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Interval-valued Soft Constraint Problems
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E-mail: {mgelain,mpini,frossi,kvenabj@math.unipd.it
2 Cork Constraint Computation Centre, University CollegelCtreland, Email:
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Abstract. Constraints and quantitative preferences, or costs, ayeugeful for
modelling many real-life problems. However, in many sefsinit is difficult to
specify precise preference values, and it is much more naad® to allow for
preference intervals. We define several notions of optimiati®ns for such prob-
lems, providing algorithms to find optimal solutions andoals test whether a
solution is optimal. Most of the time these algorithms juequire the solution
of soft constraint problems, which suggests that it may lssibpte to handle this
form of uncertainty in soft constraints without significgnincreasing the com-
putational effort needed to reason with such problems. iBlgsipported also by
experimental results. We also identify classes of probletmare the same results
hold if users are allowed to use multiple disjoint intervather than a single one.

1 Introduction

Constraints [11] are useful to model real-life problems whes clear what should be
accepted and what should be forbidden. Soft constraine¢@hd the constraint notion
by allowing several levels of acceptance. This allows taesppreferences and/or costs
rather than just strict requirements.

In soft constraints, each instantiation of the variables obnstraint must be associ-
ated to a precise preference or cost value. Sometimes it giseible for a user to know
exactly all these values. For example, a user may have a vdgaef the preference
value, or may not be willing to reveal his preference, forrepée for privacy reasons.

In this paper we consider these forms of imprecision, and avedle them by ex-
tending soft constraints to allow users to state an interf/pteference values for each
instantiation of the variables of a constraint. This in&izan contain a single element
(in this case we have usual soft constraints), or the whalgea@f preference values
(when there is complete ignorance about the preferencealuit may contain more
than one element but a strict subset of the set of prefereadoes: We call such prob-
lemsinterval-valuedsoft CSPs (or also IVSCSPs).

In an elicitation procedure there will typically be some dEgof imprecision, so
attributing an interval rather than a precise preferenggetecan be a more reliable
model of the information elicited. Also, linguistic degaiibns of degrees of preference
(such as "quite high” or "low” or "undesirable”) may be moratarally mapped to pref-
erence intervals, especially if the preferences are bdioigeel from different experts,
as they may mean somewhat different things by these terms.



Two examples of real world application domains where pegfee intervals can
be useful or necessary are energy trading and network teafitysis [15], where the
data information is usually incomplete or erroneous. Inrgpérading, costs may be
imprecise because they may evolve due to market changestimrk traffic analysis,
the overwhelming amount of information and measuremefitdifies force the use
of partial or imprecise information. Many other applicatidomains that are usually
modelled via hard or soft constraints could benefit by inse€aexpressed power of
preference intervals. To give a concrete example in thigpage consider the meeting
scheduling problem, that is a typical benchmark for CSPd vem allow the specifica-
tion of preference intervals. This benchmark will be usetthho clarify notions related
to IVCSPs and to run experimental tests.

Given an IVSCSP, we consider several notions of optimaltemia. We first start
with general notions of optimality, which apply whenever have several scenarios to
consider. For example, as done in [7], we consitaressarily optimadolutions, which
are optimal in all scenarios, @ossibly optimasolutions, which are optimal in at least
one scenario. We then passitterval-based optimality notionshat define optimality
in terms of the upper and lower bounds of the intervals aasedito the solution by the
constraints.

Since IVSCSPs generalize soft constraint problems, thigl@nmoof finding an opti-
mal solution in an IVSCP (according to any of the considengtiheality notions) is at
least as difficult as finding an optimal solution in a soft dosigt problem ans thusiitis
NP-hard.

We provide algorithms to find solutions according to all tiitions defined, and
also to test whether a given solution is optimal. In most ef thses, finding or test-
ing an optimal solution amounts to solving a soft constramblem. Thus, even if our
formalism significantly extends soft constraints, and giusers much more power in
modelling their knowledge of the real world, in the end the'kwoeeded to find an op-
timal solution (or to test if it is optimal) is not more tharatmeeded to find an optimal
solution in a soft constraint problem. This claim is suppdrby the experimental re-
sults we present, obtained by extensive tests over ingarfdhe meeting scheduling
problem.

We also show that for some classes of IVSCSPs the optimaitipms considered
in this paper would not produce different results if usersengdlowed to usenultiple
disjoint intervalsrather than a single one. This means that a level of precgrieater
than a single interval does not add any useful informatioamllboking for an optimal
solution.

Previous approaches to uncertainty in soft constraintlprob assumed either a
complete knowledge of the preference value, or a compleierance. In other words,
a preference value in a domain or a constraint was eitheeptes not [4, 6, 8, 14].
Then, the solver was trying to find optimal solutions with thi@rmation given by the
user or via some form of elicitation of additional preferenalues. Here instead we
consider a more general setting where the user may speéfgrpnce intervals. Also,
we assume that the user has given us all the information hetloas the problem, so we
do not resort to preference elicitation (or the elicitatibrase is over with the user being
unable or unwilling to give us more precise information). félaver, previous work



looks only for necessarily optimal solutions, and useseeefce elicitation, if needed,
to find them. Here instead we consider many other notions tifnap solutions, with
the aim of returning interesting solutions without resagtto preference elicitation.

Another work that analyzes the impact of the uncertaintpihnstraint problems
is shown in [10]. However, while we assume to have only pesfee intervals, in [10]
it is assumed that all the preferences are given and somerwfane tagged as possibly
unstable and are provided with a range, of possible vanatiaround their value.

Other papers consider preference intervals, such as tHeiwf8]. However, these
lines of work focus on specific preference aggregation maishas (such as the Cho-
quet integral) and of modelling issues without addressim algorithmic questions
related to finding optimal solutions according to differask attitudes. We are instead
interested in providing efficient algorithms to find optinsalutions according to differ-
ent risk attitudes (called pessimistic and optimistic ia gfaper), besides the modelling
concerns.

The paper is structured as follows. In Section 2 we recalintlagn definitions for
soft constraints and in Section 3 we introduce interval:gélsoft constraint problems.
In Section 4 we give general notions of optimal solutionsjcllapply whenever we
have several scenarios to consider, while in Section 5 wednote interval-based op-
timality notions. In Sections 6 and 7 we present algorithonfértd solutions according
to optimality notions defined. Then, in Section 8 we introglmotions of dominance
between solutions, we show how they are related to the rotiboptimality, and we
describe how to test dominance. In Section 9 we analyze thadhof having multiple
preference intervals. In Section 10 we present an expetahstudy of the algorithms
to find optimal solutions. Finally, in Section 11 we give sofimal considerations and
we propose some hints for future work.

2 Background: soft constraints

In the literature there are many formalizations of the cphoé soft constraints [5, 12].
Here we refer to the one described in [1, 5], which howeveramshown to generalize
and express many others [2].

A soft constraint [1] is just a classical constraint whereteiastantiation of its vari-
ables has an associated value from a (totally or partiatiei@d) set, which is called
a c-semiring. More precisely, a c-semiring is a tuple +, x,0,1) such that:A is
a set, called the carrier of the c-semiring, ahd € A; + is commutative, associa-
tive, idempotentQ is its unit element, and is its absorbing elemeny is associative,
commutative, distributes ove¥, 1 is its unit element an@ is its absorbing element.
Consider the relatior. s over A such thats <g biff a+b = b. <g is a partial ordery}
andx are monotone OF.s; 0 is its minimum andL its maximum;(A, <g) is a lattice
and, for alla,b € A, a + b = lub(a,b). Moreover, if x is idempotent, thefA4, <g)
is a distributive lattice anck is its glb. The relatior<g gives us a way to compare
preference values: when<g b, we say thab is better than aElement0 is the worst
value andl is the best one.

A c-semiring(A, +, x, 0, 1) is said to badempotenwhen the combination oper-
ator x is idempotent, while it is said to b&rictly monotonicwhen the combination



operatorx is strictly monotonic. If a c-semiring is totally ordereck.j if <g is a to-
tal order, then the- operation is just max with respect 0s. If the c-semiring is also
idempotent, therx is equal to min, and the c-semiring is of the kind used for juzm-
straints (see below). Notice that there are also c-sengiriingt are neither idempotent
nor strictly monotonic.

Given a c-semiring = (A, +, x, 0, 1), afinite setD (the domain of the variables),
and an ordered set of variabl&s a soft constraint is a pafrle f, con) wherecon C V/
anddef : Dl©o"l — A. Therefore, a soft constraint specifies a set of variables (t
ones incon), and assigns to each tuple of valuedbbf these variables an element of
the c-semiring se#l, which will be seen as itgreferenceA soft constraint satisfaction
problem (SCSP) is just a set of soft constraints over a sedridivles.

A classical CSP is just an SCSP where the chosen c-semiritygsis = ({ false,
true}, V, A, false, true). Fuzzy CSPs are instead modeled by choosing the idempotent
c-semiringSrcsp = ([0,1], max, min, 0, 1): we want to maximize the minimum
preference. For weighted CSPs, the strictly monotoniogiseg is Sywosp = (R,
min, 4, +00,0): preferences are interpreted as costs ffbto +oco, and we want to
minimize the sum of costs.

Given an assignmentto all the variables of an SCS®, that is, a solution of),
its preference, writtepref (@, s), is obtained by combining the preferences associated
by each constraint to the subtuplesofeferring to the variables of the constraint:
pref(Q, s) = I igef conyec def(s|con), Wherell refers to thex operation of the c-
semiring ands, ., is the projection of tuple on the variables imon. For example, in
fuzzy CSPs, the preference of a complete assignment is thienonin preference given
by the constraints. In weighted constraints, it is instéedum of the costs given by
the constraints. An optimal solution of an SC&Pis then a complete assignment
such that there is no other complete assignménwith pref(Q, s) <g pref(Q, s”).
We denote wittOpt(Q) the set of all optimal solutions of an SC&Pand with.Sol(Q)
the set of all the solutions of an SC&P

Given an SCSR) defined over an idempotent c-semiring, and a preferences
will denote as:ut, (Q) (resp. scut,(Q)) the CSP obtained froif) allowing only tuples
with preference greater than or equalddresp., strictly greater tham). It is known
that the set of solutions @ with preference greater than or equakifresp., strictly
greater tham) coincides with the set of solutions ofit, (Q) (resp.,scutq(Q)).

3 Interval-valued soft constraints

Soft constraint problems require users to specify a praterealue for each tuple in
each constraint. Sometimes this is not reasonable, beeauser may have a vague
idea of what preferences to associate to some tuples. Irfif8} generalization allowed
users to specify either a fixed preference (as in usual sofitcaints) or the complete
[0,1] interval. Thus an assumption of complete ignorance was maeée the user was
not able to specify a fixed preference. Here we generalizhduby allowing users to
state any interval over the preference set.

Definition 1 (interval-valued soft constraint). Given a set of variable¥” with finite
domainD and atotally-orderedc-semiringS = (A4, +, x,0,1), an interval-valued



soft constraint is a paifint, con) wherecon C V is the scope of the constraint and
int: Dlconl — A x A specifies an interval ovet by giving its lower and upper bound.
If int(x) = (a,b), it must ben <g b.

In the following we will denote with (int(x)) (resp.,u(int(z))) the first (resp.,
second) component éfit(x), representing the lower and the upper bound of the pref-
erence interval.

Definition 2 (IVSCSP). An interval-valued soft constraint problem (IVSCSP) is a 4-
tuple (V, D, C, S), whereC' is a set of interval-valued soft constraints ovedefined
on the variables i/ with domainD.

Figure 1 shows an IVSCSP defined over the fuzzy c-semirifp, 1], max, min,
0, 1), that contains three variablé§,, X,, and X3, with domain{a, b}, and five con-
straints: a unary constraint on each variable, and two pioanstraints orjz, z2) and

(2, z3).
X1 /xz\ X3
a,a 0.8, 1,0TU a,a[0.8,0.9]
a,b[0.4,0.8] a,b[0.8, 1.0]

a[1.0,1.0] bal0809] al[0.6 095 bal0.4,08 a[0.9,0.9]
b[0.7,08 bb[0.0,03] b[0.607] bb[0.1,02] b[0.5,0.9]

Fig. 1. An IVSCSP over fuzzy semiring.

Inan IVSCSP, a complete assignment of values to all thebi@sacan be associated
to an interval as well. The lower bound (resp., the upper bdpofsuch an interval is
obtained by combining all the lower bounds (resp., the uppends) of the preference
intervals of the appropriate subtuples of this assignnretite various constraints.

