is a function taking a term t and returning a theorem t = F t, where
F t is the result of rewriting t according to L. To assess the performance of the HCL
and the Simplifier we will be looking at a whole family ti of polymorphic terms
where

t0 = N1 and ti+1 =mult ti Ni+1 .

The term Ni is the numeral corresponding to i, e.g. N1 = B1 (Zero :: α :: Number),
such that it cannot be rewritten further using the theorems in Figure 2.7. In other
words, we request that Ni be normalized.

Applying the conversion to ti will yield the theorem

ti = Ni ! .

We admit one more competitor to this contest: Standard ML itself. The list
L looks almost like a functional program, and it is easy to convert it into a true
Standard ML program (fig. 2.8). All we need to do is to

1. introduce an SML datatype Numeral consisting of four constructors corre-
sponding to the constants Zero, Neg1, B0 and B1,

2. introduce SML functions neg, add and mult (together with their helper func-
tions) which correspond to the constants neg, add and mult, and which behave
according to Figures 2.4, 2.5, 2.6,

3. introduce an SML function norm which does the normalization according to
Figure 2.7. There is no Isabelle constant norm to which norm corresponds, as
logically, norm would just be the identity.

Additionally, there is a function testwhich checks if the normalization of its input
yields Zero 2, and there is a function fac which calculates the factorial of its input
using test. Let Ni be the SML version of Ni, then Standard ML enters the contest by
computing norm (fac Ni).

The results of the performance showdown are summarized in Tables 2.1 and 2.2.
The measurements have been taken on an Intel Core2 Duo 2.0 GHz processor
running Isabelle 2007 / PolyML 5.0 / GHC 6.6.1. Missing entries in the tables do not
indicate nontermination but just that these measurements have not been taken.

Table 2.1 displays the total runtime of each method, while Table 2.2 displays the
slowdown factor of how many times slower each method worked relative to just
running a functional program. This slowdown factor grows rapidly with the size
of the computation for the Simplifier, but it remains constant or even improves for
the HCL. The HCL can be operated in different modes. The Barras mode performs
interpreted evaluation while both the Haskell mode and the SML mode perform
compiled evaluation. The slowdown factor for the Barras mode seems to be between
130 and 90, converging to the better end of this spectrum for large inputs. The
Haskell mode uses the external Glasgow Haskell compiler and has therefore huge

2test could also have been defined via fun test x = (norm x = Zero)

2.3 Performance Showdown: Factorials 9

Simplifier HCL (Barras) HCL (Haskell) HCL (SML) Standard ML
computing theorem computing SML value

i ti = Ni ! norm (fac Ni)

10 0.0026 0.0008 0.37 0.00048 0.000006
20 0.016 0.0026 0.38 0.00095 0.000023
40 0.123 0.013 0.4 0.0019 0.00012
80 1.18 0.072 0.45 0.0048 0.0008

160 13.1 0.4 0.54 0.0143 0.0041
320 151 2.3 0.8 0.047 0.024
640 1514 12.4 1.74 0.2 0.13

1280 16400 64.8 5.5 0.91 0.71
2560 – 333 22.5 4.47 3.59
5120 – 1655 102 22.5 18.7

10240 – – 508 105 102
20480 – – – 593 576

Table 2.1: Performance Showdown (runtime in seconds)

Simplifier HCL (Barras) HCL (Haskell) HCL (SML) Standard ML
computing theorem computing SML value

i ti = Ni ! norm (fac Ni)

10 433 133 61667 80 1
20 696 113 16521 41 1
40 1025 108 3333 16 1
80 1475 90 563 6 1

160 3195 97 38 3.5 1
320 6291 96 17 2 1
640 11646 95 13 1.5 1

1280 23099 91 8 1.3 1
2560 – 93 5 1.2 1
5120 – 89 5.5 1.2 1

10240 – – 5 1.03 1
20480 – – – 1.03 1

Table 2.2: Performance Showdown (runtime of method
runtime for computing SML value)

10 Chapter 2 — The HOL Computing Library

test-le Zero = True
test-le Neg1 = True
test-le (B0 x) = test-le x
test-le (B1 x) = test-less x

test-less Zero = False
test-less Neg1 = True
test-less (B0 x) = test-less x
test-less (B1 x) = test-less x

Figure 2.9: Signs of Integer Numerals

overhead. For long computations though its slowdown factor converges to 5. For
the SML mode the numbers are even better: although for small inputs due to non-
computational overhead the slowdown factor can be around 80, too, the situation
improves dramatically for larger inputs, approaching 1.2 for computations which
last a few seconds, and even approaching 1.03 for computations which last minutes.

The road to theorem proving performance that rivals the performance of func-
tional programs is therefore clear: use computing libraries like the HCL, and pack-
age computation in as large chunks as possible to avoid the large slowdown factors
for small inputs.

2.4 Controlling Evaluation

The observant reader might have noticed that for our performance showdown in
the previous section we had an SML function fac for computing the factorial of
a Numeral but no corresponding Isabelle constant fac. Instead we worked with
an explicit product. This was not really important for the showdown because
the computational difference is only slight, but in order to explain some issues
concerning the evaluation strategy employed by the HCL, we now introduce such
a constant.

However, our current general setting of commutative rings poses difficulties for
defining and executing fac. A definition like

fac x = if x = Zero then B1 Zero else mult x (fac (add x Neg1))

would render fac in most rings a partial function, which is inconvenient as HOL
is a logic of total functions. While this problem could be solved using the function
package [19] for definining partial functions, there is a more serious one. Just based
on the axioms from Figure 2.1 we cannot devise an executable test if a ring numeral
is equal to Zero or not, which is clearly a prerequisite for executing the above
specification. For example, the equation B0 (B1 Zero) = Zero holds for any field of
characteristic 2, but is false for the ring of integers.

To simplify matters, we therefore leave the general setting of rings and look at
the specific setting of the ring of integers. Here it is no problem to define a total
function which is constant on negative integers and which behaves like the factorial
function on nonnegative integers:

fac x = if test-le x then B1 Zero else mult x (fac (add x Neg1)) (2.1)

The function test-le checks if its argument is less than or equal to Zero. The theorems
for executing it are listed in Figure 2.9. So how do we execute fac?

2.4 Controlling Evaluation 11

2.4.1 Conditional Rules
Until now all theorems we gave to the HCL had the form of equations. Actually,
the HCL accepts theorems that have a more general shape:

A1 ≡ B1 =⇒ . . . =⇒ Am ≡ Bm =⇒ f p1 p2 . . . pn ≡ T (2.2)

The symbols ≡ and =⇒ denote Isabelle’s meta notions of equality and implication,
respectively. Furthermore, f p1 p2 . . . pn must be a linear pattern, but f may not be a
variable.

A pattern is either J Definition 2.1
Linear Pattern

1. a variable

2. or a term of the form f p1 p2 . . . pn, such that f is a constant and all pi are
patterns.

A pattern is called linear if no variable occurs more than once in it.

Each variable occurring free in T or in any of the A j or B j must occur in one of
the patterns.

Such a rule instructs the HCL to rewrite a term f q1 q2 . . . qn by first matching
each qi to the corresponding pi. If this does not succeed then the rule is ignored.
If the matching succeeds then each of the variables in the patterns will be bound.
Substituting these variables in T and in each A j and B j results in T′, A′j and B′j.
Afterwards the A′j and B′j are evaluated by the HCL, resulting in A′′j and B′′j . If for
all j the terms A′′j and B′′j are structurally equal, then f q1 q2 . . . qn is replaced by T′,
otherwise the rule is ignored.

Therefore, one way of telling the HCL how to execute fac is through conditional
rules:

test-le x −→ fac x = B1 Zero ,
¬ test-le x −→ fac x =mult x (fac (add x Neg1)).

These two rules can be mechanically transformed into

test-le x ≡ True =⇒ fac x ≡ B1 Zero
(¬ test-le x) ≡ True =⇒ fac x ≡mult x (fac (add x Neg1))

to match the description of rules accepted by the HCL given above.

2.4.2 Strict or Lazy Evaluation?
Instead of splitting the definition of fac into two conditional rules it seems more
natural to use its definition directly. This raises the question of how to execute
the if-then-else construct in (2.1). The HCL has no special built-in support for this
construct; to it, it is just another function If taking three arguments. Therefore we
have to provide equations which express the behavior of this If constant:

If True a b = a
If False a b = b (2.3)

The evaluation of fac Zero could then successfully proceed as follows:

12 Chapter 2 — The HOL Computing Library

fac Zero
≡ if test-le Zero then B1 Zero else mult Zero (fac (add Zero Neg1))
≡ if True then B1 Zero else mult Zero (fac (add Zero Neg1))
≡ B1 Zero

Here is a legal, but not terminating evaluation:

fac Zero
≡ if test-le Zero then B1 Zero else mult Zero (fac (add Zero Neg1))
≡ if test-le Zero then B1 Zero else mult Zero (fac Neg1)
≡ if test-le Zero then B1 Zero

else mult Zero (if test-le Neg1 then B1 Zero else mult Neg1 (fac (add Neg1 Neg1)))
≡ if test-le Zero then B1 Zero

else mult Zero (if test-le Neg1 then B1 Zero else mult Neg1 (fac (B0 Neg1)))
≡ . . .

Which evaluation path will the HCL take? One of the above, or maybe even another,
third one?

Actually, this depends on the mode of the HCL. As mentioned earlier, there are
different modes of the HCL, most prominently the Barras mode, the SML mode, and
the Haskell mode. The Haskell mode performs lazy evaluation and will therefore
find a terminating path for evaluating fac Zero. Both the Barras and the SML mode
evaluate all the arguments that are mentioned on the left hand side of a rule before
applying the rule, and will therefore diverge.

The trouble is that depending on the value of the first argument of If either the
second or the third argument should not be evaluated. There is a way to teach the
HCL this special evaluation strategy. If both the Barras and the SML mode need to
evaluate all the arguments on the left hand side of a rule before applying the rule,
but you do not want the last two arguments of If to be evaluated prematurely, then
just remove these two arguments from the left hand side and move them to the right
hand side!

Applying this to the equations (2.3) yields new equations for If which mark the
first argument as strict and the last two arguments as lazy:

If True = λ a b. a
If False = λ a b. b (2.4)

The reasons why this results in the behavior we wish for depend again on the mode.
For the Haskell mode, everything has worked before and will continue to work. For
the Barras mode and the SML mode special care has been taken to accommodate
the desired behavior. For details on this see the later sections which describe the
implementation of each mode.

Note that this method allows us to split the n = nstrict +nlazy arguments of any
function into two groups. The first group is made up of the first nstrict arguments
which are evaluated strictly. The second group is made up of the last nlazy arguments
which are evaluated lazily. The Barras mode is more general than the SML mode in
that it allows this grouping to vary from rule to rule. In the SML mode it is assumed
that there is a fixed grouping for all rules which belong to the same function.

Another, albeit related, application of this feature is to implement short-circuit
boolean operators, listed in Figure 2.10. The operators given there are defined using
the already available corresponding logical operators of Isabelle/HOL. There is no

2.5 Modes of the HCL 13

Name Definition
And And x y = x ∧ y
Or Or x y = x ∨ y

Implies Implies x y = x −→ y

And True = λ y. y
And False = λ y. False
Or True = λ y. True
Or False = λ y. y
Implies True = λ y. y
Implies False = λ y. True

Figure 2.10: Short-circuit Boolean Operators of Type bool→ bool→ bool

need to define new operators to obtain a different evaluation strategy for existing
operators. But in doing so we are able to use different evaluation strategies at the
same time.

It is a strength of our approach that via modes pure computing is decoupled from
the embedding into a theorem proving environment. The HCL is easily extendable
this way. Do you wish that the HCL could evaluate all arguments of a function in
parallel? Then just implement a mode that has this feature. Or outsource this task
to somebody who is an expert in programming parallel compilers but maybe has
no clue about theorem proving.

2.5 Modes of the HCL

So what exactly is a mode of the HCL? It is an implementation of the abstract
machine interface we describe in this section.

Expressions in a theorem prover are complicated. There are terms, types em-
bedded in and describing those terms, theorems, sorts of types, assumptions of
theorems, meta assumptions of theorems and so on. To deal correctly with these
complications is not trivial and mistakes are easily introduced if one handles them
directly bypassing the protective layer of the theorem prover kernel. The design
of the HCL takes this potential source of mistakes into account and separates the
administrative tasks of the computing library from the actual task of computing.
The administrative branch of the HCL supports major features of Isabelle like ax-
iomatic type classes, polymorphism, overloading and locales, and will be studied
later. In this section we look at our interface for raw computing and at two of its
implementations, the Barras mode and the SML mode. There is also a Haskell mode
which is similar to the SML mode, and we will mention some of the differences.

2.5.1 An Abstract Machine Interface

Each computing mode can be viewed as a black box. You give it a program and
a term, and the black box will return another term which is the result of running
the input program on the input term. This black box is what we call our abstract
machine. To describe it, we need to explain how exactly our terms and programs
look like, and what it means to run such programs on such terms.

An abstract machine term is inductively defined via J Definition 2.2
Abstract Machine
Termterm ::= Var v | Const c | term1 · term2 | λ term | Computed term

such that v ∈N and c ∈ Z. A pure term is one that does not contain any Computed
terms.

14 Chapter 2 — The HOL Computing Library

An abstract machine term is just a λ calculus term in de Bruijn index notation [6],
with constants and with an additional constructor Computed. For specification
purposes Computed t can be treated just like t; it is a hint for the abstract machine
implementation that t has already been computed and needs no further processing.
The implementation may ignore this hint.

When we write t1 = t2 for two abstract machine terms t1 and t2 we are referring
to the equality naturally arising from the inductive definition of terms.The advan-
tage of using de Bruijn indices is that we do not need to concern ourselves with
α equivalence of λ terms.

An abstract machine pattern is inductively defined viaDefinition 2.3
Abstract Machine

Pattern

I

pattern ::= PVar | PConst c [pattern1, . . ., patternn]

such that c ∈ Z.

We denote the number of occurrences of PVar in a pattern p by |p|. An abstract
machine pattern is just a compact encoding of certain abstract machine terms. Let
us denote the term that corresponds to a given pattern p by [p]T:

[p]T = [p]T,0
[PVar]T,i = Var i
[PConst c [p1, . . . ,pn]]T,i = (. . . (((Const c) ·q1) ·q2) · · ·) ·qn

where q j = [p j]T,I(j) and I(j) = i+
∑n

k= j+1 |pk|

So [p]T arises from p in the obvious way by enumerating the variables from right to
left.

The idea is that a pair (p, t) of a pattern p and a term t induces a rewrite rule
[p]T = t. We also require that in such a rewrite rule any free variable in t must be
bound by p.

checkfrees f (Var v) = v < f
checkfrees f (Const c) = true
checkfrees f (t1 · t2) = checkfrees f t1 ∧ checkfrees f t2
checkfrees f (λ t) = checkfrees (f +1) t
checkfrees f (Computed t) = checkfrees f t

Definition 2.4
checkfrees

I

The requirement that in a rewrite rule [p]T = t any free variable in t must be bound
by p can be expressed with the formula checkfrees |p| t.

An abstract machine rule is a triple ([(a1,b1), . . . , (an,bn)],p, t) such thatDefinition 2.5
Abstract Machine

Program

I

1. p is an abstract machine pattern and p , PVar,

2. t is a pure abstract machine term,

3. checkfrees |p| t holds,

4. the ai and bi are pure abstract machine terms with checkfrees |p| ai and check-
frees |p| bi, respectively. The pairs (ai,bi) are called guards.

An abstract machine program is a list of abstract machine rules.

2.5 Modes of the HCL 15

Now that we know what an abstract machine program looks like, how does it
operate on a term? Although we assume familiarity with de Bruijn indices [6]
and the λ calculus, we will first define β reduction and related notions for abstract
machine terms so that we have the complete definition of the abstract machine
interface in one place.

J Definition 2.6
Lifting(Var v) ↑n =

Var v if v < n
Var (v+1) if v ≥ n

(Const c) ↑n = Const c
(t1 · t2) ↑n = (t1 ↑

n) · (t2 ↑
n)

(λ t) ↑n = λ(t ↑n+1)
(Computed t) ↑n = Computed (t ↑n)

J Definition 2.7
Lowering(Var v) ↓n =

Var v if v < n
Var (v−1) if v > n

(Const c) ↓n = Const c
(t1 · t2) ↓n = (t1 ↓n) · (t2 ↓n)
(λ t) ↓n = λ(t ↓n+1)
(Computed t) ↓n = Computed (t ↓n)

Let now ζ be a substitution, i.e. a partial function fromN to abstract machine terms.
The substitution ζ ↑ is then defined by

(ζ ↑) v =

undefined if v = 0 or v > 0 ∧ ζ (v−1) is undefined
ζ (v−1) ↑0 if v > 0 ∧ ζ (v−1) is defined

J Definition 2.8
Substitution(Var v) [ζ] =

ζ v if ζ v is defined
Var v if ζ v is undefined

(Const c) [ζ] = Const c
(t1 · t2) [ζ] = (t1 [ζ]) · (t2 [ζ])
(λ t) [ζ] = λ (t [ζ ↑])
(Computed t) [ζ] = Computed (t [ζ])

If ζ is a function just defined for a single index v such that ζ v = s we also write t[s/v]
instead of t[ζ].

J Definition 2.9
β Reduction

1. (λ t) s →β (t [(s ↑0)/0]) ↓0

2. λ t →β λ t′ if t →β t′

3. t1 · t2 →β t′1 · t2 if t1 →β t′1
4. t1 · t2 →β t1 · t′2 if t2 →β t′2
5. Computed t →β Computed t′ if t →β t′

Lowering is actually a partial function because e.g. (Var 0) ↓0 is not defined; but we
use it in the definition of β reduction only on an argument for which it is defined.

By defining β reduction we put one aspect of computing in place. On top of it
we can build the other aspect, which is how to make use of the rules of an abstract
machine program. For this we define τ reduction. When talking about τ reduction,
we always have some specific abstract machine program in mind which does not
appear explicitly in our notation but should be clear from the context.

16 Chapter 2 — The HOL Computing Library

Definition 2.10
τ Reduction

I 1. t1 ⇒τ t2 if t1→
∗
τ t2

2. t1 =τ t2 if ∃ s. t1⇒τ s∧ t2⇒τ s

3. ([p]T)[ζ] →τ t[ζ] if

1. ζ is a substitution

2. and ([(a1,b1), . . . , (an,bn)],p, t) is a rule of the program

3. and ai[ζ] =τ bi[ζ] for all i = 1, . . . ,n

4. t →τ t′ if t →β t′ or t′ →β t (β conversion)
5. t→τ λ (t ↑0

·Var 0) and λ (t ↑0
·Var 0)→τ t (η conversion)

6. λ t →τ λ t′ if t →τ t′

7. t1 · t2 →τ t′1 · t2 if t1 →τ t′1
8. t1 · t2 →τ t1 · t′2 if t2 →τ t′2
9. Computed t →τ Computed t′ if t →τ t′

10. Computed t →τ t

Until now we have treated the Computed constructor just as the identity. We call an
abstract machine term t closed if checkfrees 0 t holds and for any subterm Computed s
of t the following assumptions hold:

• s is a pure term, i.e. it does not contain Computed,

• checkfrees 0 s holds,

• there is no s′ with s →β s′.

An abstract machine is a mapping that takes an abstract machine program to aDefinition 2.11
Abstract Machine

I

relation→AM on closed abstract machine terms such that→AM is a partial function
and such that t →AM t′ implies

• t⇒τ t′,

• t′ is a pure term,

• there is no t′′ such that t′ →β t′′.

Note that an abstract machine is allowed to always fail , i.e. to map every
program to the empty relation. This particular abstract machine would not be
very useful, but our focus is on ensuring that if an abstract machine does compute
something, it will be correct. The definition of what constitutes an abstract machine
is designed to fulfill this promise while at the same time preserving some freedom
for the abstract machine implementor. So when computing a term t an abstract
machine can assume that t contains no free variables, and that subterms of t marked
with Computed have no β redexes left. It must ensure when returning a result t′

that any computing done can be understood in terms of τ reduction, that t′ contains
no Computed markers any more, and that there are no β redexes left in t′.

2.5.2 The Barras Machine
The most general implementation of the abstract machine interface that the HCL
provides is the Barras machine. It is an interpreter with an execution model that is
borrowed from the machine in [2]. The most important difference between ours
and the original one is that the original one actually produces proofs by operating

2.5 Modes of the HCL 17

on theorems instead of terms. Because of this no proof of correctness is given in [2];
we will provide a proof of partial correctness which shows that the Barras machine
is a correct implementation of the abstract machine interface. Another difference is
that we also allow guards.

The Barras machine mimicks the evaluation strategy of strict functional pro-
gramming languages. It performs bottom-up evaluation; β reductions are delayed
via explicit substitutions.

The data structure of Barras terms is the one for abstract machine terms aug-
mented with an additional constructor Closure for performing explicit substitutions.
The Computed constructor is inherited from the definition of abstract machine terms
and does not appear in [2].

term ::= Var v | Const c | term1 · term2 | λ term | Computed term
| Closure [term0, . . . , termn] term

J Definition 2.12
Barras Term

Any abstract machine term is also a Barras term. On the other hand, any Barras term
can be understood as an abstract machine term by viewing Closure as a function
defined by

Closure [s1, . . . ,sn] t := (λ. . .λ︸︷︷︸
n times

t) · sn · . . . · s1

instead of viewing Closure as a constructor.
The idea of the Closure constructor is to delay actual β reduction until all argu-

ments of a function have been collected. An additional intuition is that in a term
of the form Closure E t the Closure constructor acts as a marker that t has not been
computed yet.

The state (s, t) of the Barras machine consists of the subterm t that is currently
reduced and a stack s that keeps track of the position of this subterm in the larger
term under consideration.

stack ::= SEmpty | SAppL term stack | SAppR term stack | SAbs c stack J Definition 2.13
Barras Stack

Let us denote the larger term that (s, t) encodes with (s, t)zoom out:

(SEmpty, t)zoom out = t
(SAppL t2 s, t1)zoom out = (s, t1 · t2)zoom out
(SAppR t1 s, t2)zoom out = (s, t1 · t2)zoom out
(SAbs c s, t)zoom out = (s, λ (t[(Var 0)/(Const c)]))zoom out

In the above we substitute a variable for a constant. Let us give a definition for this:

J Definition 2.14
Substituting a
Variable for a
Constant

(Const d)[(Var v)/(Const c)] =

Var v if c = d
Const d if c , d

(Var w)[(Var v)/(Const c)] = Var w
(t1 · t2)[(Var v)/(Const c)] = (t1 [(Var v)/(Const c)]) · (t2 [(Var v)/(Const c)])

(λ t)[(Var v)/(Const c)] = λ (t [(Var (v+1))/(Const c)])

(Closure [e1, . . . ,en] t) [(Var v)/(Const c)] = Closure [e′1, . . . ,e
′
n] (t [(Var (v+n))/(Const c)])

where e′i = ei [(Var v)/(Const c)]

(Computed t)[(Var v)/(Const c)] = Computed (t [(Var v)/(Const c)])

18 Chapter 2 — The HOL Computing Library

The Barras machine performs both strong and weak reduction. Weak reduction
will not reduce those terms λ t which are not applied to an argument; with strong
reduction, if t reduces to t′, then λ t will reduce to λ t′. Because functional pro-
gramming languages only perform weak reduction, the Barras machine will only
perform strong reduction when no further weak reduction is possible.

Definition 2.15
Weak Reduction

I 1. weak (s, Closure E (t1 · t2)) =weak (SAppL (Closure E t2) s, Closure E t1)

2. weak (SAppL t′ s, Closure [e1, . . . ,en] (λ t)) =weak (s, Closure [t′,e1, . . . ,en] t)
3. weak (s, Closure [e0, . . . ,en] (Var v)) =weak (s, ev)

4. weak (s, Closure E (Const c)) =weak (s, Const c)

5. weak (s, Closure E (Computed t)) =

weak (s, Closure [] t) if t contains any λ
weak (s, t) otherwise

6. weak (s, t) =

weak (s,r) if match t = Some r
weak’ (s, t) if match t = None

7. weak’ (SAppR t1 s, t2) =weak (s, t1 · t2)

8. weak’ (SAppL t2 s, t1) =weak (SAppR t1 s, t2)

9. weak’ (s, t) = (s, t)

The reduction rules should be read like an ML function definition, i.e. rule i will only
be applied if there is no applicable rule j with j < i. Because of guards, strong and
weak reduction are mutually recursive; above rules need a definition of the match
operation to be complete, and match depends on strong reduction. Therefore we
first describe strong reduction, and look only then at the match operation.

Definition 2.16
Strong Reduction

I 1. strong (s, Closure [e1, . . . ,en] (λ t)) = strong (SAbs c s, t′)
where a) c ∈ Z is some fresh identifier not referring to any constant in e1, . . . , en

or in t or in the abstract machine program
b) weak (SEmpty, Closure [Const c, e1, . . . , en] t) = (SEmpty, t′)

2. strong (s, t1 · t2) = strong (SAppL t2 s, t1)
3. strong (s, t) = strong’ (s, t)
4. strong’ (SAbs c s, t) = strong’ (s, λ (t[(Var 0)/(Const c)]))
5. strong’ (SAppL t2 s, t1) = strong (SAppR t1 s, t2)
6. strong’ (SAppR t1 s, t2) = strong’ (s, t1 · t2)
7. strong’ (s, t) = (s, t)

Let simp be the partial function defined byDefinition 2.17
Simplification

I

simp t = t′ if weak (SEmpty, t) = (SEmpty, t′′) and strong (SEmpty, t′′) = (SEmpty, t′).

Let the abstract machine ruleDefinition 2.18
Matching

I

([(a1,b1), . . . , (an,bn)], p, t)

be the first rule of the abstract machine program such that

1. [p]T[ζ] =m for some substitution ζ = (0 7→ e0, . . . , |p| −1 7→ e|p|−1),

2. E = [e0, . . . ,e|p|−1],

3. simp (Closure E ai) = simp (Closure E bi) for all i = 1, . . . ,n.

Then we define

match m = Some (Closure E t),

otherwise match m =None.

2.5 Modes of the HCL 19

The Barras machine maps an abstract machine program to the relation→Barras where J Definition 2.19
Barras Machine

t →Barras t′ if simp (Closure [] t) = t′.

The Barras machine is an abstract machine in the sense of Definition 2.11. J Theorem 2.1
Partial Correctness of
the Barras MachineProof. The→Barras relation is defined in terms of simp, therefore it is a partial func-

tion. Let us assume that t0 →Barras tF holds. Then the machine state (SEmpty, t0)
has been transformed into the state (SEmpty, tF) via a series of calls to weak, weak’,
strong and strong’. Showing t0⇒τ tF is equivalent to showing (SEmpty, t0)zoom out⇒τ
(SEmpty, tF)zoom out. Note that when talking about τ reduction of Barras terms
we view them as abstract machine terms by erasing all closures as explained ear-
lier. Because ⇒τ is transitive, t0 ⇒τ tF follows if we can show (s1, t1)zoom out ⇒τ
(s2, t2)zoom out for all consecutive states of the transformation of (SEmpty, t0) into
(SEmpty, tF). We can assume for any state (s, t) participating in the transformation
the following invariant:

• t is closed (when viewed as an abstract machine term),

• any term appearing in the stack s is closed,

• for any subterm c of t or any term appearing in the stack such that c is of shape
Closure [e1, . . . ,en] t′, we have that c and all ei are closed,

• if SAbs c s′ appears somewhere in s then Const c does not appear anywhere
in the abstract machine program.

This invariant is true for our initial state (SEmpty, t0) as there are no terms in SEmpty
and t0 is a closed abstract machine term; both weak and strong reduction preserve
this invariant. This is proven simultaneously with the compatibility of weak and
strong reduction with τ reduction, but we do not mention this explicitly.

Why do we need that last condition in our invariant? Because it ensures com-
patibility of τ reduction with zooming out. All the time we will want to deduce
from t⇒τ t′ that also (s, t)zoom out⇒τ (s, t′)zoom out holds. If s = SAbs c s′, then this is
equivalent to (s′, t[(Var 0)/(Const c)])zoom out⇒τ (s′, t′[(Var 0)/(Const c)])zoom out. But
does t[(Var 0)/(Const c)]⇒τ t′[(Var 0)/(Const c)] hold? Yes, because Const c does
not appear in the abstract machine program. That way, t⇒τ t′ is not due to any
special properties that Const c has with respect to the program. By induction it is
therefore easy to show that τ reduction is compatible with zooming out.

Let us now check that τ reduction is compatible with each weak reduction rule.
1. From the definition of zooming out we conclude

(SAppL (Closure E t2) s, Closure E t1)zoom out = (s, (Closure E t1) · (Closure E t2))zoom out.
Thus the compatibility follows from (Closure E t1) · (Closure E t2)⇒τ Closure E (t1 · t2).

2. (SAppL t′ s, Closure [e1, . . . ,en] (λ t))zoom out = (s, (Closure [e1, . . . ,en] (λ t)) · t′)zoom out,
therefore the compatibility of rule 2 is a consequence of

(Closure [e1, . . . ,en] (λ t)) · t′ = ((λ. . .λ︸︷︷︸
n times

(λ t)) · en · . . . · e1) · t′

= (λ. . .λ︸︷︷︸
(n+1) times

t) · en · . . . · e1 · t′

= Closure [t′,e1, . . . ,en] t.

20 Chapter 2 — The HOL Computing Library

3. The invariant tells us that Closure [e0, . . . ,en] (Var v) is closed. Thus v ≤ n and

Closure [e0, . . . ,en] (Var v) = (λ. . .λ (Var v)) · en · . . . · e0 ⇒τ ev.

4. Similarly, Closure E (Const c)⇒τ Const c.

5. The invariant ensures that in Closure E (Computed t) the term t is closed. Therefore

Closure E (Computed t) ⇒τ Closure E t ⇒τ t.

6. If no rule matches then the transformation is just the identity and there is nothing
to show. On the other hand, assume that the state (s, t) is transformed into (s,r) by
matching with the rule ([(a1,b1), . . . , (an,bn)], p, u). Then

(a) [p]T[ζ] = t for some substitution ζ = (0 7→ e0, . . . , |p| −1 7→ e|p|−1),

(b) E = [e0, . . . ,e|p|−1],

(c) simp (Closure E ai) = simp (Closure E bi) for all i = 1, . . . ,n,

and r = Closure E u.
Inductively, we derive Closure E ai =τ Closure E bi for all i = 1, . . . ,n. Because u and
all ai and bi contain no free variables except those for which ζ is defined, we have
u[ζ]⇒τ Closure E u and ai[ζ]⇒τ Closure E ai and bi[ζ]⇒τ Closure E bi. Thus rule 2 of
Definition 2.10 for τ reduction is applicable and gives us t = [p]T[ζ]→τ u[ζ]⇒τ r.

The compatibility of rules 7 and 8 follows directly from the definition of zooming
out, for rule 9 there is nothing to show.

Next are the strong reduction rules.
1. (SAbs c s, t′)zoom out = (s, λ t′[(Var 0)/(Const c)])zoom out. The term t′ is the result of

weakly reducing Closure [Const c,e1, . . . ,en] t and thus by induction

Closure [Const c,e1, . . . ,en] t ⇒τ t′.

From there we deduce

(Closure [Const c,e1, . . . ,en] t) [(Var 0)/(Const c)] ⇒τ t′[(Var 0)/(Const c)]

because Const c does not appear anywhere in the abstract machine program. Further-
more, Const c does not appear in e1, . . . , en and neither in t. Thus

λ t′[(Var 0)/(Const c)] ⇐τ λ ((Closure [Const c,e1, . . . ,en] t)[(Var 0)/(Const c)])
= λ (Closure [Var 0,e1, . . . ,en] t)
= λ ((λ. . .λ︸︷︷︸

(n+1) times

t) · en · . . . · e1 ·Var 0)

= λ ((Closure [e1, . . . ,en] (λ t)) ·Var 0)
= λ ((Closure [e1, . . . ,en] (λ t)) ↑0

·Var 0)
⇐τ Closure [e1, . . . ,en] (λ t).

4. Follows directly from the definition of zooming out.

Zooming out leads to immediate proofs for all other strong reduction rules. �

Actually, we are not done yet with the proof. To complete the proof that the Barras
machine is a true abstract machine, we also have to show that from t0→Barras tF it
follows that tF contains no β-redexes, no Computed terms, and no closures anymore.

Proof. For the purpose of this part of the proof, we do not freely interchange Barras
terms and abstract machine terms any longer; this means that we view Closure as a
constructor now, and not as an abbreviation for a special kind of abstract machine
term.

We say that a Barras term w is in weak normal form (WNF) if it meets all of the
following conditions:

2.5 Modes of the HCL 21

1. If w contains λs then those are always contained in a surrounding closure.

2. w contains no closures except those of shape Closure E (λ t).

3. w does not contain any term of shape (Closure E (λ t)) · s.

4. If w contains β-redexes then those are always contained in a surrounding
closure.

5. If w contains Computed terms then those are always contained in a surround-
ing closure.

We first look at weak reduction and prove by induction over the number of reduction
steps that its execution preserves the following invariants of the state (S,T) of the
Barras machine:

(I1) If Closure [e1, . . . ,en] t is contained in T or in any of the terms in the stack S,
then each ei is a closure or a WNF, and t contains no closures.

(I2) T and all terms in S are closures or WNFs.

(I3) If SAppL t s is contained in S then t is a closure.

