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Abstract Several techniques have been proposed to tackle the Adaptive Operator Se-

lection (AOS) issue in Evolutionary Algorithms. Some recent proposals are based on

the Multi-Armed Bandit (MAB) paradigm: each operator is viewed as one arm of a

MAB problem, and the rewards are mainly based on the fitness improvement brought

by the corresponding operator to the individual it is applied to. However, the AOS

problem is dynamic, whereas standard MAB algorithms are known to optimally solve

the exploitation versus exploration trade-off in static settings. An original dynamic

variant of the standard MAB Upper Confidence Bound algorithm is proposed here, us-

ing a sliding time window to compute both its exploitation and exploration terms. In

order to perform sound comparisons between AOS algorithms, artificial scenarios have

been proposed in the literature. They are extended here toward smoother transitions

between different reward settings. The resulting original testbed also includes a real

evolutionary algorithm that is applied to the well-known Royal Road problem. It is

used here to perform a thorough analysis of the behavior of AOS algorithms, to assess

their sensitivity with respect to their own hyper-parameters, and to propose a sound

comparison of their performances.
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1 Introduction

Evolutionary Algorithms (EAs) are stochastic optimization algorithms remotely in-

spired by the Darwinian “survival of the fittest” paradigm. Let the goal be to optimize

some objective function, referred to as fitness function, defined on search space X;

elements of X are called individuals, and a set of individuals is termed a population.

EAs evolve a population of individuals by iteratively (i) selecting some individuals (the

parents), favoring those with better fitness; (ii) perturbing stochastically the parents

using some variation operators, thus generating offspring; (iii) evaluating the offspring

(i.e. computing their fitness); (iv) selecting some individuals among the parents and

the offspring to become the next parents, again favoring fitter individuals. The reader

is referred to [34,13] for a comprehensive presentation.

Evolutionary Computation is an exciting research field with the power to assist

scientists, researchers, and engineers in the task of solving hard optimization problems,

e.g., problems in which the solution space is too big to be completely checked, or in

which prior knowledge about the solution space is very hard and/or expensive to be

obtained. EAs consistently perform well in approximating solutions to many different

types of problems (see e.g. all applications described in [44]), largely because they do

not require any strong assumption about the underlying search space.

However, EAs are rarely used outside the circle of knowledgeable practitioners; they

still have to reach the status of off-the-shelf tools. There are several reasons for that,

all boiling down to a lack of practical support when it comes to actually designing

an EA for a given application. On a conceptual level, despite Michalewicz’ seminal

book [34] and the two more recent books by Eiben and Smith [13] and DeJong [9], the

terminology used by authors still reflect the evolutionary trend they historically belong

to. On a practical level, while some software packages provide a unifying framework

for the various evolutionary approaches (see e.g. [5]), the success of EAs is still very

sensitive to the setting of a number of parameters, e.g. population size, types of varia-

tion operators and their respective application rates, types of selection mechanisms and

their internal parameters. In this respect, EAs are not different from other stochastic

optimization methods, heuristics and meta-heuristics [39].

In early days, the Evolutionary Computation techniques actually benefited from

those numerous parameters, which ensure their outstanding flexibility, making them

applicable to a wide spectrum of applications. The contemporary view of EAs, how-

ever, acknowledges that specific problems require specific setups for satisfactory per-

formance [12]: when it comes to solving a given problem, parameter setting is viewed

as the Achilles’ heel of EAs, on par with their high computational cost.

Accordingly, the topic of parameter setting has been extensively investigated in

the Evolutionary Computation literature, and still is a very active field of research [30]

(more in Section 2.1). This paper focuses on on-line parameter setting, a.k.a. Parameter

Control, and more specifically on Adaptive Operator Selection.

In essence, the goal of Adaptive Operator Selection is to select on the fly the op-

erator1 that maximizes some measure of quality, usually, though not exclusively [33,

1 Or the mixture of operators [38].
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31], reflecting the fitness improvement brought by its application. Adaptive Operator

Selection thus raises two main issues.