Definition 3 (preference interval). Given an IVSCSE? = (V, D, C, S) and an as-
signment to all its variables overD, the preference interval ofin P is [L(s), U(s)],
whereL(s) = Hcint con>ecl(int( $icon)) @NAU(8) = it con>ect(int(s con)),
and ] is the combination operator of the c-semirifg

Figure 2 shows all the complete assignments of the IVSCSRgimré& 1, together
with their preference interval and the computation defails; .

1'O”’"”s’f””s’z ”””””””””””””””””””” Sl=(a,a,a)
R ils il G sa T 6T s2=(a,a,b)
[ ] ekl I §3 YUY S3=(a,b,a)
[Einhhits Il Ak ey Stk e sa=(b,a,a)
SO el el i el S5=(a,b,b)
05 cmmmmmmmmbee b

S6=(b,a,b)
Y T S

S7 S7=(b,b,a)
03 -mmmmmmmmmmmoooooo oo -3 SR s§ S8=(b,b,b)
[ R T R, ot
S —— . -
0.0 - o e e
For example L(S1)=min(1, 0.8, 0.6, 0.8, 0.9)=0.6 and U(S1)=min(1, 1, 0.95, 0.9, 0.9)=0.9

Fig. 2. Solutions of the IVSCSP shown in Figure 1.
5



Once we have an IVSCSP, it is useful to consider specific stEnarising from
choosing a preference value from each interval.

Definition 4 (scenario). Given an IVSCSRP, a scenario ofP is an SCSPP’ ob-

tained fromP as follows: given any constraint = (int, con) of P, we insert inP’

the constraint’ = (def,con), wheredef(t) € [(int(t)),u(int(t))] for every tuple
t € Dleonl,

We will denote withSc(P) the set of all possible scenarios Bf

Definition 5 (best and worst scenario)Given an IVSCSP, the best scenaridg(P))
(resp., the worst scenariaus(P))) of P is the scenario obtained by replacing every
interval with its upper (resp., lower) bound.

We will denote withl,,,,; andu,,,, the optimal preferences of the worst and best scenario.
The preference interval of a complete assignment is a gogdivepresenting the
quality of the solution in all scenarios, as stated by thim¥fahg theorem.

Theorem 1. Consider an IVSCSP over a c-semiringS and a complete assignment
s of its variables. Then, for al) € Sc(P), pref(Q, s) € [L(s),U(s)]. Also, forp €
{L(s),U(s)}, there exists & € Sc(P) such thatp = pref(Q, s). If the c-semiring
S is idempotent, then for ajp € [L(s), U(s)], there exists &) € Sc(P) such that
p = pref(Q, s).

Proof: pref(Q,s) € [L(s),U(s)] follows by monotonicity. Ifp = L(s) (resp.,p =
U(s)), itis possible to build a scenario whese= pref(Q, s), by fixing all the tuples
of s to their lower bound (resp., to their upper bound). If theemging is idempotent,
since we are considering totally ordered c-semirings, ffegatorx is minimum (with
respect to the total order), so there exists some intedaled constraintint, con) in

P such that(int(s|con)) = L(s). We must also have(int(s|con)) > U(s). Letp be

an element ofL(s), U(s)]. Define a scenari@ by replacing this interval-valued con-
straint with any soft constraint which assigns the tuglg,, the preference valyg and
replacing any of the other elementsBfwith soft constraints which assign preference
valueU (s) to the appropriate projection ef We then have = pref(Q, s). |

This means that, in general, the upper and lower bounds afatution preference
interval always model preferences of solutions in some ades. In the idempotent
case we have more: the whole interval, and not just the bouegdsesents all and only
the preferences coming from the scenarios. Intuitively is idempotent (let us con-
sider min for simplicity): given an assignmestfor every element: in [L(s), U(s)],
we can construct a scenario wherkas preference by fixing preference: on at least
one tuple (that has in its interval) and by fixing all other preferences of tupies to
their upper bound.

4 Necessary and possible optimality

We will now consider general notions of optimality, that aggplicable to any setting
where the lack of precision gives rise to several possit#aados. First we define op-
timal solutions that guarantee optimality in some or alhsg®s (i.e., the possibly and



the necessarily optimal solutions [6]), and then we will defsolutions that guarantee
a certain level of preference in some or all scenarios.

Definition 6 (necessarily optimal).Given an IVSCSH> = (V, D, C, S) and an as-
signments to the variables in/, s is necessarily optimal iff it is optimal in all scenar-
ios.

Given an IVSCSPP, the set of its necessarily optimal solutions will be dedote
by NO(P). Necessarily optimal solutions are very attractive beeahgy are very
robust: they are optimal independently of the uncertaifitii® problem. Unfortunately,
NO(P) may be empty, as in the IVSCSPof Figure 1.

Definition 7 (possibly optimal). Given an IVSCSPP = (V, D, C, S) and an assign-
ments to the variables in/, s is possibly optimal iff it is optimal in some scenario.

Given an IVSCSRPP, the set of possibly optimal solutions 8fwill be denoted by
PO(P). Inthe IVSCSPP of Figure 1 we havé®O(P) = {s1, s2, $3, 84, S¢ }. PO(P)
is never empty. However, the possibly optimal solutiondess attractive than the nec-
essarily optimal ones, in fact they guarantee optimalitly éor a specific completion
of the uncertainty.

We assume now to want to guarantee a certain level of prefeiarsome or all the
scenarios.

Definition 8 (necessarily of atleast preference). Givenan IVSCSP = (V, D, C, S)
and an assignmentto the variables in/, s is necessarily of at least preferenasff,
for all scenarios, its preference is at least

The set of all solutions of an IVSCSP with this feature will be denoted by
Nec(P, ). In our running example, if we consider= 0.5, we haveNec(P,0.5) =
{s1, s2, 54, 86 }. If ais a satisfactory preference level, elementd/iex:( P, ) are ideal,
because they guarantee such a preference level indepbnafethie uncertainty of the
problem.

Definition 9 (possibly of at least preferencey). Given an IVSCS®P = (V, D, C, S)
and an assignmentto the variables i/, s is possibly of at least preferenceiff, for
some scenario, its preference is at least

The set of all solutions of an IVSCSP with this feature will be denoted by
Pos(P,«). Inthe IVSCSPP of Figure 1, if we takex = 0.3, we havePos(P,0.3) =
{517 52,53, 54, 56, 57}-

5 Interval-based optimality notions

In an IVSCSP, uncertainty is specified via the preferenarials. Depending on how
one decides to deal with this form of uncertainty, diffeneations of optimality can be
given. Here we will consider interval-based optimalityinos, and we will relate them
to the necessarily and possibly optimal solutions.



5.1 Interval-dominant assignments

In the attempt to characterize the necessarily optimaltisois, we can consider the
following notion.

Definition 10 (interval-dominant). Given an IVSCSR? = (V, D, C, S) and an as-
signments to the variables inV, s is interval-dominant iff, for every other complete
assignment’, L(s) > U(s').

Interval-dominant assignments are better than or equéll ¢dreers in all scenarios,
and thus are very robust w.r.t. uncertainty. We denote WidiP) the set of the interval
dominant assignments &f. The IVSCSPP of Figure 1 had D(P) = 0.

Proposition 1. If ID(P) # 0, either I/ D(P) contains a single solution, all the so-
lutions in ID(P) have their lower bound equal to their upper bound, and allsthe
bounds are equal to the same val@ven an IVSCSPP, I D(P) may be empty.

Proof: 1D(P) may be empty as in the IVSCSPof Figure 1.

We now show, by contradiction, thatffD(P) # 0, eitherI D(P) contains a single
solution, or several solutions all with the lower bound ddga#he upper bound, and all
equal to the same value.IfD(P) contains two solutions, say ands,, with different
values of lower and upper bounds, thefs,) < U(s1) andL(s3) < U(s2). Sinces; €
ID(P), then for any other solutios’, L(s;) > U(s’) and thus alsd.(s1) > U(s2).
Similarly, sincesy € ID(P), then for any other solutios, L(s2) > U(s’) and thus
L(s2) > U(s1). ThereforeL(s1) > Ul(sz) > L(s2) > U(s1) and soL(s1) > U(s1),
that is a contradiction. O

It is possible to show that the interval-dominant optinyatibtion is stronger than
the necessary optimality notion. More precisely:

Proposition 2. Given an IVSCSIP, we havethal D(P) C NO(P). Also, ifID(P) #
0, thenID(P) = NO(P).

Proof: We first show thaf D(P) C NO(P). If a solution is inI D(P), its preference
is always greater than or equal to the upper bounds of alltther golutions, hence it is
optimal in all the scenarios.

We now prove that, if D(P) # 0, thenI D(P) = NO(P). We have already shown
that/D(P) C NO(P). It remains to prove thaVO(P) C ID(P). Let us denote with
s* a solution of/ D(P). If a solutions of P is notinID(P) andI D(P) # 0, thens is
notin NO(P). Infact, if L(s*) # U(s*), thenU(s*) > L(s*) > U(s), and sos is not
optimal in the best scenario. If(s*) = U(s*), sinces ¢ ID(P), L(s) < L(s*) and
S0 s is not optimal in the worst scenario. ]

5.2 Weakly-interval-dominant assignments

A more relaxed interval-based optimality notion is thedaling one.



Definition 11 (weakly-interval-dominant). Given an IVSCSPP = (V, D, C, S) and
an assignment to the variables i/, s is weakly-interval-dominant iff, for every other
complete assignmest, L(s) > L(s') andU(s) > U(s').

Weakly-interval-dominant assignments are better tharmoakto all others in both
the worst and the best scenario. We denote WithD ( P) the set of the weakly interval
dominant assignments &f. The IVSCSPP of Figure 1 hasVID(P) = {s1 }.

Proposition 3. Given an IVSCSEP, WID(P) may be empty. Moreovef,D(P) C
WID(P).

Proof: WID(P) may be emptyFor example, one can construct an IVSC®Rker
fuzzy c-semiring with only three solutions, say, so, andss, with the following lower
and upper bounddi(s;) = 0.2,U(s1) = 0.6, L(s2) = 0.3,U(s2) = 0.8, L(s3) = 0.4,
andU(s3) = 0.7.

We now show thaf D(P) C WID(P).If s € ID(P), thenL(s) > U(s) for
every others’. Hence, sincé/(s) > L(s) andU(s’) > L(s’) for every others’, we
haveU(s) > L(s) > U(s") > L(s') for every others’, that is,U(s) > U(s') and
L(s) > L(s') for every others’, hences € WID(P). O

The weakly-interval-dominant optimality notion is weaklean the necessary opti-
mality notion. In fact, VO(P) C WI1D(P) and for some IVSCSP (for example, the
IVSCSP of Figure 1) this inclusion is strict. More precisely

Proposition 4. Given an IVSCSIP, we have thaf D(P) C NO(P) C WID(P).

Proof: By Proposition 2, we know thatD(P) C NO(P).

We now show thalVO(P) C WID(P). If s € NO(P), thens must be optimal in
every scenario and so also in the best and in the worst sce&vien thats is optimal
in the worst scenario, theb(s) > L(s’) for every other solution’. Moreover, as is
optimal in the best scenario, théf(s) > U(s’) for every other solutios’. Therefore,
L(s) > L(s")andU(s) > U(s’) for every other solution’. This allows us to conclude
thats € WID(P). O

SinceI D(P) C NO(P) C WID(P), ID(P) andWID(P) can be seen as lower
and upper approximations &fO(P).

5.3 Lower and upper optimal assignments

Until now we have considered how to characterize, via irgtebased optimality no-
tions, the necessarily optimal solutions. In particulag, ave found lower and upper
approximations of these optimal solutions. We now move twsiter possibly optimal
solutions via new interval-based optimality notions.

Definition 12 (lower and upper optimal). Given an IVSCSH> = (V, D, C, S) and
an assignmert to the variables in/, s is lower-optimal (resp., upper-optimal) iff, for
every other complete assignmehtL(s) > L(s') (resp.,U(s) > U(s")).



A lower-optimal (resp., an upper-optimal) assignment igdvehan or equal to all
other complete assignments in the worst scenario (restheibest scenario). Lower-
optimal (resp., upper-optimal) assignments are usefuessimistic (resp., optimistic)
approaches to uncertainty, because they outperform tlee aisignments in the worst
(resp., in the best) case. We denote witR(P) (resp.,UO(P)) the set of the lower
(resp., upper) optimal assignments®f The IVSCSPP of Figure 1 hasLO(P) =
{817 84} andUO(P) = {81, 82}.

Lower and upper optimal solutions are never empty. Moredhey are related to
weakly-interval-dominant and interval-dominant solagas follows.