(I4) If SAppR t s is contained in S then t is a WNF.

It is easy to see that all the rules of reduction for weak and weak’ preserve these
four invariants:

• Let us start with (I3). SAppL t s is only produced in rule 1, and t is clearly a
closure there.

• To show (I4), note that SAppR t s is only produced in rule 8; t cannot be a
closure because otherwise one of the rules 1 to 5 would have been called;
because of (I1) these rules form a complete case distinction on closures (at
least for an SAppL stack). Because of (I2) it follows that t is a WNF.

• It is time to approach (I1). The only critical rules are 2 and 6. Rule 2 preserves
(I1) because of (I3). Rule 6 uses the fact that if match t succeeds then t cannot
be a closure and must therefore be a WNF because of (I2).

• Critical for (I2) are the rules 5 and 7. Rule 5 is defined via a case distinction
just so that (I2) is evident. In rule 7 the term t1 · t2 is a WNF because t1 is a
WNF but no closure (because of (I4)) and because t2 is also a WNF (t2 cannot
be a closure and no WNF as otherwise one of the rules 1,3,4,5 had applied).

Provided the start state of weak reduction fulfills all four invariants it follows
that the terminal state (SEmpty, t) fulfills the invariants. Therefore t is a closure or
a WNF. It cannot be a closure and not a WNF because then rule 9 would never have
applied. Therefore t is a WNF.

Now we look at strong reduction. We introduce two further normal forms. The
weaker normal form (WRNF) is a still weaker form of the WNF which we obtain by
not requiring property 1. A Barras term has strong normal form (SNF) if it does not
contain any closures.

The invariants for the state (S,T) during strong reduction are then:

22 Chapter 2 — The HOL Computing Library

(J1) If Closure [e1, . . . ,en] t is contained in T or in any of the terms in the stack S,
then each ei is a closure or a WNF, and t contains no closures.

(J2) (S,T)zoom out is a WRNF.

(J3) In every call strong (S,T), T is a WNF.

(J4) In every call strong’ (S,T), T is a SNF.

(J5) If SAppL t s is contained in S then t is a WNF.

(J6) If SAppR t s is contained in S then t is a SNF.

We want to prove that these invariants hold throughout strong reduction by in-
duction over the number of strong and strong’ reduction steps. As induction base,
consider how strong reduction is called indirectly via simp (Closure [] t): first
weak (SEmpty,Closure [] t) = (SEmpty, t′′) leads to t′′ and then strong (SEmpty, t′′)
is called. The state (SEmpty,Closure [] t) fulfills trivially all invariants I1 to I4 and
therefore t′′ is a WNF as we have proved before. This implies that all invariants J1
to J6 hold trivially for the call strong (SEmpty, t′′).

The induction step is again easy to do; we just check that all the invariants stay
true:

• Let us consider rule 1 of strong reduction. A call to

strong (s, Closure [e1, . . . ,en] (λ t))

results in a call to strong (SAbs c s, t′) where t′ is the result of

weak (SEmpty, Closure [Const c, e1, . . . , en] t) = (SEmpty, t′).

All invariants I1 to I4 are true for the state weak is called with: I1 holds because
J1 holds for (s, Closure [e1, . . . ,en] (λ t)) and because Const c is a WNF, similarly
we derive I2 from J3. I3 and I4 hold trivially because the stack is empty.

Thus the result of weak reduction, t′, is a WNF. Therefore J3 holds. There is
no call to strong’ which implies that J4 holds trivially. All closures appearing
in t′ have to respect I1 and therefore also J1 holds. The stack SAbs c s inherits
all SAppL and SAppR elements from s, therefore J5 and J6 hold trivially.
The only invariant we have to be a little bit careful about is J2. In order for
(SAbs c s, t′)zoom out to be a WRNF, we must ensure that it does not contain
any β-redexes. Zooming one step out of (SAbs c s, t′) yields a state of the form
(s, λ . . .), so there is the danger of introducing such a β-redex if s is an SAppL
stack. Fortunately this cannot be the case, because otherwise property 3 of
WRNF (we just use the same numbering of properties as for WNFs) would
have been violated already in the original state.

• In rule 2, we have that both t1 and t2 are WNFs because t1 · t2 is a WNF.
Therefore J3 and J5 hold. The other invariants hold trivially.

• In rule 3 only invariant J4 needs special consideration. We have to show that
t is a SNF, i.e. t contains no closures. We already assume because of J3 that t
must be a WNF. That means it cannot be a λ-term or a Computed term. It also
cannot be an application, because otherwise rule 2 of strong reduction would

2.5 Modes of the HCL 23

have applied instead of rule 3. It also cannot be a Closure: because t is a WNF,
it could only be a closure of shape Closure . . . (λ. . .), but closures of this shape
would have been handled by rule 1 instead of rule 3. Therefore t must be a
variable or a constant which both contain no closures.Therefore J4 holds.

• In rule 4 all invariants obviously hold.

• In rule 5, invariant J3 holds because of J5, and J6 because of J4.

• In rule 6, invariant J4 holds because of J4 and J6.

• In rule 7 all invariants obviously hold. Note that s must be SEmpty and that
rule 7 is always the last rule that is applied during strong reduction.

We have proven that all invariants J1 to J6 hold throughout strong reduction. Any
terminal result (SEmpty, t) of strong reduction fulfills in particular J4 and J2. This
implies that t is both a SNF and a WRNF. Because it is a SNF, it contains no closures
anymore. Because it is a WRNF, it does not contain anyβ-redexes or Computed terms
anymore, because in a WRNF these constructs survive only within closures. �

In Section 2.4.2 we described how to delay immediate evaluation of the last
arguments of a function by moving them from the left hand side of a rule to the
right hand side. This is directly supported by the Barras machine; actually, it is at
the heart of its execution model. In order to evaluate Closure E (t1 · t2), t2 is wrapped
up in a closure and put into the stack in unevaluated form (weak reduction rule 1).
Then Closure E t1 is evaluated. The result of this evaluation might be an abstraction
which does not reference its argument. In this case, t2 will never be evaluated.
One can summarize the evaluation strategy of the Barras machine as follows: β
reduction computes its argument lazily, application of a program rule computes all
of the arguments strictly.

2.5.3 The SML Machine
The SML machine is currently the fastest implementation of the abstract machine
interface. This is achieved by translating an abstract machine program directly to
Standard ML code. The SML machine is not as general as the Barras machine;
abstract machine terms of shape λ t are translated to SML functions, which can
only be applied, but not inspected for their body t. Therefore if the result of the
computation still contains SML functions, it cannot be translated back to an abstract
machine term. This restriction could be lifted by a more complex translation from λ
terms to SML functions which also wires some form of term management into the
SML functions. But our experiments seem to indicate that this irrevocably leads to
a severe degradation of computing performance by a factor of 5 to 10. Therefore,
in order to achieve maximal speed, the generality of the SML machine has been
sacrificed. Note that this is not as big a restriction as it may sound:

• When compared to the Barras machine, this just means that the SML machine
does not perform strong reduction but only weak reduction.

• Constants may represent functions; only the ability to return anonymous func-
tions is lost.

• Anonymous functions can be used during the computation; only at the end
they need to be gone.

24 Chapter 2 — The HOL Computing Library

An SML program basically consists of data structures and the functions that
operate on them. Earlier we showed an example of how computing with numerals
can be encoded in SML (fig. 2.8). The data structure there is a datatypemade up of
the four constructors Zero, Neg1, B0 and B1. The functions are those for addition add,
multiplication mult and so on. We would like the SML machine to produce similar
code for the abstract machine program consisting of the rules in Figures 2.4-2.7.
There seems to be a straightforward enough recipe; divide all constants into two
kinds, the function constants, and the data constants. The function constants are
those constants which appear as head symbols on the left hand side of a program
rule, e.g. neg, as it appears as a head symbol in the rule neg Zero = Zero. The
data constants are those constants appearing in the rules which are not function
constants, e.g. Zero. Then generate a datatype definition containing all data
constants as constructors, and one function definition for each function constant.

This simple recipe would actually be an adequate one if we were generating
SML code for Figures 2.4-2.6 only. But the rules in Figure 2.7 complicate things,
because now both B0 and B1 are function constants and therefore no longer data
constants. This cripples our datatype. There is also the problem of the norm function
in Figure 2.8. Its origin is in the rules of Figure 2.7, obviously, but how exactly is the
SML function norm derived from those rules?

Figuring out stuff like this is nothing an automatic translation tool is very good
at. Fortunately, we can modify our simple recipe to get another simple recipe. Who
says that the sets of function constants and data constants must be disjunct? We
just change our definition of data constants: any constant appearing in the rules
is a data constant. Therefore function constants are special data constants. This
means that B0 and B1 both have two SML incarnations. They are translated into
SML constructors B0 and B1. And they are translated into SML functions b0 and b1:

fun b0 Zero = Zero fun b1 Neg1 = Neg1

| b0 x = B0 x | b1 x = B1 x

The setD⊂ Z is the set of data constants, i.e. Const c appears in any of the rulesDefinition 2.20
Data and Function

Constants

I

of the abstract machine program iff c ∈ D.
The set F ⊂ D is the set of function constants, i.e. c ∈ F iff there is a rule r =

([g1, . . . , gn], p, t) of the abstract machine program and p has shape PConst c [p1, . . . ,pm].
We say then that r belongs to the function constant c.

We assume that the input of the SML machine consists not only of the abstract
machine program but also of an arity function φ. There is no restriction on φ except
that it be a function from Z to N. The arity φ is critical to the behavior of the SML
machine. Nevertheless, the SML machine is required to implement the abstract
machine interface, no matter what φmight be.

A pattern PConst c [p1, . . . ,pn] is called compatible with the arity function φ if
φ(c)= n holds and if all pi for i= 1, . . . ,m are compatible with φ. We modify the given
abstract machine program in the following way:

1. Any rule ([g1, . . . , gm], PConst c [p1, . . .pn], t) with n > φ(c) or any incompatible
pi is removed.

2. Each rule ([(a1,b1), . . . , (am,bm)], PConst c [p1, . . . ,pn], t) such that all pi are com-
patible and δ = φ(c)−n ≥ 0 is replaced by the rule

([(a1 ↑
δ−1,b1 ↑

δ−1), . . . , (am ↑
δ−1,bm ↑

δ−1)], PConst c [p1, . . . ,pn,PVar, . . . ,PVar︸ ︷︷ ︸
δ times

], t̃)

2.5 Modes of the HCL 25

where (. . . (t ↑δ−1
·Var (δ− 1)) · . . . ·Var 0)→∗β t̃ and there is no t′ with t̃→β t′. 3

We define ↑−1 to be just the identity operator.

We also say that c has at most lazy index δ, and at least strict index n.

Note that if a⇒τ b with respect to the modified program then also a⇒τ b with
respect to the original program. We can therefore forget the original program and
work with the modified program but still claim that the SML machine implements
the abstract machine interface correctly with respect to the original program as long
as it implements the interface correctly with respect to the modified one. From now
on we assume that only compatible patterns occur in the abstract machine program.
With every function constant c ∈ F we associate its lazy index lazy (c), which is the
least i such that c has at most lazy index i, and its strict index strict (c), which is the
greatest i such that c has at least strict index i. Lazy and strict index of c sum up to

φ(c) = strict (c)+ lazy (c).

Let D = {c1, . . . ,cn} be the set of size n of data constants. The induced SML data J Definition 2.21
Induced SML Data
Structure

structure Term is then defined by

datatype Term = App of Term * Term

| Abs of (Term -> Term)

| Const of int

| Φ(c1)
...
| Φ(cn)

where

Φ(c) =


Cc if φ(c) = 0
Cc of Term * . . . * Term︸ ︷︷ ︸

φ(c) times

if φ(c) > 0

AssumeD = {0, 3, 8}, and φ(0) = 4, φ(3) = 0, φ(8) = 1. Then J Example 2.1

Φ(0) = C0 of Term * Term * Term * Term

Φ(3) = C3

Φ(8) = C8 of Term

This is the induced SML data structure:

datatype Term = App of Term * Term

| Abs of (Term -> Term)

| Const of int

| C0 of Term * Term * Term * Term

| C3

| C8 of Term

The SML equality operator = is not defined for values of type Term because in order
to compare Abs f with Abs g one would have to compare the two functions f and
g. But in order to cope with guarded rules we need to be able to compare two values
of type Term for equality. Of course, this comparison will only be approximate, i.e.
it might return false for values that will behave identical in all situations.

26 Chapter 2 — The HOL Computing Library

Definition 2.22
Equality for Term

I eq (App (a1,a2)) (App (b1,b2)) = eq a1 b1 andalso eq a2 b2

eq (Abs u) (Abs v) = false

eq (Const c1) (Const c2) = (c1 = c2)

eq (Cc1(u1,. . .,uφ(c1))) (Cc1(v1,. . .,vφ(c1))) = eq u1 v1 andalso . . . andalso eq uφ(c1) vφ(c1)
...

eq (Ccn(u1,. . .,uφ(cn))) (Ccn(v1,. . .,vφ(cn))) = eq u1 v1 andalso . . . andalso eq uφ(cn) vφ(cn)
eq u v = false

An abstract machine pattern p can be translated into a piece of SML code [p]k
SML.

Like in the translation from p to [p]T we number the free variables of the pattern
from right to left starting with 0.

Definition 2.23
Translation of Abstract

Machine Patterns to
SML

I [PConst c []]k
SML = [c]k

SML ()

[PConst c [p1, . . . ,pn]]k
SML = [c]k

SML q1 . . . qn

for n > 0 where q j = (p j as [p j]SML, I(j)) and I(j) =
∑n

k= j+1 |pk|

[c]k
SML =

cc if k = 0
cc’k if k > 0

[PVar]SML, i = xi

[PConst c []]SML, i = Cc

[PConst c [p1, . . . ,pn]]SML, i = Cc (q1, . . .,qn)

for n > 0 where q j = [p j]SML, I(j) and I(j) = i+
∑n

k= j+1 |pk|

Here are several examples of the translation from patterns to SML code:

Example 2.2 I [PConst 8 [PVar]]0
SML = c8 (p1 as x0)

[PConst 8 [PVar]]3
SML = c8’3 (p1 as x0)

[PConst 3 []]0
SML = c3 ()

[PConst 3 []]6
SML = c3’6 ()

[PConst 0 [PVar, PConst 3 [], PVar, PConst 0 [PVar,PConst 8 [PVar],PVar,PVar]]]13
SML =

c0’13 (p1 as x5) (p2 as C3) (p3 as x4) (p4 as C0 (x3, C8 (x2), x1, x0))

Also, any abstract machine term can be translated into a piece of SML code. For a
more concise description of the translation we introduce a new constructor Call for
abstract machine terms which can also be viewed as an abbreviation

Call c [t1, . . . , tn] := (. . . ((Const c) · t1) · . . . · tn)

Definition 2.24
Introducing Call

I 1. Const c→call intro Call c [] if c ∈ D
2. (Call c [a1, . . . ,an]) ·b→call intro Call c [a1, . . . ,an,b] if n < φ(c)

3. λ t →call intro λ t′ if t →call intro t′

4. t1 · t2 →call intro t′1 · t2 if t1 →call intro t′1
5. t1 · t2 →call intro t1 · t′2 if t2 →call intro t′2
6. Computed t →call intro Computed t′ if t →call intro t′

7. Call c [. . . ,ai, . . .]→call intro Call c [. . . ,a′i , . . .] if ai→call intro a′i

3In our setting there is always such a t′ because t can be simply typed. Otherwise, just say that the
SML machine fails on any input.

2.5 Modes of the HCL 27

For our translation to always work and type check in SML, calls to function or data
constants c ∈ D without supplying all of their arguments φ(c) must be prohibited.
This can be achieved by performing η abstraction where necessary.

J Definition 2.25
η Abstraction for Call

1. Call c [a1, . . . ,an] →abstract λ. . .λ︸︷︷︸
δ times

(Call c [a1 ↑
δ−1, . . . ,an ↑

δ−1,Var (δ−1), . . . ,Var 0])

if δ = φ(c)−n > 0

2. λ t →abstract λ t′ if t →abstract t′

3. t1 · t2 →abstract t′1 · t2 if t1 →abstract t′1
4. t1 · t2 →abstract t1 · t′2 if t2 →abstract t′2
5. Computed t →abstract Computed t′ if t →abstract t′

6. Call c [. . . ,ai, . . .]→abstract Call c [. . . ,a′i , . . .] if ai→abstract a′i

Given an abstract machine term t, let [t]call intro be the normal form with respect to
→call intro, and [t]abstract the normal form with respect to→abstract. For the translation
from an abstract machine term t to its corresponding SML code [t]l

SML we reuse the
notation that we have employed for the translation from patterns to SML code; note
that the indices in the notation have a different meaning, though.

J Definition 2.26
Translation of
Abstract Machine
Terms to SML

[t]l
SML = [[[t]call intro]abstract]l

SML,0
[Const c]l

SML,m = (Const c)

[Var v]l
SML,m =


(b(m−v−1)) if v <m
(x(v−m) ()) if m ≤ v <m+ l
(x(v−m)) if m+ l ≤ v

[u ·v]l
SML,m = (app [u]l

SML,m [v]l
SML,m)

[λ t]l
SML,m = (Abs (fn bm => [t]l

SML,m+1))

[Computed t]l
SML,m = [t]l

SML,m

[Call c [t1, . . . , tn]]l
SML,m =


Cc if n = 0 and c < F
(cc ()) if n = 0 and c ∈ F
(Cc ([t1]l

SML,m,. . .,[tn]l
SML,m)) if n > 0 and c < F

[Call c [t1, . . . , tn]]l
SML,m =

(cc [t1]l
SML,m . . . [tstrict (c)]l

SML,m

(fn () => [tstrict (c)+1]l
SML,m) . . . (fn () => [tstrict (c)+lazy (c)]l

SML,m))

if n > 0 and c ∈ F

In the above we use the SML function app. Its definition is

fun app (Abs a) b = a b

| app a b = App (a, b)
(2.5)

It is now time to deal with the question of how to translate the rules of the abstract
machine program into SML functions. All rules which belong to the same function
constant are grouped together. There are |F | such groups. Each group is converted to
a bunch of mutual recursive SML functions. Actually, the generated SML functions
of two different groups are also potentially mutually recursive. Therefore we specify
for each abstract machine rule just an SML rule of the form f p1 . . . pn = g. The list
of all such SML rules can then be converted into a list of mutual recursive SML
function definitions by putting fun, | or and as appropiate in front of each SML rule.

28 Chapter 2 — The HOL Computing Library

Let Gc = [r1, . . . ,rn] be the list of all rules of the abstract machine program which
belong to the function constant c ∈ F . With each i ∈ {1, . . . ,n+ 1} we associate an
index ki in the following way:

• We set k1 = 0.

• For i > 1 we set ki = ki−1 if ri−1 has no guards, and ki = ki−1+1 otherwise.

The group Gc is converted into |{k1, . . . ,kn+1}|mutual recursive SML functions which
together consist of n+ |{k1, . . . ,kn+1}| SML rules. Each rule

ri = ([(a1,b1), . . . , (am,bm)], p, t)

is converted either for m = 0 into the SML rule

[p]ki
SML
= [t]lazy (c)

SML

or for m > 0 into the SML rule

[p]ki
SML

= if eq [a1]lazy (c)
SML

[b1]lazy (c)
SML

andalso . . . andalso eq [am]lazy (c)
SML

[bm]lazy (c)
SML

then [t]lazy (c)
SML

else [c]kn+1
SML
p1 . . . pφ(c)

This gives us n SML rules for the function constant c.
For each k ∈ {k1, . . . ,kn+1}we have a rule which is triggered when the SML function

[c]SMLk is applied to arguments for which there is no rule in the abstract machine
program. For strict (c) = φ(c) > 0 it is

[c]k
SML
p1 . . . pφ(c) = Cc (p1,. . .,pφ(c))

For φ(c) = 0 the default rule is

[c]k
SML
() = Cc

For lazy (c) > 0 it is

[c]k
SML
p1 . . . pφ(c) = Cc (p1,. . .,pstrict (c),pstrict (c)+1(),. . .,pstrict (c)+lazy (c)())

Actually, experience shows that this last case seems to be rather useless, because
it evaluates all lazy arguments of a function and will therefore most likely lead to
nontermination. When the default rule is triggered this normally indicates that
the abstract machine program is missing additional rules for evaluating the strict
arguments of the function. An alternative and more user-friendly default case for
lazy (c) > 0 is

[c]k
SML
p1 . . . pφ(c) = raise UnresolvedLazyCall

The semantics is usually the same, but in the second case the user will be informed
of the failure of the SML machine not by nontermination, but by an exception.

We are almost there now. But before we can define the SML machine, we need
to define how to convert an SML value t of type Term back into an abstract machine
term [t]AMT. This is done in the obvious way:

Definition 2.27
Translation of SML

Values of Type Term to
Abstract Machine Terms

I [App (a,b)]AMT = [a]AMT · [b]AMT
[Abs a]AMT = undefined
[Const c]AMT = Const c
[Cc (t1,. . .,tn)]AMT = (. . . ((Const c) · [t1]AMT) · . . .) · [tn]AMT

2.5 Modes of the HCL 29

The translation is a partial function as it works only on SML values which do not
contain Abs nodes.

Let S be the SML program consisting of J Definition 2.28
SML Machine

• the Term data type definition given in Definition 2.21,

• the SML function eq defined in Definition 2.22,

• the SML function app defined in Equation 2.5,

• the mutual recursive SML functions made up of all the SML rules stemming
from converting each group Gc for all c ∈ F .

The SML machine maps an arity function φ and an abstract machine program to
the relation→SML where

t→SML t′

if

1. t is a closed abstract machine term,

2. the result of executing [t]0
SML in the context of S is the SML value s,

3. s does not contain any occurrences of Abs,

4. t′ = [s]AMT.

Let us look at the power of a function. We can formalize this concept in Isabelle/HOL by J Example 2.3
defining a constant power which obeys the following equation:

power f n = if test-le n then λ x. x else λ x. power f (add n Neg1) (f x) (2.6)

Alternatively, we could use the following equation:

power f n x = if test-le n then x else power f (add n Neg1) (f x) (2.7)

We could also describe power by the guarded equations

test-le n ≡ True =⇒ power f n x = x
test-le n ≡ False =⇒ power f n x = power f (add n Neg1) (f x) (2.8)

Based on power we define the square of a nonnegative integer in terms of addition:

square a = power (add a) a Zero (2.9)

This defines a function square such that square a= a2 for a≥ 0. The abstract machine program
for executing square consists of the following rules:

• those for add and add1 (fig. 2.5);

• those for normalizing numerals (fig. 2.7);

• those for test-le and test-less (fig. 2.9);

• those for If (eq. 2.4);

• those for power (either eq. 2.6 or eq. 2.7 or eq. 2.8);

• those for square (eq. 2.9).

The set of function constants is then

30 Chapter 2 — The HOL Computing Library

c c ∈ F φ(c) strict (c) lazy (c)
TRUE no 0
FALSE no 0
ZERO no 0
NEG1 no 0
B0 yes 1 1 0
B1 yes 1 1 0
ADD yes 2 2 0
ADD1 yes 2 2 0

TESTLE yes 1 1 0
TESTLESS yes 1 1 0

IF yes 3 1 2
2 1 for Equation 2.6

POWER yes 3 3 0 for Equation 2.7
3 0 for Equation 2.8

SQUARE yes 1 1 0

Table 2.3: Arity, Strictness, Laziness for Elements ofD

F = {B0, B1, ADD, ADD1, TESTLE, TESTLESS, IF, POWER, SQUARE}

and the set of data constants is D = {TRUE, FALSE, ZERO, NEG1} ∪F . For a more readable
presentation, we use textual labels for the elements of D. The assumed arity function φ
and the derived functions lazy and strict are listed in Table 2.3. Note that lazy (POWER) and
strict (POWER) depend on what choice we have made in selecting a rule for power from the three
equations (2.6), (2.7) and (2.8). The resulting SML program S is displayed in Figures 2.11, 2.12
and 2.13, 2.14 or 2.15, respectively.

Let us compute t = square (B1 (B1 Zero)), which amounts to calculating 32. Execut-
ing [t]0

SML = cSQUARE (cB1 (cB1 CZERO)) in the context of S results in the SML value
s = CB1 (CB0 (CB0 (CB1 ZERO))). Translating s back into the realm of abstract machine
terms gives [s]AMT = B1 (B0 (B0 (B1 Zero))), which is the numeral representation of 9.

Let us also illustrate the restriction of the SML machine to fail on abstract machine terms
which compute to terms still containing abstractions. Assuming we use choose Equation 2.7
or 2.8 as rule for power, translating t = power (add Zero) Zero leads to

[t]0
SML = Abs (fn b0 => cPOWER (Abs (fn b1 => cADD CZERO b1)) CZERO b0)

Executing [t]0
SML in the context of S returns an SML valueAbs f for some f of typeTerm -> Term.

We do not have enough information to translate such an SML value back into an abstract
machine term. On the other hand, executing t = (λ x.power (add Zero) Zero x) Zero is no
problem:

app (Abs (fn b0 => cPOWER (Abs (fn b1 => cADD CZERO b1)) CZERO b0)) CZERO

computes to the SML value CZERO, and the corresponding abstract machine term is Zero.

The SML machine is for any arity function φ an abstract machine in the sense ofTheorem 2.2
Partial Correctness of

the SML Machine

I

Definition 2.11.

Proof. We do not provide a rigorous proof of this theorem. Such a proof would
involve a semantics for SML, and then a proof that τ reduction on abstract machine
terms corresponds to evaluation of the translations in SML. Let us rather just note

2.5 Modes of the HCL 31

datatype Term =
App of Term * Term

| Abs of Term -> Term
| Const of int
| CTRUE | CFALSE | CZERO | CNEG1

| CB0 of Term | CB1 of Term
| CADD of Term * Term | CADD1 of Term * Term
| CTESTLE of Term | CTESTLESS of Term
| CIF of Term * Term * Term
| CPOWER of Term * Term * Term
| CSQUARE of Term

fun eq (App (a1, a2)) (App (b1, b2)) = eq a1 b1 andalso eq a2 b2
| eq (Abs u) (Abs v) = false
| eq (Const c1) (Const c2) = (c1 = c2)

| eq CTRUE CTRUE = true
| eq CFALSE CFALSE = true
| eq CZERO CZERO = true
| eq CNEG1 CNEG1 = true
| eq (CB0 u1) (CB0 v1) = eq u1 v1

| eq (CB1 u1) (CB1 v1) = eq u1 v1

| eq (CADD (u1,u2)) (CADD (v1,v2)) = eq u1 v1 andalso eq u2 v2
| eq (CADD1 (u1,u2)) (CADD1 (v1,v2)) = eq u1 v1 andalso eq u2 v2
| eq (CTESTLE u1) (CTESTLE v1) = eq u1 v1

| eq (CTESTLESS u1) (CTESTLESS v1) = eq u1 v1

| eq (CIF (u1,u2,u3)) (CIF (v1,v2,v3)) = eq u1 v1 andalso eq u2 v2 andalso eq u3 v3
| eq (CPOWER (u1,u2,u3)) (CPOWER (v1,v2,v3)) = eq u1 v1 andalso eq u2 v2 andalso eq u3 v3
| eq (CSQUARE u1) (CSQUARE v1) = eq u1 v1

| eq u v = false

fun app (Abs a) b = a b
| app a b = App (a, b)

fun cB0 CZERO = CZERO
| cB0 p1 = CB0 p1

and cB1 (p1 as CNEG1) = CNEG1
| cB1 p1 = CB1 p1

and cADD (p1 as (CB0 x1)) (p2 as (CB0 x0)) = cB0 (cADD x1 x0)
| cADD (p1 as (CB0 x1)) (p2 as (CB1 x0)) = cB1 (cADD x1 x0)

| cADD (p1 as (CB1 x1)) (p2 as (CB0 x0)) = cB1 (cADD x1 x0)

| cADD (p1 as (CB1 x1)) (p2 as (CB1 x0)) = cB0 (cADD1 x1 x0)

| cADD (p1 as CZERO) (p2 as x0) = x0

| cADD (p1 as x0) (p2 as CZERO) = x0

| cADD (p1 as CNEG1) (p2 as (CB0 x0)) = cB1 (cADD CNEG1 x0)

| cADD (p1 as CNEG1) (p2 as (CB1 x0)) = cB0 x0

| cADD (p1 as (CB0 x0)) (p2 as CNEG1) = cB1 (cADD x0 CNEG1)

| cADD (p1 as (CB1 x0)) (p2 as CNEG1) = cB0 x0

| cADD (p1 as CNEG1) (p2 as CNEG1) = cB0 CNEG1

| cADD p1 p2 = CADD (p1, p2)

Figure 2.11: SML Program, Part 1

32 Chapter 2 — The HOL Computing Library

and cADD1 (p1 as (CB0 x1)) (p2 as (CB0 x0)) = cB1 (cADD x1 x0)
| cADD1 (p1 as (CB0 x1)) (p2 as (CB1 x0)) = cB0 (cADD1 x1 x0)

| cADD1 (p1 as (CB1 x1)) (p2 as (CB0 x0)) = cB0 (cADD1 x1 x0)

| cADD1 (p1 as (CB1 x1)) (p2 as (CB1 x0)) = cB1 (cADD1 x1 x0)

| cADD1 (p1 as CNEG1) (p2 as x0) = x0

| cADD1 (p1 as x0) (p2 as CNEG1) = x0

| cADD1 (p1 as CZERO) (p2 as (CB0 x0)) = cB1 x0

| cADD1 (p1 as CZERO) (p2 as (CB1 x0)) = cB0 (cADD1 CZERO x0)

| cADD1 (p1 as (CB0 x0)) (p2 as CZERO) = cB1 x0

| cADD1 (p1 as (CB1 x0)) (p2 as CZERO) = cB0 (cADD1 x0 CZERO)

| cADD1 (p1 as CZERO) (p2 as CZERO) = cB1 CZERO

| cADD1 p1 p2 = CADD1 (p1, p2)

and cTESTLE (p1 as CZERO) = CTRUE
| cTESTLE (p1 as CNEG1) = CTRUE

| cTESTLE (p1 as (CB0 x0)) = cTESTLE x0

| cTESTLE (p1 as (CB1 x0)) = cTESTLESS x0

| cTESTLE p1 = CTESTLE p1

and cTESTLESS (p1 as CZERO) = CFALSE
| cTESTLESS (p1 as CNEG1) = CTRUE

| cTESTLESS (p1 as (CB0 x0)) = cTESTLESS x0

| cTESTLESS (p1 as (CB1 x0)) = cTESTLESS x0

| cTESTLESS p1 = CTESTLESS p1

and cIF (p1 as CTRUE) (p2 as x1) (p3 as x0) = x1 ()
| cIF (p1 as CFALSE) (p2 as x1) (p3 as x0) = x0 ()

| cIF p1 p2 p3 = raise UnresolvedLazyCall

Figure 2.12: SML Program, Part 2

and cPOWER (p1 as x2) (p2 as x1) (p3 as x0) =
app (cIF (cTESTLE x1)

(fn () => Abs (fn b0 => b0))

(fn () => Abs (fn b0 => cPOWER x2 (cADD x1 CNEG1) (fn () => app x2 b0))))

(x0 ())

| cPOWER p1 p2 p3 = raise UnresolvedLazyCall

and cSQUARE (p1 as x0) = cPOWER (Abs (fn b0 => cADD x0 b0)) x0 (fn () => CZERO)
| cSQUARE p1 = CSQUARE p1

Figure 2.13: SML Program, Part 3a (resulting from Equation 2.6)

and cPOWER (p1 as x2) (p2 as x1) (p3 as x0) =
cIF (cTESTLE x1) (fn () => x0) (fn () => cPOWER x2 (cADD x1 CNEG1) (app x2 x0))

| cPOWER p1 p2 p3 = CPOWER (p1, p2, p3)

and cSQUARE (p1 as x0) = cPOWER (Abs (fn b0 => cADD x0 b0)) x0 CZERO
| cSQUARE p1 = CSQUARE p1

Figure 2.14: SML Program, Part 3b (resulting from Equation 2.7)

2.6 The HCL Cokernel 33

and cPOWER (p1 as x2) (p2 as x1) (p3 as x0) =
if eq (cTESTLE x1) CTRUE then x0

else cPOWER’1 p1 p2 p3

| cPOWER p1 p2 p3 = CPOWER (p1, p2, p3)

and cPOWER’1 (p1 as x2) (p2 as x1) (p3 as x0) =
if eq (cTESTLE x1) CFALSE then cPOWER x2 (cADD x1 CNEG1) (app x2 x0)

else cPOWER’2 p1 p2 p3

| cPOWER’1 p1 p2 p3 = CPOWER (p1, p2, p3)

and cPOWER’2 p1 p2 p3 = CPOWER (p1, p2, p3)

and cSQUARE (p1 as x0) = cPOWER (Abs (fn b0 => cADD x0 b0)) x0 CZERO
| cSQUARE p1 = CSQUARE p1

Figure 2.15: SML Program, Part 3c (resulting from Equation 2.8)

that we use SML as a purely functional language without side effects. Moving
from the left hand side of a generated SML function definition to the right hand
side of it and evaluating then this right hand side can clearly be understood as τ
reduction. Also, all massaging of abstract machine terms and patterns we perform
when ensuring that the abstract machine program is compatible with φ, and when
translating t to [t]l

SML, can also be understood in terms of τ reduction. �

2.5.4 The Haskell Machine

The Haskell machine is just a simpler version of the SML machine. Because Haskell
is a lazy language, there is no need to distinguish between lazy and strict arguments
of a function; we can just treat all function arguments like we treated the strict func-
tion arguments. Apart from that we could just copy everything said in the previous
subsection about the SML machine to this subsection with minor modifications due
to the syntactic differences between Haskell and SML. If we were willing to invest
a little more work, we could further simplify the translation from abstract machine
terms to Haskell code by utilizing that Haskell already has a built-in concept of
guards, and that Haskell allows functions of arity 0.