The first issue might be seen as an Exploration vs Exploitation (EvE) dilemma.

While an operator that has performed well in the recent past should certainly be used

again (exploitation), other operators that did not perform so well should also be tried

(exploration). The rationale for exploration is rooted in the stochastic nature of the

evolutionary process, on the one hand (some seemingly poorly-performing operators

might just have been unlucky); and on its dynamics on the other hand. Specifically, the

quality of an operator depends on the region of the fitness landscape being explored by

the current population: good operators might become poor as evolution goes on, and

vice-versa; the operators quality assessment being the second issue.

Notably, the Exploration vs Exploitation trade-off has been intensively studied in

the context of Game Theory, in the so-called Multi-Armed Bandit (MAB) framework

[28,1] (Section 2.3.2). The use of MAB algorithms to solve the EvE dilemma has been

investigated in the context of selecting between different algorithm portfolios to solve

decision problems [18], and in the framework of Adaptive Operator Selection by the au-

thors. For the latter case, the Upper Confidence Bound (UCB) technique [1] was used,

being referred to as the original (or basic) MAB algorithm in the following. However,

although providing asymptotic optimality guarantees with relation to the total cumu-

lated reward in a stationary context, the UCB algorithm has to be extended to cope

with the dynamics of evolution. The Dynamic Multi-Armed Bandit (DMAB) algorithm

[7] proceeds by coupling the original MAB technique with a statistical change-point

test, the Page-Hinkley test [23]; upon detecting a change in the operator quality dis-

tribution, the Multi-Armed Bandit process is restarted from scratch.

The first contribution of the current paper is to propose a smoother way to account

for dynamic environments in the Multi-Armed Bandit framework, referred to as Sliding

Multi-Armed Bandit (SlMAB): it uses a sliding time window to gracefully update the

operator quality estimates, discarding ancient events while preserving the information

from the recent ones. Contrasting with DMAB, the Sliding Multi-Armed Bandit does

not call upon an external monitoring of the evolution process and involves only 2

hyper-parameters (while DMAB has 3).

The empirical validation of the Sliding Multi-Armed Bandit considers artificial set-

tings, as proposed by Thierens [41] and later extended by the authors [7]. However, the

Adaptive Operator Selection efficiency should also be thoroughly investigated in rela-

tion with the operator quality distribution, specifically the mean and variance of the

fitness improvement brought by the operator. Hence, a new family of artificial Adaptive

Operator Selection problems is proposed and considered for comparisons. Besides the

artificial problems, a simple though real optimization problem extensively investigated

in the Evolutionary Computation literature, the Royal Road [25], is also considered,

with the Adaptive Operator Selection schemes being used to choose between different

crossover and mutation operators.

The last contribution of the present paper is a principled and systematic comparison

of different Adaptive Operator Selection schemes, ranging from Sliding Multi-Armed

Bandit to Multi-Armed Bandit, Dynamic Multi-Armed Bandit and Adaptive Pursuit

[40], depending on the order parameters of the operator quality distribution.

The paper is organized as follows. Section 2 briefly introduces the problem of Pa-

rameter Setting in Evolutionary Algorithms, focusing on Adaptive Operator Selection,

with the mechanisms introduced in early work being reminded for the sake of self-

containedness. In Section 3, the Sliding Multi-Armed Bandit mechanism is described



4

in detail and discussed. Section 4 is devoted to the presentation of the artificial and

real problems considered to assess the strengths and weaknesses and, more generally,

to identify the niche of the diverse Adaptive Operator Selection mechanisms. In Section

5, the experimental setting that has been used for all results presented here is detailed,

and Section 6 reports on the empirical results obtained by the considered Adaptive Op-

erator Selection mechanisms on all the surveyed and newly proposed artificial settings,

as well as on the Royal Road problem. Finally, Section 7 summarizes the findings of

this paper, and discusses some perspectives for further research.