Proposition 5. Given an IVSCSR>, and the optimal preferendsg,; (resp.,uop:) of
ws(P) (resp.,bs(P)),

— LO(P) andUO(P) are never empty;

UO(P) N LO(P) = WID(P);

— if lopt = Uopt, thenID(P) = LO(P);

— if lopt < wopt, and|UO(P)| > 2, thenI D(P) = 0;

if [UO(P)| = 1, letus calls this single solution. I£(s) # l,,: thenID(P) = (.

Proof: LO(P) is never empty because it is always possible to find the soisitivith
the lower bound greater than or equal to all the other salstié\ similar argument
shows thal7O(P) is never empty.

We now show tha7O(P) N LO(P) = WID(P). We first show thalU’O(P) N
LO(P) CWID(P).If s € UO(P) N LO(P), then, by definition o7O(P), U(s) >
U(s') for every others’ and, by definition ofLO(P), L(s) > L(s') for every other
', therefores € WID(P). We now show thaWID(P) C UO(P) N LO(P). If
s € WID(P), by definition of WID(P), U(s) > U(s") andL(s) > L(s’) for every
others’, hence botly € LO(P) ands € UO(P), therefores € LO(P) NUO(P).

To show that, ifl,,: = uept, thenID(P) = LO(P), it is sufficient to show that
lopt = Uopt iIMpliesLO(P) C ID(P), asID(P) C LO(P) follows from Theorem 2.
In fact, if s € ID(P), thens € Opt(ws(P)) and thus, by Theorem 2, € LO(P).

If s € LO(P) thenL(s) = l,p. Moreover, sinc&,, = wopt, L(s) = uop, @and so
L(s) > U(s'), for every other solutior’, that iss € ID(P).

We now prove, by contradiction, that, if,; < u.,: and |[UO(P)| > 2, then
ID(P) = 0. Supposel D(P) # (). Let us denote withs one of the solutions of
ID(P). Then, by definition of D(P), L(s) > U(s'), for every other solutios’. Since
[UO(P)| > 2, we are sure that there is a solutigh # s such thatU (s”) = wuop:.
Hence,L(s) > U(s"”) = wopt > lopt, and SOL(s) > Iy, that is a contradiction, be-
cause, by the definition df, l,,: is greater than or equal to the lower bound of every
solution.

Assume thatUO(P)| = 1 and let us calk this single solution. We now show, by
contradiction, that, ifL(s) # l,,t, thenID(P) = (. Let us denote witl3; one of the
solutions withL(s1) = Il,,¢. Suppose thal D(P) # ), and lets’ be an element of
ID(P). If s # sthenU(s") > L(s') > U(s), which implies thats’ € UO(P), a
contradiction. Hence’ = s. But thens’ # s1, SOL(s") > U(s1) > L(s1) = lopts
which contradictd(s) # lopt. O
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As every lower (resp., upper) optimal solution is optimathe worst (resp. best)
scenario, theLO(P) € PO(P), UO(P) C PO(P), and these inclusions may be
strict, because there may be solutions that are optimalinsigenarios that are different
from the best and the worst scenario.

Proposition 6. Given an IVSCSIP, we have thalL.O(P) UUO(P) C PO(P).

Proof: Let s be a complete assignment to the variable® of

LO(P) C PO(P). Infact, if s € LO(P), thens is optimal in the worst scenario
and sos € PO(P).

UO(P) C PO(P). Infact, if s € UO(P), thens is optimal in the best scenario
and sos € PO(P).

Therefore LO(P) U UO(P) C PO(P). |

Therefore, the lower and upper optimality notions are gfesrthan the possible
optimality notion.

The lower and upper optimal assignments are also relateldetmecessarily and
possibly of at least prefereneeassignments as follows.

Proposition 7. Given an IVSCSIP and the optimal preferendg,, of ws(P),

— Nec(P,a) # 0 iff oo < lopt;

— if a <lopt, LO(P) C Nec(P, a);

— let a, be the maximum such that there exists a solutionviec(P, o), thena,, =
lopt and Nec(P, ) = LO(P), and soNec(P, ) C PO(P).

Proof: Let us show the first item of the theorem. To show thatc(P, o) # 0 iff
a < lopt, We first prove that, itVec(P, ) # 0, thena < lop. If Nece(P, o) # 0, then
there is a solution, say, such thapref(Q;, s) > « for every scenari@); of P and so
also for the worst scenario. Hendg,; > pref(ws(P),s) > «. Therefore/,,; > .
We now show that, ifv < l,,:, thenNec(P,a) # 0. If Nec(P,«) = 0, then for every
solutions we have thapref(Q;, s) < « for some scenari@;. This holds also foany
solution, say*, such thapref (ws(P), s*) = lopt, and sd,p = pref(ws(P), s*) < a.

We now show the second item of the theorem: givefi I,,,;, LO(P) C Nec(P, «).
If LO(P) ¢ Nec(P,a), then there is a solution, say such thats € LO(P) \
Nec(P, ). Sinces € LO(P), pref(ws(P),s) = lopt. Sinces ¢ Nec(P, ), then
pref(Q;, s) < a for some scenari@);, and so, asws(P) is the worst scenarid,,; =
pref(ws(P), s) < pref(Q;, s) < a. Therefore/,,; < a.

We now show, by contradiction, that. = I, If a. > lop¢, then, by the previous
part of the proof Nec(P, a.) = (), that is a contradiction becausg is the maximum
a such thatNec(P, o) # 0. If a. < lope, thena, is not the maximumy such that
Nec(P,a) # 0, since such a value is,;, and so we have a contradiction.

We now prove that, itv. = I, thenNec(P,a.) = LO(P). Let s be a com-
plete assignment to the variablesRfIf s € Nec(P,l,p), then for every scenari@,
pref(Q, s) > lop: @and so also for the worst scenario. Therefore,,gsis the optimal
preference of the worst scenarioc LO(P). If s € LO(P), thenpref(ws(P),s) =
lopt. Since for every scenari@, pref(Q,s) > pref(ws(P),s) = lop, thens €
Nec(P, lopt)-
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SinceNec(P, «.) = LO(P) and since, by Proposition 6,0(P) C PO(P), then
Nec(P,a*) C PO(P). O

Thus, in generalVec(P, «) is not empty only ifw is at most the optimal preference
of the worst scenario, and in such a case every lower-opsgoiation is inNec(P, «).
Moreover, if we consider a particular value®falso the converse holds. Therefore, in
this case the necessarily of at least preferenselutions are lower-optimal solutions
and thus they are possibly optimal solutions.

Moreover, a solution is ilPos(P, ) only if « is at most the optimal preference
of the best scenario, and in such a case, for a particulaealu, the possibly of at
least preference solutions coincide with the upper optimal solutions, andastthey
are possibly optimal solutions.

Proposition 8. Given an IVSCSP and an assignmentto the variables of,

— sisin Pos(P,«) ifand only ifa < U(s);
— let o* be the maximum such thatPos(P, «) is not empty, thePos(P, a*) =
UO(P), and soPos(P,a*) C PO(P).

Proof: We first show thas is in Pos(P, «) if and only if « < U(s). If s € Pos(P, ),
then there is a scenario whepeef(Q, s) > «. By Theorem 1, we know thdf (s) is
the highest preference associated fo any scenario, thef/ (s) > pref(Q, s) and so
U(s) > a. If a < U(s), then, by Theorem 1, there is a scenaiovherepref (Q, s) =
U(s). SinceU(s) > «, thens € Pos(P, ).

We now show thaPos(P,a*) = UO(P). If s € Pos(P,a*), then there is a sce-
nario@ wherepref(Q, s) > a*. Sincea* is the maximumx such thatPos(P, ) # 0,
then,a* = uqp, Whereu,,, is the optimal preference in the best scenario. Hence,
s € UO(P). If s € UO(P), thenpref(Q,s) = uopt, hence in the best scenario
pref(bs(P), s) = uop and thuss € Pos(P, a*), wherea™ = up.

Since by Proposition @/O(P) C PO(P), thenPos(P, a*) C PO(P). O

5.4 Lower and upper lexicographically-optimal assignmerg

We now introduce two optimality notions that refine the lowed upper optimal no-
tions.

Definition 13 (Lower and upper lexicographically-optimal). Given an IVSCSP =
(V,D,C,S) and an assignment to the variables inV, s is lower (resp., upper)
lexicographically-optimal iff, for every other completesignment’, either L(s) >
L(s") (resp.,U(s) > U(s')), or L(s) = L(s") andU(s) > U(s") (resp.,.U(s) = U(s')
andL(s) > L(s")).

Lower (resp., upper) lexicographically-optimal assigmiseare those optimal as-
signments of the worst scenario (resp., best scenariopteahe best ones in the best
scenario (resp., in the worst scenario). We denote Wil (P) (resp.,ULO(P)) the
set of the lower (resp., upper) lexicographically-optiasdignments aP. The IVSCSP
P of Figure 1 had.LO(P) = ULO(P) = {s1}.
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Proposition 9. Given an IVSCSP,

— LLO(P) C LO(P) and soLLO(P) is never empty;
— ULO(P) CUO(P) and soU LO(P) is never empty;
— ID(P) C (LLO(P)NULO(P)) = WID(P).

Proof: We show thatL LO(P) C LO(P). The relationlU LO(P) C
shown similarly. Ifs € LLO(P), then, by definition ofLLO(P), L(s
(L(s) = L(s") andU(s) > U(s")) for every others’, henceL(s) >
others’ and sos € LO(P).

Since LLO(P) is contained inLO(P) and, by Proposition 5LO(P) is never
empty, thenLLO(P) is never empty. Similarly, it is possible to show tHALO(P)
is never empty.

We now provethatLLO(P) N\ULO(P)) = WID(P). We first show thatL LO(P)
NULO(P)) CWID(P).If s € (LLO(P)NULO(P)), then, by definition of.LO(P),
L(s) > L(s') for every others’ and, by definition ot /LO(P), U(s) > U(s’) for every
others’, hences € WID(P). We now show thatV ID(P) C (LLO(P)NULO(P)).

If s € WID(P), then, by definition oM ID(P), L(s) > L(s") andU(s) > U(s')
for every others’. It could happen thatZ{(s) > L(s") andU(s) > U(s")) or (L(s) >
L(s’) andU(s) = U(s")) or (L(s) = L(s’) andU(s) > U(s")) or (L(s) = L(s)
andU(s) = U(s")) for every others’. If L(s) > L(s') andU(s) > U(s’) for ev-
ery others’, thens € LLO(P) N ULO(P) by the first part of the definitions of
LLO(P) andULO(P). If L(s) > L(s') andU(s) = U(s’) for every others’ , then
s € LLO(P) N ULO(P) by the first part of the definition oLLO(P) and by the
second part of the definition 6f LO(P). If L(s) = L(s") andU(s) > U(s’) for every
others’, thens € LLO(P)NULO(P) by the second part of the definition BL.O(P)
and by the first part of the definition 6fLO(P). If L(s) = L(s’) andU(s) = U(s')
for every others’, thens € LLO(P) N ULO(P) by the second part of the definitions
of LLO(P) andULO(P). O

UO(P) can be
) > L(s") or
L(s") for every

Since lower and upper lexicographically-optimal solusi@ne refinements of lower
and upper optimal solutions, they are possibly optimaltsmhs as well. However, the
converse does not hold in general.

Proposition 10. Given an IVSCSP, (LLO(P) UULO(P)) C PO(P).

Proof: We know, by Proposition 9, thd@tZLO(P) C LO(P) andULO(P) C UO(P).
Since, by Proposition §,0(P) andUO(P) are containedO(P), then alsaLLO(P)
andULO(P) are contained iPO(P). m|

5.5 Interval-optimal assignments

Until now we have considered optimality notions that arersger than the possibly
optimal notion. In the attempt to fully characterize pobsiptimal solutions, we now
consider an interval-based optimality notion that is wedkan the lower and upper
optimality notions.
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Definition 14 (interval-optimal). Given an IVSCSP = (V, D, C, S) and an assign-
ments to the variables inV, s is defined to be interval-optimal iff, for every other
complete assignmest, L(s) > L(s") or U(s) > U(s).

An interval-optimal assignment is a complete assignmettt wither a higher or
equal lower bound, or a higher or equal upper bound, w.f.othér assignments. This
means that, for every other complete assignment, it musetierlthan, or equal to it
in either the worst or the best scenario. We denote WitiP) the set of the interval
optimal assignments d?. The IVSCSPP of Figure 1 hadO(P) = {s1, S2, 54}

Proposition 11. Given an IVSCS®, (UO(P) U LO(P)) C IO(P) and soIO(P) is
never empty.