2.6 The HCL Cokernel

The HCL cokernel provides secure access to the modes of the HCL. It can be under-
stood as an additional kernel sitting beside the Isabelle kernel and we will discuss
its facilities for producing theorems. We argue that the cokernel cannot produce
any theorem that the Isabelle kernel could not also produce on its own. This is what
it means for the cokernel to be secure.

2.6.1 A Bird’s-Eye View of the Isabelle Kernel

The Isabelle kernel is built around the following main notions: types, terms, theorems
and theories.

A theory T can be viewed as a state of the kernel. This state has (among others)
the following components:

34 Chapter 2 — The HOL Computing Library

• A set of axiomatic type classes, like ring or order.

• A set of type constructors, like real or prop or→. Each type constructor has an
associated arity. E.g. real and prop have both arity 0, and→ has arity 2. The
type constructors prop and→ are part of every Isabelle theory.

A sort is a subset of the set of axiomatic type classes. Types are given via

type ::= TVar α S | TApp c (type1, . . . , typen)

where α is some identifier, S is a sort, and c is a type constructor with associated
arity n. Instead of TApp → (τ1,τ2) we also write τ1→ τ2. Instead of TApp c where
c has arity 0 we just write c. We call TVar α S a type variable and often write α :: S for
it. We call a type τ a ground type if it does not contain any type variable. We define
the functional arity of a type τ to be 0 if τ is a type variable or not of shape τ1→ τ2,
and to be 1+ the functional arity of τ2 if it has shape τ1→ τ2.

There are two more components of the theory T:

• A transitive instance relation ≤ on types such that τ1 ≤ τ2 if τ1 can be obtained
from τ2 by instantiating type variables TVarαS. For example, in many theories
we will have real ≤ α :: {ring} and real→ nat ≤ α :: {ring} → β :: {order}, but not
nat ≤ α :: {ring}. As always, when instantiating a type variable it must be
instantiated everywhere in the type, therefore we can never have real→ α ::
{ring} ≤ α :: {ring} → α :: {ring}. We have4 τ ≤ α :: {} for any type τ. We just
write α for α :: {}.

• A set of constants. Each constant is associated with its most general type τ.
Equality ≡ with most general type α→ α→ prop and implication =⇒ with
most general type prop→ prop are both constants that are part of every Isabelle
theory.

Isabelle terms use de-Bruijn indices [6] for local variables and names for free
variables. There are two kinds of free variables, Free and Var.

term ::= App term1 term2
| Const c type
| Var x type
| Free x type
| λ type. term
| Bound i

In the above c is a constant of the theory, x is an identifier, and i is a de-Bruijn index.
We call a term welltyped if it can be assigned a type using the following typing rules:

Definition 2.29
Type of a Term

I type(t) = τ if type0 [] t = τ
type0 E (Const c τ) = τ if τ ≤ τc where τc is the most general type of c
type0 E (App t1 t2) = τ if type0 E t1 = τ2→ τ and type0 E t2 = τ2
type0 E (Var x τ) = τ
type0 E (Free x τ) = τ
type0 [τ1, . . . ,τn] (λ τ. t) = τ→ τ′ if type0 [τ,τ1, . . . ,τn] t = τ′

type0 [τ1, . . . ,τn] (Bound i) = τi+1 if i < n

4This is not exactly how it works in Isabelle, but good enough for our purposes.

2.6 The HCL Cokernel 35

When writing down terms we often use abbreviations whose meaning we take for
obvious. For example, we will write t1 ≡ t2 instead of

App (App (Const ≡ (type (t1)→ type (t2))) t1) t2.

A theorem consists of the following components:

• Its proposition, which is a welltyped term of type prop.

• A set of hypotheses. A hypothesis is a welltyped term of type prop which does
not contain any occurrences of Var.

• A set of sort hypotheses. A sort hypothesis is just a sort S. Its meaning is that it
is assumed that there is a ground type τ such that τ ≤ α :: S.

We write t = (S, H , p) for a theorem t with sort hypotheses S, hypotheses H
and proposition p. While the Isabelle kernel allows to access the components of a
theorem, one cannot construct a theorem by giving its components. Theorems can
only be constructed through a set of operations the kernel provides. Here are a few
of those operations:

Reflexivity Given a welltyped term t, the kernel can construct the theorem (S, {}, t≡
t), where S is the set of all sorts occurring in t.

Transitivity of Equality Given two theorems (S1, H1, t1 ≡ t2) and (S2, H2, t2 ≡ t3),
the kernel can construct the theorem (S1∪S2, H1∪H2, t1 ≡ t3).

Discarding Sort Hypotheses Given a ground type τ, and a type variable α :: S such
that τ ≤ α :: S, and a theorem (S, H , p), the kernel can construct the theorem
(S−{S}, H , p).

Instantiation of Type Variables Given different type variables α1 :: S1, . . . , αn :: Sn,
and n types τi with τi ≤αi :: Si, and a theorem (S,H , p), the kernel can construct
the theorem (S, H ′, p′), whereH ′ originates fromH and p′ originates from p
by simultaneously replacing all occurrences of αi :: Si by τi.

Instantiation of Variables Given different variables TFree x1 τ1, . . ., TFree xn τn and
n terms ti with type(ti) = τi, and a theorem (S, H , p), the kernel can construct
the theorem (S, H ′, p′), where H ′ originates from H and p′ originates from
p by simultaneously substituting (this may involve de-Bruijn lifting of the ti)
all occurrences of TFree xi τi by ti. The same is true when we use in the above
TVar instead of TFree.

βη reduction Given a welltyped term t, and another welltyped term t′ such that t′

results from t by βη reduction, the kernel can construct the theorem (S, {}, t ≡
t′), where S is the set of all sorts occurring in t.

Modus Ponens Given two theorems (S1, H1, a =⇒ b) and (S2, H2, a), the kernel
can construct the theorem (S1∪S2, H1∪H2, b).

36 Chapter 2 — The HOL Computing Library

2.6.2 Removing and Attaching Types
One of the reasons why computing using the Isabelle kernel is slow is that the basic
datastructure for computing used by the Isabelle kernel is that of a theorem, which
is made up of terms, which are stuffed with types not really needed for computing.
These types must be manipulated during computation, and can grow awfully large.
To avoid this performance pitfall, abstract machines compute on untyped terms.
Therefore, in order to use any abstract machine for computation we need to bridge
the gap between Isabelle terms, which are typed, and abstract machine terms.

So, how can we get rid of the types in Isabelle terms? Just dropping them
like in going from Const c τ to Const c is not an option. E.g., Isabelle allows the
overloading of constants [34, 27]. An example where overloading comes in handy
is when looking at integers int and nonnegative integers nat. The constants for
subtraction − and zero 0 can be used with both types. But the equations that these
constants fulfill differ wildly. If 0 and 1 have type nat, then in Isabelle/HOL the
equation 0−1 = 0 holds. Applying this rewriting rule to 0−1, where 0 and 1 have
type int, is clearly desastrous.

There is an easy way out of these complications. The terms Const 0 int and
Const 0 nat are different, so we map them to different abstract machine terms. The
term Const 0 int could be mapped to Const 14, for example, and the term Const 0 nat
to Const 15.

We call an Isabelle term an atom if it is either a constant Const c τ or a variableDefinition 2.30
Atoms

I

Free x τ or Var x τ. For an arbitrary Isabelle term t we denote by atoms(t) the set of
all atoms occurring in t.

An encoding σ is a partial injective mapping from the set of all welltyped atoms of aDefinition 2.31
Encoding

I

theory toZ. Any encoding σ induces a total mapping σ from the set of all welltyped
Isabelle terms t with atoms(t) ⊆ dom σ to the set of closed pure abstract machine
terms:

σ (Const c τ) = Const (σ (Const c τ))
σ (Var x τ) = Const (σ (Var x τ))
σ (Free x τ) = Const (σ (Free x τ))
σ (App u v) = (σu) · (σv)
σ (λ τ. t) = λ (σ t)
σ (Bound i) = Var i

Let us assume now that we have an Isabelle term t we would like to compute.
Given an encoding σ such that t is in the domain of σ, we convert t to the abstract
machine term s = σ t. Computing s with an abstract machine AM results in another
abstract machine term s′ with s→AM s′. Therefore the result of computing t is
t′ = σ −1 s′.

There is a flaw in this approach. The problem is that although σ is an injective
mapping, σ is not. This can be seen quickly:

σ (λ int. Bound 0) = λ (Var 0) = σ (λ prop. Bound 0).

Fortunately, we know more about t′ than just σ t′ = s′. We also know that any t′

acceptable to us must have the property type(t) = type(t′). This is enough to find t′.

For any encoding σ, the mapping t 7→ (σ t, type(t)) is injective on the set of thoseTheorem 2.3
Reversibility of

Encoding

I

terms in the domain of σwhich contain no β redexes.

2.6 The HCL Cokernel 37

Proof. Let us first note that if t contains no β redexes, then neither does σ t. Thus
we can prove the theorem by defining a function attach which for a type τ and a
closed pure abstract machine term s without β redexes either returns the unique t
with type(t) = τ and σ t = s or signals failure if there is no such t. That t must be
unique will be clear from the function definition itself because for each case of the
function definition there is no degree of freedom what result could be returned.

attach τ E (Const c) =

σ−1 c if c ∈ dom σ∧ type(σ−1 c) = τ
failure otherwise

attach τ E (Var i) = Bound i

attach τ [τ1, . . . ,τn] (λ t) =

λ τ′. attach τ′′ [τ′,τ1, . . . ,τn] t if τ = τ′→ τ′′

failure otherwise

attach τ E (f ·u1 · . . . ·un)

=

App . . . (App g v1) . . .vn if attach0 E f = (g,τ1→ . . .→ τn→ τ) and vi = attach τi E ui

failure otherwise

attach0 E (Const c) =

(σ−1 c, type(σ−1 c)) if c ∈ dom σ
failure otherwise

attach0 [τ1, . . . ,τn] (Var i) = (Bound i, τi+1)

Note that when defining attach for a chain of applications f ·u1 · . . . ·un we know that
f cannot be an application f = f0 ·u0 because otherwise we would instead be looking
at f0 in the chain of applications f0 ·u0 ·u1 · . . . ·un. Also, f cannot be an abstraction λ t
because then we would have found a β redex. Therefore f must either be a constant
or a variable, and both of these cases are covered in the definition of attach0. �

2.6.3 Computing Equations
A state of the Isabelle kernel is called a theory. The corresponding concept for
the HCL cokernel is that of a computer. A computer contains all the information
necessary for computing an Isabelle term. Given a computer C, and a welltyped
Isabelle term t, the cokernel will compute t to t′ and upon success return the equation
t ≡ t′ as a theorem.

We create a computer C by handing over to the cokernel the following items:

1. A theory T.

2. A mode AM, i.e. a tag AM ∈ {BARRAS, SML, HASKELL} which indicates
which abstract machine should be used for computing.

3. A list [Ψ1, . . . ,Ψn] of theorems of the theory T. The proposition pi of each
theorem

Ψi = (Si, Hi, pi)

has the shape given in Equation 2.2.

The created computer C = (T, AM, S, H , σ, →AM) consists of these components:

38 Chapter 2 — The HOL Computing Library

• The theory T and the mode AM.

• The cummulative set of sort hypotheses S = S1 ∪ . . .∪Sn ∪P where P is the
set of all sorts occurring in any of the pi.

• The cummulative set of of hypothesesH =H1∪ . . .∪Hn.

• An encoding σ induced by the set of propositions {p1, . . . ,pn}. Any encoding
with atoms(pi) ⊆ dom σ for all i = 1, . . . ,n will do.

• The partial abstract machine function →AM induced by the arity function φ
and the abstract machine program [r1, . . . ,rn].

There are several sensible choices for φ. One is to define φ (d) as the functional
arity of type(σ−1 d). Another one is to inspect the abstract machine program
and make a heuristic choice which is our current approach.

The abstract machine rule ri is derived from the proposition pi in the obvious
way using the encoding σ. Note that we convert only Vars to pattern vari-
ables, but not Frees. Also converting Frees to pattern variables could lead to
inconsistency as Frees may appear in the hypothesesHi, which is not the case
for Vars.

The cokernel applies the computer C to compute a welltyped term t of the theory
T in the following way: 5

1. Calculate s = σ t.

2. Calculate s′ such that s→AM s′.

3. Upon successfully calculating s′, calculate t′ = attach (type (t)) [] s′.

4. Upon successfully calculating t′, return the theorem Ψ = (S∪St, H , t ≡ t′),
where St is the set of sorts occurring in t.

In order to show that the HCL cokernel is secure, we need to show that the
theorem Ψ could also have been proven using only the operations the Isabelle
kernel provides. We know that

σ t ⇒τ σ t′

holds. Using the reflexivity rule of the Isabelle kernel we can start with the theorem
t ≡ t and then replay each τ reduction step using the Isabelle kernel operations,
chaining them using the transitivity rule. For example, rule 3 of τ reduction in
Definition 2.10 can be simulated using the instantiation of variables rule of the
Isabelle kernel.

The only τ reduction step making trouble is η abstraction. For an untyped term
s it is alright to go from s to λ(s ↑0

·(Var 0)), but for a welltyped Isabelle term t such
that δ = type(t) is not of shape τ1 → τ2 this is not a valid step because it would
lead to a term that is not welltyped any more. There is a workaround. We can
just assume that everywhere in our proof so far the type δ has been replaced by the
type unit → δ and proceed replaying. We can do this because the type unit→ δ is
isomorphic to δ, so for each constant c involving δ we could define a new constant

5we assume atoms(t) ⊆ dom σ, otherwise σ is for the duration of the computation extended to an
encoding σ′ which has this property

2.6 The HCL Cokernel 39

c′ which behaves like c but whose type is derived from that of c by replacing δ by
unit→ δ.

This maybe not proves, but lets us very strongly believe:

The HCL cokernel is secure. J Theorem 2.4

2.6.4 Mixing Modus Ponens, Instantiation, and Computation

Using the HCL cokernel comes with an overhead. Isabelle terms have to be con-
verted into abstract machine terms for the purpose of computation, and after the
computation has been performed, the resulting abstract machine terms have to be
converted back to Isabelle terms. If the terms involved are big, the cost of convert-
ing between the Isabelle kernel and the cokernel universes can dominate the actual
computing costs. In this subsection we scetch a simple feature of the HCL coker-
nel which drastically reduces traffic between kernel and cokernel and dramatically
boosts performance in such a situation. The idea is that the cokernel assumes some
reasoning responsibilities beyond computing equations.

Imagine an Isabelle theorem of the form:

f1 ≡ g1
=⇒ f2 ≡ g2
=⇒ f3 ≡ g3
...

...
...

...
=⇒ fn ≡ gn
=⇒ p

One can understand such a theorem as an instruction book: First prove f1 ≡ g1.
Then prove f2 ≡ g2. After that prove f3 ≡ g3. When you have finally proved fn ≡ gn,
you have proved the theorem p.

For the cokernel, proving means computing. So the instruction to prove f1 ≡ g1
tells him to compute f1 and g1, and to get rid of the assumption f1 ≡ g1 if both are
equal. This brings together the logical rule of modus ponens with computation. If
we furthermore throw in variable instantiation, the mix becomes really powerful.
Typically the theorem will contain several variables. Some of these variables are
used as template parameters; instantiating them means adapting the theorem to
the situation at hand. After these template parameters have been instantiated, the
values of the other variables will often be uniquely determined by the requirement
that all assumptions fi ≡ gi must be true.

Upon choosing an i, the cokernel will take the following actions:

1. Compute fi to f ′i , and compute gi to g′i .

2. Try then to match g′i with f ′i by instantiating the free variables in g′i with terms
which do not contain any of these free variables.

3. If this succeeds, remove the assumption fi ≡ gi from the theorem and apply
the found substitution throughout the whole theorem.

These actions are of course not executed on the Isabelle theorem, but on some
theorem representation internal to the cokernel. The cokernel offers five securely
accessible operations for this internal theorem representation:

40 Chapter 2 — The HOL Computing Library

1. Creation of an internal theorem from an Isabelle theorem.

2. Instantiation of variables of the internal theorem.

3. Elimination of assumptions of the internal theorem as described above.

4. Elimination of an assumption of the internal theorem by performing modus
ponens with an Isabelle theorem. The assumptions of the Isabelle theorem are
added as assumptions to the internal theorem.

5. Export of an internal theorem as an Isabelle theorem. This operation includes
computing the proposition of the theorem as a whole before converting it into
an Isabelle theorem.

The internal theorem is not represented by Isabelle terms, but is stored in the form
of abstract machine terms. The substitutions involved in operation 2, 3 and 4 are not
executed directly, but delayed. This works very much like the closure mechanism
of the Barras machine. Because the elements of the image of the substitutions are
all closed abstract machine terms that have already been computed, they can be
tagged with the Computed constructor when substituted into a term that is about
to be evaluated.

2.6.5 Polymorphic Linking
Currently the HCL is not very user-friendly. The user has to gather all the theorems
needed for computing himself. This situation is worsened considerably by the fact
that the HCL cokernel performs no instantiations of type variables. For example,
look at the If constant. For computing with it the two equations in (2.4) must be
passed to the cokernel. But they have to be instantiated to exactly the type of the
If constant they are supposed to work on. Now the If constant is used with quite a
lot of different types, and it is unacceptable that the user has to provide all needed
instantiations of equations (2.4).

Polymorphic linking solves this problem. The polymorphic linker is a wrapper
around the cokernel. It allows to create a polymorphic computer which internally
manages an ordinary computer. The polymorphic computer is created from a list
of polymorphic theorems. When it is asked to compute a term it checks if new
instances of these polymorphic theorems are needed and if so, updates the internal
computer with those new theorems. The polymorphic computer provides the same
interface as an ordinary computer. It also supports the feature presented in the
previous subsection of mixing logical reasoning and computing.

C H A P T E R 3

Proving Bounds for Real Linear Programs

The sky’s the limit if you have a roof over your head.
— Sol Hurok

Contents
3.1 Overview . 41
3.2 The Basic Idea . 42

3.2.1 Reducing the case M = −∞ to the case −∞ <M <∞ 43
3.2.2 The case −∞ <M <∞ . 44

3.3 Finite Matrices . 45
3.3.1 Dimension of a Finite Matrix 47
3.3.2 Lifting Unary Operators . 48
3.3.3 Lifting Binary Operators . 49
3.3.4 Matrix Multiplication . 50
3.3.5 Lattice-Ordered Rings . 51
3.3.6 Positive Part and Negative Part 53

3.4 Proving Bounds by Duality . 54
3.5 Proving Infeasibility by Modified Duality 55
3.6 Sparse Matrices . 56
3.7 Interval Arithmetic . 57

3.7.1 Floats . 57
3.7.2 Division of Floats . 58
3.7.3 Basic Interval Arithmetic for Floats 60
3.7.4 Approximation of Matrices 63

3.8 Calculating A Priori Bounds . 63

3.1 Overview

In the next chapter our work will culminate in proving that about 92.5% of what
we call the basic linear programs are infeasible. A prerequisite for this result is the

42 Chapter 3 — Proving Bounds for Real Linear Programs

method of bounding the objective function of a linear program (LP) that we present
in this chapter.

The method is due to Hales [12] where he describes how to obtain an arbitrarily
precise upper bound for the maximum value of the objective function of an LP.
Our contribution is to transfer this method into the rigid context of mechanical
theorem provers, specifically our favorite one, Isabelle/HOL [25]. The burden of
calculating the upper bound is delegated to an LP solver that needs not to be
trusted. Instead, the LP solver delivers a small certificate to Isabelle/HOL that can
be checked cheaply. Furthermore, there is no need to delve into the details of the
actual method of optimizing an LP, which is usually the Simplex method. These
details just do not matter for the theorem prover.

We first describe the basic idea of the method. Then we introduce the notion
of finite matrices and explain why these are our representation of choice for linear
programs. Finite matrices can be fitted into the system of numeric axiomatic type
classes in Isabelle/HOL via the algebraic concept of lattice-ordered rings. Checking
the certificate from the external LP solver is basically a calculation involving finite
matrices. The matrices we have to deal with are sparse, therefore we introduce a
sparse matrix representation of finite matrices.

We have presented most of the material in this chapter already in [26]. New
additions are Sections 3.5, 3.7 and 3.8.

3.2 The Basic Idea

There are quite a lot of different ways to state a linear programming problem [32,
sect. 7.4], which are all general in the sense that every linear programming problem
can be stated that way. Here is one such way: a linear program consists of a matrix
A ∈ Rm×n, a row vector c ∈ R1×n and a column vector b ∈ Rm×1. The goal is to
maximize the objective function

x 7−→ cx, x feasible, (3.1)

where x is called feasible iff x ∈Rn×1 and Ax≤ b holds. Note that we are dealing with
matrix inequality here: X ≤ Y for two matrices X and Y iff every matrix element of
X is less than or equal to the corresponding element of Y.

Usually, the above stated goal really encompasses several goals / questions:

1. Find out if there exists any feasible x at all (otherwise the LP is called infeasible).

2. Find out if there is a feasible xmax such that cxmax ≥ cx for any feasible x, and
calculate this xmax.

3. Calculate M = sup {cx |x is feasible}.

Note that M=−∞ iff the answer to the first question is no. And M=∞ iff the answer
to the first question is yes and the answer to the second question is no. If M <∞
then the LP is called bounded. Linear programming software is good at answering
all those questions and at exhibiting (approximately) such an xmax if it exists. Our
goal is more modest in some ways, but more demanding in others: assuming a priori
bounds for the feasible region, that is assuming l≤ x≤ u for all feasible x with a priori known
bounds l and u, actually prove within Isabelle/HOL that M ≤ K, where we can choose K
arbitrarily close to M. In particular, we do not want to calculate xmax, but just want

3.2 The Basic Idea 43

to approximate M as precise as we wish for. Furthermore, we can assume M ,∞
because of

M ≤
n∑

i=1

|c1i|max {|li1| , |ui1|} < ∞ . (3.2)

It might seem that our goal can be accomplished trivially by setting K to the above
sum. But of course this is not the case, as K is probably not a particularly good
approximation for M, and there is nothing in the above inequality telling us how to
get a better approximation in case we need one.

3.2.1 Reducing the case M = −∞ to the case −∞ <M <∞
The case of an infeasible LP can be reduced to the case of a feasible LP [12]. We will
give a more detailed description here than the one found in [12].

Remember that we are only considering LPs for which we know l and u s.t.

Ax ≤ b =⇒ l ≤ x ≤ u . (3.3)

In this subsection we additionally require A to fulfill the inequality

Ax ≤ 0 =⇒ x = 0 . (3.4)

This can easily be arranged by replacing A and b by Ã and b̃ where

Ã =

 A
In
−In

 and b̃ =

 b
u
−l

 . (3.5)

In ∈R
n×n denotes the identity matrix.

Now let us assume that for the given LP both (3.3) and (3.4) hold. We can
construct for any K ∈R a modified LP with objective function

x′ =
(
x
t

)
7−→ cx+K t, x′ feasible, (3.6)

where x′ ∈Rn+1 is called feasible with respect to the modified LP iff

Ax+ tb ≤ b and 0 ≤ t ≤ 1 . (3.7)

J Theorem 3.1(
x
1

)
is feasible ⇐⇒ x = 0 , (3.8)

0 ≤ t < 1 =⇒
((

x
t

)
is feasible ⇐⇒ x/(1− t) is feasible

)
. (3.9)

On the left hand side of above equivalences we talk about feasibility with respect to
the modified LP, on the right hand side about feasibility with respect to the original
LP.

Proof. To show (3.8) in the direction from left to right one needs the fact that A
fulfills (3.4). The rest ist obvious by just expanding the respective definition of
feasibility. �

44 Chapter 3 — Proving Bounds for Real Linear Programs

Defining M′ := sup {cx+K t | x′ =
(
x
t

)
, x′ feasible} yieldsTheorem 3.2 I

−∞ < max {M,K} = M′ < ∞ . (3.10)

As a special case follows
M = −∞ =⇒ M′ = K . (3.11)

Proof. Because of (3.8) we have M′ ≥ K, in particular M′ > −∞. Considering t = 0 in
(3.9) gives us M′ ≥M. From (3.9) and (3.3) in the case t , 1 and (3.8) in the case t = 1
we obtain bounds for x′:

x′ =
(
x
t

)
is feasible =⇒ l− ≤ (1− t) l ≤ x ≤ (1− t)u ≤ u+ .

Here l− denotes the negative part of l which results from l by replacing every positive
matrix element by 0. Similarly, the positive part u+ results from u by replacing every
negative element by 0. We conclude M′ <∞.

So far we have shown −∞ < max {M,K} ≤ M′ < ∞. To complete the proof, we
need to show max {M,K} ≥ M′. We will proceed by case distinction.

Assume M≥K. We show that for any feasible x′ =
(
x
t

)
, M ≥ cx+K t, and therefore

M ≥M′. This is obvious in the case t = 1, the feasibility of x′ accompanied by the
equivalence (3.8) forces x to be zero. In the case t , 1, (3.9) implies that x/(1− t) is
feasible with respect to the original LP. But this is just what we claim:

M ≥ c (x/(1− t)) =⇒ M ≥ cx+ tM ≥ cx+ tK .

Now assume M < K. Assume further M′ > K. Because of −∞ <M′ <∞ there is a

feasible x′ =
(
x
t

)
s.t. M′ = cx+K t. For t = 1 we would have again x = 0 and therefore

the contradiction K <M′ = K. Finally 0 ≤ t < 1 also leads to a contradiction:

M′ = cx+K t ≤ cx+M′ t =⇒M′ ≤ c (x/(1− t)) ≤ M < K ≤ M′ .

Therefore the only possibility is M′ ≤ K. �

From now on we will assume that we are dealing with feasible, bounded LPs,
that is with LPs for which we know −∞ <M <∞.

3.2.2 The case −∞ <M <∞

This case is the heart of the method. Again we construct a modified LP. The original
LP is called the primal LP, the modified LP is called the dual LP. The objective function
of the dual LP

y 7−→ yb, y feasible,

is to be minimized. Here y ∈R1×m is called feasible iff yA = c and y ≥ 0 holds.

Any feasible y induces an upper bound on M:Theorem 3.3 I

yb ≥ M . (3.12)

3.3 Finite Matrices 45

Proof. For any feasible x we have

yb ≥ y (Ax) = (yA)x = cx . (3.13)

�

But is there such a feasible y so that we can utilize (3.12)? And if there is, can
we accomplish yb =M by carefully choosing y? The well-known answer to both
questions is yes:

Define M′ := inf {yb | yA = c and y ≥ 0}. Then J Theorem 3.4

−∞ < M =M′ < ∞ . (3.14)

Furthermore, choose a feasible y such that M′ = yb. Then

card {i ∈N |1 ≤ i ≤m and y1i > 0} ≤ n . (3.15)

Proof. Corollary 7.1g and 7.1l in [32]. �

Now the basic idea of our method can be described as follows. First, form the
dual LP. Then use an external LP solver to solve the dual LP for an optimal y. This
optimal y serves as a certificate. In our application, where typically m ≈ 2000 and
n ≈ 200, y will be sparse, as inequality (3.15) tells us. Finally, use (3.12) to verify our
desired upper bound M ≤ K = yb.

This basic idea is complicated by the fact that we are dealing with real data and
numerical algorithms. The external LP solver does not return an y such that yA = c
and y ≥ 0, but rather an y such that yA ≈ c and y ' 0. In order to obtain a provably
upper bound on M, one has to take (3.3) into account. Furthermore the input data A,
b and c need not to be given as exact numerical data either, for example an element
of A could equal π. The way to deal with these complications is to use interval
arithmetic, not only for real numbers, but also for real matrices.

3.3 Finite Matrices

Anyone who wants to implement the method outlined in the previous section faces
the problem of how to represent linear programs. This problem is prominent outside
of the realm of mechanical theorem proving, too: designers of linear programming
packages typically provide various ways of input of data to the LP algorithms
these packages provide, one can normally choose at least between dense and sparse
representations of the data. The issue is to provide a certain convenience of dealing
with the data without compromising the efficiency of the LP algorithms by too much
overhead.

Our situation is different: we need to reason within our mechanical theorem
proving environment Isabelle/HOL why our computations lead to a correct result,
therefore we need a good representation of LPs for reasoning about them. Of
course we also need to compute efficiently. But we should avoid mixing up those
two issues if we can. The reasoning in the previous section has used matrices
and the properties of matrix operations like associativity of matrix multiplication
extensively. Therefore representing LPs within Isabelle/HOL as matrices is a good
idea.

46 Chapter 3 — Proving Bounds for Real Linear Programs

So how exactly does one represent matrices in higher-order logic? Obviously,
matrices should be a type, but how does one deal with the dimension of a matrix?
HOL does not have dependent types, so it seems impossible to have a parametrized
family of types where the dimension of the matrix would be the parameter. But it
is: one possibility that is pursued by John Harrison in the 2005 version of his Hol-
light system is to represent the needed parameter by type variables! He uses this
representation in order to formalize multivariate calculus. But in our case this idea
cannot be used without causing serious problems later when we turn our attention
to sparse matrices.

Another possibility is to represent the dimension of a matrix by a predicate
that carves the set of all matrices of this dimension out of a certain bigger, already
existing type. This is a common technique to overcome the absence of dependent
types in HOL [18]. This approach could work like this:1

type αM = nat × nat × (nat⇒ nat⇒ α)

constdef
Mequiv :: (αM ∗ αM) set
Mequiv ≡ {((m,n, f), (m,n, g)) |∀ j i. (j <m∧ i < n) −→ f j i = g j i}

typedef αmatrix = UNIV //Mequiv

constdef
is-matrix :: nat⇒ nat⇒ αmatrix⇒ bool
is-matrix m n A ≡ ∃ f . (m,n, f) ∈ Rep-matrixA.

(3.16)

In (3.16)αmatrix is the bigger type, and is-matrix m n acts as the predicate that carves
out all matrices consisting of m rows and n columns. Here matrices are modelled as
equivalence classes [31] of triples (m,n, f) where m denotes the number of rows, n
the number of columns and f a function from indices to matrix elements. The set of
these equivalence classes is denoted by UNIV // Mequiv. With this formalization
of matrices an error element comes for free: there is exactly one matrix Error such
that

is-matrix00Error (3.17)

holds. When adding matrices A and B which fulfill

∃ m n . (is-matrix m n A) ∧ (¬ is-matrix m n B) (3.18)

and when multiplying matrices A and B for which

∃ m n u v. (is-matrix m n A) ∧ (is-matrix u v B) ∧ (n , u) (3.19)

holds, the matrix Error is returned to signal that the operands do not belong to the
natural domain of addition and multiplication, respectively.

Still, this approach is not entirely satisfying: in Isabelle/HOL there exists a large
number of theorems that are valid for types that form a group or a ring. The fact that
a type can be viewed as such an algebraic structure is formulated via the concept of

1Here and in the following we deviate slightly from actual Isabelle/HOL syntax for various reasons,
the most important being formatting; the actual Isabelle/HOL user will have no difficulty translating the
given theory snippets to proper Isabelle/HOL syntax.

3.3 Finite Matrices 47

axiomatic type classes [30]. But α matrix in (3.16) with the suggested error signaling
definition of addition does not even form a group, because there is no matrix Zero
with

∀A.A+Zero = A , (3.20)

but rather a whole family Zeromn such that

∀A. is-matrixmnA −→ A+ (Zeromn) = A . (3.21)

Therefore we advocate a different approach that exploits the fact that the matrix
elements commonly used in mathematics [20] themselves carry an algebraic struc-
ture, that of a ring, which always contains a zero. We define αmatrix to be the type
formed by all infinite matrices that have only finitely many non-zero elements of
type α:

type α infmatrix = nat⇒ nat⇒ α

typedef αmatrix =
{
f :: (α :: zero)infmatrix |finite {(j, i) | f j i , 0}

}
.

(3.22)

Hence we choose the name finite matrices for objects of type α matrix. Note the
restriction α :: zero in (3.22). This means that the elements of a matrix cannot have
just any type but only a type that is an instance of the axiomatic type class zero and
has thus an element denoted by 0. Of course this is not a real restriction on the type;
any type can be declared to be an instance of the axiomatic type class zero.

3.3.1 Dimension of a Finite Matrix
The dimension of a finite matrix deviates from the notion of dimension that one
is used to. Because we did not encode the number of rows and columns explicitly
in the representation of a finite matrix as we did in (3.16), we have to recover the
dimension of a finite matrix by extensionality:

constdefs
nrows :: αmatrix⇒ nat
nrows A ≡ LEASTm.∀ j i.m ≤ j −→ (Rep-matrixA ji = 0)
ncols :: αmatrix⇒ nat
ncols A ≡ LEASTn.∀ j i.n ≤ i −→ (Rep-matrixA ji = 0)
is-matrix :: nat⇒ nat⇒ αmatrix⇒ bool
is-matrix m n A ≡ nrowsA ≤m∧ncolsA ≤ n .