2 Background and State of the Art

After a brief introduction to Parameter Setting in Evolutionary Algorithms, this sec-

tion focuses on Credit Assignment and Operator Selection and recalls the most pop-

ular Adaptive Operator Selection algorithms to-date: Probability Matching and Adap-

tive Pursuit for probability-based mechanisms; and Multi-Armed Bandit and Dynamic

Multi-Armed Bandit for bandit-based algorithms.

2.1 Parameter Setting in Evolutionary Algorithms

After [11,12], parameter setting in EAs proceeds along two main modes. Off-line or

external tuning, referred to as parameter tuning, determines a priori the appropriate

parameter values. Parameter tuning thus takes place before the run, e.g., exploiting

the lessons learned from previous runs. Standard approaches from experimental stud-

ies such as ANOVA or Design Of Experiments have been used for parameter tuning,

e.g., modeling the impact of parameter values on the overall performance and accord-

ingly determining the optimal values [4,45,3,36]. These methods, however, are very

computationally expensive, as each observation corresponds to the average of a few

evolutionary runs; furthermore, static settings are usually considered (the parameter

value is fixed along the run), whereas the optimal setting likely depends on the local

landscape explored by the genetic population.

On-line or internal tuning, referred to as parameter control, determines the ap-

propriate parameter values at each time step during the evolutionary run. One further

level distinguishes between deterministic (parameter values are predefined functions of

time), self-adaptive (parameters are part of the genotypic information and optimized

by evolution itself), and adaptive (parameter values are predefined functions of the

history of the run) parameter control strategies.

Deterministic parameter control essentially raises the same difficulties as parameter

tuning: while the parameter values depend on the time step, these control functions

must still be defined a priori. Self-adaptive parameter control is acknowledged as one

of the most effective approaches to evolutionary parameter setting, specifically in the

framework of continuous parameter optimization (see the discussion in [10] and refer-

ences therein). In the general case, however, self-adaptive approaches often significantly

increase the size of the search space, and/or the complexity of the optimization problem:

not only should a successful individual have good genes, it should also bear parameter

values enforcing some effective transmission of its genes.

Adaptive parameter control, also referred to as feedback-based control, uses infor-

mation from the history of evolution to modify the parameter values while solving the
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problem. Adaptive Operator Selection (AOS), a particular case of adaptive parameter

control, aims at defining an on-line strategy for selecting the most appropriate variation

operators. As shown on Fig. 1, AOS involves two sub-problems, detailed in the next

subsections: (i) giving some reward to an operator (Credit Assignment), according to

the impact brought by its recent application on the current search/optimization pro-

cess; and (ii) using these assessments to actually select the next operator to be applied

(Operator Selection), e.g., the operator currently with best impact expectation.

Fig. 1 The Adaptive Operator Selection scheme.

2.2 Credit Assignment

Several Credit Assignment mechanisms have been proposed in the literature, following

Davis’ seminal paper [8]. These mechanisms mostly differ by the measure used to

compute the credit, and by the individuals taken into consideration to compute this

measure.

Most approaches consider the new offspring and use its fitness improvement as a

credit measure. The fitness improvement is assessed by comparison with (i) the current

best individual [8]; (ii) the median fitness [26]; or (iii) the parent fitness [29,42,2]. When

there is no improvement, a null credit is awarded to the operator.

In the case of multi-modal optimization, relevant measures should include the pop-

ulation diversity, which must be enforced to avoid premature convergence. Along this

line, [33] proposed another credit measure called Compass, defined as a weighted sum of

fitness improvement (intensification) and offspring diversity (diversification). In [32], a

different aggregation between both impact measures was proposed, based on the Pareto

Dominance paradigm.

From thereon, the actual reward given to an operator after it has been applied

can be either the instantaneous value of the proposed measure, or its average over a

sliding time window (i.e. over the last W applications, where W is the size of the time

window). Though the instantaneous version can be viewed as an average over a window

of size 1, both will be distinguished in the following, termed respectively Instantaneous

and Average rewards.