Proof: Let s be a complete assignment to the variableB oSuppose that € UO(P)U
LO(P). There are two cases, @) UO(P), and (ii)s € LO(P). Suppose (i) that €
UO(P).ThenU(s) > U(s") forevery other complete assignmehénd sos € TO(P).
Similarly, (i) if s € LO(P) thenL(s) > L(s’) for every others’, hences € IO(P).
Since(UO(P)ULO(P)) C IO(P) and, by Proposition 5,0(P) andUO(P) are
never empty, thedO(P) is never empty. |

The interval-optimal solutions are possibly optimal siwins, but the converse does
not hold in general, as shown in the following propositiohefiefore, also the interval-
optimality notion is stronger than the possible optimatiotion.

Proposition 12. Given an IVSCSPP, if the c-semiring is strictly monotonic or idem-
potent, theW O(P) C PO(P). Moreover,PO(P) £ IO(P).

Proof: Lets be a complete assignment to the variable® of

Let us consider a strictly monotonic c-semiring. We know, Theorem 10, that
s € PO(P) iff s € Opt(Q*), where@? is the scenario where all the preferences of
tuples ins are set to their upper bound and all other tuples are assddiatthe lower
bound of their preferences. We now show that, & 70, thens € Opt(Q*) and so, by
Theorem 10s € PO(P). Assume that ¢ Opt(Q*®), we will show thats & TO(P). If
s & Opt(Q*), then there is a solutiosi such thapref(Q®, s') > pref(Q*, s).

— If s has no tuples in common witf, then, by construction a®, pref(Q*, s') =
L(s") andpref(Q*®,s) = U(s). Sincepref(Q*®,s’) > pref(Q®, s), and for every
solution its lower bound is lower than or equal to its uppeurd thenU (s’) >
L(s") > U(s) > L(s) and soU(s") > U(s) andL(s") > L(s), that implies that
s & IO(P).

— If s has some tuple in common with then,pref(Q*, s’) = Axu, andpref(Q*, s) =
X u, where\ (resp.,u) is the combination of the preferences of the tuples that
are ins’ but not ins (resp., ins but not ins’), andw is the combination of the
preferences of the tuples that are botk Bnd ins’. By hypothesispref(Q*, s’) >
pref(Q®,s), i.e., A x w > pu x u. By construction ofQ®, U(s") > A x u >
uxu = U(s), and soU(s") > U(s). Moreover, since the combination opera-
tor is monotonic, ifA x u > p x u, then\ > p. In fact, if A < p, by mono-
tonicity, A x u < p x u. Let us denote with/’ (resp.,u’) the combination of
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the lower bounds of the preferences of the tuples that are imot and in s’
(resp., ins but not ins’). Then, by strict monotonicity and by construction@f,
L(s)y=Axu >pxu >p xu = L(s),and soL(s") > L(s). Therefore, if
s has some tuple in common witfi, thenU (s") > U(s) andL(s’) > L(s), i.e
s ¢ IO(P).

Let us now consider an idempotent c-semiring. We want to shawif s € JO(P),
thens € PO(P). We will show that, ifs € TO(P), thens € Opt(Q*), whereQ*
is the scenario such that all the preferences of the tuplesacé set taU (s), if U(s)
is contained in their preference interval, and to their uggmind, ifU(s) is not con-
tained in their preference interval, and all other tuplesamsociated to the lower bound
of their preferences. First, we show thatef(Q*,s) = U(s). Then, we show that
pref(Q*, s) > pref(Q*,s’), for every other solutios’ that has no tuples in common
with s and for every solutior’ that has some tuple in common with

— pref(Q*, s) = U(s), by construction of)*, by Theorem 1 and by idempotency. In
fact, by Theorem lpref(Q*, s) < U(s). Moreoverpref(Q*,s) £ U(s). In fact,
we now show thapref(Q*, s) is given by the combination of the preferences that
are all greater than or equal &(s). By construction ofQ* we have two results.
(1) Every tuple ofs in @* with preference interval that contaib¥s) is assigned
to U(s) and, by definition of/(s) and by idempotency, there must be at least one
of these preferences. (2) Every tuple with preferencevatehat does not contain
U (s) is assigned to its upper bound that must be a value greatetthq, since, by
definition of U (s), the upper bound of every tuple ofnust be greater than or equal
to U(s), otherwise the upper bound efis notU(s) but a value lower thaﬁ]( )
that is a contradiction. Therefonggef(Q*, s) £ U(s) and sopref(Q*,s) = U(s).
— If s has no tuples in common witH, then, by construction af*, pref(Q* s =
) >
S

ok

L(s") andpref(Q*, s) = U(s). Sinces € TO(P), thenL(s) > L(s’) orU(s
U(s").If L(s) > L(s'), thenpref(Q*, s) = U(s) > L(s) > L(s") = pref(Q*,
If U(s) > U(s), thenpref(Q*, s) = U(s) > U(s') = L(s") = pref(Q*, ).

— If s has some tuple in common with, then, by construction a* pref(Q*, s’)

U(s) = pref(Q*, s).

IN

Therefore, for every solutiog’, pref(Q*,s’) < U(s) = pref(Q*, s). Hence,s is
optimal in@Q* and sos € PO(P).

PO(P) ¢ IO(P). In fact, assume to have an IVSCSP over a fuzzy c-semiring,
where there is only one variabtewith three values in its domain, say, =2, andzs,
with preference intervals respectively.4, 0.6], [0.5,0.7], and[0.5,0.8]. Then,z; ¢
IO(P), becausé.(x;) < L(x2) andU(x;) < U(xz2). Howeverz, € PO(P), because
x1 is optimal in the scenario where we associate tdhe value).6 and toxs andxs
the value).5.

O
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5.6 Summary of the various notions of optimality and of theirrelations
The various notions of optimality defined above are sumredrim Table 1. For each

notion, we refer to a solution and we describe compactly wherbelongs to each of
the optimality sets.

Table 1. Optimality notions.

| Optimality notions| Definition
NO(P) s € Opt(Q),VQ € Sc(P)
PO(P) s € Opt(Q), 3Q € Sc(P)
Nec(P, a) pref(Q,s) > o, VQ € Sc(P)
Pos(P,«) pref(Q,s) > «,3Q € Sc(P)
ID(P) L(s) > U(s"),Vs' € Sol(P)
WID(P) L(s) > L(s")andU(s) > U(s"),Vs' € Sol(P)
LO(P) L(s) > L(s"), Vs € Sol(P)
UO(P) U(s) > U(s"),Vs" € Sol(P)
LLO(P) L(s) > L(s") or (L(s) = L(s") andU(s) > U(s")), Vs’ € Sol(P)
ULO(P) U(s) > U(s")or (U(s) =U(s")andL(s) > L(s")), Vs € Sol(P)
I0(P) L(s) > L(s")orU(s) > U(s'),Vs' € Sol(P)

The set-based relations between the various optimalifpn®are described in Fig-
ure 3.

If ID(P)=,

Fig. 3. Relation among optimality sets.

5.7 An example: meeting scheduling problems

To better explain how to use the various optimality notiartsaduced in the previous
sections, we consider an example of a class of problems$gdeia meeting scheduling.
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The meeting scheduling problem is a benchmark for CSPs 8] we have adapted it
to allow also for preference intervals.

A meeting scheduling problem (MSP) is informally the prablef scheduling some
meetings by allowing the participants to attend all the ngstthey are involved in.
More formally, a MSP can be described by

a set of agents;

a set of meetings, each with a location and a duration;

a set of time slots where meetings can take place;

for each meeting, a subset of agents that are supposedrid atieh a meeting;
— for each pair of locations, the time to go from one locatioth®other one.

Typical simplifying assumptions concern having the sanration for all meetings
(one time slot), and the same number of meeting for each agersolve a MSP, we
need to allocate each meeting in a time slot in a way that egehtacan participate
in his meetings. The only way that an agent cannot partieipas to do with the time
needed to go from the location of a meeting to the locatioriohbext meeting.

The MSP can be easily seen as a CSP: variables represenhgseatid variable
domains represent all time slots. Each constraint betwegemteetings model the fact
that one or more agents must participate in both meetinglsit ésatisfied by all pairs
of time slots that allow the participation to both meetingsading to the time needed
to pass between the corresponding locations. For thismeas® often used as a typical
benchmark for CSPs.

For our purposes, we consider a generalization of the MSledc&/MSP, where
there is a chair, who is in charge of the meeting scheduling veho declares his pref-
erences over the variable domains and over the compatibie gfatime slots in the
binary constraints. The preferences over the variable dwran model the fact that
the chair prefers some time slots to others for a certainimgedn the other hand, the
preferences in the binary constraints can model a prefermaertain feasible pairs
of time slots, over others, for the two meetings involvedhia tonstraint.

Such preferences can be exact values when the chair wotksavitplete informa-
tion. However, at the time the meeting scheduling has to e dib may be that some
information, useful for deciding the preferences, is stilssing. For example, the chair
could have invited agents to meetings, but he does not yet kriw will accept his in-
vitations. As other examples, weather considerationseptksence of other events in
the same time slots may affect the preferences. Becausesafrtbertainty, some pref-
erences may be expressed by using an interval of valueshwittudes all preference
values that are associated to all possible outcomes of ttertain events.

Since MSPs can be expressed as CSPs, it is thus clear thaR¥ b be expressed
as IVSCSPs. The problem of solving an IVMSP concerns findimeg tslots for the
meetings such that all agents can participate and, amopgsible solutions, to choose
an optimal one according to some optimality criteria. Wd wiw consider several of
the optimality notions defined above and describe their ugieis class of problems.

In this context, given an IVMSH, necessarily optimal solutions (i.e., solutions
in NO(P)) are meeting schedulings that are optimal no matter how tieertainty is
resolved. Thus, if there is at least one of such solutionsjgltertainly preferred to any
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other. By working with the optimality notions defined ovetarvals, to find a solution

in NO(P), we may try to find a solution id D(P), given that solutions idD(P), if
any, coincide with solutions itvO(P). Otherwise, iff D(P) is empty, and given that
NO(P) is included inWID(P), we may look for a solution if¥V 1 D(P). We recall
that solutions inf D(P) are meeting schedulings where the preference intervaleof th
optimal solution is above the preference intervals of dieotsolutions, while solutions
in WID(P) have the upper bound of their preference interval above piperubounds

of the preference intervals of all other solutions, and #maesfor the lower bound.

Solutions inNec(P, ) are also attractive, because they guarantee a preference
level of .. in all scenarios. SincBO = Nec(P, o), we may find a solution i.O(P),
that is, a solution which is optimal in the worst scenarioisT$olution will guarantee
the chair against the uncertainty of the problem by assuwaingrtain level of overall
preference. This notion can be useful if the chair is pestiogibecause such solutions
provide a preference guarantee over all scenarios. Howswvehn a guaranteed prefer-
ence level may be very low.

If instead the chair is optimistic, he may ask for a solutionHos(P, a*), that
is, a solution with the highest preference level in some agenSinceUO(P) =
Pos(P,a.), we may find a solution il7O(P), that is, a solution which is optimal
in the best scenario.

When looking for solutions i O(P) andUO(P), we may want to be as close as
possible to solutions iNO(P), asNO(P) is included inLO(P) andUO(P). To do
this, we can try to find solutions ih LO(P) or ULO(P), respectively. For example,
solutions inLLO(P) are solutions il.O(P) that have the highest upper bound of their
preference interval. This means that, depending on howrtbertainty is resolved, they
give more hope of achieving a higher level of preference.

6 Finding and testing interval-based optimal assignments

In this section we analyze how to determine if a completegassent is one of the
different kinds of optimal assignments previously define@ection 5, and how to find
such optimal assignments. These results will be useful tb dimd test possibly and
necessarily optimal solutions.

6.1 Lower and upper optimal assignments

It is easy to show that, by following directly the definitiooslower and upper opti-
mal assignments, the lower (resp., upper) optimal solatmmincide with the optimal
elements of the worst (resp., best) scenario.

Theorem 2. Given an IVSCSP, LO(P) = Opt(ws(P)) andUO(P) = Opt(bs(P)).

Proof: We show thaf.O(P) = Opt(ws(P)). Let s be a solution ofP. If s € LO(P),
then L(s) > L(s") for every other solution’, hence if we considews(P), i.e., the
worst scenario oP, that is the scenario where we fix all the preference intsiteatheir
lower bound, thempref(ws(P), s) = L(s) and sopref(ws(P), s) > pref(ws(P),s’)
for every other solutior’, hences € Opt(ws(P)). If s € Opt(ws(P)), thenpref(ws(P),
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s) > pref(ws(P),s’) for every other solutions’ of P, that is, by definition of worst
scenarioL(s) > L(s") for everys’ and sas € LO(P). Similarly, itis possible to show
thatUO(P) = Opt(bs(P)). O

A lower-optimal solution is a complete assignment whoseelobound is greater
than or equal to the lower bound of every other complete asségt. Thus, it is a
complete assignment that is better than or equal to all es®gnments in the scenario
obtained by replacing every interval with its lower bound,,ithe worst scenario.