(3.23)

The expression LEASTx.Px equals the least x such that Px holds. The definition of
the type α matrix has introduced two automatically defined functions Rep-matrix
and Abs-matrix

consts
Rep-matrix :: αmatrix⇒ α infmatrix
Abs-matrix :: α infmatrix⇒ αmatrix

(3.24)

that convert between finite matrices and infinite matrices. They enjoy the following
crucial properties:

(A = B) = (∀ j i.Rep-matrixA ji = Rep-matrixB j i) , (3.25)

∃1 f .A =Abs-matrix f , (3.26)

48 Chapter 3 — Proving Bounds for Real Linear Programs

Abs-matrix (Rep-matrixA) = A , (3.27)

finite {(j, i) |Rep-matrixA ji , 0} , (3.28)

finite {(j, i) | f j i , 0} =⇒ Rep-matrix (Abs-matrix f) = f . (3.29)

Thus Rep-matrixA ji denotes the matrix element of A in row j and column i. Note
that the first row is row 0, likewise for columns.

Let us return to the definitions in (3.23). The definition of is-matrix implies that
a matrix has not exactly one dimension, but infinitely many! Therefore there is
no need for signaling an error due to incompatibility of dimensions: for any two
matrices A and B one shows

∃m. is-matrixmmA∧ is-matrixmmB . (3.30)

The intuition behind (3.30) is that every matrix can be viewed as a square matrix of
dimension m as long as m is large enough: one just needs to fill up the missing rows
and columns with zeros.

The need for an Error matrix has vanished, but one can still use (3.17) to uniquely
define a matrix. This time, we denote that matrix by 0:

∀A. (A = 0) = (is-matrix00A) . (3.31)

Another possibility of defining 0 is given by the following theorem:

∀A. (A = 0) = (∀mn. is-matrixmnA) . (3.32)

We will see that 0 is actually the proper name for this matrix.

3.3.2 Lifting Unary Operators
In this subsection we look at how to define an unary operator U on matrices,

U :: αmatrix⇒ βmatrix , (3.33)

by lifting an unary operator u on matrix elements,

u :: α⇒ β . (3.34)

The first step is to lift u to infinite matrices:

constdef
apply-infmatrix :: (α⇒ β)⇒ (α infmatrix⇒ β infmatrix)
apply-infmatrix u ≡ λ f j i.u (f j i) ,

(3.35)

which results in the lifting property

(apply-infmatrixu f) j i = u (f j i) . (3.36)

Its proof is apparent from the definition of apply-infmatrix.
Now the unary lifting operator apply-matrix can be defined by first lifting u to

infinite matrices, and then to finite matrices:

constdef
apply-matrix :: (α⇒ β)⇒ (αmatrix⇒ βmatrix)
apply-matrix u ≡ λA.Abs-matrix (apply-infmatrixu (Rep-matrix A)) .

(3.37)

3.3 Finite Matrices 49

What is the lifting property for apply-matrix? A first guess yields

Rep-matrix (apply-matrixuA) j i = u (Rep-matrixA ji) . (3.38)

But this is false (in the sense that we cannot prove it in HOL)! To see why, consider
α = β = int and u = λx.1. Then we have

apply-infmatrixu (Rep-matrixA) =


1 1 · · ·

1 1 · · ·

...
...
. . .

 , Rep-matrixB (3.39)

for all matrices A and any matrix B. But there is a simple condition on u that turns
out to be sufficient and necessary to prove (3.38):

u0 = 0 =⇒ Rep-matrix (apply-matrixuA) j i = u (Rep-matrixA ji) . (3.40)

This is easily provable using (3.37), (3.28), (3.29) and (3.36).

3.3.3 Lifting Binary Operators

Just as we have defined a unary lifting operator apply-matrix, we can define simi-
larly a binary lifting operator combine-matrix :

constdef
combine-infmatrix ::

(α⇒ β⇒ γ)⇒ (α infmatrix⇒ β infmatrix⇒ γ infmatrix)
combine-infmatrix v ≡ λ f g j i.v (f j i) (g j i) ,

(3.41)

constdef
combine-matrix :: (α⇒ β⇒ γ)⇒ (αmatrix⇒ βmatrix⇒ γmatrix)
combine-matrix v ≡
λAB.Abs-matrix (combine-infmatrixv (Rep-matrixA) (Rep-matrixB)) ,

(3.42)

The lifting property for combine-matrix reads

v00 = 0 =⇒ Rep-matrix (combine-matrixvAB) j i =
v (Rep-matrixA ji) (Rep-matrixB j i) . (3.43)

Lifting binary operators passes on commutativity and associativity. Defining

constdefs
commutative :: (α⇒ α⇒ β)⇒ bool
commutative v ≡ ∀x y.vx y = v yx
associative :: (α⇒ α⇒ α)⇒ bool
associative v ≡ ∀x yz.v (vx y)z = vx (v yz)

(3.44)

we can formulate this propagation concisely:

commutativev =⇒ commutative (combine-matrixv) ,
[[v00 = 0; associativev]] =⇒ associative (combine-matrixv) . (3.45)

You might be surprised that the propagation of commutativity does not require
v00 = 0, which is due to the idiosyncrasies of the definite description operator that
is hidden in Abs-matrix.

50 Chapter 3 — Proving Bounds for Real Linear Programs

3.3.4 Matrix Multiplication

We need one last lifting operation, the most interesting one: given two binary
operators addition and multiplication on the matrix elements, define the matrix
product induced by those two operators. As a basic tool we first define by primitive
recursion a fold operator that acts on sequences:

const foldseq :: (α⇒ α⇒ α)⇒ (nat⇒ α)⇒ nat⇒ α
primrec

foldseq f s 0 = s0
foldseq f s (Sucn) = f (s0)(foldseq f (λk.s (Suck))n)

(3.46)

For illustration purposes, assume s = (s1,s2,s3,s4, . . . ,sn,0,0,0, . . .). Then

foldseq f s 0 = s1 ,
foldseq f s 1 = f s1 s2 ,
foldseq f s 2 = f s1 (f s2 s3) ,
foldseq f s 3 = f s1 (f s2 (f s3 s4)) ,
foldseq f s n = f s1 (f s2 (. . . (f sn 0) . . .)) ,
foldseq f s (n+1) = f s1 (f s2 (. . . (f sn (f 00) . . .)) and so on.

(3.47)

Note that if f 00 = 0 the above sequence converges:

f 00 = 0 =⇒∀m.n ≤m −→ foldseq f sm = foldseq f sn . (3.48)

Now we are prepared to deal with matrix multiplication:

constdef
mult-matrix-n :: nat⇒ (α⇒ β⇒ γ)⇒ (γ⇒ γ⇒ γ)⇒

αmatrix⇒ βmatrix⇒ γmatrix
mult-matrix-n n mult add A B ≡ Abs-matrix (λ j i.

foldseqadd (λk.mult (Rep-matrixA jk) (Rep-matrixBki))n)

(3.49)

The idea of mult-matrix-nnmultaddAB is to consider only the first n columns of A
and the first n rows of B when calculating the matrix product. Of course the matrix
product should be independent of n. We achieve this by setting

mult-matrixmultadd ≡ lim
n→∞

mult-matrix-nnmultadd , (3.50)

which is due to (3.48) well-defined if ∀x.multx0 =mult0x = add00 = 0 holds:

constdef
mult-matrix :: (α⇒ β⇒ γ)⇒ (γ⇒ γ⇒ γ)⇒

αmatrix⇒ βmatrix⇒ γmatrix
mult-matrix mult add A B ≡

mult-matrix-n (max(ncolsA) (nrowsB))multaddAB .

(3.51)

Again, we have a lifting property:

[[∀x.multx0 = 0∧mult0x = 0; add00 = 0]]=⇒
Rep-matrix (mult-matrixmultaddAB) j i = foldseqadd

(λk.mult (Rep-matrixA jk) (Rep-matrixBki)) (max (ncolsA) (nrowsB)) .
(3.52)

Finally, let us examine what properties of element addition and element multiplica-
tion induce distributivity and associativity of mult-matrix.

3.3 Finite Matrices 51

3.3.4.1 Distributivity

We distinguish between left and right distributivity:2

constdefs
r-distributive :: (α⇒ β⇒ β)⇒ (β⇒ β⇒ β)⇒ bool
r-distributive mult add ≡ ∀auv.multa (adduv) = add (multau) (multav) l-

distributive :: (α⇒ β⇒ α)⇒ (α⇒ α⇒ α)⇒ bool
l-distributive mult add ≡ ∀auv.mult (adduv)a = add (multua) (multva)

(3.53)

Distributivity of mult over add lifts to distributivity of mult-matrix mult add over
combine-matrix add if add is associative and commutative and both add and mult
behave as expected with respect to 0:

[[l-distributive mult add; associative add; commutative add;
∀x.multx0 = 0 ∧mult0x = 0; add00 = 0]]
=⇒ l-distributive (mult-matrix mult add) (combine-matrix add) ,

[[r-distributive mult add; associative add; commutative add;
∀x.multx0 = 0 ∧mult0x = 0; add00 = 0]]
=⇒r-distributive (mult-matrix mult add) (combine-matrix add) .

(3.54)

3.3.4.2 Associativity

We state the law of associativity for mult-matrix in a very general form:

[[∀a.mult1 a0 = 0; ∀a.mult1 0a = 0; ∀a.mult2 a0 = 0; ∀a.mult2 0a = 0;
add1 00 = 0; add2 00 = 0;
∀abcd.add2 (add1 ab) (add1 cd) = add1 (add2 ac) (add2 bd);
∀abc.mult2 (mult1 ab)c =mult1 a (mult2 bc);
associative add1; associative add2;
l-distributive mult2 add1; r-distributive mult1 add2]]
=⇒ mult-matrix mult2 add2 (mult-matrix mult1 add1 A B) C =

mult-matrix mult1 add1 A (mult-matrix mult2 add2 B C) .

(3.55)

For mult =mult1 =mult2 and add = add1 = add2 this simplifies to

[[∀a.multa0 = 0; ∀a.mult0a = 0; add00 = 0;
associative add; commutative add; associative mult;
l-distributive mult add; r-distributive mult add]]
=⇒ associative (mult-matrix mult add) .

(3.56)

3.3.5 Lattice-Ordered Rings
Paulson describes in [30] how numerical theories like the theory of integers or the
theory of reals can be organized in Isabelle/HOL using axiomatic type classes. For
example both integers and reals form a ring, therefore Paulson recommends to prove
theorems that are implied purely by ring properties only once, and then to prove
that both types int and the type real are an instance of the axiomatic type class ring.

Birkhoff points out [4, chapt. 17] that for a fixed n the ring of all n×n square
matrices forms a latticed-ordered ring in a natural way. The same is true for our
finite matrices! Therefore it suggests itself to establish an axiomatic type class
lordered-ring that captures the property of a type to form a lattice-ordered ring. Of

2Our convention is that left distributivity means that the factor is distributed over the left sum, not
that the left factor is the one that gets distributed.

52 Chapter 3 — Proving Bounds for Real Linear Programs

course lordered-ring should be integrated with the other type classes like ring and
ordered-ring of Isabelle/HOL to maximize theorem reuse. Two major changes along
with minor modifications were necessary to the original hierarchy of type classes as
described in [30]:

1. The original type class ring demanded both the existence of a multiplicative
unit element and the commutativity of multiplication. But our finite matrices
do not have such a multiplicative unit element, nor is multiplication of finite
matrices a commutative operator. Nevertheless, finite matrices still form a
ring in common mathematical terminology. Therefore the original type class
ring was renamed to become comm-ring-1 and new type classes ring, ring-1
and comm-ring were introduced, suitable for rings that do not necessarily
possess a 1 and/or are not commutative.

2. All ordered algebraic structures contained in the original hierarchy were lin-
early ordered. The natural (elementwise) order for finite matrices is a proper
partial order, actually a lattice order. Therefore we enriched the hierarchy
with type classes that model partially ordered algebraic systems like partially
ordered groups and rings, or lattice-ordered groups and rings. For this we
follow largely [7], [4].

A type α is an instance of the axiomatic type class lordered-ring iff

ring α is a ring with addition +, subtraction −, additive inverse −,
multiplication ∗, zero 0,

lattice α is a lattice with partial order ≤ and operators join and meet,

monotonicity addition and multiplication are monotone:

a ≤ b −→ c+ a ≤ c+b , (3.57)
a ≤ b ∧ 0 ≤ c −→ a ∗ c ≤ b ∗ c ∧ c ∗ a ≤ c ∗b . (3.58)

Both int and real are instances of lordered-ring :

instance int :: lordered-ring
instance real :: lordered-ring . (3.59)

Our goal is to prove

instance matrix :: (lordered-ring) lordered-ring . (3.60)

The above meta theorem has the following meaning (which is not legal Isabelle
syntax):

(instance α :: lordered-ring) =⇒ (instance αmatrix :: lordered-ring) . (3.61)

Of course, in order to prove (3.60), one first has to define 0, +, ∗ etc. for objects of
type matrix. The zero matrix is easy to define:

instance matrix :: (zero) zero
def (overloaded)

0 ≡ Abs-matrix (λ j i.0) .
(3.62)

It is simple to show that this is actually the 0 we refer to in (3.31) and (3.32).

3.3 Finite Matrices 53

Addition +, multiplication ∗, subtraction −, unary minus −, can all be defined
using the lifting machinery we have developed:

instance matrix :: (plus) plus
instance matrix :: (minus) minus
instance matrix :: ({plus, times}) times

defs (overloaded)
A+B ≡ combine-matrix (λab.a+b)AB
A−B ≡ combine-matrix (λab.a−b)AB
−A ≡ apply-matrix (λa. − a)A

A ∗B ≡ mult-matrix (λab.a ∗b) (λab.a+b)AB .

(3.63)

Finally, we need to be able to compare matrices:

instance matrix :: ({ord, zero}) ord
defs (overloaded)

A ≤ B ≡ ∀ j i.Rep-matrixA ji ≤ Rep-matrixB j i
(3.64)

After having introduced the necessary syntax, we need to show that αmatrix really
constitutes a lattice-ordered ring, provided α constitutes one, in order to obtain
(3.60). But almost the entire work has already been done: for example, in order to
prove associativity of matrix multiplication,

∀ (A :: (α :: lordered-ring)matrix).A ∗ (B ∗C) = (A ∗B) ∗C , (3.65)

which is the hardest of all proof obligations, just apply (3.56)! The remaining proof
obligations are not difficult to prove, either, one just has to make use of matrix
extensionality (3.25) and the lifting properties (3.40), (3.43) and (3.52). It is useful,
though, first to dispose of the assumptions in these lifting properties, so for example
instead of using (3.43) directly one should prove and use

Rep-matrix (A+B) j i = (Rep-matrixA ji)+ (Rep-matrixB j i)
Rep-matrix (A−B) j i = (Rep-matrixA ji)− (Rep-matrixB j i) . (3.66)

A proof obligation that differs from the others because it is not a universal property
that needs to be shown, but an existential one, turns up when one has to show that
join and meet do exist:

∃ j.∀abx.a ≤ j ab∧b ≤ j ab∧ (a ≤ x∧b ≤ x −→ j ab ≤ x)
∃m.∀abx.mab ≤ a∧mab ≤ b∧ (x ≤ a∧x ≤ b −→ x ≤mab) (3.67)

But these are not difficult to exhibit! Just choose

join ≡ combine-matrix join, meet ≡ combine-matrix meet . (3.68)

3.3.6 Positive Part and Negative Part
In lattice-ordered rings (actually in groups, also), both the positive part and the
negative part can be defined:

constdefs
pprt :: α⇒ (α :: lordered-ring)
pprt x ≡ joinx0
nprt :: α⇒ (α :: lordered-ring)
nprt x ≡meetx0

(3.69)

54 Chapter 3 — Proving Bounds for Real Linear Programs

We will write x+ instead of pprtx, and x− instead of nprtx. We have:

0 ≤ x+, x− ≤ 0, x = x++x−, x ≤ y =⇒ x− ≤ y− ∧ x+ ≤ y+ . (3.70)

Positive part and negative part come in handy for calculating bounds for a product
when bounds for each of the factors of the product are known:

[[a1 ≤ a; a ≤ a2; b1 ≤ b; b ≤ b2]]
=⇒ a ∗b ≤ a+2 ∗b

+
2 + a+1 ∗b

−

2 + a−2 ∗b
+
1 + a−1 ∗b

−

1
(3.71)

In order to prove (3.71), decompose the factors into their parts and use distributivity.
Then take advantage of the monotonicity of positive and negative part:

a ∗b = (a++ a−) ∗ (b++b−)
= a+ ∗b++ a+ ∗b−+ a− ∗b++ a− ∗b−

≤ a+2 ∗b
+
2 + a+1 ∗b

−

2 + a−2 ∗b
+
1 + a−1 ∗b

−

1 .

3.4 Proving Bounds by Duality

Now we have everything in place to represent LPs by finite matrices. In sect. 3.2,
we presented the basic idea of how to prove an arbitrarily precise upper bound for
the objective function (3.1) of a given LP. There the LP was represented by matrices
whose elements are real numbers:

c ∈R1×n, A ∈Rm×n, b ∈Rm×1 , l,u ∈Rn×1.

Dropping the dimensions we arrive at a representation of a real linear program by
finite matrices:

c,A,b, l,u :: real matrix .

From now on we are always talking in terms of finite matrices.
We need a further modification of our representation of LPs: our method is based

on numerical algorithms like the Simplex method, therefore we need to represent
the data numerically. We allow for this possibility by looking at intervals of linear
programs instead of only considering a single LP. Such an interval is given by finite
matrices c1, c2, A1, A2, b, l, u. We can now state the main theorem as it has been
proven in Isabelle/HOL:

[[A ∗x ≤ b; A1 ≤ A; A ≤ A2; c1 ≤ c; c ≤ c2; l ≤ x; x ≤ u; 0 ≤ y]]
=⇒ c ∗x ≤ y ∗b+ (let s1 = c1− y ∗A2;s2 = c2− y ∗A1

in s+2 ∗u
++ s+1 ∗u

−+ s−2 ∗ l
++ s−1 ∗ l

−) .
(3.72)

The proof is by standard algebraic manipulations: using A ∗x ≤ b and y ≥ 0,

c ∗x ≤ y ∗b+ (c− y ∗A) ∗x

follows at once. Then one just has to apply (3.71) to the product (c− y ∗A) ∗ x.
Note that this proof not only works for matrices, but for any lattice-ordered ring.
Therefore the main theorem is valid also for lattice-ordered rings!

This is how our method works: First, we calculate the approximate optimal
solution y of the dual LP. We know our primal LP only approximately, so we can
pass only approximate data to the external LP solver. We could pass for example c1,

3.5 Proving Infeasibility by Modified Duality 55

A1, b, l, u. The LP solver will return the certificate y, which is only approximately
non-negative. Therefore we replace all negative elements of y by 0. We then plug the
known numerical data y, c1, c2, A1, A2, b, l and u into (3.72) and simplify the resulting
theorem. The simplification will rewrite 0 ≤ y to True and the large expression on
the right hand side of the inequality to a matrix numeral K with ncolsK ≤ 1 and
nrowsK ≤ 1. The result of our method is therefore the theorem

[[A ∗x ≤ b; A1 ≤A; A ≤ A2; c1 ≤ c; c ≤ c2; l ≤ x; x ≤ u]]
=⇒ c ∗x ≤ K .

(3.73)

In the above theorem, free variables are set in bold face. All other identifiers denote
matrix numerals.

3.5 Proving Infeasibility by Modified Duality

If our linear program at hand is infeasible, the method of Section 3.4 will fail because
the dual program will also be infeasible and the external solver will fail. How do we
prove a bound of an infeasible linear program then? We have outlined the basic idea
of how to do this already in Section 3.2.1. We take the infeasible linear program and
modify it so that we get a new, feasible linear program. We then apply the method
from Section 3.4 to bound this new linear program. Then we somehow find a way
to relate the found bound of the new linear program to a bound for the original one
according to Theorem 3.2.

Our original linear program is:

Maximize c ∗x where x is subject to the condition A ∗x ≤ b.

For any K the modified linear program is to maximize c ∗ x+K ∗ t subject to the
condition A ∗x+ b ∗ t ≤ b and 0 ≤ t ≤ 1. We can squeeze the modified linear program
into standard form so that it becomes:

Maximize c′ ∗x′ where x′ is subject to the condition A′ ∗x′ ≤ b′,

where

c′ =
(
c K

)
, x′ =

(
x
t

)
, A′ =

A b
0 1
0 −1

, b′ =

b
1
0

.

Now let’s do for this modified linear program what we always do for a feasible
linear program: solve the dual linear program and get a certificate y′. Because A′

has two more rows than A, we can write y′ as y′ =
(
y y1 y2

)
for some vector y ≥ 0

and numbers y1 ≥ 0, y2 ≥ 0. If the original LP is infeasible, Theorem 3.2 implies

c′ ∗x′ ≤ y′ ∗b′ ≈ K

As this holds for any x′, we can just as well choose an x′ =
(
x
t

)
such that t = 0:

c ∗x = c′ ∗
(
x
0

)
≤ y′ ∗b′ =

(
y y1 y2

)
∗

b
1
0

 = y ∗b+ y1 ∗1+ y2 ∗0 = y ∗b+ y1 ≈ K.

56 Chapter 3 — Proving Bounds for Real Linear Programs

This looks terrific, because it bounds the objective function c ∗ x of the original
linear program by y ∗ b+ y1 which depends on the certificate of the modified linear
program! Furthermore, because K was chosen arbitrarily, we can push the bound
for c ∗ x as low as we want to. And the best thing is that we do not even need to
prove any fancy new theorem for using this fact! The theorem

[[A ∗x ≤ b; A1 ≤ A; A ≤ A2; c1 ≤ c; c ≤ c2; l ≤ x; x ≤ u; 0 ≤ y; 0 ≤ y1]]
=⇒ c ∗x ≤ y ∗b+ y1+ (let s1 = c1− y ∗A2;s2 = c2− y ∗A1

in s+2 ∗u
++ s+1 ∗u

−+ s−2 ∗ l
++ s−1 ∗ l

−) .
(3.74)

is just what we need and is because of y1 ≥ 0 a direct consequence of 3.72. To validate
that this is the theorem we are looking for, we need to assure ourselves that

c− y ∗A ≈ 0 (3.75)

holds. Because y′ is a certificate for the modified linear program we have

0 ≈ c′− y′ ∗A′ =
(
c K

)
−

(
y y1 y2

)
∗

A b
0 1
0 −1

 = (
c− y ∗A K− (y ∗b+ y1− y2)

)
Focusing on the first component in the above confirms (3.75), and therefore also the
usefulness of (3.74).

We know now how to prove any bound we desire for any objective function
c ∗ x of the original infeasible linear program. Actually, we get a particularly nice
objective function by choosing c = 0. Specializing theorem (3.74) to c = 0 results in:

[[A ∗x ≤ b; A1 ≤ A; A ≤ A2; l ≤ x; x ≤ u; 0 ≤ y; 0 ≤ y1]]
=⇒ 0 ≤ y ∗b+ y1+ (let s1 = −y ∗A2;s2 = −y ∗A1

in s+2 ∗u
++ s+1 ∗u

−+ s−2 ∗ l
++ s−1 ∗ l

−) .
(3.76)

Choosing a modification parameter K such that K < 0, for example K = −1, calculat-
ing a certificate y, y1 for this modified LP, plugging this certificate into (3.76), and
computing it will lead to the following theorem:

[[A ∗x ≤ b; A1 ≤A; A ≤ A2; l ≤ x; x ≤ u]]
=⇒ False

(3.77)

We have arrived at an Isabelle theorem expressing the infeasibility of the original
linear program. Free variables of the theorem are set in bold face again.

3.6 Sparse Matrices

After reading the previous sections, you probably wonder what a matrix numeral
might look like. We have chosen to represent matrix numerals in such a way that
sparse matrices are encoded efficiently:

types
α spvec = (nat ∗ α) list
α spmat = (α spvec) spvec

(3.78)

constdefs
sparse-row-vector :: α spvec⇒ αmatrix
sparse-row-vector l ≡ foldl (λm (i,e).m+ (singleton-matrix0 i e))0 l
sparse-row-matrix :: α spmat⇒ αmatrix
sparse-row-matrix L ≡

foldl (λm (j, l).m+ (move-matrix (sparse-row-vector l) j0))0L

(3.79)

3.7 Interval Arithmetic 57

Here singleton-matrix j i e denotes the matrix whose elements are all zero except
the element in row j and column i, which equals e. Furthermore move-matrixA ji
denotes the matrix that one gets if one moves the matrix A by j rows down and i
columns right, and fills up the first j rows and i columns with zero elements.

Here is an example of a matrix numeral:

[(1, [(1,7), (3,13)]), (2, [(0,−4), (1,47)])]

sparse-row-matrix
−−−−−−−−−−−−−−−−−→

 0 0 0 0
0 7 0 13
−4 47 0 0


We have formalized addition, subtraction, multiplication, comparison, positive part
and negative part directly on sparse vectors and matrices by recursion on lists. The
multiplication algorithm for sparse matrices is inspired by the one given in [10].

These operations on sparse vectors/matrices can be proven correct with respect
to their finite matrices counterpart via the sparse-row-matrix morphism, assuming
certain sortedness constraints. This is actually not too hard: all students of an
introductory Isabelle/HOL class taught at Technische Universität München have
been able to complete these proofs within four weeks as their final assignment with
varying help from their tutors. Using these correctness results, one can then easily
prove a sparse version of (3.72).

3.7 Interval Arithmetic

3.7.1 Floats

Real numbers are represented as binary, arbitrary precision floating point numbers:

constdef
float :: (int ∗ int)⇒ real
float (m,e) ≡ (real m) ∗2e

(3.80)

In the above, m is called the mantissa, and e the exponent. The Isabelle theorem

float (a1, e1) + float (a2, e2) =
if e1 ≤ e2 then float (a1 + a2 ∗ 2 ˆ nat (e2 − e1), e1)
else float (a1 ∗ 2 ˆ nat (e1 − e2) + a2, e2)

(3.81)

shows how to perform addition in this representation, multiplication is even easier:

float (a1, e1) ∗ float (a2, e2) = float (a1 ∗ a2, e1 + e2) (3.82)

We prefer a floating point representation over a representation by fractions because
addition of floating point numbers is cheaper and easier to perform than addition
of fractions. We will often want to multiply matrices with real numbers as entries,
and there addition and multiplication of real numbers are the dominant operations.

Other operations like the positive and the negative part are also easily definable
for floats. Division is problematic, though. Take for example the real number
expressed by the fraction 1

3 . There are no m,e such that float (m,e) = 1
3 . But because

our floating point representation is arbitrary precision, it is of course no problem to
approximate 1

3 by floats as precise as we wish for. E.g., up to a precision of 2−50:

58 Chapter 3 — Proving Bounds for Real Linear Programs

float (375299968947541,−50) ≤ 1
3 ≤ float (750599937895083,−51)

The failure of floats to represent certain fractions directly is no reason to abandon
the float representation and to prefer fractions instead. When we later turn to the
basic linear programs we will have to compute with values like π or

√
2 which even

fractions cannot represent directly, therefore approximation is inevitable.
We want to develop algorithms for floats, e.g. division, and we want these

algorithms to be functions within the logic, so that we can apply the HOL Computing
Library to it. These algorithms need to be able to break a float into its components
mantissa and exponent. Because float (m,e) is just a real number, and there are no
such things as the mantissa and exponent of a real number, we need to introduce a
new type of floats.

datatype float = Float int int

fun Ifloat :: float ⇒ real
where

Ifloat (Float a b) = float (a ,b)

(3.83)

Operations like addition, multiplication and so on can be defined on this type. All
of these operations must commute with the Ifloat morphism. One can show that
the type float is an instance of the axiomatic type class of commutative semirings. It
is not the case that float is an instance of the type class order, because then it would
have to fulfill (x < y) = (x ≤ y∧x , y) which is clearly not the case.

3.7.2 Division of Floats
We approach the division algorithm in four steps. We first approximate nonnegative
true fractions like 1

3 or 4
5 . We then move on to approximating any nonnegative

fraction, like 10
7 , and finally to approximating any fraction, including negative ones.

From there it is straightforward to define division of floats.
The lapprox-frac and the rapprox-frac functions approximate a nonnegative true

fraction from the left and the right, respectively. The quality of the approximation
can be controlled by a counter that determines the number of approximation steps.
By a flag one can stop this counter from counting until the significant digits of the
number have been reached.

function lapprox-frac :: bool ⇒ nat ⇒ int ⇒ int ⇒ float
where

lapprox-frac flag 0 x y = 0
| x ≤ 0 =⇒ lapprox-frac flag n x y = 0
| 0 < x =⇒ 0 < n =⇒

lapprox-frac flag n x y =
(if 2∗x ≥ y then Float 1 −1 + Float 1 −1 ∗ lapprox-frac True (n − 1) (2∗x−y) y
else Float 1 −1 ∗ lapprox-frac flag (if flag then (n − 1) else n) (2∗x) y)

(3.84)

function rapprox-frac :: bool ⇒ nat ⇒ int ⇒ int ⇒ float
where

rapprox-frac flag 0 x y = (if x ≤ 0 then 0 else 1)
| x ≤ 0 =⇒ rapprox-frac flag n x y = 0
| 0 < x =⇒ 0 < n =⇒

rapprox-frac flag n x y =
(if 2∗x ≥ y then Float 1 −1 + Float 1 −1 ∗ rapprox-frac True (n − 1) (2∗x−y) y
else Float 1 −1 ∗ rapprox-frac flag (if flag then (n − 1) else n) (2∗x) y)

(3.85)

3.7 Interval Arithmetic 59

In order to define these functions one has to prove termination, which was surpris-
ingly difficult, involving over 150 lines of proof.

The correctness of lapprox-frac and rapprox-frac is stated in (3.86) and (3.87).

0 ≤ x =⇒ x < y =⇒
0 ≤ Ifloat (lapprox-frac flag n x y)
∧ Ifloat (lapprox-frac flag n x y) ≤ real x / real y

(3.86)

0 ≤ x =⇒ x < y =⇒ real x / real y ≤ Ifloat (rapprox-frac flag n x y) (3.87)

Note that we did not prove any theorems about the quality of the approximation,
which are not needed for our formal development, but tests show it to be as expected.

We will now deal with any nonnegative fraction:

definition lapprox-posrat :: nat ⇒ int ⇒ int ⇒ float
where

lapprox-posrat prec x y =
(let

d = x div y ;
m = x mod y

in
Float d 0 + lapprox-frac (d , 0) (prec − nat (bitlen d)) m y)

(3.88)

definition rapprox-posrat :: nat ⇒ int ⇒ int ⇒ float
where

rapprox-posrat prec x y =
(let

d = x div y ;
m = x mod y

in
Float d 0 + rapprox-frac (d , 0) (prec − nat (bitlen d)) m y)

(3.89)

The function bitlen counts the number of bits of its argument. The correctness
results for lapprox-posrat and rapprox-posrat are similar to (3.86) and (3.87), but
with the condition x < y weakened to 0 < y.

Approximating any fraction is now just a matter of case distinction:

function lapprox-rat :: nat ⇒ int ⇒ int ⇒ float
where

y = 0 =⇒ lapprox-rat prec x y = 0
| 0 ≤ x =⇒ 0 < y =⇒ lapprox-rat prec x y = lapprox-posrat prec x y
| x < 0 =⇒ 0 < y =⇒ lapprox-rat prec x y = − (rapprox-posrat prec (−x) y)
| x < 0 =⇒ y < 0 =⇒ lapprox-rat prec x y = lapprox-posrat prec (−x) (−y)
| 0 ≤ x =⇒ y < 0 =⇒ lapprox-rat prec x y = − (rapprox-posrat prec x (−y))

(3.90)

function rapprox-rat :: nat ⇒ int ⇒ int ⇒ float
where

y = 0 =⇒ rapprox-rat prec x y = 0
| 0 ≤ x =⇒ 0 < y =⇒ rapprox-rat prec x y = rapprox-posrat prec x y
| x < 0 =⇒ 0 < y =⇒ rapprox-rat prec x y = − (lapprox-posrat prec (−x) y)
| x < 0 =⇒ y < 0 =⇒ rapprox-rat prec x y = rapprox-posrat prec (−x) (−y)
| 0 ≤ x =⇒ y < 0 =⇒ rapprox-rat prec x y = − (lapprox-posrat prec x (−y))

(3.91)

Here are the theorems about the correctness of these functions:

Ifloat (lapprox-rat prec x y) ≤ real x / real y (3.92)

60 Chapter 3 — Proving Bounds for Real Linear Programs

real x / real y ≤ Ifloat (rapprox-rat prec x y) (3.93)

Finally, we can compute the division of floats:

fun float-divl :: nat ⇒ float ⇒ float ⇒ float
where

float-divl prec (Float m1 s1) (Float m2 s2) =
(let

l = lapprox-rat prec m1 m2;
f = Float 1 (s1 − s2)

in
f ∗ l)

(3.94)

fun float-divr :: nat ⇒ float ⇒ float ⇒ float
where

float-divr prec (Float m1 s1) (Float m2 s2) =
(let

r = rapprox-rat prec m1 m2;
f = Float 1 (s1 − s2)

in
f ∗ r)

(3.95)

The correctness is an immediate corollary of (3.92) and (3.93), respectively:

Ifloat (float-divl prec x y) ≤ Ifloat x / Ifloat y (3.96)

Ifloat x / Ifloat y ≤ Ifloat (float-divr prec x y) (3.97)

3.7.3 Basic Interval Arithmetic for Floats
We have seen how to formalize addition, multiplication and division for floats.
Addition and multiplication commute with the Ifloat morphism; by that we mean
that the formulas

Ifloat (u+v) = Ifloat u+ Ifloat v, Ifloat (u ∗v) = Ifloat u ∗ Ifloat v (3.98)

are true for all u, v of type float. As we have seen, this is not true for division; there
is no function d on floats with the property

Ifloat (d u v) = Ifloat u/Ifloat v (3.99)

for all u, v of type float. Also, we might be interested in different addition and
multiplication operations than those exact ones with the commute property. E.g.,
imagine that throughout a computation we do not want to use more than 30 binary
digits.