A very different approach is the one proposed in [43], which rewards the operators

based on their ability to generate outlier solutions, following some statistics over the

received credit measures. The underlying idea is that the generation of rare but highly

beneficial improvements matter as much or more than frequent small improvements;
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experimental results show that the method significantly outperforms its competitors

on a set of continuous benchmark problems. This proposal was adapted and used

in the framework of Adaptive Operator Selection by the authors [7,14,16], and will

be considered here too: instead of using all the complex statistics to detect outlier

production, the reward is simply set to the maximum fitness improvement over a sliding

time-window of size W . This Credit Assignment is termed Extreme in the following.

Another independent issue is that of the choice of the individuals that should be

considered when computing the reward of an individual. Some authors consider that the

operator impact should be measured after the genealogy of the outstanding offspring,

e.g., rewarding the operators producing the ancestors of a good offspring according

to a bucket brigade algorithm [8,26]. To the best of our knowledge, however, no clear

indication about the benefits of this approach can be found in the literature. Hence,

only the current offspring (and its possible fitness improvement over its parent) will be

considered here when computing the rewards.

2.3 Operator Selection Rules

Most Operator Selection rules attach an empirical quality to each operator. Those qual-

ities can in turn be used to update operator probabilities2, and these probabilities are

then used for selection by a roulette wheel-like process, like in the Probability Match-

ing (PM) and Adaptive Pursuit (AP) methods (section 2.3.1) [41]. Another possibility,

however, is based on the so-called Multi-Armed Bandit framework [1], and uses directly

the empirical reward gathered by each operator together with an exploration term to

deterministically choose amongst the different available operators (section 2.3.2).

2.3.1 Probability Matching and Adaptive Pursuit

Let K denote the number of available variation operators. Probability Matching and

Adaptive Pursuit both maintain a probability vector (si,t)i=1,K and an estimate of the

current operator reward noted q̂i,t. At each time t:

(i) the i-th operator is selected with probability si,t, and gets a reward r computed

after the credit assignment at hand;

(ii) the reward estimate q̂i,t of the i-th operator is updated using an additive relaxation

mechanism with adaptation rate α (0 < α ≤ 1, the memory span decreases as α

increases):

q̂i,t+1 = (1 − α) q̂i,t + α r (1)

Probability Matching: PM mostly selects the i-th operator proportionally to q̂i,t,

except for the fact that a minimum amount of exploration can be enforced. If the

selection probability of an operator would become too low at some point, it would

never be used again, thus precluding the AOS from discovering it in case it becomes

optimal in further stages of evolution.

Formally, let pmin denote the minimal selection probability. The selection proba-

bility of the i-th operator is defined as:

si,t+1 = pmin + (1 − K ∗ pmin)
q̂i,t+1

∑K

j=1 q̂j,t+1

(2)

2 Methods that recompute those probabilities from scratch from the most recent rewards
[26,42] will not be considered here.
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After Eq. (2), any ineffective operator (not getting any reward) would be selected

with probability pmin, while the best operator (getting maximal rewards after some

time) would be selected with probability pmax = (1− (K − 1) ∗ pmin). In practice, all

mildly relevant operators keep being selected, hindering the performance of Probability

Matching (all the more so as the number of operators increases) [40].

Adaptive Pursuit: Originally proposed for learning automata, AP has been used

in the AOS context [40] to address the above shortcoming of Probability Matching; a

winner-take-all strategy is used to push forward the best current operator, noted i∗t ,

as follows:






i∗t = arg maxi=1...K{ q̂i,t }

si,t+1 =

{

si,t + β
(

pmax − si,t

)

if i = i∗t
si,t + β

(

pmin − si,t

)

otherwise

(3)

with the learning rate β controlling the greediness of the winner-take-all strategy.