Thus, finding a lower-optimal (resp. upper-optimal) sautis as complex as solv-
ing an SCSP. This holds also for testing if an assignmeist in LO(P) (resp. in
UO(P)), since it is enough to solve the SCSP representing the wottsie best sce-
nario and to check if the preference of the optimal solutioimcides withL(s) (resp.

U(s)).

6.2 Interval optimal assignments

To find an interval optimal assignment, it is sufficient to fanldwer-optimal solution or
an upper-optimal solution, becaudéO(P) U LO(P)) C IO(P), and neithet/O(P)
nor LO(P) can be empty. Thus, finding assignments/6f(P) can be achieved by
solving an SCSP.

To test if a solution is interval optimal, if the c-semiring idempotent, we can
exploit the preference levels of the best and worst scesiaa®stated by the following
theorem.

Theorem 3. Given an IVSCSH defined over an idempotent c-semiring, and an as-
signments, we haves € 1O(P) iff the CSP obtained by joinidgscut 1) (ws(P)) and
scuty(5)(bs(P)) has no solution.

Proof: Letus denote witld) the CSP defined in the theorem. We first show th&}, lifas
no solution, thers € TO(P). Suppose that ¢ IO(P). Then there exists some com-
plete assignmerd’ with L(s") > L(s) andU(s’) > U(s). Thenpref(ws(P),s’) =
L(s") > L(s) andpref(bs(P),s') = U(s') > U(s), sos’ is a solution of. We now
show that, ifs € TO(P), then@ has no solution. IfY has a solution, say*, then, by
definition of @, L(s*) > L(s) andU(s*) > U(s), and sos ¢ IO(P). O

In fact, all and only the solutions of such a CSP strictly daeatés with respect
to both the lower and the upper bound. Thus, testing memipeirsiO(P) when the
semiring is idempotent amounts to solving a CSP.

More generally (that is, even if the combination operatona$ idempotent), we
can test interval optimality by checking if a suitably detifeCSP has solutions with
preference above certain threshold.

Theorem 4. Given an IVSCSH and an assignmen, let [,,: and u,,: be the op-
timal preferences of the worst and best scenario. Ther, IO(P) iff at least one

! The join of two CSPs; and P; is the CSP whose set of variables (resp., constraints) éngiv
by the union of the sets of variables (resp., constraint$}aind P».
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of the following conditions holds: (11.(s) = lopi; (2) U(s) = uope; (3) the SCSP
Q@ with the same variables, domains, and constraint topolagy’ adefined on the c-
semiring((A4 x A), (+,+), (x, x), (0,0), (1,1)), where the preference of each tuple
in each constraint is set to the pair containing the lower ampger bound of its inter-
val in P, has no solutiors’ with preference paifL(s’), U(s’)) pointwise greater than
(L(s),U(s)), i.e., such thalL(s") > L(s) andU(s’) > U(s).

Proof: We first show that ifL(s) = lopt, U(s) = uopt, OF @ hasno solution with
preference greater thdi.(s), U(s)), thens € IO(P). If L(s) = lop: (resp.,U(s) =
Uopt), thenL(s) > L(s") (resp.,U(s) > U(s")) for every other solutiors’, hence
s € LO(P) (resp.,s € UO(P)) and so, sinc&O(P)UUO(P) C IO(P), s € IO(P).
If @ has no solution with preference greater th{dns), U(s)), thens € IO(P). In
fact, if s ¢ TO(P), then there is a solution, say, such thatL(s*) > L(s) and
U(s*) > U(s), and so@) has a solution with preference greater tfiais), U(s)).

We now show, that ifs € IO(P), thenL(s) = lopt, U(s) = uopt, OF Q hasno
solution with preference greater thah(s), U(s)). If L(s) # lopt, U(s) # uope @and
@ has a solution™ with preference greater thd (s), U(s)), then, by definition ofy,
the preference ofL(s*),U(s*)) is greater than the preference(df(s), U(s)), hence
L(s*) > L(s) andU(s*) > U(s) and sos & TO(P). a

The first two conditions simply check ¥ is either lower or upper optimal. The
second condition is satisfied when there is no solution b#tsn s on both bounds.
Notice that this can be checked for example by running bramchbound org) with a
strict bound equal t¢L(s), U(s)). Therefore, testing membershipI®(P) with any
c-semiring can be achieved by solving at most three SCSPs.

6.3 Lower and upper lexicographically optimal assignments

To find the lower-lexicographically optimal solutions of BfSCSP P we consider the
optimal solutions of a suitable SCSP, as described by thalg theorem.

Theorem 5. Given an IVSCSHP over a strictly monotonic c-semiring§, let us con-
sider the SCSP) with the same variables, domains, and constraint topolagk gand
defined over the c-semiringd x A, max;.., (X, x), (0,0),(1,1)). The binary oper-
ation max;., is defined to be the maximum with respect to the ordering defined
as follows: for eacha,a’), (b,b') € (A x A), (a,a") =ies (b,V)iffa >sbora=1»%
anda’ >g U'. For each tuple in each constraint ¢}, its preference is set to the pair
containing the lower and upper bound of its intervalfm Then,LLO(P) = Opt(Q).

Proof: We first show thatL. LO(P) C Opt(Q). If s € LLO(P), thens € Opt(Q).
In fact, if s ¢ Opt(Q), then, there is a solution, say, of @ such thatpref(Q, s’) >
pref(Q, s), that is, by definition of preference given in the theoréf(s’), U(s')) =ic
(L(s),U(s)), that is, by definition of-.,,, eitherL(s") > L(s) or (L(s") = L(s) and
U(s") > U(s)),and sos ¢ LLO(P).

We now show thaOpt(Q) C LLO(P). If s € Opt(Q), thenpref(Q,s’) >
pref(Q, s), for everys’, that is, (L(s"),U(s")) =iz (L(s),U(s)), for every others’,
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that is, for every otheg’, eitherL(s") > L(s) or (L(s') = L(s) andU(s") > U(s)),
and sos € LLO(P).

Note that the assumption of strict monotonicity$fguarantees that the structure
defined in the theorem4 x A, max;.., (X, X),(0,0),(1,1)) is a c-semiring. If we
don’t make this assumption, then distributivity properbed not hold and so the struc-
ture above is not a c-semiring. a

In words, the first component of the pairs in the semiring ofdrem 5 is the most
important, and the second one is used to break ties. To finaper-lexicographically
optimal solutions, it is sufficient to consider the same S@SRiefined above except
for the ordering which considers the second component amtist important. Thus,
finding assignments i LO(P) andU LO(P) can be achieved by solving one SCSP.

To test if a solutions is in LLO(P), it is enough to find the preference pair, say
(p1,p2), of an optimal solution of the SCSP defined above and to cli¢éK$), U(s)) =
(pl,p2). Similarly to test if a solution is iV LO(P).

6.4 Weakly interval dominant assignments

We know thatW ID(P) = LO(P) N UO(P). Thus a straightforward, but costly, way
to find a solution inNW I D(P) is to compute all the optimal solutions of the best and
the worst scenario and to check if there is a solution in thergection of the two
sets. However, if the c-semiring is idempotent, this is rextessary, as shown by the
following theorem.

Theorem 6. Given an IVSCSIP defined over an idempotent c-semiring, dpd and
uopt as defined above, an assignmens in WID(P) iff it is a solution of the CSP
obtained by joining-ut;, , (ws(P)) andcut,,,, (bs(P)).

Proof: Let us denote witlf) the CSP described in the theorem. We first show that, if
is a solution ofR), thens € WID(P). If sis a solution ofR, then, by definition o), s

is a solution of the CSPut;, , (ws(P)) obtained from the worst scenario by allowing
only the tuples with preference greater than or equdlg hence, by definition of
lopt» L(s) > L(s') for every other solution’. Moreover, by definition of), s is also

a solution of the CSPut,,,, (bs(P)) obtained from the best scenario by allowing only
the tuples with preferences greater than or equai.p. Hence, by the definition of
uopt, U(s) > U(s'), for every other’. Therefore, ifs is a solution of@, thenL(s) >
L(s’") andU(s) > U(s’) for every others’, and sas € WID(P).

We now show that, it € WID(P), thens is a solution ofQ). If s is not a solution
of @, thenL(s) < lopt Or U(s) < wopt. If L(s) < lopt (resp.,U(s) < uopt), then
L(s) < L(s') (resp.,U(s) < U(s")) for anysolutions” such thatpref(ws(P),s") =
lopt (resp.,pref(bs(P), s') = uopt). Therefores ¢ WID(P). O

In words, any solution of the join CSP is optimal both in therst@nd in the best
scenario and this implies that it is undominated on both beumhus, if the c-semiring
is idempotent, finding a weakly interval dominant solutiomcaunts to solving two SC-
SPs and one CSP. Moreover, to test whether a solutisin WI1D(P), it is sufficient
to check ifL(s) = o, andU(s) = uepe, Which amounts to solving two SCSPs.
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6.5 Interval dominant assignments

To find an assignment ihD(P), we can use Proposition 5. Thusljf; = up, then it
is sufficient to find a lower-optimal solution. If instedg; < wu., then, if UO(P)| >
2, then we know thaf D(P) = ). Moreover, if[UO(P)| = 1 (let us calls this single
solution), if L(s) # I, then we know thaf D(P) = (.

If the c-semiring is idempotent, cuts can be exploited inghme style as above,
to build a suitably defined CSP, leading to a sound and compleicedure to find an
assignment, if any, idD(P).

Theorem 7. Given an IVSCSRH’ over an idempotent c-semiring, aig),, as defined
above, ifscut,,,, (bs(P)) has no solution, thedD(P) = LO(P). If scut,,,, (bs(P))
has one solution, say, and L(s) = ., then this solution is the only one FD(P).
Otherwise,ID(P) = {).

Proof: Let us denote with)) the CSPscut;, , (bs(P)). We first show that ifQ has
no solution, the’ D(P) = LO(P). If @ has no solution, then, sine@ is the CSP
obtained by the best scenario by allowing only tuples wittf@rence greater thdpy,,
there is no solution with upper bound greater tign, that is, for all the solutions
s of P, lop > U(s"). To show thatl D(P) = LO(P) it is sufficient to show that
LO(P) C ID(P), since Theorem 2 implies thaD(P) C LO(P). Let s be a solution
of P.If s € LO(P), thenL(s) = l,,; and thus, by the reasoning abo¥gs) > U(s')
for every other’, hences € ID(P).

If @ has a solution, say, thenU(s) > l,,, > L(s’) for all solutionss’, and so
ID(P) is either empty or equal t¢s}. Therefore ifQQ has more than one solution
thenID(P) is empty. Suppose th& has exactly one solutios, If L(s) < I, then
L(s) < L(s") for any solutions” with L(s") = o, and soL(s) < U(s’), which im-
plies thats ¢ ID(P) and soID(P) = 0. If L(s) = l,,: then for any other solution
s’ we havelU(s") < I, (since@ has only one solution), and da(s) > U(s’) which
implies thats € ID(P) and sol D(P) = {s}. i

Performing a strict cut of the best scenario at the optimadllef the worst sce-
nario means isolating solutions that have an upper bourteehipary,,,.. If there is no
such solution, then the upper bound of the lower-optimaltsmhs must coincide with
their lower bound{,,.). Thus, lower-optimal solutions coincide with intervaidimant
solutions. If, instead, such a CSP has only one solutiorgth#r solutions must have
an upper bound which is at mast,:. This means that, if this solution is also lower-
optimal, then it is the only interval dominant solution. &y, if there is more than one
solution with an upper bound aboksg,, then there cannot be any solution whose lower
bound dominates the upper bound of all others and, thD$P) is empty.

Summarizing, when the c-semiring is idempotent, to find atswh in I D(P) we
need to solve an SCSP and then one CSP. Proposition 5 andehin@aan also be used
to test if a solution is interval dominant.
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7 Finding and testing necessarily optimal and possibly opthal
assignments

We will now show how to test if an assignment is possibly oressarily optimal (or

of at least preference) and how to find these kinds of assignments. To do that, we
will exploit the relation between possibly and necessatimal assignments and the
various kinds of interval-based optimal assignments, shiov&ection 5.