The commute property is especially nice when evaluating larger expressions
which consist of nested elementary operations. Let’s say we have four real numbers
x1, x2, x3, x4 together with their float representations xi = Ifloat ri. Then calculating
x1+ (x2 ∗ (x3+x4)) is just a matter of simple rewriting:

x1+ (x2 ∗ (x3+x4)) = Ifloat r1+ (Ifloat r2 ∗ (Ifloat r3+ Ifloat r4)
= Ifloat (r1+ (r2 ∗ (r3+ r4)))
= float (a,b)

(3.100)

where r1+ (r2 ∗ (r3+ r4)) rewrites to Float a b.

3.7 Interval Arithmetic 61

Losing the commute property means losing this simple way of evaluating nested
operations by rewriting, because now the relationship between two steps in the
computation is not equality any more, but something more complicated.

We do not want to give up the speed of rewriting with the HOL Computing
Library; fortunately, there is a solution to our problem. We introduce a new datatype
which represents nested expressions of basic operations:

datatype basicarith =
Plus basicarith basicarith | Sub basicarith basicarith |Minus basicarith
|Mult basicarith basicarith | Div basicarith basicarith | Inverse basicarith
| Atom nat | Num float

(3.101)

The Atom constructor acts as a variable in de-Bruijn representation, so that atomic
values which do not correspond to any other basicarith constructor can nevertheless
be incorporated into the expression. In order to assign meaning to a basicarith
expression we need to bind those variables to values. Therefore the Ibasicarith
function not only takes a basicarith term as an argument, but also an environment
of real numbers which is supposed to bind any variable occurring in the term.

fun Ibasicarith :: real list ⇒ basicarith ⇒ real
where

Ibasicarith vs (Plus a b) = (Ibasicarith vs a) + (Ibasicarith vs b)
| Ibasicarith vs (Sub a b) = (Ibasicarith vs a) − (Ibasicarith vs b)
| Ibasicarith vs (Minus a) = − (Ibasicarith vs a)
| Ibasicarith vs (Mult a b) = (Ibasicarith vs a) ∗ (Ibasicarith vs b)
| Ibasicarith vs (Div a b) = (Ibasicarith vs a) / (Ibasicarith vs b)
| Ibasicarith vs (Inverse a) = 1 / (Ibasicarith vs a)
| Ibasicarith vs (Num f) = Ifloat f
| Ibasicarith vs (Atom n) = vs ! n

(3.102)

The expression vs !n picks the n-th element out of the list vs.
One can understand the basicarith type as an extension of the float type such

that every operation on the real numbers we are interested in has a corresponding
commuting operation.

How do we use the Ibasicarith morphism for evaluating nested expressions?
Look at the expression

π+4
√

2
.

There are two values in this expression, π and
√

2, which cannot be represented
directly as basicarith terms. We factor them out and turn them into variables. This
gives us:

π+4
√

2
= Ibasicarith [π,

√

2] (Div (Add (Atom 0)(Num (Float 1 2))) (Atom 1)). (3.103)

We want to approximate the right hand side using interval arithmetic. We define

62 Chapter 3 — Proving Bounds for Real Linear Programs

an approximation function on basicarith:

function approx :: nat ⇒ (float∗float) list ⇒ basicarith ⇒ (float∗float) option
where

approx n bs (Atom i) = (if i < length bs then Some (bs ! i) else None)
| approx n bs (Num f) = Some (f , f)
| approx n bs (Plus a b) =

lift-bin (approx n bs a) (approx n bs b)
(λ a1 a2 b1 b2. Some (a1 + b1, a2 + b2))

| approx n bs (Sub a b) =
lift-bin (approx n bs a) (approx n bs b)

(λ a1 a2 b1 b2. Some (a1 − b2, a2 − b1))
| approx n bs (Mult a b) =

lift-bin (approx n bs a) (approx n bs b)
(λ a1 a2 b1 b2. Some

(float-nprt a1 ∗ float-pprt b2 + float-nprt a2 ∗ float-nprt b2
+ float-pprt a1 ∗ float-pprt b1 + float-pprt a2 ∗ float-nprt b1,
float-pprt a2 ∗ float-pprt b2 + float-pprt a1 ∗ float-nprt b2
+ float-nprt a2 ∗ float-pprt b1 + float-nprt a1 ∗ float-nprt b1))

| approx n bs (Inverse a) =
lift-un (approx n bs a)

(λ a1 a2. if (0 < a1 ∨ a2 < 0) then
Some (float-divl n 1 a2, float-divr n 1 a1)

else None)
| approx n bs (Div a b) = approx n bs (Mult a (Inverse b))
| approx n bs (Minus a) = lift-un (approx n bs a) (λ a1 a2. Some (− a2, − a1))

(3.104)

Given an environment bs that consists of intervals of floats for each bound variable,
approx prec bs t will return an interval of floats that approximates t. It might not
be able to compute such an interval; then it returns indicating a failure. If the term
makes no use of division or inversion, the returned interval will be the tightest one
possible. Use of division or inversion introduces approximation; the quality of this
approximation is controlled by the prec parameter. The algorithm should be fairly
self-explaining. Because each recursive call to approx may fail (inversion of an
interval containing 0 is not possible), we use functions lift-un(ary) and lift-bin(ary)
which either propagate the failure, or continue processing in case of success. We
deal with the case for multiplication using our formula for estimating a product
by the positive and negative part of its components (3.71). Division is delegated
to inversion, and inversion is dealt with using the algorithms for division of floats
from Section 3.7.2.

To express the correctness of approx we need to define a predicate which says if
a list of real numbers is bounded by a list of intervals:

definition
bounded-by :: real list ⇒ (float ∗ float) list ⇒ bool

where
bounded-by vs bs =

(∀ i . i < length bs −→ Ifloat (fst (bs ! i)) ≤ vs ! i ∧ vs ! i ≤ Ifloat (snd (bs ! i)))

(3.105)

The correctness result for approx can then be stated like this:

[[bounded-by vs bs ; approx prec bs expr = Some (l , r)]] =⇒
Ifloat l ≤ Ibasicarith vs expr ∧ Ibasicarith vs expr ≤ Ifloat r (3.106)

3.8 Calculating A Priori Bounds 63

Let us finish the example we started in (3.103). We turn bounds for π and
√

2

bounded-by [π,
√

2] [(Float 3 0, Float 1 2), (Float 1 0, Float 1 1)] (3.107)

into an approximation of (π+4)/
√

2:

approx 1 [(Float 3 0, Float 1 2), (Float 1 0, Float 1 1)]
(Div (Add (Atom 0)(Num (Float 1 2)))

= Some (Float 7 −1, Float 1 3)
(3.108)

Plugging (3.107) and (3.108) into (3.106) and applying (3.103) yields the theorem

float (7, −1) ≤
π+4
√

2
∧
π+4
√

2
≤ float (1, 3). (3.109)

3.7.4 Approximation of Matrices

Let us assume that the matrix A of a linear program is given by a matrix with
elements like π+4

√
2

. We know how to approximate a single element of this matrix; in
order to apply our methods for bounding linear programs, we need to approximate
all entries of the matrix and obtain both a lower bound A1 and an upper bound A2
for A. We achieve this by lifting approx to the level of matrices. The signature for a
version of approx for sparse matrices is:

approx-spmat ::
nat⇒ (float∗float) list⇒ basicarith spmat⇒ (float spmat ∗ float spmat) option. (3.110)

In our application there are many entries of the matrix which are equal. Therefore
factoring out whole equal entries as variables and approximating them separately
significantly improves the performance of the approximation.

3.8 Calculating A Priori Bounds

Both the method of proving bounds for feasible linear programs from Section 3.4 and the
method of proving infeasibility from Section 3.5 require a priori knowledge of bounds for the
vector x. We might be able to read particularly obvious bounds off the constraints A ∗x ≤ b.
Consider for example the case that one row

a j =
(
a j,1 . . . a j,n

)
of A =


a1
...

am


has only one non-null entry, say a j,i. Then either xi ≤ b j/a j,i if a j,i > 0 or xi ≥ b j/a j,i if a j,i < 0.

There are more easy cases we can handle. Let us again single out the matrix entry a j,i , 0
but this time we do not necessarily assume all other entries in the same row to be zero. We
know

∑n
k=1 a j,k xk ≤ b j, or, after moving all terms except a j,i xi to the right hand side of the

inequality,
a j,i xi ≤ b j +

∑
k∈{1,...,n}, k,i

(−a j,k xk). (3.111)

The term −a j,k xk can be bounded from the above in one of these cases:

• a j,k = 0,

64 Chapter 3 — Proving Bounds for Real Linear Programs

• a j,k > 0, and we already know a lower bound for xk,

• a j,k < 0, and we already know an upper bound for xk.

If we can thus bound for all k , i the terms −a j,k xk then we can bound xi from above if a j,i > 0,
or we can bound xi from below if a j,i < 0.

We repeat adding such easy bounds to our list of known bounds for x until the set of
indices i for which we know a lower bound of xi and the set of indices i for which we know
an upper bound of xi do not change any more. This computation is performed outside the
logic. What we have got after finishing the computation is a certificate for proving formally
within the logic bounds for the components of x. This certificate is just a list of triples (j, i,ks),
where i denotes the row xi we are going to bound, j denotes the row a j and ks is the set of
indices k , i such that a j,k , 0.

We work the certificate from its first to its last element. For a single element of the
certificate we instantiate the following theorem:

[[A1 ≤ A; A ≤ A2; A ∗ x ≤ b;
row-of-matrix A1 j = a1; row-of-matrix A2 j = a2;
nullify-column a1 i = u1; nullify-column a2 i = u2;
filter-cols u1 ks = u1; filter-cols u2 ks = u2;
filter-rows x ks = x′; x1 ≤ x′; x′ ≤ x2;
Rep-matrix a1 0 i = float (m1, e1); Rep-matrix a2 0 i = float (m2, e2);
Rep-matrix b j 0 − Rep-matrix (u−1 ∗ x+2 + u−2 ∗ x−2 + u+1 ∗ x+1 + u+2 ∗ x−1) 0 0 = float (m, e);
approx prec [(Float m1 e1, Float m2 e2)] (Div (Num (Float m e)) (Atom 0)) = Some (lapprox , rapprox)]]
=⇒ if 0 < m1 then Rep-matrix x i 0 ≤ Ifloat rapprox

else if m2 < 0 then Ifloat lapprox ≤ Rep-matrix x i 0
else True

(3.112)

The first line of (3.112) sets the context; we have a system of linear inequalities A ∗x ≤ b,
and the matrix A is approximated by matrices A1 and A2. The rest of the theorem can be read
like a program with occasional assertions. We calculate the j-th row of A1 and A2 and store
them in a1 and a2, respectively. Then the i-th column of a1 and a2 are set to 0, resulting in u1
and u2. Next we need to ensure that the set ks really contains all indices k for which the k-th
column of a j is non-zero. This is what filter-cols u1 ks = u1 and filter-cols u2 ks = u2 check;
if we retrieve all columns of u1 with indices in ks by setting all other columns to 0, and the
result is u1, then clearly setting the other columns to 0 has not changed anything, so they must
have been 0 before. The same holds for u2. The next line of the program, filter-rows x ks = x′,
acknowledges the fact that only those rows of x with indices in ks are relevant for calculating
the bound. We check then that these rows can be bounded by x1 and x2, where x1 and x2
have been obtained by the previous steps of working the certificate.

Next we store the lower and the upper bound for a j,i as float (m1, e1) and float (m2, e2). We
then calculate an upper bound of the right hand side of Equation 3.111 and store the result
as float (m,e). Dividing float (m,e) by a j,i gives us an upper bound for xi if a j,i > 0, and a lower
bound if a j,i < 0.

It would be nice if our theorem prover could understand (3.112) as a program with asser-
tions as we just explained it. The HOL Computing Library allows the theorem prover to see
them that way. In Section 2.6.4 we outlined the HCL’s capabilities of mixing modus ponens,
variable instantiation and computing. This is what is needed here. We first internalize Theo-
rem (3.112) as HCL theorem and use modus ponens to discharge the first three assumptions,
thereby setting the context. This gives us an HCL theorem Ψ. For each element e = (j, i,ks)
of the certificate we then instantiate the corresponding variables in Ψ, resulting in an HCL
theoremΨe. Eliminating all assumptions ofΨe and exporting the result gives us an Isabelle
theorem that states a bound for xi.

Finally, note that actually we do not use 3.112 directly but a version for sparse matrices
derived from it.

C H A P T E R 4

The Basic Linear Programs

Reality is that which, when you stop believing in it, doesn’t go away.
— Philip K. Dick

Contents
4.1 The Archive Of Tame Graphs . 65
4.2 Graph Systems . 67

4.2.1 Topology of a Graph System 68
4.2.2 3-Space Interpretation of a Graph System 69
4.2.3 Additional Constraints of a Graph System 72

4.3 Generating and Running the Basic Linear Programs 73

4.1 The Archive Of Tame Graphs

The result of the first major completed part of the Flyspeck project is the verification
of an archive of tame graphs [23]. Tame graphs are special planar graphs that represent
possible counterexamples to the Kepler conjecture. There are only finitely many,
and that is why it is possible to have an archive of all of them.

There are various ways of representing and formalizing planar graphs [3]. As
a planar graph consists of nodes, edges and faces, one possibility to represent a
planar graph would be a list of faces, where each face is again a list of nodes,
leaving the representation of the edges implicit in the arrangement of nodes. This
is the representation used in [23].

For our work we choose to represent planar graphs by hypermaps. Hypermaps
have been introduced to mechanized theorem proving by Gonthier in his proof of
the Four Color Theorem [8]. It builds on the notion of dart. Darts can be viewed as
the oriented edges of a graph (Gonthier chooses a different, but equivalent, point of
view; he sees them as angles between incident edges of the same face). Let us assume
that we are given three permutations e, n and f of a finite set D of darts. Two darts
α and β are called equivalent with respect to a permutation p of D iff ∃n. α = pn β
holds. The such induced relation on darts is an equivalence relation, and we write
|p| for its number of equivalence classes. If now the given three permutations fulfill

66 Chapter 4 — The Basic Linear Programs

the equations

e = e−1 = n◦ f and 2 |e| = |D| and |e|+ | f |+ |n| = |D|+2, (4.1)

then we can construct a connected planar graph in the following way:

1. The nodes, edges and faces are the equivalence classes of n, e and f .

2. An edge E = {δ1,δ2} consists therefore of the two oriented edges δ1 and δ2.

3. There is an oriented edge δ from node N1 to node N2 iff δ ∈N1 and eδ ∈N2.

4. An oriented edge δ belongs to a face F iff δ ∈ F.

Figure 4.1: A planar graph

0

1

4

5 6

7

8

11

10

9
2

3

Consider the planar graph in Fig. 4.1. Each dart is denoted by a number, and we
have D = {0,1,2, . . . ,11}. The permutations are given by

f = (0 7→ 1 7→ 2 7→ 3 7→ 4, 5 7→ 6 7→ 7, 8 7→ 9 7→ 10 7→ 11),
e = (0 7→ 11, 1 7→ 10, 2 7→ 9, 3 7→ 6, 4 7→ 5, 7 7→ 8),
n = (0 7→ 5 7→ 8, 1 7→ 11, 2 7→ 10, 3 7→ 9 7→ 7, 4 7→ 6).

(4.2)

It might be instructive to check the equations (4.1).
Darts are also viewed as faces, nodes and edges. For example, there are three

faces, face 0, face 5, and face 8 (to see why there are three faces, not two, imagine
how the graph looks when drawn on a sphere instead of in the plane); and face 7 is
the same as face 5.

We have converted the archive of tame graphs [22] into the hypermap represen-
tation and formalized them as values of type (nat×nat×nat) NatTreeMap where

datatype α NatTreeMap = TIN nat α (α NatTreeMap) (α NatTreeMap) | TNN (4.3)

An α NatTreeMap represents a function via the eval function:

fun eval :: α NatTreeMap ⇒ nat ⇒ α option
where

eval TNN x = None
| eval (TIN x c a b) x ′=

if x=x ′ then Some c else if x ′< x then eval a x ′ else eval b x ′

(4.4)

4.2 Graph Systems 67

The face, edge, and node permutations of a graph represented as value of type
(nat×nat×nat) NatTreeMap can therefore be accessed through the following three
functions:

constdefs
map-face :: (nat × nat × nat) NatTreeMap ⇒ nat ⇒ nat
map-face m d ≡ fst (the (eval m d))
map-edge :: (nat × nat × nat) NatTreeMap ⇒ nat ⇒ nat
map-edge m d ≡ fst (snd (the (eval m d)))
map-node :: (nat × nat × nat) NatTreeMap ⇒ nat ⇒ nat
map-node m d ≡ snd (snd (the (eval m d)))

(4.5)

The complete archive of 2771 tame graphs is given in our formalization as a
constant Archive of type (nat×nat×nat) NatTreeMap list, each element of the list
representing a tame graph. For convenience, there are also 2771 constants

graph-1, . . . , graph-2771

of type (nat×nat×nat) NatTreeMap, each constant representing a tame graph.

4.2 Graph Systems

A graph system models a planar graph together with

• a fixed set of variables defined on the darts of the planar graphs,

• constraints relating these variables.

In [16, sec. 23.3] Hales sketches what he calls the basic linear programs. Our notion
of graph system is intended to encompass those basic linear programs and give
a complete specification of them. It does not capture the more complicated linear
programs which result from branch-and-bound methods. In order to handle those
linear programs, it would be necessary to add more variables to the graph system
and to change the constraints on them.

Note that a graph system is a way to ascribe certain properties to a given planar
graph. We do not intend the graph system to model the notion of planarity exactly;
for example, we do not require the graph induced by a graph system to fulfill all
of the properties in (4.1). But for the concrete instances of graph systems we are
dealing with these equations will hold, of course, because these concrete instances
are based on tame graphs, and tame graphs are planar.

We manage the data of a graph system as a record of type α GS. The type
parameter α denotes the type of darts. We require that there is a linear order
defined on α. As in our application αwill always be nat, this is not a problem.

There are two kinds of record components: those members which describe the
topology of the planar graph (fig. 4.2), and those members which represent the
variables on darts (fig. 4.3); all variables have values in R. Note that although
e.g. the type of gs-σ is stated to be α⇒ real, it really is α GS⇒ α⇒ real, taking an
explicit graph system record as parameter.

What turns a structure gs of type α GS into a graph system is the set of axioms
it has to fulfill. All of these axioms are stated relative to gs. Because we have many
axioms, it would be nice to state them as concise as possible. The Isabelle locale
mechanism [1] fits our purpose. It allows entering a context in which chosen free

68 Chapter 4 — The Basic Linear Programs

gs-darts :: α set
gs-edge :: α⇒ α
gs-face :: α⇒ α
gs-node :: α⇒ α

gs-Face :: α⇒ α set
gs-Edge :: α⇒ α set
gs-Node ::α⇒α set

gs-edges :: α set
gs-nodes :: α set
gs-faces :: α set

gs-edgerep :: α⇒ α
gs-noderep :: α⇒ α
gs-facerep :: α⇒ α

gs-adjacent :: α⇒ α⇒ bool
gs-commonquad :: α⇒ α⇒ bool
gs-separable :: α⇒ bool
gs-separable ′ :: α set⇒ α⇒ bool
gs-tri :: α⇒ nat
gs-node-type :: α⇒ nat⇒ bool

Figure 4.2: Planar Graph Record Components

gs-σ :: α⇒ real
gs-τ :: α⇒ real
gs-ye :: α⇒ real
gs-yn :: α⇒ real
gs-sol :: α⇒ real
gs-azim :: α⇒ real

gs-tau-sigma :: α⇒ real
gs-sigma-qrtet :: α⇒ real
gs-sigma32-qrtet :: α⇒ real
gs-sigma1-qrtet :: α⇒ real

gs-sigma-quad :: α⇒ real
gs-tau-quad :: α⇒ real
gs-squad-quad :: α⇒ real
gs-sol-quad :: α⇒ real
gs-azim1-quad :: α⇒ real
gs-azim2-quad :: α⇒ real

Figure 4.3: Real Variable Record Components

variables are fixed, that means within the context they are treated like constants, but
are generalized on exiting the context. We choose gs as fixed variable and can then
view all of the record components in Figures 4.2 and 4.3 as constants with a built-in
implicit gs parameter. In the locale context we define e.g.

σ = gs-σ gs.

We introduce such an abbreviation for all of our record components and use these
abbreviations from now on (except at those rare occasions where we look at a graph
system from the outside).

4.2.1 Topology of a Graph System

Let us first make sense of the components shown in Figure 4.2. The leftmost box
displays the components which model a planar graph in hypermap representation:
the set of darts, and the edge, node and face permutations. We have no axioms
actually enforcing that these ought to be permutations.

All other components displayed in Figure 4.2 are defined in terms of these 4
primitive components. The Face, Edge and Node functions assign to each dart its
equivalence class. The definition of those functions listed in Figure 4.4 uses the
notion of Orbit :

Orbit f s = { f n s |n ∈N} = {s, f s, f (f s), . . .} (4.6)

Sometimes we need to represent such an equivalence class by a single dart unique

4.2 Graph Systems 69

Face = Orbit face

Edge = Orbit edge

Node = Orbit node

Figure 4.4: Axioms for Face, Edge and Node

∀ α. edgerep α =Min (Edge α)

∀ α. facerep α =Min (Face α)

∀ α. noderep α =Min (Node α)

Figure 4.5: Axioms for edgerep, facerep and noderep

to the class. This is why we require the type α of darts to be totally ordered: so
that we can pick a single dart in a unique way out of each equivalence class. The
edgerep, noderep and facerep functions assign to each dart the unique representing
dart that belongs to the same equivalence class (fig. 4.5). We also want to be able to
address all faces, or all edges, or all nodes. Thus, for each permutation, we form the
set of all representatives of that permutation (fig. 4.6).

Finally, the rightmost box of Figure 4.2 is made up of further notions which enrich
the topology related vocabulary of graph systems. Their definitions are listed in
Figure 4.7.

4.2.2 3-Space Interpretation of a Graph System

To understand the real variable components of a graph system, it is helpful to recall
how tame graphs originate from a packing of three-dimensional balls of radius 1
in 3-space. Given such a packing, pick any ball; this ball serves as the origin. Now
select all balls the centers of which have a distance from the center of the origin of
less than or equal to 2.51. Connect then all such centers with straight lines if their
distance is less than 2 t0 = 2.51. Project all of these lines onto the ball at the origin,
and you have a spherical plane graph. After some normalization of this spherical
plane graph you get a tame graph.

This means that a node of a tame graph corresponds to the center of a ball. And
the edges of a tame graph correspond to the straight line connections between those
centers. And the faces of a tame graph are basically a partitioning of the volume
around the origin.

The real variable components refer to this 3-space interpretation of tame graphs.
The real variable yn α interprets the dart α as a node; hence it must be invariant

∀ α. edges = { α ∈ darts. edgerep α = α }

∀ α. faces = { α ∈ darts. facerep α = α }

∀ α. nodes = { α ∈ darts. noderep α = α }

Figure 4.6: Axioms for edges, faces and nodes

70 Chapter 4 — The Basic Linear Programs

∀α β. adjacent α β = (∃n ∈ Node α. edge α ∈ Node β)
∀α β. commonquad α β = (∃F ∈ Node α. card (Face F) = 4 and facerep F ∈ facerep ‘ Node β)

∀α. separable α = (card (Node α) = 5 and (∃F ∈ Node α. 5 ≤ card (Face F)))
∀S α. separable ′ S α = (separable α and (∀β ∈ S. ¬ (adjacent α β or commonquad α β)))

∀α. tri α = card (Node α ∩ { β . card (Face β) = 3 })
∀α n. node-type α n = (card (Node α) = n ∧ (∀β ∈ Node α. card (Face β) = 3))

Figure 4.7: Further Topology Axioms

under the node permutation. It denotes the distance that the corresponding center
of a ball has to the origin. Hence we have 2 ≤ yn α ≤ 2 t0.

The real variable ye α interprets α as an edge. It is invariant under the edge
permutation and measures the length of the straight line between two balls it cor-
responds to. Again, we have 2 ≤ ye α ≤ 2 t0.

The real variable sol α interprets α as a face. It measures the size of the area
of the surface of the ball at the origin that this face corresponds to. It is invariant
under the face permutation. Because the whole surface of a unit ball is 4 π, we have
0 ≤ sol α ≤ 4 π.

To explain the real variable azim α, let us first interpret α as an arc on the surface
of the ball at the origin. Applying the node permutation to α yields another dart α′

which we also interpret as such an arc. The two arcs have a point p in common, the
projection of the center of the ball that α corresponds to. Now azim αmeasures the
spherical angle between those two arcs at p. Because azim α is an angle, we have
0 ≤ azim α ≤ 2 π. We furthermore know the sum of all angles around a point:

∀N ∈ nodes . 2 ∗ π =
∑
α ∈Node N. azim α (4.7)

In the plane, the sum of all inner angles of a triangle is π. For a spherical triangle,
this is not true. Girard’s Formula says that the difference between the sum of all
inner spherical angles of a spherical triangle and π is just the area of that spherical
triangle. Generalizing this result to faces with ≥ 3 edges gives:

∀x ∈ darts . sol x = − real (card (Face x) − 2) ∗ π +
∑
α ∈ Face x. azim α (4.8)

between the ends of that straight line and the origin.
The real variables σ α (the score) and τ α are related to the density of the volume

the face α corresponds to. They are connected via

∀x ∈ darts . τ x = sol x ∗ ζ ∗ pt − σ x (4.9)

where pt = 4 arctan(
√

2/5)− π3 and ζ = 1/(2 arctan(
√

2/5)). For the graph system to
be contravening, that is to qualify as part of a packing with highest possible density,

8 ∗ pt ≤
∑
α ∈ faces. σ α (4.10)

must hold.
The other real variables in the middle and rightmost box in Figure 4.3 are varia-

tions on the real variables in the first box; they are specified only in certain situations.
Their relationship with the real variables from the first box is given by the axioms in
Figure 4.11. The significance of these other variables lies in the existence of axioms
which have been converted from a database of inequalities. See Appendix A for the
complete list of these axioms.

4.2 Graph Systems 71

∀x ∈ darts . σ x = σ (face x)
∀x ∈ darts . ye x = ye (edge x)
∀x ∈ darts . yn x = yn (node x)
∀x ∈ darts . sol x = sol (face x)

Figure 4.8: Axioms for Invariance under Permutation

∀x ∈ darts . 2 ≤ yn x
∀x ∈ darts . 2 ≤ ye x
∀x ∈ darts . 0 ≤ azim x
∀x ∈ darts . 0 ≤ sol x

∀x ∈ darts . yn x ≤ 2 ∗ t0
∀x ∈ darts . ye x ≤ 2 ∗ t0
∀x ∈ darts . azim x ≤ 2 ∗ π
∀x ∈ darts . sol x ≤ 4 ∗ π

Figure 4.9: Axioms for Basic Geometrical Bounds

∀x ∈ darts . card (Face x) = 3 implies 0 ≤ τ x
∀x ∈ darts . card (Face x) = 4 implies 1317 / 10000 ≤ τ x
∀x ∈ darts . card (Face x) = 5 implies 27113 / 100000 ≤ τ x
∀x ∈ darts . card (Face x) = 6 implies 41056 / 100000 ≤ τ x
∀x ∈ darts . card (Face x) = 7 implies 54999 / 100000 ≤ τ x
∀x ∈ darts . card (Face x) = 8 implies 6045 / 10000 ≤ τ x
∀x ∈ darts . card (Face x) = 3 implies σ x ≤ pt
∀x ∈ darts . card (Face x) = 4 implies σ x ≤ 0
∀x ∈ darts . card (Face x) = 5 implies σ x ≤ −5704 / 100000
∀x ∈ darts . card (Face x) = 6 implies σ x ≤ −11408 / 100000
∀x ∈ darts . card (Face x) = 7 implies σ x ≤ −17112 / 100000
∀x ∈ darts . card (Face x) = 8 implies σ x ≤ −22816 / 100000

Figure 4.10: Bounds for σ and τ from [16, Lemma 20.2]

∀x ∈ darts . card (Face x) = 3 implies
sigma32-qrtet x = sigma-qrtet x − 32 / 10 ∗ ζ ∗ pt ∗ sol x

∀x ∈ darts . card (Face x) = 3 implies
sigma1-qrtet x = sigma-qrtet x − ζ ∗ pt ∗ sol x

∀x ∈ darts . card (Face x) = 3 implies σ x = sigma-qrtet x ∧ τ x = tau-sigma x
∀x ∈ darts . card (Face x) = 4 implies σ x = sigma-quad x
∀x ∈ darts . card (Face x) = 4 implies τ x = tau-quad x
∀x ∈ darts . card (Face x) = 4 implies squad-quad x = σ x ∧ sol-quad x = sol x ∧

azim1-quad x = azim x ∧ azim2-quad x = azim (face x)

Figure 4.11: Variations of Real Variables

72 Chapter 4 — The Basic Linear Programs

∀α ∈ nodes . node-type α 5 implies
(∀β ∈ nodes . α < β ∧ node-type β 5 implies
(∀γ ∈ nodes . β < γ ∧ node-type γ 5 implies
(∀δ ∈ nodes . γ < δ ∧ node-type δ 5 implies
55 / 100 ∗ 4 ∗ pt ≤ (

∑
S ∈ faces ∩ facerep ‘ (Node α ∪ Node β ∪ Node γ ∪ Node δ). τ S)

∧ (
∑

S ∈ faces ∩ facerep ‘ (Node α ∪ Node β ∪ Node γ ∪ Node δ). σ S − pt) ≤ − 48 / 100 ∗ 4 ∗ pt)))

∀α ∈ nodes . node-type α 5 implies
(∀β ∈ nodes . α < β ∧ node-type β 5 implies
(∀γ ∈ nodes . β < γ ∧ node-type γ 5 implies
55 / 100 ∗ 3 ∗ pt ≤ (

∑
S ∈ faces ∩ facerep ‘ (Node α ∪ Node β ∪ Node γ). τ S)

∧ (
∑

S ∈ faces ∩ facerep ‘ (Node α ∪ Node β ∪ Node γ). σ S − pt) ≤ − 48 / 100 ∗ 3 ∗ pt))

∀α ∈ nodes . node-type α 5 implies
(∀β ∈ nodes . α < β ∧ node-type β 5 implies
55 / 100 ∗ 2 ∗ pt ≤ (

∑
S ∈ faces ∩ facerep ‘ (Node α ∪ Node β). τ S)

∧ (
∑

S ∈ faces ∩ facerep ‘ (Node α ∪ Node β). σ S − pt) ≤ − 48 / 100 ∗ 2 ∗ pt)

∀α ∈ nodes . node-type α 5 implies
55 / 100 ∗ 1 ∗ pt ≤ (

∑
S ∈ faces ∩ facerep ‘ Node α. τ S)

∧ (
∑

S ∈ faces ∩ facerep ‘ Node α. σ S − pt) ≤ − 48 / 100 ∗ 1 ∗ pt

Figure 4.12: Axioms from [16, Lemma 10.6]

∀v1 ∈ nodes . separable v1 implies
const-a (tri v1) ≤ (

∑
F ∈ faces ∩ facerep ‘ Node v1. τ F / pt − const-d (card (Face F)))

∀v1 ∈ nodes . separable v1 implies
(∀v2 ∈ nodes . v1 < v2 and separable ′ {v1} v2 implies
const-a (tri v1) + const-a (tri v2)
≤ (

∑
F ∈ faces ∩ facerep ‘ (Node v1 ∪ Node v2). τ F / pt − const-d (card (Face F))))

∀v1 ∈ nodes . separable v1 implies
(∀v2 ∈ nodes . v1 < v2 and separable ′ {v1} v2 implies
(∀v3 ∈ nodes . v2 < v3 and separable ′ {v1, v2} v3 implies
const-a (tri v1) + const-a (tri v2) + const-a (tri v3)
≤ (

∑
F ∈ faces ∩ facerep ‘ (Node v1 ∪ Node v2 ∪ Node v3). τ F / pt − const-d (card (Face F)))))

Figure 4.13: Axioms from [16, Lemma 22.12]

4.2.3 Additional Constraints of a Graph System
We are about to complete the specification of the axioms of a graph system. This
subsection enumerates all axioms that are still missing.

First, this axiom is derived from [13, Group 4, rule 1]:

∀α ∈ nodes . node-type α 4 implies (∀β ∈ Node α. σ β ≤ 33 / 100 ∗ pt) (4.11)

Second, here is an axiom derived from [13, Group 4, rule 3]:

∀α ∈ nodes . node-type α 5 implies
(
∑
β ∈ Node α. σ β + 419351 / 1000000 ∗ sol β − 2856354 / 10000000) ≤ 0

(4.12)
Finally, Figures 4.12 and 4.13 complete the set of axioms.

Thus we have defined the predicate GraphSystem of type α GS⇒ bool which is
true for some gs if gs fulfills all the axioms mentioned in Section 4.2.

4.3 Generating and Running the Basic Linear Programs 73

4.3 Generating and Running the Basic Linear Programs

Each graph system axiom involving real variables is a generator for a set of linear
inequalities in these real variables. For each tame graph, we assume that it fulfills
all graph system axioms. We then run the axioms and produce a system of linear
inequalities. If we are successful in showing that this system is infeasible, we have
shown that the given tame graph cannot be a graph system, and thus constitutes no
counter example to the Kepler conjecture.

We first need a connection between graph system and tame graph:

definition func-eq :: α GS ⇒ (α⇒ β)⇒ (α⇒ β)⇒ bool
where

func-eq gs f g = (∀ d . d ∈ gs-darts gs −→ f d = g d)

definition PGS :: nat GS ⇒ (nat × nat × nat) NatTreeMap ⇒ bool
where

PGS gs S = (GraphSystem gs
∧ gs-darts gs = dom (eval S)
∧ func-eq gs (gs-face gs) (map-face S)
∧ func-eq gs (gs-edge gs) (map-edge S)
∧ func-eq gs (gs-node gs) (map-node S))

(4.13)

For a given tame graph S, say S = graph-47, we can then enter the context PGS gs S.
The HOL Computing Library (HCL) allows us to perform computations within this
context. If the HCL did not have that capability, it would have been impossible to
apply the HCL to our problem, because all of our computations need to be done
in a world which has the underlying implicit assumption PGS gs S. Our goal is to
prove False in this world, thereby showing that this is a world which is not real.

How do we execute an axiom? First note that by linking graph system and
tame graph, the permutation functions of the graph system become executable. We
provide theorems to the HCL such that from the executability of the permutation
functions the executability of all axioms follows.

Say the axiom has the form
∀ x ∈ B. P x

If B is a finite set such that B= {b1, . . . ,bn}, then executing this axiom means converting
it into the form P b1∧ . . .∧P bn. In our situation, B is often given as the orbit of a
permutation function, for example B = Orbit face d. Then executing the axiom
results in

P d∧P(face d)∧P(face(face d))∧ . . .

where the conjunction is finite if the orbit is. The nice thing about finite orbits is
therefore that they come with a built-in traversal strategy, i.e. we know how to visit
every element of the set exactly once. If X is a set with such a traversal strategy,
and Y is a set such that the membership test y ∈ Y is executable (which is e.g. true
if Y has a traversal strategy), then X∩Y has also a traversal strategy: just follow the
traversal strategy of X, skipping elements if they are not in Y. Of course,then X−Y
also has a traversal strategy: follow the one of X, skipping elements if they are in
Y. The case X∪Y is problematic, even if both X and Y have a traversal strategy.
Our solution in this situation is to find a set C with traversal strategy such that
X∪Y = C∩ (X∪Y). Then C∩ (X∪Y) is clearly traversable because C has a traversal

74 Chapter 4 — The Basic Linear Programs

strategy and the membership test for X∪Y is executable. All of the sets in our
application are subsets of darts. If darts is a traversable set, then this reformulation
is always possible. Note that although the requirement to visit an element not more
than once is not really necessary for executing ∀, it is nevertheless essential for
executing

∑
.

We showed in [28] how to define and reason about functions on orbits with the
help of the While and For combinators. Using the techniques presented there we
have defined a fold functional for orbits, and proven theorems about the relationship
of that fold functional with the one for finite sets presented in [24]. This allowed
us to reuse many results already available in Isabelle, for example when making
the Min function executable on orbits, which is needed for making facerep etc.
executable.

In many axioms we used instead of the normal implication operator −→ the
short-circuit operator implies (fig. 2.10). Note that this is essential in order to be
able to execute certain axioms like those in Figure 4.12 or 4.13 in reasonable time.

The result of executing a graph specification is a large conjunction of equalities
and inequalities. We perform a normalization step to turn this large conjunction
into matrix form. We then approximate the matrix by the method mentioned in
Section 3.7.4. After this, we calculate a priori bounds as explained in Section 3.8.
Then the linear program is ripe for trying to prove its infeasibility. Applying the
method of Section 3.5, we manage to prove False for about 92.5% of all tame graphs.
For example, for the tame graph graph-47 we prove

PGS gs graph-47 =⇒ False

Detailed results are listed in Appendix B. Let’s do a quick sanity check. The number
of the tame graph corresponding to the face-centered cubic packing is 901, the
number of the one corresponding to the hexagonal-close packing is 880. Looking
both numbers up shows that our methods failed for them, we could not prove
PGS gs graph-880 =⇒ False or PGS gs graph-901 =⇒ False. And that is how it
should be.

Future work is to look at more complicated linear programs than the basic linear
programs, and thereby to extend the methods presented in this thesis to tackle the
remaining tame graphs.

A P P E N D I X A

Graph System Axioms from the
Inequality Database

This appendix lists those graph system axioms which have been converted from the
database of inequalities which can be retrieved as HOL-light specification from [11].

The axioms are either for triangular faces, or for quadrilateral faces. For triangu-
lar faces, they hold for a face F under the assumption tetra-bound F, for quadrilateral
faces they hold under the assumption quad-bound F. These predicates are local to
the graph system specification and not exported, their definition is:

tetra-bound F ≡
card (Face F) = 3
∧ 2 ≤ yn F ∧ yn F ≤ 251/100
∧ 2 ≤ yn (face F) ∧ yn (face F) ≤ 251/100
∧ 2 ≤ yn (face (face F)) ∧ yn (face (face F)) ≤ 251/100
∧ 2 ≤ ye (face F) ∧ ye (face F) ≤ 251/100
∧ 2 ≤ ye (face (face F)) ∧ ye (face (face F)) ≤ 251/100
∧ 2 ≤ ye F ∧ ye F ≤ 251/100

(A.1)

quad-bound F ≡
card (Face F) = 4
∧ 2 ≤ yn F ∧ yn F ≤ 251/100
∧ 2 ≤ yn (face F) ∧ yn (face F) ≤ 251/100
∧ 2 ≤ yn (face (face F)) ∧ yn (face (face F)) ≤ 251/100
∧ 2 ≤ yn (face (face (face F))) ∧ yn (face (face (face F))) ≤ 251/100
∧ 2 ≤ ye (face F) ∧ ye (face F) ≤ 251/100
∧ 2 ≤ ye (face (face F)) ∧ ye (face (face F)) ≤ 251/100
∧ 2 ≤ ye (face (face (face F))) ∧ ye (face (face (face F))) ≤ 251/100
∧ 2 ≤ ye F ∧ ye F ≤ 251/100

(A.2)

Because in this thesis we look only at graph systems corresponding to basic linear
programs, the definitions could actually be expressed in a simpler way:

tetra-bound F ≡ card (Face F) = 3 (A.3)

quad-bound F ≡ card (Face F) = 4 (A.4)

76 Appendix A — Graph System Axioms from the Inequality Database

J16189133 ∀x ∈ darts . tetra-bound x −→ −1369 / 10000 + sigma32-qrtet x + 1966 / 10000 ∗ azim x < 0

J49987949
∀x ∈ darts . tetra-bound x −→
190249 / 1000000 + sigma-qrtet x + −446634 / 1000000 ∗ sol x < 0

J53415898 ∀x ∈ darts . tetra-bound x −→ sigma1-qrtet x ≤ 0

J73203677
∀x ∈ darts . tetra-bound x −→ −13225 / 10000 + sigma-qrtet x + 419351 / 1000000 ∗ sol x +
64713719 / 100000000 ∗ azim x < 0

J98170671
∀x ∈ darts . tetra-bound x −→ −2114190 / 10000000 + sigma-qrtet x + 419351 / 1000000 ∗ sol x
+ −610397 / 10000000 ∗ azim x < 0

J106537269 ∀x ∈ darts . tetra-bound x −→ −208 / 1000 + sigma1-qrtet x + 1689 / 10000 ∗ azim x < 0

J170403135 ∀x ∈ darts . tetra-bound x −→ 5974 / 10000 + sigma32-qrtet x + −4233 / 10000 ∗ azim x < 0

J195296574 ∀x ∈ darts . tetra-bound x −→ 45 / 10000 + sigma32-qrtet x + 953 / 10000 ∗ azim x < 0

J208809199 ∀x ∈ darts . tetra-bound x −→ 8638 / 10000 − azim x < 0

J221945658 ∀x ∈ darts . tetra-bound x −→ 3683 / 10000 + sigma1-qrtet x + −2993 / 10000 ∗ azim x < 0

J254627291 ∀x ∈ darts . tetra-bound x −→ −3442 / 10000 + sigma1-qrtet x + 2529 / 10000 ∗ azim x < 0

J382430711

∀x ∈ darts . tetra-bound x −→ 4582620 / 10000000 + sol x + −320937 / 1000000 ∗ ye (face x) +
−320937 / 1000000 ∗ ye (face (face x)) + −320937 / 1000000 ∗ ye x + 152679 / 1000000 ∗ yn x +
152679 / 1000000 ∗ yn (face x) + 152679 / 1000000 ∗ yn (face (face x)) < 0

J507227930

∀x ∈ darts . tetra-bound x −→ 651760 / 10000000 + azim x + 153598 / 1000000 ∗ yn (face x) +
153598 / 1000000 ∗ yn (face (face x)) + 153598 / 1000000 ∗ ye (face (face x)) + 153598 / 1000000
∗ ye x + −498 / 1000 ∗ yn x + −76446 / 100000 ∗ ye (face x) < 0

J539256862 ∀x ∈ darts . tetra-bound x −→ 41110 / 100000 + sigma-qrtet x + −37898 / 100000 ∗ azim x < 0

J544014470

∀x ∈ darts . tetra-bound x −→ 16183310 / 10000000 + 199235 / 1000000 ∗ ye (face x) + 199235
/ 1000000 ∗ ye (face (face x)) + 199235 / 1000000 ∗ ye x + −377076 / 1000000 ∗ yn x + −377076
/ 1000000 ∗ yn (face x) + −377076 / 1000000 ∗ yn (face (face x)) − sol x < 0

J568731327

∀x ∈ darts . tetra-bound x −→ 27341020 / 10000000 + −359894 / 1000000 ∗ yn (face x) +
−359894 / 1000000 ∗ yn (face (face x)) + −359894 / 1000000 ∗ ye (face (face x)) + −359894 /
1000000 ∗ ye x + 3 / 1000 ∗ yn x + 685 / 1000 ∗ ye (face x) − azim x < 0

J584511898
∀x ∈ darts . tetra-bound x −→ 5786316 / 10000000 + sigma-qrtet x + 419351 / 1000000 ∗ sol x
+ −796456 / 1000000 ∗ azim x < 0

J586468779 ∀x ∈ darts . tetra-bound x −→ − pt + sigma-qrtet x ≤ 0

J649712615

∀x ∈ darts . tetra-bound x −→ −128213260 / 100000000 + sigma1-qrtet x + 129119 / 1000000
∗ ye (face x) + 129119 / 1000000 ∗ ye (face (face x)) + 129119 / 1000000 ∗ ye x + 845696 /
10000000 ∗ yn x + 845696 / 10000000 ∗ yn (face x) + 845696 / 10000000 ∗ yn (face (face x)) < 0

J710947756
∀x ∈ darts . tetra-bound x −→ −1486650 / 1000000 + sigma-qrtet x + 419351 / 1000000 ∗ sol x
+ 2 / 10 ∗ yn x + 2 / 10 ∗ yn (face x) + 2 / 10 ∗ yn (face (face x)) < 0

J776305271 ∀x ∈ darts . tetra-bound x −→ −5353 / 10000 + sigma-qrtet x + 3302 / 10000 ∗ azim x < 0

J789045970

∀x ∈ darts . tetra-bound x −→ −13582137 / 10000000 + sigma-qrtet x + 10857 / 100000 ∗ yn x
+ 10857 / 100000 ∗ yn (face x) + 10857 / 100000 ∗ yn (face (face x)) + 10857 / 100000 ∗ ye (face
x) + 10857 / 100000 ∗ ye (face (face x)) + 10857 / 100000 ∗ ye x < 0

J802409438 ∀x ∈ darts . tetra-bound x −→ 2550 / 10000 + sigma32-qrtet x + −1083 / 10000 ∗ azim x < 0

J809197575
∀x ∈ darts . tetra-bound x −→ −35641 / 100000 + sigma-qrtet x + 419351 / 1000000 ∗ sol x +
499559 / 10000000 ∗ azim x < 0

J825495074 ∀x∈darts . tetra-bound x−→−2866354 / 10000000 + sigma-qrtet x+ 419351 / 1000000 ∗ sol x< 0

J864218323 ∀x ∈ darts . tetra-bound x −→ −23021 / 100000 + sigma-qrtet x + 142 / 1000 ∗ azim x < 0

J868828815
∀x ∈ darts . tetra-bound x −→ −308526 / 1000000 + sigma-qrtet x + 419351 / 1000000 ∗ sol x +
162028 / 10000000 ∗ azim x < 0

J927432550 ∀x ∈ darts . tetra-bound x −→ 4666 / 10000 + sigma1-qrtet x + −3897 / 10000 ∗ azim x < 0

J984463800 ∀x ∈ darts . tetra-bound x −→ −1874445 / 1000000 + azim x < 0

J995444025
∀x ∈ darts . tetra-bound x −→
−287389 / 1000000 + sigma-qrtet x + 37642101 / 100000000 ∗ sol x < 0

77

J15141595 ∀x ∈darts . quad-bound x−→ 6284 / 10000 + squad-quad x+−3878 / 10000 ∗ azim1-quad x< 0

J18502666
∀x ∈ darts . quad-bound x −→ 166174 / 100000 + squad-quad x + 419351 / 1000000 ∗ sol-quad
x + −1582508 / 1000000 ∗ azim1-quad x < 0

J73283761 ∀x ∈darts . quad-bound x−→ 8341 / 10000 + squad-quad x+−5301 / 10000 ∗ azim1-quad x< 0

J122375455
∀x ∈ darts . quad-bound x −→
2955 / 1000 + squad-quad x + − (pt ∗ ζ) ∗ sol-quad x + −21406 / 10000 ∗ azim1-quad x < 0

J153920401
∀x ∈ darts . quad-bound x −→ 4893 / 1000 + squad-quad x + − (32 / 10 ∗ pt ∗ ζ) ∗ sol-quad x
+ −35294 / 10000 ∗ azim1-quad x < 0

J166451608 ∀x ∈ darts . quad-bound x −→ −41717 / 100000 + squad-quad x + 3 / 10 ∗ sol-quad x < 0

J277330628 ∀x ∈ darts . quad-bound x −→ −3247 / 1000 + azim1-quad x < 0

J310151857
∀x ∈ darts . quad-bound x −→
57906 / 10000 + squad-quad x + −456766 / 100000 ∗ azim1-quad x < 0

J322621318
∀x ∈ darts . quad-bound x −→ 9494 / 1000 + squad-quad x + −30508 / 10000 ∗ azim1-quad x
+ −30508 / 10000 ∗ azim2-quad x < 0

J337637212 ∀x ∈darts . quad-bound x−→ 4126 / 10000 + squad-quad x+− (32 / 10 ∗ pt ∗ ζ) ∗ sol-quad x< 0

J393682353
∀x ∈ darts . quad-bound x −→ −3825 / 10000 + squad-quad x + − (pt ∗ ζ) ∗ sol-quad x + 2365
/ 10000 ∗ azim1-quad x < 0

J396281725 ∀x∈darts .quad-bound x−→−15707 / 10000 + squad-quad x+ 5905 / 10000 ∗ azim1-quad x< 0

J408478278
∀x ∈ darts . quad-bound x −→ 6438 / 10000 + squad-quad x + − (pt ∗ ζ) ∗ sol-quad x + −316 /
1000 ∗ azim1-quad x < 0

J444643063
∀x ∈ darts . quad-bound x −→ 10472 / 10000 + squad-quad x + −27605 / 100000 ∗ azim1-quad
x + −27605 / 100000 ∗ azim2-quad x < 0

J465497818
∀x ∈ darts . quad-bound x −→ 5350181 / 1000000 + squad-quad x + 419351 / 1000000 ∗
sol-quad x + −4611391 / 1000000 ∗ azim1-quad x < 0

J539320075
∀x ∈ darts . quad-bound x −→ 581446 / 100000 + squad-quad x + − (pt ∗ ζ) ∗ sol-quad x +
−449461 / 100000 ∗ azim1-quad x < 0

J552698390
∀x ∈ darts . quad-bound x −→ −35926 / 10000 + squad-quad x + 844 / 1000 ∗ azim1-quad x +
844 / 1000 ∗ azim2-quad x < 0

J574391221 ∀x ∈darts . quad-bound x−→−4124 / 10000 + squad-quad x+ 1897 / 10000 ∗ azim1-quad x< 0

J616145964
∀x ∈ darts . quad-bound x −→ 577942 / 100000 + squad-quad x + − (32 / 10 ∗ pt ∗ ζ) ∗ sol-quad
x + −425863 / 100000 ∗ azim1-quad x < 0

J655029773
∀x ∈ darts . quad-bound x −→
20749 / 10000 + squad-quad x + −15094 / 10000 ∗ azim1-quad x < 0

J657406669 ∀x ∈ darts . quad-bound x −→ 1153 / 1000 − azim1-quad x < 0

J676439533
∀x ∈ darts . quad-bound x −→ −895 / 10000 + squad-quad x + 419351 / 1000000 ∗ sol-quad x
+ −342747 / 1000000 ∗ azim1-quad x < 0

J768057794
∀x ∈ darts . quad-bound x −→ −33 / 100 + squad-quad x + − (32 / 10 ∗ pt ∗ ζ) ∗ sol-quad x +
316 / 1000 ∗ azim1-quad x < 0

J775642319
∀x ∈ darts . quad-bound x −→ −1071 / 1000 + squad-quad x + − (pt ∗ ζ) ∗ sol-quad x + 4747 /
10000 ∗ azim1-quad x < 0

J974296985
∀x ∈ darts . quad-bound x −→ −336909 / 100000 + squad-quad x + 419351 / 1000000 ∗
sol-quad x + 974137 / 1000000 ∗ azim1-quad x < 0

J996268658 ∀x ∈ darts . quad-bound x −→ 1317 / 10000 + squad-quad x + − (pt ∗ ζ) ∗ sol-quad x < 0

78 Appendix A — Graph System Axioms from the Inequality Database

A P P E N D I X B

Results of Running the Basic LPs

In this appendix we list our results of running our methods on the archive of
tame graphs. For each tame graph, we assumed that it forms a graph system. By
generating the corresponding basic linear program and trying to prove it infeasible
we tried to show that this assumption was false. Our results are presented in tables
of the following format:

Inconsistent Time

The ’#’ column contains the number of the tame graph that has been examined.
The numbering is chosen to correspond to the order of the tame graphs listed in [22].
A tame graph is in class n if all of its faces have at most n edges and there is at least
one face with n edges. Class 3 ranges from #1 to #20, class 4 from #21 to #943, class
5 from #944 to #2488, class 6 from #2489 to #2726, class 7 from #2727 to #2749, and
class 8 from #2750 to #2771.

The ’Inconsistent’ column says ’Yes’ if we have successfully shown the infeasi-
bility of the basic linear program induced by the tame graph, and therefore shown
the inconsistency of the corresponding graph system. If it says ’?’, we only know
that our methods failed on this graph.

Finally, the ’Time’ column tells us how many minutes the examination of the
tame graph lasted. We used the SML mode of the HOL Computing Library. Each
tame graph has been examined by its own Isabelle process. Each Isabelle process
ran on a dedicated processor of a cluster of 32 four processor 2.4GHz Opteron 850
machines with 8 GB RAM per machine. The quickest process needed 8.4 minutes,
the slowest 67. The examination of all tame graphs took about 7.5 hours of cluster
runtime. This corresponds to about 40 days on a single processor machine.

We were able to prove the inconsistency of 2565 of the graph systems, and failed
on 206. This yields a success rate of about 92.5%.

80 Appendix B — Results of Running the Basic LPs

Inconsistent Time
1 Yes 15.4
2 Yes 21.9
3 Yes 17.6
4 Yes 39.8
5 Yes 19.4
6 Yes 23.1
7 Yes 26.9
8 Yes 24.3
9 Yes 41.5

10 Yes 40.7
11 Yes 37.7
12 Yes 30.4
13 Yes 30.9
14 Yes 47.3
15 Yes 53.5
16 Yes 66.8
17 Yes 56.1
18 ? 47.3
19 Yes 15.9
20 Yes 12.7
21 Yes 20.0
22 Yes 20.8
23 Yes 22.9
24 Yes 23.6
25 Yes 24.3
26 Yes 21.0
27 Yes 21.6
28 Yes 18.0
29 Yes 18.6
30 Yes 21.6
31 Yes 20.6
32 Yes 22.5
33 Yes 19.8
34 Yes 20.6
35 Yes 21.9
36 ? 19.8
37 Yes 21.6
38 Yes 21.6
39 Yes 23.9
40 Yes 22.9
41 Yes 19.2
42 Yes 25.8
43 Yes 22.7
44 Yes 23.0
45 Yes 19.7
46 Yes 27.4
47 Yes 18.2
48 Yes 21.3
49 Yes 22.4
50 Yes 22.0
51 Yes 20.9
52 Yes 18.2
53 Yes 18.8
54 Yes 20.0
55 Yes 20.3
56 Yes 20.9
57 Yes 18.5
58 Yes 19.9
59 Yes 18.0
60 Yes 17.3
61 ? 19.4
62 ? 19.2
63 Yes 19.7
64 Yes 23.4
65 Yes 19.4
66 Yes 23.4
67 Yes 22.8
68 Yes 19.7
69 Yes 23.5
70 Yes 24.0
71 Yes 24.7
72 Yes 19.8
73 Yes 21.6
74 Yes 25.9
75 Yes 27.1
76 Yes 17.6
77 Yes 28.7
78 ? 26.1
79 Yes 23.3
80 Yes 18.3
81 ? 28.3
82 Yes 22.2
83 Yes 25.4
84 Yes 18.8
85 Yes 25.4
86 Yes 26.0
87 Yes 21.9
88 Yes 25.0
89 ? 26.9
90 ? 27.5
91 ? 19.4
92 Yes 23.5
93 Yes 26.0
94 Yes 25.3
95 Yes 40.4
96 Yes 25.1
97 Yes 22.6
98 Yes 18.7
99 Yes 22.2

100 Yes 18.0

Inconsistent Time
101 Yes 18.7
102 Yes 19.9
103 Yes 24.0
104 Yes 18.1
105 Yes 23.8
106 Yes 25.0
107 Yes 21.1
108 Yes 18.4
109 Yes 24.2
110 Yes 25.6
111 Yes 18.8
112 Yes 23.6
113 Yes 26.0
114 Yes 19.4
115 Yes 18.1
116 Yes 23.4
117 Yes 18.3
118 Yes 29.3
119 Yes 23.7
120 Yes 17.8
121 Yes 22.9
122 Yes 23.9
123 Yes 25.9
124 Yes 25.6
125 Yes 23.5
126 Yes 26.0
127 Yes 26.7
128 Yes 24.5
129 Yes 20.4
130 Yes 20.4
131 Yes 18.4
132 Yes 28.1
133 ? 19.8
134 Yes 27.2
135 Yes 26.2
136 Yes 21.3
137 Yes 24.7
138 ? 20.6
139 Yes 19.3
140 ? 19.7
141 Yes 22.8
142 Yes 27.7
143 ? 18.5
144 Yes 22.4
145 ? 21.0
146 ? 19.6
147 Yes 31.5
148 Yes 17.7
149 Yes 18.7
150 Yes 21.7
151 Yes 21.7
152 Yes 26.0
153 Yes 28.2
154 Yes 21.2
155 Yes 24.6
156 Yes 23.2
157 Yes 23.6
158 ? 20.1
159 Yes 29.4
160 Yes 19.8
161 Yes 17.8
162 Yes 21.2
163 Yes 19.9
164 Yes 26.8
165 ? 28.0
166 Yes 25.2
167 Yes 25.2
168 Yes 28.3
169 Yes 27.4
170 Yes 27.9
171 Yes 17.9
172 Yes 32.4
173 Yes 17.8
174 Yes 18.0
175 ? 22.0
176 Yes 25.6
177 Yes 22.9
178 Yes 25.8
179 Yes 17.8
180 Yes 22.2
181 Yes 24.6
182 Yes 28.5
183 Yes 20.4
184 Yes 21.9
185 Yes 23.1
186 Yes 25.8
187 Yes 30.3
188 Yes 28.4
189 Yes 27.0
190 Yes 18.3
191 Yes 25.9
192 Yes 20.4
193 Yes 24.7
194 Yes 30.7
195 Yes 27.6
196 Yes 25.6
197 ? 23.6
198 Yes 20.5
199 Yes 19.8
200 Yes 20.8

Inconsistent Time
201 Yes 21.4
202 Yes 24.1
203 Yes 18.2
204 Yes 30.0
205 Yes 26.1
206 Yes 27.2
207 Yes 26.1
208 Yes 31.8
209 Yes 25.1
210 Yes 28.3
211 Yes 25.8
212 Yes 27.7
213 Yes 22.3
214 Yes 21.0
215 Yes 29.4
216 Yes 29.9
217 Yes 26.6
218 Yes 29.5
219 Yes 26.4
220 Yes 26.4
221 Yes 27.0
222 Yes 35.0
223 Yes 31.7
224 Yes 29.1
225 Yes 21.2
226 Yes 24.1
227 Yes 25.2
228 Yes 32.6
229 Yes 22.7
230 Yes 27.0
231 Yes 26.8
232 Yes 28.7
233 Yes 28.8
234 Yes 32.3
235 Yes 29.1
236 Yes 28.6
237 Yes 26.7
238 Yes 31.1
239 Yes 30.0
240 Yes 30.8
241 Yes 35.9
242 Yes 21.8
243 Yes 30.4
244 Yes 17.6
245 Yes 23.1
246 Yes 28.1
247 Yes 27.5
248 Yes 31.7
249 Yes 27.2
250 Yes 30.5
251 Yes 24.3
252 Yes 21.3
253 Yes 18.9
254 Yes 22.4
255 Yes 18.2
256 ? 22.8
257 Yes 17.8
258 Yes 19.0
259 Yes 26.9
260 Yes 18.9
261 Yes 24.4
262 Yes 26.4
263 Yes 21.7
264 Yes 26.9
265 Yes 29.1
266 Yes 25.5
267 Yes 24.0
268 Yes 23.9
269 Yes 22.8
270 Yes 17.6
271 Yes 27.0
272 Yes 22.2
273 Yes 19.5
274 Yes 22.9
275 Yes 25.6
276 Yes 26.6
277 Yes 25.4
278 Yes 27.8
279 Yes 27.8
280 Yes 25.3
281 Yes 27.2
282 Yes 28.5
283 Yes 23.5
284 Yes 25.4
285 Yes 27.2
286 Yes 28.1
287 Yes 30.4
288 Yes 24.8
289 Yes 22.7
290 Yes 25.9
291 Yes 28.5
292 Yes 30.3
293 Yes 22.7
294 Yes 24.9
295 Yes 30.1
296 Yes 23.5
297 Yes 23.7
298 Yes 22.7
299 Yes 28.0
300 Yes 28.7

Inconsistent Time
301 Yes 26.4
302 Yes 28.4
303 Yes 27.0
304 Yes 26.7
305 Yes 30.9
306 Yes 20.1
307 Yes 24.7
308 Yes 32.6
309 Yes 21.0
310 Yes 36.2
311 Yes 32.9
312 Yes 31.1
313 Yes 30.0
314 Yes 32.3
315 Yes 36.4
316 Yes 17.9
317 Yes 17.6
318 Yes 22.1
319 Yes 18.2
320 Yes 19.3
321 Yes 22.8
322 Yes 16.0
323 Yes 20.0
324 Yes 22.6
325 Yes 18.9
326 Yes 17.7
327 Yes 20.9
328 Yes 16.1
329 Yes 17.8
330 Yes 20.7
331 Yes 20.4
332 Yes 27.3
333 Yes 19.1
334 Yes 21.2
335 Yes 19.9
336 Yes 18.0
337 Yes 18.7
338 Yes 19.7
339 Yes 18.3
340 Yes 18.8
341 Yes 21.3
342 Yes 18.2
343 Yes 17.6
344 Yes 17.8
345 Yes 21.5
346 Yes 18.7
347 Yes 18.8
348 Yes 20.3
349 Yes 25.6
350 Yes 27.3
351 Yes 22.6
352 Yes 21.5
353 Yes 25.0
354 Yes 25.2
355 Yes 28.4
356 Yes 20.0
357 Yes 19.5
358 Yes 18.8
359 Yes 23.8
360 Yes 16.8
361 Yes 17.8
362 Yes 18.7
363 Yes 17.3
364 Yes 19.9
365 Yes 19.1
366 Yes 19.3
367 Yes 16.1
368 Yes 19.4
369 ? 24.5
370 Yes 18.3
371 Yes 18.2
372 Yes 19.1
373 Yes 19.7
374 Yes 18.0
375 Yes 21.6
376 Yes 18.2
377 Yes 19.8
378 Yes 19.4
379 Yes 20.3
380 Yes 20.9
381 Yes 23.5
382 Yes 20.5
383 Yes 22.8
384 Yes 18.7
385 Yes 31.9
386 Yes 22.8
387 Yes 25.5
388 Yes 21.2
389 Yes 19.2
390 Yes 25.6
391 Yes 26.5
392 Yes 25.1
393 Yes 21.0
394 Yes 25.2
395 Yes 23.4
396 Yes 18.8
397 Yes 24.9
398 Yes 25.3
399 Yes 24.1
400 Yes 24.2

Inconsistent Time
401 Yes 24.9
402 Yes 26.7
403 Yes 24.1
404 Yes 21.5
405 Yes 25.3
406 Yes 27.0
407 Yes 27.3
408 Yes 19.1
409 Yes 23.5
410 Yes 19.6
411 Yes 31.9
412 Yes 23.2
413 Yes 24.0
414 Yes 25.2
415 Yes 23.5
416 Yes 23.2
417 Yes 20.6
418 Yes 21.7
419 Yes 22.7
420 Yes 22.1
421 Yes 19.0
422 Yes 22.5
423 Yes 22.1
424 Yes 25.4
425 Yes 24.0
426 Yes 20.3
427 Yes 25.0
428 Yes 20.9
429 Yes 24.2
430 Yes 22.8
431 Yes 24.0
432 Yes 19.8
433 Yes 20.1
434 Yes 23.8
435 Yes 18.5
436 Yes 24.9
437 Yes 25.6
438 Yes 23.6
439 Yes 20.8
440 Yes 19.1
441 Yes 21.4
442 Yes 18.8
443 Yes 20.2
444 Yes 18.7
445 Yes 19.8
446 Yes 19.7
447 Yes 24.7
448 Yes 24.2
449 Yes 27.3
450 Yes 26.9
451 Yes 24.2
452 Yes 23.0
453 Yes 26.1
454 Yes 20.3
455 Yes 21.2
456 Yes 27.5
457 Yes 25.3
458 Yes 25.0
459 Yes 23.6
460 Yes 23.3
461 Yes 27.2
462 Yes 25.1
463 Yes 20.8
464 Yes 29.2
465 Yes 27.6
466 Yes 35.8
467 Yes 23.8
468 Yes 19.9
469 Yes 17.9
470 Yes 25.2
471 Yes 28.3
472 Yes 25.7
473 Yes 24.6
474 Yes 27.3
475 Yes 24.2
476 Yes 25.6
477 Yes 25.1
478 Yes 24.5
479 Yes 19.1
480 Yes 19.0
481 Yes 23.0
482 Yes 19.5
483 Yes 18.3
484 Yes 15.1
485 Yes 15.2
486 Yes 16.8
487 Yes 18.7
488 Yes 16.6
489 Yes 15.4
490 Yes 16.1
491 Yes 17.2
492 Yes 16.9
493 Yes 16.7
494 Yes 14.1
495 Yes 14.2
496 Yes 18.0
497 Yes 17.8
498 Yes 15.9
499 Yes 18.2
500 Yes 19.1