7.1 Necessarily optimal solutions

To find a necessarily optimal solution, we exploit the resghown in Propositions
2 and 4 (i.e., ifID(P) # () thenNO(P) = ID(P), andID(P) C NO(P) C
WID(P)), and thus we perform the following steps:

1. If ID(P) # 0, then returrs € I D(P);

2. f WID(P) =0, thenNO(P) = 0;

3. Otherwise, return the first solution W/ D(P) that is necessarily optimal. If none,
NO(P) =10

Testing if a solution is necessarily optimal wheR (P) # () coincides with testing
ifitisin ID(P). Otherwise, we need to test if it is an optimal solution of smuitably
defined SCSPs, as shown by the following theorem.

Theorem 8. Consider an IVSCSP and an assignments LetQ; (resp.,Q?) be the
scenario where every preference associated to a tupleisfset to its lower bound
(resp., upper bound) and the preferences of all other tupleset to their upper bound
(resp., lower bound). The following results hold:

— If s € NO(P), thens € Opt(Qs). Moreover, if the c-semiring is strictly mono-
tonic, the converse holds as welle NO(P) < s € Opt(Qs).

— If s € NO(P) then, for every’, s € Opt(Q*). If the c-semiring is idempotent,
the converse holds as well:e NO(P) <= for everys’, s € Opt(Q*).

Proof: We first show that, it € NO(P), thens € Opt(Q5). If s € NO(P), thenitis
optimal in all scenarios and so also@h.

We now show that, if the c-semiring is strictly monotonic aind € Opt(Q5), then
s € NO(P). If s € Opt(Q5), thenpref(Qs, s) > pref(Qs, s") for every other solution
s’. For every other’, let A (resp.,u) be the combination of the preference values of
tuples associated tobut not tos’ (resp., associated 4 but not tos) in Qg, and let
u be the combination of the preference values of tuples assutio boths ands’ in
Q;. Since, for every’, pref(Qs, s) > pref(Qs, s’), then for everys’, A x u > pu x u
that implies that\ > u. In fact, if A < p, then, by strict monotonicity ok, then
A xu < p X u. For every scenari@;, for everys’, let \; (resp. u;) be the combination
of the preference values of tuples associates fout not tos (resp., associated td
but not tos) in @; and letu; be the combination of the preference values of tuples
associated to bothands’ in Q;. SinceQ), is the least favorable scenario fgrthen for
every scenari@);, A\; x u > A x uthatimplies\; > \. Infact, if \; < ), then, by strict
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monotonicity,\; x u < A x u. SinceQ is the most favorable scenario for the tuples
in s’ but not ins, thenu > u; for every scenarid),. Therefore, for every scenario
Q;, for everys’, we have thatn > p, \; > X andp > pu;, hence, by monotonicity,
pref(Qq, s) = \i X u; > AXu; > pxu; > p X u; = pref(Q;, s'), hences is optimal
in every scenario and soc NO(P).

If s € NO(P), thens is optimal in all the scenarios and so, for evefys is op-
timal in Q*". If the c-semiring is idempotent and, for every s € Opt(Q*'), then
s € NO(P). In fact, assume that ¢ NO(P), then there is a scenar@®, wheres is
not optimal, i.e., there i8’ such thatpref(Q, s) < pref(Q, s’). We want to show that
this holds also in the scenar@s/. If we consider the scenari@; obtained fron) by
putting the preference value of any tuple that is bbut not ins’ to its lower bound, then,
the preference of decreases or remains the same, by monotonicity, and therenele
of s’ does not change. Hengeief (Q1, s) < pref(Q, s) < pref(Q, s’) = pref(Q1, s'),
and sopref(Q1, s) < pref(Q1,s’). If we consider the scenari@, obtained fromQ,
by setting the preference value of any tuple that is'ibut not ins to its upper bound,
then the preference af increases or remains the same, by monotonicity, and the pref
erence ofs does not change. Hencgref(Q2, s) = pref(Qy,s) < pref(Qi,s’) <
pref(Q2, s’) and sopref(Q2, s) < pref(Q2, s). If we consider the scenario obtained
from Q5 by setting the preference value of the tuples that areands’ to their up-
per bound, then we have the scenapiv. The preferences of the tuples that aresin
ands’ does not modifypref(Q-, s) andpref(Q2, s'). In fact, since the c-semiring is
idempotent, thepref(Q2, s) (resp.,pref(Q2, s')) is given by the tuple with the worst
preference ofs (resp.,s’), and, sincepref(Q2,s) < pref(Q2,s’), pref(Q2,s) and
pref(Q2, s’) must be given by different tuples, otherwise:f(Q2, s) = pref(Q2, s’).
Hencepref(Q*', s) = pref(Q2, s) < pref(Q2, s') = pref(Q*, s). Therefore, there is
a solutions’ suchs’ ¢ Opt(Q*"). O

The intuition behind this theorem is that, in order for a $iolto be necessarily
optimal, it must be optimal also in its least favorable sceEnavhen the c-semiring is
strictly monotonic, and it must be optimal in the most fa\messcenario of every other
solution, when the c-semiring is idempotent.

7.2 Necessarily of at least preference solutions

By Proposition 7, we know that € Nec(P, «) if and only if « < L(s). Thus, testing
whether a solutior is in Nec( P, «) amounts at checking this condition that takes linear
time.

To find a solution inNec(P, ), we know, by Proposition 7, thafec(P, «) is not
empty only ifa is at most the optimal preference of the worst scenario, asdich a
case any lower-optimal solution is iNec(P, ). This amounts to solving one SCSP.
However, if the c-semiring is idempotent, it is sufficiensmlve one CSP, as shown by
the following theorem.

Theorem 9. Given an IVSCSPP, if the c-semiring is idempotent, thé¥iec(P, ) co-
incides with the set of solutions @it (ws(P)).
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Proof: Let us denote witt6'L the set of the solutions @fut, (ws(P)). We first show
that Nec(P,a) 2 SL and then we show thaVec(P,a) C SL. Let bes a solu-
tion of P. If s € SL, then, sincecut, (ws(P)) is the CSP obtained from the worst
scenario of P by allowing only tuples with preference greater than or édqoay,
pref(ws(P),s) > «, by idempotenceSincews(P) is the worst scenario aP, then
pref(Q;,s) > pref(ws(P),s) > « for every scenari@; and sos € Nec(P, ).
Therefore,Nec(P,a) 2 SL. If s € Nec(P,«), thenpref(Q;, s) > « for every sce-
nario @; and so also for the worst scenario. Henpesf (ws(P), s) > « and so, by
definition of cut, (ws(P)), s € SL. Therefore Nec(P, ) C SL. a

By Proposition 7, we know thaVec(P, o.) = LO(P). Therefore, to find a solution
in Nec(P, o), itis sufficient to find a solution of the worst scenario, andstto solve
one SCSP.

7.3 Possibly optimal solutions

To find a solution inPO(P), we can observe thatO(P), UO(P), LLO(P), and
ULO(P) are all contained il?O(P) (Propositions 6 and 10) and they are never empty
(Propositions 5 and 9).

To test if a solution is iNPO(P), it is sufficient to test ifs is optimal in one of the
two scenarios defined in the following theorem. This amotmsolving an SCSP.

Theorem 10. Given an IVSCSPP and an assignmentto the variables of, let Q* be
the scenario where all the preferences of tuples ame set to their upper bound and all
other tuples are associated to the lower bound of their pegfees, and le©)* be the
scenario where all the preferences of the tuplesare set tol/ (s), if U (s) is contained
in their preference interval, and to their upper bound othise, and all other tuples are
associated to the lower bound of their preferences. Then,

— if the c-semiring is strictly monotonie,e PO(P) < s € Opt(Q?®);
— if the c-semiring is idempotent,c PO(P) < s € Opt(Q*).

Proof: We first show that, ifs € Opt(Q°), thens € PO(P). If s € Opt(Q?°), thens

is optimal in the scenari@®, and sos € PO(P). We now show that, it € PO(P)
thens € Opt(Q?®). If s € PO(P), then there is a scenario, s@y, wheres is optimal,
that is,pref(Q;, s) > pref(Q;, s'), for every other solutior’. Assume to use the same
notations used in the proof of Theorem 8. Using these natstisincepref(Q;, s) >
pref(Q;, s"), for every other solution’, then, for every other s'\; x u; > u; X u;

in the scenariay;. This implies that, for every other s); > pu,;. In fact, if \; <
i, then, by strict monotonicity); x u; < p; X u;. Since@? is the most favorable
scenario fors, then for every scenario and so also for the scer@ridy monotonicity,
AXu > Nxu > N X u, thatimpliesh > ;. In fact, if A < );, then, by strict
monotonicity,\ x u; < A; X u. SinceQ), is the least favorable scenario for the tuples
in s’ but not ins, theny; > p for every scenario and so also f@;. Hence, since
for everys’, A > A\, Ay > u;, andp; > p, then, by monotonicity, for every’,
pref(Q%,s) = A xu >\ xu>pu; xu>pxu=pref(Q?,s'), hences is optimal
in the scenarid@)®.
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If s € Opt(Q*), thens € PO(P). We now show that, ifs € PO(P), then
s € Opt(Q*). If s & Opt(Q*), then there is a solutios such thatpref(Q*,s") >
pref(Q*, s). By construction ofQ*, by Theorem 1 and by idempotency, we have that
pref(Q*, s) = U(s). Infact, by Theorem Ipref(Q*, s) < U(s). Moreoverpref(Q*, s)
&£ U(s). In fact, we now show thairef(Q*, s) is given by the combination of the pref-
erences that are all greater than or equdl'{e). By construction of)* we have two
results. (1) Every tuple of in Q* with preference interval that contaif&s) is as-
signed toU (s) and, by definition ofU(s) and by idempotency, there must be at least
one of these preferences. (2) Every tuple with preferertegvial that does not contain
U(s) is assigned to its upper bound that must be a value greatelttd, since, by
definition of U (s), the upper bound of every tuple sfmust be greater than or equal
to U(s), otherwise the upper bound efis not U(s) but a value lower that/(s),
that is a contradiction. Thereforpref(Q*,s) £ U(s) and sopref(Q*,s) = U(s).
If s ands’ have tuples in common, by construction @f, pref(Q*,s") < U(s).
In such a case, since we have shown aboveitheft(@*,s) = U(s), and since we
are assuming that there is a solutighsuch thatpref(Q*,s’) > pref(Q*,s), then
U(s) > pref(Q*,s’) > pref(Q*,s) = U(s), and so we have a contradiction. df
ands’ have no tuples in common, then, for every scenglipref(Q, s’) > L(s') =
pref(Q*, ') > pref(Q*, s) = U(s) > pref(Q, s), and sos ¢ PO(P). ]

In Theorem 10 we have characterized possibly optimal smistfor IVSCSPs with
idempotent c-semiring and for IVCSPs with strictly monatoc-semiring. The char-
acterization of possibly optimal solutions for IVSCSPshnatc-semiring that is neither
idempotent nor strictly monotonic is an open question.

7.4 Possibly of at least preferencex solutions

We know, by Proposition 8, that, given an IVSC$Pand an assignment s is in
Pos(P,«) ifand only if « < U(s). Thus, to test whether a solution isfvs(P, «), it
is enough to check this condition, that takes linear time.

If the c-semiring is idempotent, to find a solution fvs(P, «) it is sufficient to
solve one CSP, as shown in the following theorem.

Theorem 11. Given an IVSCSH over an idempotent c-semiring and an assignment
s, s € Pos(P, ) iff it is a solution ofcut,, (bs(P)).

Proof: We first show that, ifs is a solution ofcut,(bs(P)), thens € Pos(P,«).
If sis a solution ofcut, (bs(P)), then, sincecut, (bs(P)) is the CSP obtained from
the best scenario by allowing only tuples with preferenaatgr than or equal to,
pref(bs(P), s) > «. Hence, in the best scenaridas preference greater than or equal
to o, hences € Pos(P, ).

To conclude the proof, we show thatdf € Pos(P,«), thens is a solution of
cut, (bs(P)). If s € Pos(P,«), then there is a scenario, s@y, wherepref(Q;, s) >
«. Hence, since the preference of a solution in a scenariavesyal lower than or equal
to its preference in the best scenario, theef (bs(P), s) > pref(Q;, s) > «, and sos
is a solution ofcut, (bs(P)). |
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By Proposition 8, we know thatos(P, o*) = UO(P). Therefore, to find a solution
in Pos(P, «*), itis sufficient to find an optimal solution of the best scémar P, i.e.,
a solution inUO(P), and thus to solve one SCSP.

7.5 Finding and testing optimality notions: summary of the results

We have provided algorithms to find solutions according tsuhrious optimality no-
tions and also to test whether a given solution is optimamust of the cases, these
algorithms amounts to solving a soft constraint problenhasve in Table 2.