81

Inconsistent Time
501 Yes 18.0
502 Yes 18.6
503 Yes 17.1
504 Yes 18.3
505 Yes 18.7
506 Yes 14.1
507 Yes 16.3
508 Yes 17.5
509 Yes 16.2
510 Yes 16.2
511 Yes 18.5
512 Yes 17.4
513 Yes 16.6
514 Yes 16.8
515 Yes 18.0
516 Yes 19.1
517 Yes 13.4
518 Yes 17.1
519 Yes 16.4
520 Yes 16.8
521 Yes 14.5
522 Yes 14.5
523 Yes 17.4
524 Yes 13.1
525 Yes 17.9
526 Yes 18.7
527 Yes 18.3
528 Yes 18.7
529 Yes 17.9
530 Yes 17.8
531 Yes 17.3
532 Yes 18.8
533 Yes 20.4
534 Yes 20.0
535 Yes 22.7
536 Yes 18.6
537 Yes 22.3
538 Yes 19.1
539 Yes 23.8
540 Yes 18.6
541 Yes 21.7
542 Yes 22.2
543 Yes 22.2
544 Yes 24.7
545 Yes 17.4
546 Yes 20.0
547 Yes 22.7
548 Yes 23.2
549 Yes 23.0
550 Yes 18.7
551 Yes 17.5
552 Yes 21.6
553 Yes 19.1
554 Yes 18.6
555 Yes 18.9
556 Yes 19.1
557 Yes 21.4
558 Yes 22.4
559 Yes 12.9
560 Yes 16.2
561 Yes 12.1
562 Yes 14.5
563 Yes 14.9
564 Yes 11.0
565 Yes 15.0
566 Yes 15.4
567 Yes 17.3
568 Yes 14.9
569 Yes 11.8
570 Yes 11.9
571 Yes 14.8
572 Yes 18.0
573 Yes 13.7
574 Yes 16.4
575 Yes 15.4
576 Yes 18.0
577 Yes 11.8
578 Yes 14.6
579 Yes 10.5
580 Yes 12.4
581 Yes 14.4
582 Yes 13.6
583 Yes 11.7
584 Yes 14.5
585 Yes 13.7
586 Yes 14.1
587 Yes 15.0
588 Yes 13.7
589 Yes 15.8
590 Yes 15.0
591 Yes 19.5
592 Yes 17.3
593 Yes 13.2
594 Yes 13.9
595 Yes 15.3
596 Yes 17.4
597 Yes 17.2
598 Yes 14.7
599 Yes 14.8
600 Yes 17.1

Inconsistent Time
601 Yes 19.8
602 Yes 16.8
603 Yes 16.8
604 Yes 20.5
605 Yes 19.3
606 Yes 32.1
607 Yes 17.7
608 Yes 15.4
609 Yes 18.4
610 Yes 14.1
611 Yes 16.8
612 Yes 13.4
613 Yes 13.9
614 Yes 18.4
615 Yes 16.7
616 Yes 19.0
617 Yes 20.7
618 Yes 17.7
619 Yes 19.6
620 Yes 15.8
621 Yes 19.2
622 Yes 17.7
623 Yes 18.9
624 Yes 36.1
625 Yes 38.8
626 Yes 29.4
627 Yes 33.7
628 Yes 36.7
629 Yes 30.8
630 Yes 34.5
631 Yes 30.5
632 Yes 11.8
633 Yes 13.2
634 Yes 13.0
635 Yes 12.8
636 Yes 11.3
637 Yes 13.4
638 Yes 15.1
639 Yes 14.4
640 Yes 18.3
641 Yes 14.3
642 Yes 15.8
643 Yes 15.3
644 Yes 16.6
645 Yes 14.5
646 Yes 18.6
647 Yes 18.2
648 Yes 18.4
649 Yes 14.5
650 Yes 17.4
651 Yes 16.4
652 Yes 14.0
653 Yes 15.5
654 Yes 13.7
655 Yes 17.2
656 Yes 16.8
657 Yes 13.2
658 Yes 16.6
659 Yes 19.4
660 Yes 11.2
661 Yes 15.9
662 Yes 16.5
663 Yes 14.2
664 Yes 17.3
665 Yes 18.9
666 Yes 18.8
667 Yes 12.6
668 Yes 16.3
669 Yes 14.9
670 Yes 16.1
671 Yes 15.6
672 Yes 14.4
673 Yes 16.4
674 Yes 19.5
675 Yes 17.3
676 Yes 34.2
677 Yes 19.1
678 Yes 31.9
679 Yes 34.5
680 Yes 16.3
681 Yes 19.2
682 Yes 33.6
683 Yes 18.3
684 Yes 21.5
685 Yes 31.5
686 Yes 32.0
687 Yes 34.0
688 Yes 35.1
689 Yes 37.8
690 Yes 38.7
691 Yes 34.3
692 Yes 30.9
693 Yes 30.4
694 Yes 37.2
695 Yes 29.7
696 Yes 49.5
697 Yes 25.8
698 Yes 10.8
699 Yes 14.4
700 Yes 10.8

Inconsistent Time
701 Yes 9.4
702 Yes 12.3
703 Yes 15.7
704 Yes 11.1
705 Yes 12.0
706 Yes 10.9
707 Yes 11.8
708 Yes 15.1
709 Yes 9.9
710 Yes 12.6
711 Yes 15.2
712 Yes 12.2
713 Yes 12.1
714 Yes 16.4
715 Yes 12.4
716 Yes 14.2
717 Yes 14.8
718 Yes 16.4
719 Yes 13.9
720 Yes 16.3
721 Yes 11.0
722 Yes 11.9
723 Yes 15.4
724 Yes 13.2
725 Yes 11.9
726 Yes 13.0
727 Yes 16.5
728 Yes 15.5
729 Yes 20.8
730 Yes 8.4
731 Yes 13.3
732 Yes 9.6
733 Yes 13.8
734 Yes 19.9
735 Yes 12.7
736 Yes 12.7
737 Yes 15.5
738 Yes 10.0
739 Yes 14.0
740 Yes 17.1
741 Yes 20.0
742 Yes 11.3
743 Yes 12.0
744 Yes 13.6
745 Yes 10.2
746 Yes 16.0
747 Yes 11.5
748 Yes 15.7
749 Yes 15.5
750 Yes 13.4
751 Yes 17.4
752 Yes 20.4
753 Yes 14.1
754 Yes 12.9
755 Yes 19.9
756 Yes 12.0
757 Yes 13.7
758 Yes 18.2
759 Yes 17.3
760 Yes 15.4
761 Yes 16.7
762 Yes 16.0
763 Yes 16.0
764 Yes 20.1
765 Yes 28.0
766 Yes 11.1
767 Yes 12.5
768 Yes 15.2
769 Yes 15.7
770 Yes 18.5
771 Yes 19.0
772 Yes 15.0
773 Yes 18.3
774 Yes 13.2
775 Yes 17.2
776 Yes 21.5
777 Yes 17.3
778 Yes 23.7
779 Yes 16.5
780 Yes 18.1
781 Yes 14.3
782 Yes 16.0
783 Yes 26.0
784 Yes 17.4
785 Yes 15.4
786 Yes 12.8
787 Yes 19.0
788 Yes 18.1
789 Yes 16.4
790 Yes 15.9
791 Yes 25.8
792 Yes 16.9
793 Yes 17.7
794 Yes 18.1
795 Yes 16.4
796 Yes 18.6
797 Yes 18.7
798 Yes 27.7
799 Yes 26.5
800 Yes 30.0

Inconsistent Time
801 Yes 25.6
802 Yes 11.5
803 Yes 14.3
804 Yes 12.8
805 Yes 11.7
806 Yes 15.7
807 Yes 20.1
808 Yes 21.0
809 Yes 13.5
810 Yes 17.6
811 Yes 13.0
812 Yes 17.3
813 Yes 16.3
814 Yes 16.5
815 Yes 34.7
816 Yes 23.1
817 Yes 34.2
818 Yes 11.3
819 Yes 15.3
820 Yes 18.4
821 Yes 19.0
822 Yes 18.0
823 Yes 20.5
824 Yes 18.0
825 Yes 18.6
826 Yes 14.5
827 Yes 17.3
828 Yes 22.9
829 Yes 23.6
830 Yes 18.9
831 Yes 21.9
832 Yes 37.6
833 Yes 35.7
834 Yes 16.7
835 Yes 20.7
836 Yes 40.6
837 Yes 37.4
838 Yes 18.1
839 Yes 35.1
840 Yes 46.4
841 Yes 43.6
842 Yes 40.0
843 Yes 33.6
844 Yes 34.8
845 Yes 40.2
846 Yes 45.8
847 Yes 40.0
848 Yes 41.3
849 Yes 42.9
850 Yes 45.2
851 Yes 34.8
852 Yes 40.7
853 Yes 42.1
854 Yes 31.9
855 Yes 42.8
856 Yes 36.0
857 Yes 44.0
858 Yes 33.7
859 Yes 35.0
860 Yes 36.6
861 Yes 35.7
862 Yes 39.4
863 Yes 18.3
864 Yes 16.2
865 Yes 18.4
866 Yes 19.2
867 Yes 24.8
868 Yes 39.9
869 Yes 41.9
870 Yes 33.1
871 Yes 33.7
872 Yes 39.4
873 Yes 47.7
874 Yes 42.2
875 Yes 41.5
876 Yes 45.3
877 Yes 17.9
878 Yes 44.4
879 Yes 43.9
880 ? 20.9
881 Yes 14.0
882 Yes 12.4
883 Yes 11.8
884 Yes 13.4
885 Yes 17.0
886 Yes 29.4
887 Yes 15.2
888 Yes 15.9
889 Yes 26.7
890 Yes 31.1
891 Yes 12.6
892 Yes 14.9
893 Yes 27.1
894 Yes 27.0
895 Yes 15.1
896 ? 17.8
897 Yes 28.1
898 Yes 14.4
899 Yes 34.6
900 Yes 35.5

Inconsistent Time
901 ? 21.7
902 Yes 14.8
903 Yes 31.1
904 Yes 28.8
905 Yes 10.2
906 Yes 17.5
907 Yes 12.4
908 Yes 16.6
909 Yes 31.6
910 Yes 11.8
911 Yes 11.6
912 Yes 16.8
913 Yes 17.6
914 Yes 33.5
915 Yes 33.5
916 Yes 31.8
917 Yes 39.4
918 Yes 44.5
919 Yes 11.6
920 Yes 8.6
921 Yes 14.5
922 Yes 18.2
923 Yes 14.5
924 Yes 19.1
925 Yes 33.6
926 Yes 32.0
927 Yes 37.8
928 Yes 40.3
929 Yes 15.2
930 Yes 34.7
931 Yes 8.6
932 Yes 13.0
933 Yes 11.4
934 ? 20.3
935 Yes 22.5
936 Yes 42.3
937 Yes 51.1
938 Yes 16.5
939 Yes 13.9
940 Yes 14.4
941 Yes 14.5
942 Yes 19.2
943 Yes 11.4
944 ? 12.8
945 Yes 12.7
946 ? 19.7
947 Yes 13.6
948 Yes 19.9
949 Yes 14.4
950 ? 20.1
951 Yes 17.3
952 ? 20.0
953 Yes 16.0
954 Yes 15.8
955 Yes 22.7
956 Yes 13.8
957 Yes 15.7
958 Yes 26.8
959 Yes 20.3
960 Yes 23.4
961 Yes 12.0
962 ? 17.7
963 Yes 16.2
964 Yes 16.2
965 Yes 18.3
966 ? 20.9
967 Yes 19.8
968 Yes 24.4
969 Yes 20.9
970 Yes 17.5
971 Yes 27.1
972 Yes 14.1
973 Yes 14.1
974 Yes 20.8
975 Yes 18.4
976 Yes 13.6
977 Yes 20.1
978 Yes 25.7
979 Yes 18.5
980 Yes 23.5
981 Yes 21.1
982 Yes 14.5
983 Yes 13.5
984 Yes 17.8
985 Yes 26.5
986 Yes 20.5
987 Yes 26.6
988 Yes 17.1
989 Yes 20.5
990 Yes 12.7
991 Yes 15.8
992 Yes 24.0
993 Yes 20.1
994 Yes 15.7
995 Yes 21.7
996 Yes 32.5
997 Yes 16.7
998 Yes 17.5
999 Yes 26.5

1000 Yes 26.9

82 Appendix B — Results of Running the Basic LPs

Inconsistent Time
1001 Yes 26.4
1002 Yes 17.9
1003 Yes 13.8
1004 Yes 17.1
1005 Yes 25.3
1006 Yes 20.5
1007 Yes 28.7
1008 Yes 11.5
1009 Yes 12.8
1010 Yes 16.2
1011 Yes 20.7
1012 Yes 17.1
1013 Yes 20.5
1014 Yes 21.1
1015 Yes 26.8
1016 Yes 24.9
1017 Yes 16.9
1018 Yes 20.5
1019 Yes 28.9
1020 Yes 16.0
1021 Yes 18.4
1022 Yes 14.1
1023 Yes 21.0
1024 Yes 24.3
1025 Yes 32.5
1026 Yes 16.3
1027 Yes 25.9
1028 Yes 21.2
1029 Yes 30.9
1030 Yes 24.7
1031 Yes 17.0
1032 Yes 24.4
1033 Yes 22.5
1034 Yes 22.7
1035 Yes 34.3
1036 Yes 19.9
1037 Yes 21.8
1038 Yes 17.5
1039 Yes 15.7
1040 Yes 20.3
1041 Yes 21.1
1042 Yes 26.7
1043 Yes 23.0
1044 Yes 24.8
1045 Yes 14.1
1046 Yes 17.8
1047 Yes 14.7
1048 Yes 21.9
1049 Yes 20.2
1050 Yes 18.4
1051 Yes 23.5
1052 Yes 16.9
1053 Yes 12.6
1054 Yes 26.5
1055 Yes 13.7
1056 Yes 13.5
1057 ? 16.9
1058 Yes 20.4
1059 Yes 18.1
1060 Yes 14.0
1061 Yes 17.2
1062 ? 17.5
1063 Yes 20.2
1064 Yes 22.6
1065 Yes 14.1
1066 Yes 14.1
1067 Yes 16.0
1068 ? 17.6
1069 Yes 18.4
1070 Yes 25.8
1071 Yes 13.0
1072 Yes 18.1
1073 Yes 16.1
1074 Yes 18.7
1075 Yes 27.8
1076 Yes 12.7
1077 Yes 18.1
1078 Yes 18.4
1079 Yes 21.3
1080 Yes 26.9
1081 Yes 17.8
1082 Yes 12.8
1083 Yes 16.0
1084 Yes 19.5
1085 Yes 10.0
1086 Yes 11.0
1087 Yes 13.5
1088 Yes 13.5
1089 Yes 10.0
1090 Yes 11.8
1091 Yes 12.1
1092 Yes 12.0
1093 Yes 16.9
1094 Yes 19.5
1095 Yes 18.1
1096 Yes 19.8
1097 Yes 19.1
1098 Yes 12.9
1099 Yes 15.8
1100 Yes 21.3

Inconsistent Time
1101 Yes 19.2
1102 Yes 30.7
1103 Yes 16.8
1104 Yes 20.0
1105 Yes 18.6
1106 Yes 28.6
1107 Yes 23.5
1108 Yes 27.9
1109 Yes 15.8
1110 Yes 11.5
1111 Yes 13.3
1112 Yes 15.6
1113 Yes 17.6
1114 Yes 19.1
1115 Yes 19.5
1116 Yes 17.3
1117 Yes 22.2
1118 Yes 24.2
1119 Yes 25.7
1120 Yes 21.2
1121 Yes 20.4
1122 Yes 23.2
1123 Yes 25.7
1124 Yes 27.8
1125 Yes 44.4
1126 ? 17.4
1127 Yes 19.3
1128 Yes 24.9
1129 Yes 14.3
1130 ? 11.2
1131 ? 14.3
1132 Yes 17.3
1133 Yes 19.9
1134 Yes 18.5
1135 Yes 16.0
1136 Yes 19.5
1137 ? 18.3
1138 Yes 22.9
1139 Yes 18.0
1140 Yes 25.6
1141 Yes 18.8
1142 Yes 19.0
1143 Yes 25.8
1144 ? 14.4
1145 Yes 13.8
1146 Yes 11.8
1147 Yes 15.6
1148 Yes 14.1
1149 Yes 13.7
1150 Yes 16.2
1151 Yes 18.3
1152 Yes 19.7
1153 Yes 24.0
1154 Yes 17.1
1155 Yes 18.3
1156 Yes 20.3
1157 Yes 17.5
1158 Yes 11.2
1159 Yes 14.1
1160 Yes 15.5
1161 Yes 19.1
1162 Yes 16.3
1163 Yes 10.6
1164 Yes 10.5
1165 Yes 12.3
1166 Yes 12.7
1167 Yes 13.3
1168 Yes 12.5
1169 ? 12.4
1170 Yes 13.9
1171 Yes 12.1
1172 Yes 13.8
1173 Yes 13.5
1174 ? 12.1
1175 Yes 15.9
1176 Yes 13.9
1177 Yes 19.4
1178 Yes 16.0
1179 Yes 16.4
1180 Yes 27.6
1181 Yes 23.9
1182 Yes 16.0
1183 Yes 19.4
1184 Yes 23.0
1185 Yes 21.1
1186 Yes 11.5
1187 Yes 11.9
1188 Yes 13.8
1189 ? 18.7
1190 Yes 15.9
1191 Yes 14.6
1192 ? 16.2
1193 Yes 12.3
1194 ? 15.2
1195 Yes 14.6
1196 Yes 15.6
1197 Yes 18.0
1198 Yes 17.9
1199 Yes 21.0
1200 Yes 17.5

Inconsistent Time
1201 Yes 18.4
1202 Yes 17.2
1203 Yes 21.6
1204 Yes 21.0
1205 Yes 19.4
1206 Yes 18.9
1207 Yes 16.1
1208 Yes 20.4
1209 ? 18.3
1210 Yes 20.7
1211 Yes 18.4
1212 Yes 23.7
1213 Yes 23.6
1214 ? 19.0
1215 Yes 18.5
1216 Yes 18.3
1217 Yes 22.7
1218 ? 19.8
1219 ? 14.0
1220 Yes 20.5
1221 Yes 18.0
1222 ? 21.4
1223 Yes 22.0
1224 Yes 20.9
1225 Yes 19.2
1226 Yes 23.9
1227 Yes 19.1
1228 Yes 20.6
1229 Yes 23.0
1230 Yes 23.8
1231 Yes 26.7
1232 Yes 29.5
1233 Yes 23.4
1234 Yes 20.4
1235 Yes 21.7
1236 Yes 33.9
1237 Yes 22.1
1238 Yes 24.9
1239 Yes 26.0
1240 Yes 29.2
1241 Yes 32.4
1242 Yes 11.7
1243 Yes 16.7
1244 Yes 11.5
1245 Yes 14.1
1246 Yes 16.9
1247 ? 12.0
1248 ? 15.1
1249 ? 14.9
1250 Yes 15.9
1251 ? 13.8
1252 Yes 14.6
1253 Yes 16.3
1254 ? 19.1
1255 ? 18.0
1256 Yes 19.4
1257 Yes 15.6
1258 Yes 17.0
1259 Yes 15.4
1260 Yes 18.3
1261 Yes 17.2
1262 ? 18.2
1263 Yes 19.5
1264 ? 18.6
1265 Yes 19.0
1266 ? 19.5
1267 Yes 22.9
1268 Yes 22.2
1269 Yes 23.0
1270 Yes 17.1
1271 Yes 20.0
1272 Yes 20.8
1273 ? 27.4
1274 Yes 19.2
1275 Yes 28.8
1276 Yes 22.7
1277 Yes 24.9
1278 ? 25.2
1279 Yes 26.6
1280 Yes 19.7
1281 ? 25.4
1282 Yes 26.2
1283 Yes 22.0
1284 Yes 21.3
1285 ? 24.7
1286 Yes 22.6
1287 Yes 27.0
1288 Yes 23.9
1289 Yes 24.9
1290 Yes 32.1
1291 Yes 20.8
1292 ? 15.1
1293 Yes 16.3
1294 Yes 14.2
1295 Yes 16.5
1296 Yes 20.0
1297 Yes 18.9
1298 Yes 15.5
1299 Yes 15.0
1300 Yes 15.6

Inconsistent Time
1301 Yes 15.0
1302 Yes 16.0
1303 Yes 20.8
1304 Yes 24.9
1305 ? 14.0
1306 Yes 20.3
1307 Yes 20.8
1308 Yes 18.7
1309 Yes 18.6
1310 Yes 18.1
1311 Yes 16.9
1312 Yes 18.3
1313 Yes 17.5
1314 ? 22.1
1315 Yes 24.3
1316 Yes 23.7
1317 Yes 20.4
1318 Yes 16.4
1319 Yes 20.5
1320 Yes 20.5
1321 Yes 21.2
1322 Yes 26.8
1323 Yes 18.3
1324 Yes 19.1
1325 Yes 22.2
1326 Yes 21.0
1327 Yes 24.3
1328 Yes 23.8
1329 Yes 20.9
1330 Yes 22.0
1331 Yes 26.0
1332 Yes 25.6
1333 Yes 19.6
1334 Yes 22.4
1335 Yes 25.1
1336 Yes 22.9
1337 Yes 21.2
1338 Yes 26.3
1339 Yes 24.1
1340 Yes 20.7
1341 Yes 21.8
1342 Yes 24.7
1343 Yes 25.4
1344 Yes 25.9
1345 Yes 26.6
1346 Yes 26.9
1347 Yes 34.7
1348 Yes 45.6
1349 Yes 44.3
1350 ? 15.3
1351 Yes 17.8
1352 Yes 19.3
1353 Yes 19.0
1354 Yes 24.3
1355 Yes 21.7
1356 Yes 21.5
1357 Yes 21.3
1358 Yes 25.0
1359 Yes 21.5
1360 Yes 20.8
1361 Yes 21.1
1362 Yes 18.9
1363 Yes 20.5
1364 Yes 28.6
1365 Yes 30.6
1366 Yes 31.4
1367 Yes 31.7
1368 Yes 14.3
1369 Yes 16.1
1370 Yes 14.6
1371 Yes 15.4
1372 Yes 14.7
1373 Yes 16.5
1374 Yes 19.8
1375 Yes 21.1
1376 Yes 19.2
1377 Yes 19.0
1378 Yes 33.7
1379 Yes 34.6
1380 Yes 16.9
1381 Yes 19.0
1382 Yes 20.7
1383 Yes 21.9
1384 Yes 11.8
1385 ? 17.3
1386 Yes 20.6
1387 ? 12.3
1388 ? 14.2
1389 Yes 14.1
1390 ? 18.7
1391 ? 19.2
1392 Yes 13.0
1393 Yes 14.3
1394 Yes 14.3
1395 ? 12.5
1396 ? 14.3
1397 Yes 13.8
1398 Yes 17.3
1399 Yes 22.0
1400 Yes 13.8

Inconsistent Time
1401 Yes 19.4
1402 Yes 13.8
1403 Yes 16.7
1404 Yes 14.6
1405 ? 12.4
1406 ? 13.0
1407 Yes 11.6
1408 ? 15.4
1409 ? 11.7
1410 ? 14.3
1411 ? 19.2
1412 Yes 13.7
1413 ? 18.6
1414 ? 14.7
1415 ? 13.9
1416 Yes 22.5
1417 ? 19.2
1418 ? 14.7
1419 Yes 17.3
1420 Yes 14.7
1421 Yes 17.2
1422 Yes 13.8
1423 Yes 15.1
1424 Yes 12.8
1425 Yes 16.2
1426 Yes 17.9
1427 Yes 18.3
1428 Yes 13.4
1429 Yes 16.3
1430 Yes 15.5
1431 Yes 14.2
1432 Yes 15.9
1433 Yes 16.5
1434 Yes 14.2
1435 Yes 14.2
1436 ? 13.9
1437 ? 13.8
1438 Yes 23.8
1439 Yes 14.0
1440 ? 15.3
1441 Yes 21.0
1442 Yes 16.8
1443 Yes 23.5
1444 Yes 13.9
1445 Yes 12.5
1446 Yes 13.7
1447 Yes 16.3
1448 Yes 12.5
1449 Yes 16.8
1450 Yes 14.8
1451 Yes 13.7
1452 Yes 19.6
1453 Yes 24.1
1454 Yes 20.4
1455 Yes 16.7
1456 Yes 19.8
1457 Yes 18.5
1458 Yes 12.1
1459 Yes 15.0
1460 Yes 15.3
1461 Yes 18.2
1462 ? 13.1
1463 ? 18.4
1464 Yes 15.7
1465 Yes 14.6
1466 Yes 16.4
1467 Yes 18.9
1468 Yes 20.7
1469 Yes 19.2
1470 Yes 20.7
1471 Yes 19.5
1472 Yes 19.7
1473 ? 22.7
1474 Yes 18.5
1475 Yes 16.8
1476 Yes 16.6
1477 Yes 28.4
1478 Yes 29.5
1479 Yes 29.0
1480 Yes 27.8
1481 Yes 24.2
1482 Yes 26.4
1483 Yes 15.3
1484 Yes 16.6
1485 Yes 15.0
1486 Yes 12.6
1487 Yes 15.8
1488 Yes 20.1
1489 Yes 19.6
1490 Yes 17.3
1491 Yes 22.1
1492 Yes 16.4
1493 Yes 18.4
1494 ? 18.5
1495 ? 16.0
1496 ? 19.1
1497 Yes 24.2
1498 Yes 24.2
1499 Yes 25.0
1500 Yes 19.5

83

Inconsistent Time
1501 Yes 20.4
1502 Yes 26.1
1503 Yes 30.3
1504 Yes 29.8
1505 Yes 28.1
1506 Yes 29.2
1507 Yes 27.3
1508 Yes 23.2
1509 Yes 24.8
1510 Yes 23.7
1511 Yes 33.3
1512 Yes 38.1
1513 Yes 16.0
1514 Yes 14.9
1515 Yes 14.4
1516 Yes 13.8
1517 Yes 12.9
1518 Yes 17.5
1519 Yes 19.8
1520 Yes 15.2
1521 Yes 16.4
1522 Yes 17.5
1523 Yes 14.3
1524 Yes 12.6
1525 Yes 15.3
1526 ? 16.3
1527 Yes 22.9
1528 Yes 19.9
1529 Yes 13.1
1530 ? 15.9
1531 ? 20.4
1532 Yes 23.1
1533 Yes 25.1
1534 Yes 29.0
1535 Yes 14.6
1536 Yes 21.1
1537 Yes 11.7
1538 Yes 15.9
1539 Yes 19.0
1540 Yes 13.3
1541 Yes 14.8
1542 Yes 12.7
1543 Yes 15.3
1544 Yes 20.0
1545 Yes 14.3
1546 Yes 15.5
1547 Yes 19.5
1548 Yes 19.6
1549 Yes 19.4
1550 Yes 18.5
1551 Yes 16.5
1552 Yes 16.9
1553 Yes 17.9
1554 Yes 26.7
1555 Yes 24.0
1556 Yes 19.6
1557 Yes 20.2
1558 Yes 12.4
1559 Yes 17.1
1560 Yes 24.3
1561 Yes 15.9
1562 ? 16.4
1563 Yes 22.3
1564 Yes 24.4
1565 Yes 28.8
1566 Yes 22.1
1567 Yes 13.9
1568 Yes 16.0
1569 Yes 14.5
1570 Yes 12.9
1571 Yes 21.0
1572 Yes 26.3
1573 Yes 12.0
1574 Yes 15.9
1575 Yes 16.2
1576 Yes 19.7
1577 Yes 19.6
1578 Yes 13.6
1579 Yes 14.4
1580 Yes 18.7
1581 Yes 11.9
1582 Yes 13.6
1583 Yes 16.1
1584 Yes 13.3
1585 Yes 10.8
1586 Yes 18.5
1587 Yes 13.3
1588 Yes 14.2
1589 Yes 12.7
1590 Yes 11.3
1591 Yes 14.9
1592 Yes 15.1
1593 Yes 11.9
1594 Yes 13.4
1595 Yes 16.2
1596 Yes 14.6
1597 Yes 14.4
1598 ? 13.7
1599 Yes 17.7
1600 Yes 17.8

Inconsistent Time
1601 Yes 19.9
1602 Yes 18.2
1603 Yes 20.2
1604 Yes 17.3
1605 Yes 23.6
1606 Yes 21.9
1607 Yes 33.8
1608 Yes 13.8
1609 Yes 17.5
1610 Yes 19.2
1611 Yes 19.8
1612 Yes 14.0
1613 Yes 18.3
1614 Yes 15.5
1615 ? 16.8
1616 Yes 12.1
1617 Yes 14.0
1618 Yes 15.3
1619 Yes 12.2
1620 Yes 12.8
1621 Yes 13.7
1622 Yes 16.0
1623 ? 17.8
1624 Yes 13.8
1625 ? 17.8
1626 Yes 16.8
1627 Yes 15.7
1628 ? 18.7
1629 Yes 20.1
1630 Yes 19.5
1631 Yes 18.2
1632 Yes 20.9
1633 Yes 19.6
1634 Yes 16.2
1635 Yes 19.3
1636 Yes 17.2
1637 Yes 14.7
1638 Yes 19.5
1639 Yes 14.7
1640 Yes 22.5
1641 Yes 21.2
1642 Yes 16.2
1643 ? 13.1
1644 Yes 17.6
1645 Yes 17.1
1646 Yes 18.5
1647 Yes 19.7
1648 Yes 17.7
1649 Yes 19.1
1650 Yes 21.0
1651 Yes 21.3
1652 Yes 20.7
1653 ? 22.5
1654 Yes 26.8
1655 Yes 17.2
1656 Yes 18.2
1657 Yes 24.4
1658 Yes 25.1
1659 Yes 23.9
1660 Yes 18.7
1661 Yes 27.0
1662 Yes 29.6
1663 Yes 29.0
1664 Yes 26.4
1665 Yes 30.8
1666 Yes 28.6
1667 Yes 23.7
1668 Yes 47.2
1669 Yes 13.3
1670 Yes 18.5
1671 Yes 18.1
1672 Yes 30.7
1673 Yes 13.8
1674 Yes 12.4
1675 Yes 19.4
1676 Yes 20.3
1677 Yes 27.1
1678 Yes 16.6
1679 Yes 25.1
1680 Yes 25.1
1681 Yes 19.7
1682 Yes 28.7
1683 Yes 14.2
1684 Yes 15.8
1685 Yes 20.7
1686 Yes 15.0
1687 Yes 17.5
1688 Yes 12.2
1689 Yes 13.8
1690 Yes 14.8
1691 Yes 12.9
1692 Yes 11.4
1693 Yes 12.8
1694 Yes 12.9
1695 Yes 13.1
1696 Yes 16.1
1697 Yes 20.2
1698 Yes 12.6
1699 ? 15.7
1700 Yes 14.3

Inconsistent Time
1701 ? 15.9
1702 Yes 18.7
1703 Yes 17.2
1704 ? 18.4
1705 Yes 16.2
1706 Yes 17.7
1707 Yes 19.6
1708 Yes 18.3
1709 Yes 18.8
1710 Yes 20.4
1711 Yes 27.0
1712 Yes 16.2
1713 Yes 16.3
1714 Yes 22.8
1715 Yes 18.6
1716 Yes 12.8
1717 Yes 11.4
1718 Yes 12.6
1719 Yes 14.5
1720 Yes 14.8
1721 Yes 14.6
1722 Yes 18.3
1723 Yes 15.8
1724 Yes 19.0
1725 Yes 17.3
1726 Yes 20.9
1727 Yes 14.6
1728 Yes 15.4
1729 Yes 21.7
1730 Yes 20.4
1731 Yes 19.5
1732 ? 22.4
1733 Yes 16.9
1734 Yes 16.4
1735 ? 17.3
1736 Yes 20.8
1737 ? 16.9
1738 Yes 16.0
1739 Yes 20.3
1740 Yes 13.0
1741 Yes 16.4
1742 Yes 13.6
1743 ? 16.8
1744 Yes 16.9
1745 Yes 18.1
1746 ? 19.0
1747 Yes 18.6
1748 Yes 19.9
1749 Yes 19.4
1750 Yes 28.5
1751 Yes 24.3
1752 Yes 18.9
1753 Yes 22.7
1754 Yes 19.9
1755 Yes 15.6
1756 Yes 27.4
1757 Yes 24.4
1758 Yes 21.3
1759 Yes 22.3
1760 Yes 24.5
1761 Yes 25.4
1762 Yes 27.7
1763 Yes 25.2
1764 Yes 24.5
1765 Yes 33.0
1766 Yes 27.2
1767 Yes 24.9
1768 Yes 20.1
1769 Yes 19.5
1770 Yes 21.0
1771 Yes 25.5
1772 Yes 18.7
1773 Yes 15.5
1774 Yes 13.6
1775 Yes 13.9
1776 Yes 16.0
1777 Yes 19.7
1778 Yes 18.8
1779 Yes 20.4
1780 Yes 22.8
1781 Yes 16.9
1782 Yes 20.3
1783 Yes 20.3
1784 Yes 20.1
1785 Yes 19.4
1786 ? 22.3
1787 Yes 22.1
1788 Yes 24.2
1789 Yes 25.3
1790 Yes 23.5
1791 Yes 26.2
1792 Yes 30.1
1793 Yes 26.6
1794 Yes 26.9
1795 Yes 24.0
1796 Yes 25.5
1797 Yes 18.6
1798 Yes 18.3
1799 Yes 24.6
1800 Yes 27.3

Inconsistent Time
1801 Yes 30.3
1802 Yes 25.7
1803 Yes 28.5
1804 Yes 27.8
1805 Yes 29.1
1806 Yes 29.0
1807 Yes 28.0
1808 Yes 34.1
1809 Yes 40.5
1810 Yes 13.1
1811 Yes 21.7
1812 Yes 16.6
1813 Yes 15.9
1814 Yes 13.3
1815 Yes 19.9
1816 Yes 22.0
1817 Yes 13.7
1818 Yes 19.7
1819 Yes 18.1
1820 Yes 15.9
1821 Yes 16.6
1822 Yes 21.4
1823 Yes 27.7
1824 Yes 17.0
1825 Yes 16.1
1826 Yes 12.9
1827 Yes 14.7
1828 Yes 17.6
1829 Yes 20.5
1830 Yes 30.1
1831 Yes 13.5
1832 Yes 12.1
1833 Yes 14.6
1834 Yes 13.9
1835 Yes 15.3
1836 Yes 17.7
1837 Yes 19.5
1838 Yes 14.6
1839 Yes 11.8
1840 Yes 14.8
1841 Yes 16.9
1842 Yes 16.3
1843 Yes 15.7
1844 ? 17.6
1845 Yes 16.0
1846 Yes 17.1
1847 Yes 14.4
1848 Yes 18.6
1849 Yes 17.0
1850 Yes 16.0
1851 Yes 14.1
1852 Yes 12.8
1853 ? 18.0
1854 Yes 19.1
1855 ? 15.6
1856 Yes 18.9
1857 ? 18.4
1858 Yes 22.5
1859 Yes 20.4
1860 Yes 25.5
1861 Yes 27.1
1862 Yes 22.9
1863 Yes 18.7
1864 Yes 20.3
1865 Yes 19.2
1866 Yes 26.4
1867 Yes 28.7
1868 Yes 27.7
1869 Yes 44.4
1870 Yes 24.2
1871 Yes 16.0
1872 Yes 19.8
1873 Yes 28.2
1874 Yes 14.0
1875 Yes 14.1
1876 Yes 14.8
1877 Yes 18.2
1878 Yes 17.1
1879 Yes 19.6
1880 Yes 30.4
1881 Yes 12.5
1882 ? 17.6
1883 Yes 16.1
1884 Yes 15.0
1885 Yes 17.8
1886 Yes 16.1
1887 Yes 17.1
1888 Yes 18.5
1889 Yes 19.6
1890 Yes 18.1
1891 Yes 19.1
1892 Yes 18.5
1893 Yes 21.9
1894 Yes 20.7
1895 Yes 22.2
1896 Yes 25.7
1897 Yes 25.6
1898 Yes 24.6
1899 Yes 24.2
1900 Yes 29.0

Inconsistent Time
1901 Yes 35.0
1902 Yes 14.8
1903 ? 16.9
1904 Yes 19.6
1905 Yes 19.5
1906 Yes 19.9
1907 Yes 20.0
1908 Yes 21.7
1909 Yes 19.4
1910 Yes 20.7
1911 Yes 24.5
1912 Yes 24.3
1913 Yes 27.0
1914 Yes 24.8
1915 Yes 24.2
1916 Yes 25.6
1917 Yes 24.4
1918 Yes 21.8
1919 Yes 24.6
1920 Yes 23.3
1921 Yes 26.1
1922 Yes 28.7
1923 Yes 29.6
1924 Yes 33.0
1925 Yes 33.3
1926 Yes 40.7
1927 Yes 25.0
1928 Yes 18.0
1929 Yes 22.4
1930 Yes 20.2
1931 Yes 20.0
1932 Yes 22.8
1933 Yes 26.8
1934 Yes 22.1
1935 Yes 19.9
1936 Yes 20.7
1937 ? 15.1
1938 Yes 20.4
1939 Yes 17.5
1940 Yes 20.6
1941 Yes 20.4
1942 Yes 30.5
1943 Yes 26.3
1944 Yes 24.6
1945 Yes 28.6
1946 Yes 33.7
1947 Yes 29.6
1948 Yes 33.6
1949 Yes 27.0
1950 Yes 25.7
1951 Yes 27.9
1952 Yes 44.0
1953 Yes 12.6
1954 Yes 33.6
1955 Yes 17.4
1956 Yes 16.0
1957 Yes 19.5
1958 Yes 20.5
1959 Yes 20.0
1960 Yes 27.2
1961 Yes 34.9
1962 Yes 25.3
1963 Yes 17.0
1964 Yes 17.3
1965 Yes 15.9
1966 Yes 12.7
1967 Yes 17.5
1968 Yes 20.9
1969 Yes 14.6
1970 Yes 14.5
1971 Yes 17.7
1972 Yes 20.2
1973 Yes 22.4
1974 Yes 24.3
1975 Yes 16.0
1976 Yes 13.7
1977 Yes 16.4
1978 Yes 13.8
1979 Yes 14.0
1980 Yes 18.3
1981 Yes 16.0
1982 ? 18.4
1983 Yes 18.8
1984 Yes 18.7
1985 Yes 28.5
1986 Yes 13.9
1987 Yes 15.5
1988 Yes 12.7
1989 Yes 16.5
1990 Yes 15.0
1991 Yes 15.8
1992 Yes 21.8
1993 Yes 26.0
1994 Yes 25.5
1995 Yes 22.3
1996 Yes 19.9
1997 Yes 17.4
1998 Yes 20.2
1999 Yes 23.7
2000 Yes 23.8

84 Appendix B — Results of Running the Basic LPs

Inconsistent Time
2001 Yes 22.9
2002 Yes 27.3
2003 Yes 22.7
2004 Yes 19.2
2005 Yes 14.2
2006 Yes 14.3
2007 Yes 19.3
2008 Yes 14.0
2009 Yes 17.3
2010 Yes 20.1
2011 Yes 15.6
2012 Yes 22.9
2013 Yes 14.0
2014 Yes 16.2
2015 Yes 19.7
2016 ? 13.2
2017 Yes 17.9
2018 Yes 23.0
2019 Yes 24.5
2020 Yes 32.3
2021 Yes 17.7
2022 Yes 19.2
2023 Yes 23.3
2024 Yes 24.4
2025 Yes 19.3
2026 Yes 19.0
2027 Yes 24.7
2028 Yes 29.1
2029 Yes 25.7
2030 Yes 22.3
2031 Yes 18.2
2032 Yes 27.9
2033 Yes 19.0
2034 Yes 20.7
2035 Yes 21.5
2036 Yes 28.1
2037 Yes 25.3
2038 Yes 33.8
2039 Yes 26.4
2040 Yes 14.4
2041 Yes 17.4
2042 Yes 19.6
2043 Yes 26.3
2044 Yes 44.4
2045 Yes 23.7
2046 Yes 13.7
2047 Yes 11.5
2048 ? 11.5
2049 ? 14.1
2050 Yes 17.1
2051 Yes 13.3
2052 Yes 13.8
2053 Yes 20.1
2054 Yes 19.2
2055 Yes 17.7
2056 ? 12.6
2057 Yes 12.0
2058 Yes 11.8
2059 Yes 19.5
2060 Yes 14.2
2061 Yes 11.3
2062 Yes 12.0
2063 ? 15.3
2064 Yes 18.2
2065 ? 12.3
2066 ? 15.8
2067 ? 15.0
2068 Yes 13.1
2069 Yes 19.6
2070 Yes 14.1
2071 Yes 19.3
2072 Yes 14.7
2073 Yes 14.9
2074 Yes 15.3
2075 Yes 15.8
2076 Yes 20.9
2077 Yes 22.7
2078 Yes 17.2
2079 Yes 16.4
2080 Yes 20.0
2081 Yes 16.3
2082 Yes 18.9
2083 Yes 22.4
2084 ? 18.2
2085 Yes 21.5
2086 Yes 20.4
2087 Yes 19.8
2088 Yes 17.0
2089 Yes 19.8
2090 Yes 20.2
2091 Yes 22.6
2092 Yes 25.9
2093 Yes 21.2
2094 Yes 22.2
2095 Yes 16.0
2096 Yes 17.3
2097 Yes 19.9
2098 Yes 14.0
2099 Yes 15.0
2100 Yes 15.8

Inconsistent Time
2101 Yes 16.8
2102 Yes 15.7
2103 Yes 24.8
2104 Yes 17.6
2105 Yes 19.1
2106 Yes 20.0
2107 Yes 25.3
2108 Yes 24.4
2109 Yes 19.4
2110 Yes 18.9
2111 Yes 25.6
2112 Yes 34.3
2113 Yes 14.3
2114 Yes 15.4
2115 ? 11.9
2116 ? 12.3
2117 ? 11.2
2118 Yes 11.2
2119 Yes 16.0
2120 Yes 13.8
2121 Yes 17.7
2122 Yes 18.5
2123 Yes 19.8
2124 ? 19.0
2125 ? 19.1
2126 Yes 23.0
2127 ? 19.7
2128 Yes 26.4
2129 Yes 27.3
2130 Yes 17.5
2131 Yes 18.2
2132 ? 11.5
2133 Yes 12.7
2134 Yes 14.9
2135 Yes 14.4
2136 Yes 14.7
2137 Yes 15.2
2138 Yes 16.0
2139 ? 13.4
2140 ? 14.2
2141 ? 14.8
2142 ? 15.2
2143 ? 13.9
2144 Yes 16.1
2145 Yes 15.4
2146 Yes 12.8
2147 Yes 13.1
2148 Yes 15.6
2149 Yes 13.6
2150 Yes 19.1
2151 Yes 18.4
2152 Yes 13.8
2153 Yes 16.3
2154 Yes 18.3
2155 Yes 20.0
2156 ? 17.5
2157 ? 18.8
2158 Yes 16.3
2159 Yes 20.5
2160 ? 17.8
2161 Yes 19.9
2162 Yes 17.0
2163 Yes 23.8
2164 ? 16.9
2165 ? 18.0
2166 Yes 27.3
2167 Yes 20.5
2168 Yes 24.5
2169 Yes 19.0
2170 ? 18.9
2171 Yes 17.4
2172 ? 17.4
2173 Yes 18.2
2174 Yes 12.6
2175 Yes 14.8
2176 Yes 19.7
2177 Yes 16.7
2178 Yes 18.8
2179 Yes 21.2
2180 Yes 22.7
2181 Yes 16.1
2182 Yes 21.5
2183 Yes 20.0
2184 Yes 19.1
2185 Yes 25.5
2186 Yes 20.0
2187 ? 20.2
2188 Yes 26.9
2189 Yes 23.2
2190 Yes 22.8
2191 Yes 26.2
2192 Yes 17.5
2193 ? 14.3
2194 Yes 18.6
2195 Yes 17.4
2196 Yes 17.1
2197 Yes 14.6
2198 Yes 14.8
2199 Yes 18.4
2200 Yes 17.1

Inconsistent Time
2201 Yes 14.2
2202 Yes 20.8
2203 Yes 13.9
2204 Yes 14.9
2205 Yes 20.5
2206 Yes 24.0
2207 Yes 18.3
2208 Yes 16.6
2209 Yes 18.4
2210 Yes 19.3
2211 Yes 24.3
2212 Yes 19.7
2213 ? 22.5
2214 Yes 18.2
2215 Yes 20.3
2216 Yes 15.3
2217 Yes 20.7
2218 Yes 20.8
2219 Yes 22.5
2220 ? 21.9
2221 Yes 17.3
2222 Yes 17.8
2223 Yes 19.8
2224 Yes 21.5
2225 Yes 17.3
2226 Yes 22.5
2227 Yes 17.2
2228 Yes 19.3
2229 Yes 24.8
2230 Yes 22.4
2231 Yes 19.0
2232 Yes 27.7
2233 Yes 25.1
2234 Yes 24.6
2235 Yes 27.0
2236 Yes 22.1
2237 Yes 23.3
2238 Yes 27.6
2239 Yes 37.3
2240 Yes 26.1
2241 Yes 34.8
2242 Yes 23.2
2243 Yes 29.7
2244 Yes 25.2
2245 Yes 27.7
2246 Yes 23.8
2247 Yes 22.7
2248 Yes 18.5
2249 Yes 35.2
2250 Yes 14.0
2251 Yes 13.1
2252 Yes 16.6
2253 Yes 25.3
2254 Yes 22.9
2255 Yes 16.0
2256 Yes 26.6
2257 Yes 18.3
2258 Yes 13.3
2259 Yes 24.6
2260 Yes 14.2
2261 Yes 13.1
2262 Yes 12.5
2263 Yes 17.2
2264 Yes 21.7
2265 Yes 24.4
2266 Yes 18.3
2267 Yes 30.0
2268 Yes 17.9
2269 Yes 15.9
2270 Yes 24.5
2271 Yes 25.4
2272 Yes 26.1
2273 Yes 37.5
2274 Yes 27.9
2275 Yes 27.1
2276 Yes 31.9
2277 Yes 24.8
2278 Yes 22.6
2279 Yes 33.2
2280 Yes 18.1
2281 Yes 24.0
2282 Yes 16.7
2283 Yes 10.6
2284 ? 10.9
2285 Yes 14.3
2286 Yes 17.7
2287 Yes 15.3
2288 Yes 14.2
2289 Yes 15.5
2290 Yes 18.2
2291 Yes 16.8
2292 Yes 19.2
2293 Yes 18.4
2294 Yes 24.5
2295 Yes 17.2
2296 Yes 17.0
2297 Yes 17.8
2298 Yes 29.3
2299 Yes 26.2
2300 Yes 16.9

Inconsistent Time
2301 Yes 25.7
2302 Yes 31.5
2303 Yes 18.8
2304 Yes 24.1
2305 Yes 10.7
2306 Yes 14.2
2307 Yes 12.6
2308 Yes 19.2
2309 Yes 20.4
2310 Yes 13.8
2311 Yes 15.7
2312 Yes 14.9
2313 Yes 17.9
2314 ? 15.6
2315 Yes 19.5
2316 Yes 16.9
2317 Yes 17.4
2318 Yes 21.5
2319 Yes 18.5
2320 Yes 17.5
2321 Yes 19.6
2322 Yes 20.0
2323 Yes 25.1
2324 Yes 27.2
2325 Yes 20.5
2326 Yes 24.2
2327 Yes 20.2
2328 Yes 28.3
2329 Yes 26.0
2330 Yes 13.6
2331 Yes 17.9
2332 Yes 17.2
2333 Yes 17.1
2334 Yes 18.4
2335 Yes 19.1
2336 Yes 22.0
2337 ? 18.3
2338 ? 17.4
2339 Yes 20.7
2340 Yes 19.5
2341 Yes 22.4
2342 Yes 24.7
2343 Yes 20.5
2344 Yes 23.0
2345 Yes 23.6
2346 Yes 19.4
2347 Yes 26.0
2348 Yes 20.6
2349 Yes 15.1
2350 ? 20.7
2351 ? 20.6
2352 Yes 14.6
2353 Yes 19.2
2354 Yes 23.0
2355 Yes 21.9
2356 Yes 22.8
2357 Yes 15.9
2358 Yes 17.8
2359 Yes 27.2
2360 Yes 20.4
2361 Yes 16.5
2362 Yes 18.3
2363 Yes 19.0
2364 Yes 18.2
2365 Yes 27.3
2366 Yes 27.1
2367 Yes 25.1
2368 Yes 28.9
2369 Yes 20.2
2370 Yes 24.2
2371 Yes 18.9
2372 ? 22.5
2373 Yes 21.2
2374 Yes 23.3
2375 Yes 25.4
2376 Yes 23.2
2377 Yes 30.5
2378 Yes 36.2
2379 Yes 26.0
2380 Yes 36.0
2381 Yes 23.9
2382 Yes 28.9
2383 Yes 30.0
2384 Yes 41.4
2385 Yes 18.6
2386 Yes 22.4
2387 Yes 13.6
2388 Yes 16.0
2389 Yes 17.4
2390 Yes 20.3
2391 Yes 18.2
2392 ? 16.4
2393 Yes 18.0
2394 ? 17.9
2395 Yes 15.9
2396 Yes 18.7
2397 Yes 19.9
2398 Yes 24.1
2399 Yes 29.4
2400 Yes 16.7

Inconsistent Time
2401 Yes 12.5
2402 Yes 19.4
2403 Yes 18.1
2404 Yes 16.0
2405 Yes 20.5
2406 Yes 19.8
2407 Yes 17.5
2408 Yes 19.8
2409 Yes 20.4
2410 Yes 18.4
2411 ? 21.6
2412 Yes 27.3
2413 Yes 22.3
2414 ? 24.0
2415 Yes 20.6
2416 Yes 21.6
2417 Yes 25.9
2418 Yes 34.5
2419 Yes 29.4
2420 Yes 19.4
2421 Yes 17.9
2422 Yes 23.8
2423 Yes 17.5
2424 Yes 19.7
2425 Yes 23.2
2426 Yes 23.1
2427 Yes 24.7
2428 ? 24.6
2429 Yes 27.8
2430 Yes 29.4
2431 Yes 27.9
2432 Yes 27.3
2433 Yes 34.1
2434 Yes 27.0
2435 Yes 32.2
2436 Yes 26.3
2437 Yes 37.6
2438 Yes 28.8
2439 Yes 26.5
2440 Yes 27.4
2441 Yes 24.1
2442 Yes 35.7
2443 Yes 36.1
2444 Yes 34.2
2445 Yes 31.5
2446 Yes 35.2
2447 Yes 19.8
2448 Yes 24.3
2449 Yes 27.2
2450 Yes 22.9
2451 Yes 30.8
2452 Yes 25.1
2453 Yes 25.9
2454 Yes 17.1
2455 Yes 16.2
2456 Yes 19.6
2457 Yes 19.0
2458 Yes 19.9
2459 Yes 22.6
2460 Yes 15.8
2461 Yes 17.1
2462 Yes 19.6
2463 Yes 18.9
2464 Yes 26.3
2465 Yes 17.4
2466 Yes 19.1
2467 Yes 20.2
2468 Yes 23.4
2469 Yes 34.3
2470 Yes 29.7
2471 Yes 24.3
2472 Yes 19.2
2473 Yes 21.3
2474 Yes 18.6
2475 Yes 26.1
2476 Yes 23.0
2477 Yes 22.1
2478 Yes 19.3
2479 Yes 21.8
2480 Yes 20.6
2481 Yes 26.1
2482 Yes 23.1
2483 Yes 27.5
2484 Yes 33.4
2485 Yes 32.3
2486 Yes 16.9
2487 Yes 17.4
2488 Yes 19.3
2489 Yes 13.4
2490 Yes 16.5
2491 Yes 13.1
2492 ? 16.8
2493 Yes 15.0
2494 Yes 11.2
2495 Yes 10.4
2496 Yes 13.6
2497 Yes 13.5
2498 Yes 15.8
2499 Yes 14.5
2500 Yes 13.8

85

Inconsistent Time
2501 Yes 19.2
2502 Yes 22.9
2503 Yes 20.5
2504 Yes 17.3
2505 Yes 18.4
2506 Yes 32.5
2507 Yes 11.5
2508 Yes 11.2
2509 Yes 14.2
2510 Yes 13.6
2511 Yes 16.6
2512 Yes 10.7
2513 Yes 12.8
2514 Yes 14.0
2515 Yes 17.4
2516 Yes 16.6
2517 Yes 17.1
2518 Yes 17.1
2519 ? 18.1
2520 Yes 21.0
2521 Yes 24.1
2522 Yes 27.1
2523 Yes 19.9
2524 Yes 24.6
2525 Yes 20.4
2526 Yes 33.6
2527 Yes 20.2
2528 Yes 19.2
2529 Yes 20.6
2530 ? 23.3
2531 Yes 21.3
2532 Yes 27.9
2533 Yes 28.0
2534 Yes 28.0
2535 Yes 27.9
2536 Yes 26.5
2537 Yes 12.2
2538 Yes 11.7
2539 Yes 14.0
2540 Yes 14.2
2541 Yes 19.7
2542 Yes 14.3
2543 Yes 14.4
2544 Yes 10.6
2545 Yes 11.1
2546 Yes 13.2
2547 ? 12.1
2548 Yes 13.0
2549 Yes 13.7
2550 Yes 12.6
2551 ? 13.3
2552 Yes 16.5
2553 Yes 14.6
2554 Yes 18.6
2555 Yes 14.7
2556 Yes 19.6
2557 Yes 18.6
2558 Yes 19.0
2559 Yes 16.8
2560 Yes 19.0
2561 Yes 19.9
2562 Yes 15.4
2563 Yes 27.0
2564 ? 17.6
2565 ? 16.6
2566 ? 19.2
2567 Yes 23.6
2568 Yes 23.6
2569 Yes 18.7
2570 Yes 17.9
2571 Yes 25.5
2572 Yes 22.2
2573 Yes 22.8
2574 Yes 19.6
2575 Yes 34.1
2576 Yes 17.1
2577 ? 17.5
2578 Yes 19.4
2579 Yes 16.1
2580 Yes 15.6
2581 Yes 19.9
2582 Yes 22.1
2583 Yes 25.1
2584 Yes 25.3
2585 Yes 25.0
2586 Yes 33.7
2587 Yes 31.3
2588 Yes 27.7
2589 Yes 28.0
2590 Yes 18.0
2591 Yes 20.4
2592 Yes 20.5
2593 Yes 29.2
2594 Yes 30.9
2595 Yes 13.7
2596 Yes 15.3
2597 Yes 14.3
2598 Yes 17.0
2599 Yes 12.9
2600 Yes 15.3

Inconsistent Time
2601 Yes 18.3
2602 Yes 14.9
2603 ? 14.5
2604 Yes 13.3
2605 Yes 13.5
2606 Yes 24.4
2607 ? 20.6
2608 Yes 14.3
2609 Yes 14.4
2610 Yes 15.5
2611 ? 16.9
2612 ? 20.9
2613 ? 17.1
2614 ? 21.1
2615 Yes 17.2
2616 Yes 19.6
2617 ? 18.5
2618 Yes 18.7
2619 Yes 23.6
2620 Yes 19.3
2621 Yes 14.0
2622 Yes 14.7
2623 ? 17.9
2624 Yes 19.9
2625 Yes 24.0
2626 Yes 15.7
2627 Yes 13.4
2628 Yes 16.8
2629 Yes 13.2
2630 ? 17.0
2631 Yes 15.7
2632 Yes 14.1
2633 Yes 19.6
2634 Yes 21.0
2635 Yes 14.5
2636 Yes 19.6
2637 Yes 14.6
2638 ? 16.8
2639 Yes 25.8
2640 ? 19.9
2641 Yes 13.6
2642 Yes 13.0
2643 ? 16.9
2644 ? 17.8
2645 Yes 17.2
2646 Yes 18.5
2647 Yes 22.0
2648 Yes 14.7
2649 ? 17.3
2650 Yes 12.5
2651 Yes 20.2
2652 Yes 24.8
2653 ? 20.3
2654 Yes 14.1
2655 Yes 24.7
2656 Yes 14.3
2657 Yes 19.3
2658 Yes 25.9
2659 ? 20.4
2660 Yes 14.0
2661 ? 20.4
2662 Yes 12.4
2663 Yes 13.0
2664 Yes 20.2
2665 Yes 13.3
2666 Yes 17.8
2667 Yes 15.6
2668 Yes 13.5
2669 Yes 13.7
2670 ? 13.4
2671 Yes 17.4
2672 Yes 16.9
2673 Yes 12.7
2674 ? 17.7
2675 ? 16.8
2676 Yes 19.3
2677 ? 17.9
2678 Yes 22.9
2679 Yes 25.5
2680 Yes 13.8
2681 ? 17.5
2682 ? 16.7
2683 Yes 20.3
2684 Yes 16.6
2685 Yes 18.3
2686 Yes 20.1
2687 Yes 13.3
2688 ? 17.5
2689 Yes 20.2
2690 Yes 20.2
2691 Yes 24.1
2692 Yes 25.3
2693 Yes 24.0
2694 Yes 23.4
2695 Yes 27.1
2696 Yes 15.6
2697 Yes 13.3
2698 Yes 16.5
2699 Yes 20.4
2700 Yes 25.8

Inconsistent Time
2701 Yes 14.3
2702 ? 16.9
2703 Yes 18.0
2704 Yes 18.8
2705 Yes 19.6
2706 Yes 16.9
2707 Yes 13.7
2708 Yes 16.4
2709 Yes 20.7
2710 Yes 24.0
2711 Yes 25.0
2712 Yes 28.6
2713 Yes 22.8
2714 Yes 13.5
2715 Yes 21.9
2716 Yes 16.4
2717 Yes 28.6
2718 ? 18.9
2719 Yes 18.5
2720 Yes 20.1
2721 Yes 16.2
2722 Yes 26.3
2723 Yes 23.4
2724 Yes 12.6
2725 ? 16.0
2726 Yes 16.9
2727 Yes 13.4
2728 ? 16.5
2729 ? 19.0
2730 Yes 13.2
2731 ? 16.9
2732 Yes 19.4
2733 Yes 13.8
2734 ? 16.9
2735 Yes 14.8
2736 Yes 15.8
2737 Yes 14.9
2738 Yes 15.6
2739 Yes 14.4
2740 Yes 14.1
2741 Yes 15.3
2742 Yes 20.2
2743 Yes 15.3
2744 Yes 15.3
2745 Yes 15.0
2746 Yes 15.3
2747 Yes 19.1
2748 Yes 15.0
2749 Yes 18.1
2750 Yes 14.3
2751 Yes 17.9
2752 Yes 21.5
2753 Yes 15.5
2754 Yes 14.2
2755 Yes 14.6
2756 Yes 14.3
2757 Yes 17.6
2758 Yes 14.7
2759 Yes 20.8
2760 ? 17.9
2761 Yes 14.9
2762 Yes 15.3
2763 Yes 21.7
2764 Yes 12.3
2765 Yes 12.1
2766 Yes 12.3
2767 Yes 11.8
2768 Yes 11.7
2769 Yes 11.8
2770 Yes 11.3
2771 Yes 13.1

86 Appendix B — Results of Running the Basic LPs

List of Figures

2.1 Number Constants and Axioms . 5
2.2 Numeral Building Blocks . 5
2.3 Numeral Examples . 5
2.4 Computing Negation . 6
2.5 Computing Addition . 6
2.6 Computing Multiplication . 6
2.7 Normalizing Numerals . 6
2.8 Standard ML Module for Computing with Numerals 7
2.9 Signs of Integer Numerals . 10
2.10 Short-circuit Boolean Operators of Type bool→ bool→ bool 13
2.11 SML Program, Part 1 . 31
2.12 SML Program, Part 2 . 32
2.13 SML Program, Part 3a (resulting from Equation 2.6) 32
2.14 SML Program, Part 3b (resulting from Equation 2.7) 32
2.15 SML Program, Part 3c (resulting from Equation 2.8) 33

4.1 A planar graph . 66
4.2 Planar Graph Record Components . 68
4.3 Real Variable Record Components . 68
4.4 Axioms for Face, Edge and Node . 69
4.5 Axioms for edgerep, facerep and noderep 69
4.6 Axioms for edges, faces and nodes . 69
4.7 Further Topology Axioms . 70
4.8 Axioms for Invariance under Permutation 71
4.9 Axioms for Basic Geometrical Bounds 71
4.10 Bounds for σ and τ from [16, Lemma 20.2] 71
4.11 Variations of Real Variables . 71
4.12 Axioms from [16, Lemma 10.6] . 72
4.13 Axioms from [16, Lemma 22.12] . 72

88 List of Figures

Bibliography

[1] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano
Berardi, Mario Coppo, and Ferruccio Damiani, editors, TYPES, volume 3085
of Lecture Notes in Computer Science, pages 34–50. Springer, 2003.

[2] Bruno Barras. Programming and computing in hol. In Mark Aagaard and John
Harrison, editors, TPHOLs, volume 1869 of Lecture Notes in Computer Science,
pages 17–37. Springer, 2000.

[3] Gertrud Bauer. Formalizing plane graph theory. PhD thesis, Technische Univer-
sität München, 2006.

[4] Garrett Birkhoff. Lattice Theory. AMS, 1967.

[5] Dave Cohen and Phil Watson. An efficient representation of arithmetic for
term rewriting. In Ronald V. Book, editor, RTA, volume 488 of Lecture Notes in
Computer Science, pages 240–251. Springer, 1991.

[6] Nicolas G. de Bruijn. Lambda Calculus notation with nameless dummies: a
tool for automatic formula manipulation. Indagationes Mathematicæ, 34:381–392,
1972.

[7] László Fuchs. Partially ordered algebraic systems. Addison-Wesley, 1963.

[8] Georges Gonthier. A computer-checked proof of the Four Color Theorem.
http://research.microsoft.com/∼gonthier/4colproof.pdf.

[9] Mike Gordon. From LCF to HOL: a short history. In Proof, language, and inter-
action: essays in honour of Robin Milner, pages 169–185. MIT Press, Cambridge,
MA, USA, 2000.

[10] Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM Trans. Math. Softw., 4(3):250–269, 1978.

[11] Thomas C. Hales. Computer resources for the Kepler Conjecture. http://
annals.math.princeton.edu/keplerconjecture/.

[12] Thomas C. Hales. Some algorithms arising in the proof of the kepler conjecture.
sect. 3.1.1., arXiv:math.MG/0205209.

[13] Thomas C. Hales. Sphere packings III. arXiv:math/9811075v2, http://arxiv.
org/abs/math/9811075v2.

http://research.microsoft.com/~gonthier/4colproof.pdf
http://annals.math.princeton.edu/keplerconjecture/
http://annals.math.princeton.edu/keplerconjecture/
http://arxiv.org/abs/math/9811075v2
http://arxiv.org/abs/math/9811075v2

90 Bibliography

[14] Thomas C. Hales. Introduction to the flyspeck project. In Thierry Co-
quand, Henri Lombardi, and Marie-Françoise Roy, editors, Mathematics, Al-
gorithms, Proofs, volume 05021 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, 2005.

[15] Thomas C. Hales and Samuel P. Ferguson. A proof of the Kepler Conjecture.
Annals of Mathematics, 162:1065–1185, 2005.

[16] Thomas C. Hales and Samuel P. Ferguson. The Kepler Conjecture. Discrete &
Computational Geometry, 36, 2006.

[17] Joe Hurd and Thomas F. Melham, editors. Theorem Proving in Higher Order
Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25,
2005, Proceedings, volume 3603 of Lecture Notes in Computer Science. Springer,
2005.

[18] Bart Jacobs and Thomas F. Melham. Translating dependent type theory into
higher order logic. In Typed Lambda Calculus and Applications, pages 209–229,
1993.

[19] Alexander Krauss. Partial recursive functions in higher-order logic. In Ulrich
Furbach and Natarajan Shankar, editors, IJCAR, volume 4130 of Lecture Notes
in Computer Science, pages 589–603. Springer, 2006.

[20] Serge Lang. Algebra. Addison-Wesley, 1974.

[21] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[22] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. The archive of tame graphs.
http://www4.informatik.tu-muenchen.de/∼nipkow/pubs/Flyspeck, 2006.

[23] Tobias Nipkow, Gertrud Bauer, and Paula Schultz. Flyspeck I: Tame graphs.
In IJCAR, pages 21–35, 2006.

[24] Tobias Nipkow and Lawrence C. Paulson. Proof pearl: Defining functions over
finite sets. In Hurd and Melham [17], pages 385–396.

[25] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[26] Steven Obua. Proving bounds for real linear programs in Isabelle/Hol. In Hurd
and Melham [17], pages 227–244.

[27] Steven Obua. Checking conservativity of overloaded definitions in higher-
order logic. In Frank Pfenning, editor, RTA, volume 4098 of Lecture Notes in
Computer Science, pages 212–226. Springer, 2006.

[28] Steven Obua. Proof pearl: Looping around the orbit. In Klaus Schneider and
Jens Brandt, editors, TPHOLs, volume 4732 of Lecture Notes in Computer Science,
pages 223–231. Springer, 2007.

http://www4.informatik.tu-muenchen.de/~nipkow/pubs/Flyspeck

Bibliography 91

[29] Lawrence C. Paulson. ML for the working programmer (2nd ed.). Cambridge
University Press, New York, NY, USA, 1996.

[30] Lawrence C. Paulson. Organizing numerical theories using axiomatic type
classes. J. Autom. Reasoning, 33(1):29–49, 2004.

[31] Lawrence C. Paulson. Defining functions on equivalence classes. ACM Trans.
Comput. Log., 7(4):658–675, 2006.

[32] Alexander Schrijver. Theory of Linear and Integer Programming. John Wiley &
Sons, June 1998.

[33] Scott Owens and Konrad Slind. Adapting functional programs to higher order
logic. Higher Order and Symbolic Computation. To appear.

[34] Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L.
Gunter and Amy P. Felty, editors, TPHOLs, volume 1275 of Lecture Notes in
Computer Science, pages 307–322. Springer, 1997.

92 Bibliography

	Introduction
	The HOL Computing Library
	What is the HCL?
	Arithmetic in Commutative Rings with Unity
	Performance Showdown: Factorials
	Controlling Evaluation
	Conditional Rules
	Strict or Lazy Evaluation?

	Modes of the HCL
	An Abstract Machine Interface
	The Barras Machine
	The SML Machine
	The Haskell Machine

	The HCL Cokernel
	A Bird's-Eye View of the Isabelle Kernel
	Removing and Attaching Types
	Computing Equations
	Mixing Modus Ponens, Instantiation, and Computation
	Polymorphic Linking

	Proving Bounds for Real Linear Programs
	Overview
	The Basic Idea
	Reducing the case M = - to the case -< M <
	The case -< M <

	Finite Matrices
	Dimension of a Finite Matrix
	Lifting Unary Operators
	Lifting Binary Operators
	Matrix Multiplication
	Distributivity
	Associativity

	Lattice-Ordered Rings
	Positive Part and Negative Part

	Proving Bounds by Duality
	Proving Infeasibility by Modified Duality
	Sparse Matrices
	Interval Arithmetic
	Floats
	Division of Floats
	Basic Interval Arithmetic for Floats
	Approximation of Matrices

	Calculating A Priori Bounds

	The Basic Linear Programs
	The Archive Of Tame Graphs
	Graph Systems
	Topology of a Graph System
	3-Space Interpretation of a Graph System
	Additional Constraints of a Graph System

	Generating and Running the Basic Linear Programs

	Graph System Axioms from the Inequality Database
	Results of Running the Basic LPs
	List of Figures
	Bibliography