Table 2. Finding and testing optimal solutions.

| Optimality notion |  c-semiring | Finding | Testing |
LO(P) generic 1SCSP 1SCSP
UO(P) generic 1SCSP 1SCSP
generic 1SCSP 3 SCSPs
ro(p) idempotent 1SCSP 1CSP
LLO(P) strictly monotoni 1SCsP 1SCsP
WID(P) idempotent |2 SCSPs+1CSP  2SCSPs
D(P) _ generic 2 SCSPs 2 SCSPs
idempotent | 1 SCSP +1CSR1SCSP +1CSP
NO(P) 'idempotent ' 2 SCSPs+2 CSP3SCSPs+1CS
strictly monotoni 1SCSP 1SCSP
eneric 1SCsP linear time
Nece(P,a) idgmpotent 1CSP linear time
Nec(P, o) generic 1SCsP linear time
PO(P) 'idempotent ' 1SCSP 1SCSP
strictly monotoni 1SCSP 1SCSP
Pos(P, «) idempotent 1CSP linear time
Pos(P,a™) generic 1SCsP linear time

8 Necessary and possible dominance

Besides finding or testing for optimality, it may sometimesuseful to know if a so-
lution dominates another one. We will consider four notiohgdominance, which are
related to the general optimality notions defined above.

Definition 15 ((strictly) dominance). Given a scenarid@y, a solutions strictly domi-
nates (resp., dominates) a solutignf and only ifpref (Q, s) > pref(Q, ") (resp.pref(Q,
s) > pref(Q, ")) in the ordering of the considered c-semiring.

Definition 16 (necessarily (strictly) dominance)Given an IVSCSF and two solu-
tionss ands’ of P, s necessarily strictly dominates (resp., necessarily dameis)s’ if
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and only if, in all scenarioss strictly dominates (resp., dominates) We will denote
with NDTOP(P) (resp.,NSDTOP(P)) the undominated elements in the binary re-
lation given by the necessarily dominance (resp., strisigessarily dominance).

Definition 17 (possibly (strictly) dominance).Given an IVSCSIP and two solutions

s ands’ of P, s possibly strictly dominates (resp., possibly dominaté#)and only if
there is at least one scenario wheyestrictly dominates (resp., dominates) We will
denote with withP DT'OP(P) (resp.,PSDTOP(P)) the undominated elements of the
binary relation given by the possibly dominance (respictjrpossible dominance).

In the IVSCSPP of Figure 1,s; necessarily strictly dominates. In the best sce-
nario, sy strictly dominatessy, while in the worst scenarie, strictly dominatesss.
Thuss, possibly strictly dominates;, and viceversa.

Theorem 12. Consider an IVSCSP. The following results hold:

— NO(P) € NDTOP(P) C NSDTOP(P).

— NSDTOP(P) D PO(P).

If the c-semiring is strictly monotonic or idempotent, tiéWTOP(P) C PO(P).
If the c-semiring is strictly monotoniéy SDT'OP(P) = PO(P).

The set?SDTOP(P) and PDTOP(P) may be empty.

If PDTOP(P) # ), then|PDTOP(P)| = 1.

— PDTOP(P) C PSDTOP(P) = NO(P).

Proof: Let s be a solution ofP.

We first show thatvO(P) C NDTOP(P). If s ¢ NDTOP(P), then there a
solutions’ that necessarily dominatesand so there is a scenalpwheres’ strictly
dominates;, that is,pref(Q, s’) > pref(Q, s). Hence,s is not optimal in that scenario
and sos ¢ NO(P).

We now show thatVDTOP(P) C NSDTOP(P).If s ¢ NSDTOP(P), then
there is a solutior’ that necessarily strictly dominateand sos’ necessarily dominates
sandthuss ¢ NDTOP(P).

We now show thaPO C NSDTOP(P).If s ¢ NSDTOP(P), then there is a
solutions’ that necessarily strictly dominateshence, for every scenari®, s’ strictly
dominates;, that is, for every scenari@, pref(Q, s’) > pref(Q, s), hence for every
scenaria?, s is not optimal, hence ¢ PO(P).

To prove thatn. DTOP(P) C PO(P) whenP is idempotent, we will show that if
s € NDTOP(P) thens is optimal in the scenariQ®, where every tuple in is set to
its maximum preference value and all other tuples are séiio tninimum preference
value. This then implies thatis possibly optimal, and hence O (P), as required.

Suppose, that € NDTOP(P) is not optimal in the scenari@Q?, so there exists
some solutions’ with pref(Q®,s") > pref(Q®,s). Sinces € NDTOP(P) there
exists a scenari@ with pref(Q, s) > pref(Q, s") or elses’ would necessarily dom-
inate s. We havepref(Q®,s") > pref(Q,s’). Since the combination is minimum,
this means that the preference value of the worst tuple ¢fe., of the worst con-
straint) is worse inQ than it is inQ°. The definition ofQ* means that this tuple is
also ins’ (i.e., s ands’ agree on the scope of the worst constraint). This implies tha
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pref(Q,s) < pref(Q,s’), which contradictere f(Q, s) > pref(Q,s’), completing
the proof thatv DT OP(P) C PO(P) whenP is idempotent.

If the c-semiring is strictly monotonidVSDTOP(P) = PO(P). We have al-
ready shown thatv.SDTOP(P) O PO(P). We now show thatvVSDTOP(P) C
PO(P). If s € NSDTOP(P), then there is no solutios such that for every sce-
narioQ;, pref(Q;, s') > pref(Q;, s). Hence, for every’, there is a scenari@; where
pref(Q;,s’) < pref(Q;, s). By following the same reasoning done above, it is possible
to show thatVs’, pref(Q®,s’) < pref(Q°,s). Therefore,s is optimal inQ® and so
s € PO(P).

Furthermore, if the c-semiring is strictly monotonic, the@ haveN DTOP(P) C
PO(P) sinceNDTOP(P) C NSDTOP(P) = PO(P).

PSDTOP(P) and PDTOP(P) may be emptybecause there can be cycles in
the possibly dominateand possibly strictly dominateselations. Let us consider the
solutionss, ands, in the running examples; has preference intervél.5, 0.9] ands,
has preference intervf).6, 0.8]. Then,sy possibly strictly dominates (and so possibly
dominates)s,, since sy strictly dominatess, in the best scenario, and, possibly
strictly dominates (and so possibly dominates)sinces, strictly dominates, in the
worst scenario.

If PDTOP(P) # 0, then|PDTOP(P)| = 1. In fact, assume tha® DT OP(P)
contains two complete assignmestsandss. If s; ands, are inPDTOP(P), thens;
does not possibly dominatg andss does not possibly dominate. Sinces; does not
possibly dominate,, then for every scenari@ of P, pref(Q, s1) < pref(Q, s2), and,
sincess does not possibly dominate, then for every scenari@ of P, pref(Q, s2) <
pref(Q, s1), that is a contradiction.

PSDTOP(P) = NO(P). Infact,s € PSDTOP(P) iff there is no solutions’
such thats’ possibly strictly dominates, iff there is no solutiors’ that strictly dom-
inatess, iff there is no solutions’ such thatpref(Q, s’) > pref(Q, s) for some sce-
nario Q, iff for every solutions’, pref(Q, s) > pref(Q, s’) for every scenari@, iff
s € NO(P).

PDTOP(P) C PSDTOP(P). Infact, if s ¢ PSDTOP(P), then there is a
solution s’ that possibly strictly dominatesand thuss’ possibly dominates and so
s ¢ PDTOP(P). m

Summarizing, given an IVSCSP with an idempotent or a strictly monotonic c-
semiring, we have the following inclusions, that are shawfigure 4:PDTOP(P) C
PSDTOP(P) = NO(P) € NDTOP(P) C PO(P) C NSDTOP(P). Moreover,
when the c-semiring is strictly monotonic, we have a6 DTOP(P) = PO(P).
Therefore, the set of the necessarily optimal solution8 obincides with the set of the
undominated elements of the binary relation given by thesipbsstrictly dominance
over P, both if the c-semiring is strictly monotonic and if it idewtent. Moreover, the
set of the possibly optimal solutions &f coincides with the set of the undominated
elements of the binary relation given by the necessarilgtstrdominance over, if
the c-semiring is strictly monotonic.

To test ifs possibly strictly dominates (resp., possibly dominatés)e can set each
interval associated with but not withs’ to its upper bound; lek be the combination
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NSDTOP(P)

NDTOP(P)

PSDTOP(P)=NO(P)

PDTOP(P)

Fig. 4. Relation between undominated elements of the binary oglafiven by the (strictly) nec-
essarily dominance and the undominated elements of theyhiekation given by the (strictly)
possibly dominance for an IVSCSP defined over an idempotent or a strictly monotonic c-
semiring.

of these values. Then we set each interval associatedsiitht not with s to its lower
bound; let;, be the combination of these values. Finally, we compare théepence
values ofs ands’, by testing if the condition\ X w1 X <+« X up > p X up X -+ X ug
(resp.,A x uy X --- X up > pu X up X --- X ug ) holds for any selections of values
u1,- .., u in the intervals of botls ands’. If we have strict monotonicity, testing this
condition amounts to testing X > u (resp.,A > ). If we have idempotence, we can
replace each; with its upper bound, and then test the condition.

To test if s necessarily dominates, we first check ifs possibly strictly dominates
s'. Then:

— If s possibly strictly dominates, then there is a scenario wherstrictly dominates
s’ and sos’ does not necessarily dominateThen, we check i#’ possibly strictly
dominatess. If so, then there is a scenario whetestrictly dominatess, hence
s does not necessarily dominate Therefores ands’ are incomparable w.r.t. the
necessarily dominance relation and so we conclude negatdtherwise, ifs’ does
not possibly strictly dominates then, for every scenarie dominates’ and, since,
by hypothesis, there is a scenario wherictly dominates’, thens necessarily
dominatess’ and so we conclude positively.

— If s does not possibly strictly dominaté then, for every scenarie; dominatess,
i.e., for every scenari@, pref(Q, s’) > pref(Q, s). Then, we check i’ possibly
strictly dominatess. If so, thens’ necessarily dominatesand so we conclude
negatively. Otherwise, i§’ does not possibly strictly dominatesthen, for every
scenarios dominatesy, i.e., for every scenari@, pref(Q, s) > pref(Q, s’), and
S0, since by the hypothesis abguef(Q, s’) > pref(Q, s), we have that, for every
scenario®, pref(Q, s) = pref(Q, s’), hences does not necessarily dominat€s
and so we conclude negatively.

To test if s necessarily strictly dominates, we follow a reasoning similar to the
one presented above, but we consider the possibly dominatat®n instead of the
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possibly strictly dominance relation. Moreover, whedoes not possibly dominaté
(i.e., the second item above), we can conclude immediagggtively, since in this case
s’ necessarily strictly dominatas

9 Multiple intervals

One may wonder if IVSCSPs would be more expressive if we abtbwnot just a single
preference interval for each assignment, but a set of stetvads. For example, instead
of giving us the interval [0.1, 0.8], a user could be more g®and give us [0.1,0.5]
and [0.7,0.8]. This would reduce the uncertainty of the b We will now show that
all the interval-based optimality notions and all the scenbased optimality notions
that guarantee a certain level of preference would give dhgesset of optimals in this
more general setting. Moreover, when the c-semiring igtstrimonotonic, also the
possibly and necessary optimality notions give the samefseptimals. Also, when
the c-semiring is idempotent, the necessary optimalityonstgive the same set of
optimals. In the other cases, we are however able to find appadions of the possibly
and necessarily optimal solutions. More precisely, we hheeollowing results, that
are also summarized in Table 3.

Theorem 13. Consider an IVSCSP. Take now a new problef’ with the same vari-
ables, domains, and constraint topologyRswhere, for each intervdl, u] in P, there
is a set of interval$l, u1], [l2, us], . . ., [ln, u] such thatu; < l,4; fori=1,...,n— 1.
Then:

- X(P) = X(P) for X € {LO,UO, IO, LLO,ULO,WID,ID}.

— Nec(P,a) = Nec(P', «) for all a.
— Pos(P,«) = Pos(P', «) for all a.
- NO(P’) D NO(P).

— PO(P') C PO(P).
— Ifthe c-semiring is strictly monotoni&VO(P) = NO(P’') andPO(P) = PO(P").
— If the c-semiring is idempotenWO(P) = NO(P’).

Proof: To showthatX (P) = X (P’)for X € {LO,UO,10,LLO,ULO,WID,ID},
it is sufficient to recall that all solutions iL.O, UO, IO, LLO,ULO,WID,ID} are
computed by considering for every tuple associated withrirat [/, u] only the lower
bound! and the upper boundthat, by construction of’, are the same i’ and P’.

Let s be a complete assignment &f Let us consider a generie. To show that
Nec(P,a)) = Nec(P', «), we first show thatVec(P, o) C Nec(P’, a). If s € Nec(P,
«), then, for every scenariQ of P, pref(Q, s) > «. Since the set of the scenariosiof
is a superset of the scenariosi®f, this holds also for every scenarios®f. Therefore,
s € Nec(P', ). We now show thalVec(P’, o) C Nec(P, ). If s € Nec(P,«), then
pref(Q, s) < « for some scenari@) of P and this holds also for the worst scenario,
sincepref (ws(P), s) < pref(Q, s) < «. Since the worst scenario is one of the scenario
of P/, thens & Nec(P', ).

To show thatPos(P, o) = Pos(P’, «), we first show thaPos(P’, ) C Pos(P, «).
If s € Pos(P’,«), then for some scenariQ of P’, pref(Q,s) > «. Since ev-
ery scenario ofP’ is also a scenario oP, thens € Pos(P,a). We now show that
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Pos(P,a) C Pos(P’, ). If s € Pos(P,«), thenpref(Q, s) > « for some scenari@
of P, and this holds also for the best scenario, sined(bs(P), s) > pref(Q, s) > a.
Since the best scenario is one of the scenarid®' pthens € Pos(P’, «).

Since the set of the scenariosfs a superset of the scenarios/®ff thenNO(P) C
NO(P’). Infact, ifs € NO(P), then it is optimal for every scenario &f and also for
every scenario of’.

Moreover, PO(P’') C PO(P). In fact, if s € PO(P’'), then there is a scenario
of P’ wheres is optimal and, as every scenario Bf is also a scenario aP, then
s € PO(P).

If the c-semiring is strictly monotonic, thesO(P) = NO(P'). By Theorem 8, we
know that, if the c-semiring is strictly monotonic, there NO(P) iff s € Opt(Q5),
where(; is the scenario where every preference associated to a afiglés set to
its lower bound and the preferences of all other tuples ar¢ostheir upper bound.
Since; is one of the scenarios d?’, it is possible to show that € NO(P’) iff
s € Opt(Qs), by following the same proof of Theorem 8. Hend&)(P’) = NO(P).

Similarly, if the c-semiring is strictly monotonic, thePO(P) = PO(P’). By The-
orem 10, we know that, if the c-semiring is strictly monowmrhens € PO(P) iff
s € Opt(Q®), where@* is the scenario where all the preferences of tuples ame
set to their upper bound and all other tuples are associatédeir lower bound. Since
Q)¢ is one of the scenarios @?, it is possible to show, by following the same proof of
Theorem 10, that € PO(P) iff s € Opt(Q?).

If the c-semiring is idempotenfyO(P) = NO(P’). In fact, by Theorem 8, we
know thats € NO(P) iff for every s/, s € Opt(Q*), whereQ*' is the scenario
where we put every tuple of to its upper bound and every other tuple to its lower
bound. Since, for every, Q¢ is a scenario of”’, then by following the same proof
of Theorem 8, we can show thate NO(P”) iff for every s', s € Opt(Q*"), Hence,
NO(P') = NO(P). m

Table 3. Comparison of the optimality sets of problers(with single intervals) and®’ (with
multiple intervals), as defined in Theorem 13.

| Optimality notion |  c-semiring | Comparison |
LO generic LO(P) = LO(P")
Uo generic UO(P) =UO(P")
I0 generic I0(P) = 10(P")
LLO generic LLO(P) = LLO(P")
ULO generic ULO(P) =ULO(P")
Nec(a) generic Nec(P,a) = Nec(P', a)
Pos(a) generic Pos(P,a) = Pos(P', a)
generic NO(P) C NO(P")
NO idempotent NO(P) = NO(P)
strictly monotonic  NO(P) = NO(P')
PO generic PO(P) D> PO(P")
strictly monotonic  PO(P) = PO(P’)
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10 Experimental results

10.1 Instance generator

We randomly generated fuzzy IVMSPs (as defined in Sectioh &@ording to the
following parameters:

— m: number of meetings (default 12);

— n: number of agents (default 5);

— k: number of meetings per agent (default 3);

— [: number of time slots (default 10);

— min andmax: minimal (default 1) and maximal (default 2) distance (mndi slots)
between two locations;

— 4: percentage of preference intervals (default 30%).

Given such parameters, we generate an IVSCSPwitlariables, representing the
meetings, each with domain of sizeThe domain values, ..., [ represent the time
slots, that are assumed to all have the same length equakttiroe unit, and to be
adjacent to each other. Thus, for example, time skrids when time slat+ 1 starts.
Given two time slotg andj > i, they can be used for two meetings only if the distance
between their locations (see later) is at mpsti — 1.

For each of the: agents, we generate randonilyntegers between 1 and, rep-
resenting the meetings he needs to participate in. Alsegdoh pair of time slots, we
randomly generate a integer betweein andmaax that represents the time needed to
go from one location to the other one. This will be called tigtahce table.

Given two meetings, if there is at least one agent who neeparticipate in both,
we generate a binary constraint between the correspondimgles. Such a constraint
is satisfied by all pairs of time slots that are compatibleadig to the distance table.

We then generate the preferences over the domain values@arodmpatible pairs
in the binary constraints, by randomly generating a numié,il] or an interval over
(0, 1], according to the parameter

As an example, assume to hawe= 5,n =3,k = 2,1 = 5, min = 1, max = 2,
and: = 30. According to these parameters, we generate a IVMSP witffioll@ving
features:

— 5 meetingsms, ma, ms, my, andms;
— 3 agentsuy, as, andas;

— 5time slotsity, ..., 5,
— agents’ participation to meetings: we randomly genetaiteetings for each agent,
for example

e a7 must participate in meetings; andms;
e a,, Must participate in meetings, andms;
e a3 must participate in meetings, andms;
— distance table: we randomly generate its values, for exaaplin Table 4;
— we randomly generate the preferences associated to doalagswand compatible
pairs in the constraints, in a way that 30% of the prefereasepreference intervals
contained in0, 1] and 70% of the preferences are single valug$in].
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Table 4. Distance between meeting locations.

L [1[2[3]4[5]
1o][1[2]1]2
210|212
322|011
a1[1[1]0]2
5[2[2]1]2]0

In this example, a feasible meeting scheduling is obtairyealssigning the follow-
ing time slots to meetinggm, t3), (ma, t1), (ms, ts), (ma, t2), (ms, t5). The prefer-
ence interval for such a scheduling will depend on the pesies values in the domains
and constraints. More precisely, as we use preferencesvaktgveen 0 and 1 and we
adopt the fuzzy criteria, the preference interval will [be:], wherel (resp.,u) is the
minimum among all the lower (resp., upper) bounds of thegrezfce intervals selected
by this assignment in the constraints.

10.2 Experimental tests

We implemented our algorithms using a Java (version 108)x-semiring based frame-
work and the Choco constraint programming toolkit (verdich06). Experiments were
run on AMD Opteron 2.3GHz machines with 2GB of RAM.

We used 4 different test sets, each one generated varyingrimt m, k, andq,
while fixing the others to their default values. Moreoverj.e., the minimum level of
preference used iRos(P, o) andNec(P, a), is always 0.5. The sample size is 50 for
each data point.

Figure 5(a) shows the execution time (measured in millisdspof the algorithms
to find a solution, belonging to each type of the intervaldabgptimality notions, as a
function of the number of agents. We can notice that therepisaed when the number
of agents is 8, which represents problems with a small numisslutions. With more
agents, the problems have no solution, while with a smallentrer of agents there are
many solutions. In both such cases, it is easy to find a feasikkting scheduling.

For the more general optimality notions, Figure 5(b) shdved the behavior is the
same except for POS(0.5) and NEC(0.5) because, in thesethigs, we need to solve
a CSP, while in the other algorithms we solve at least one S@S&ct, POS(0.5) and
NEC(0.5) takes approximately the same time no matter thebeurof agents in the
problem.

Figures 5(c) and 5(d) show the performance of the algorittomall optimality no-
tions, as a function of the number of meetings per agenteSui P) = Nec(P, o)
andUO(P) = Pos(P, ), these curves in the two graphs coincide. The lines corre-
sponding to the WID algorithm in Figure 5(c) and to the NO aittpon in Figure 5(d)
are similar, and are above the others in both figures, be¢has#ID algorithm needs
to find the lower and upper optimal preference, to perform ¢wts, and to solve the

2 In the following figures, we will omit writingP in the names of the algorithms.
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Fig. 5. Execution time (msec.) as a function of number of agents asetings per agent.

CSP obtained combining the cuts, while the other algoritferpect NO) only need to
solve an SCSP. Moreover, the WID algorithm is a sub-routfrtB@NO algorithm.

Notice that finding solutions in NQYec(P, o), or POS(P, o) is more expensive
than finding solutions itVec(P, 0.5), or POS(P, 0.5), as expected sinee. anda* are
the best preference levels that one can reach.

The peak at 4 meetings per agents, shown in Figures 5(c) adcefresponds to
problems which are more difficult to solve because they have few solutions. This
is analogous to what we have noticed in Figures 5(a) and S¢b)tke peak at 8 agents.

Figures 6(a) and 6(b) show that the execution time increzgesnentially when the
number of meetings (i.e., the number of variables in the lprabarises. In this case,
the execution time is mainly influenced by the size of the [@mwis, no matter which
algorithm is used.

Figures 6(c) and 6(d) show that the execution time is notémfted by the amount
of intervals in the problem. As in all the other graphs, fimdanWID or an NO solution
is more expensive than finding other kinds of solutions. TWegeaks at 20% and 60%
of intervals are due to two very hard problems inside thegetst

Figure 7(a) and Figure 7(b) consider those optimality ded$ ¢an be empty (that
is, WID, ID, and NO) and show the percentage of times a satutiba certain kind
exists. Clearly, when there is no solution, WID, ID and NO team all assignments
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Fig. 6. Execution time (msec.) as a function of the number of mestany the percentage of
intervals.

and coincide. This is the case when the number of meetingagaarts is larger (more
than 3 meetings per agent in our settings). When we congdgiconstrained problems
with 2-3 meetings per agent, as expected, we have more Wiligos$ than ID and NO
solutions. Notice that the size of WID, ID and NO varies vatye when the number
of agents is between 4 and 8 (Figure 7(b)). However, when aualmber is between
8 to 10, the size of the solution sets is larger because themmare instances with no
solution. If we vary the number of meetings, we can see infei@@a) that the number
of such a kind of solutions tends to decrease slightly as tleher of variables (i.e.
meetings) arises. In fact, a larger number of variables meplyi a larger number of
constraints, which may imply a smaller number of WID, ID, &h@ solutions.

In figure 8(b) we consider instances where we vary the peagentf intervals from
10 to 100%. When incompleteness is higher than 40%, mosedhiiances don’t have
WID, ID, and NO solutions. This is predictable, because gdanumber of intervals
makes it less probable the existence of solutions that ammalin all scenarios, since

the number of scenarios is larger.
11 Final considerations and future work

Summarizing, given an IVSCSP, the solutions inNO(P) are certainly the most
attractive, as they are the best ones in every scenario. Vowié there is none, we
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Fig. 8. Existence of WID, ID, and NO solution, varying meetings amtgivals.

can look for solutions ilVec(P, o) (which coincide with solutions i.O(P)), which
guarantee a preference level in all scenarios. Ifv, is too low, we can consider other
notions of optimality; for example, if we feel optimisticesean consider the solutionsin
Pos(P, a*)(which coincide with solutions itV O(P)): they guarantee that it is possible
to reach a higher level of preference, although not in alhades.

If we allow users to associate to each partial assignmetmeirconstraints not just
a single interval, but a set of multiple intervals, this webuéduce the uncertainty of
the problem. However, when the c-semiring is strictly momdt (resp., idempotent),
this added generality does not change the set of the optiohatiens in any of the
considered notions (resp., in any of the considered notigtisthe exception of the
possibly optimal notions). This means that a level of pienigreater than a single
interval does not add useful information when looking foiogtimal solution.

This paper considers only totally ordered preferencesdS$Bs can be defined also
for a partially ordered setting. We plan to extend the anslgkthe optimality notions
also to this more general case. We also intend to define dedisalving or propagat-
ing schemes to tackle IVSCSPs rather than relying on egistolvers for SCSPs. It
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is interesting also to consider the addition of probabiiistributions over preference
intervals and to interleave search with elicitation as ifv]6
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