Finally, both Probability Matching and Adaptive Pursuit are controlled by the pmin

parameter (enforcing the operators exploration) and the adaptation rate α (ruling the

memory span of the AOS). AP is also guided by the learning rate β.

2.3.2 Bandit-based Operator Selection

Operator selection can be seen as another Exploration vs Exploitation (EvE) dilemma,

in which exploitation aims at selecting the best rewarded operators in the last stages

of evolution, whereas exploration is concerned with checking whether other operators

might in fact become the best ones at some later stages. The EvE dilemma has been

intensively studied in Game Theory, more specifically within the so-called Multi-Armed

Bandit (MAB) framework [28,1].

Multi-Armed Bandit: The MAB framework considers a set of K independent arms

(each operator will be considered as one arm), each one of which having some unknown

probability of getting a (originally boolean) reward. An optimal selection strategy

is the one that maximizes the cumulative reward along time. The Upper Confidence

Bound (UCB) selection strategy, proposed by Auer et al. [1], provides asymptotic

optimality guarantees. Although MAB is the name of the problem itself, for the sake

of convenience, in the following of this text we refer to the UCB selection strategy as

the MAB algorithm.

Formally, the i-th arm is associated to (i) its empirical reward q̂i (the average

reward obtained); and (ii) a confidence interval, depending on the number of times ni

the i-th arm has been tried. UCB selects, at each time step, the arm with best upper

bound of the confidence interval:

Select arg max
i=1...K

(

q̂i,t + C

√

2 log
∑

k
nk,t

ni,t

)

(4)

The C parameter, referred to as scaling factor, controls the trade-off between exploita-

tion (left term in Eq. (4), favoring the arms with best empirical reward) and exploration

(right term, favoring the infrequently tried arms). It is frequently phrased as “Be op-

timistic in front of the Unknown”, choosing the arm that can possibly give the highest

reward. The efficiency of the UCB rule follows from the fact that, although every arm
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is selected an infinite number of times, the lapse of time between two selections of an

under-optimal arm increases exponentially.

The standard MAB framework and the UCB algorithm, however, consider a static

environment (the unknown reward probability of any arm is fixed along time), whereas

the AOS framework is intrinsically dynamic (the quality of any operator is bound to

vary along evolution). Even though every operator keeps being selected from time to

time, in practice UCB would need to wait way too long before realizing that some new

operator has become the best one.

Dynamic Multi-Armed Bandit: Originally proposed in another dynamic context

[21], a restart strategy has been used in [7] to address this limitation, coupling UCB

with a change detection test, the statistical Page-Hinkley (PH) test [23]. Basically,

the PH test is in charge of checking whether the operator reward distribution has

changed; upon its triggering, the UCB process is restarted (i.e. the empirical rewards

and confidence intervals are re-initialized) in order to quickly identify the new best

operator without being slowed down by now irrelevant information. Formally, the PH

test works as follows:






r̄t = 1
t

∑t

i=1 ri et = (rt − r̄t + δ) mt =
∑t

i=1 ei

Return (maxi=1...t{|mi|} − |mt| > γ)

(5)

where r̄t denotes the average reward over the last t steps, et refers to the difference

between the instant and the average reward, plus some small tolerance δ, and the

random variable mt is the accumulation of those differences et. The PH test is triggered

when the difference between the maximum value of |mt| in the past and its current

value is greater than some user-specified threshold γ.

The PH test is thus parametrized by γ (controlling the test sensitivity and the rate

of false alarms) and δ (enforcing the test robustness w.r.t slowly varying environments).

Following early experiments, δ has been kept fixed to 0.15 throughout this work.

This combination of an optimal MAB algorithm (UCB) with the Page-Hinkley test

has been initially validated on an artificial Credit Assignment scenario [7], in order to

study the Operator Selection rules independently. Fed by the Extreme value of fitness

improvements, it was later assessed on some EA binary benchmark problems [14–16],

and also on some SAT instances [31].

3 Sliding Multi-Armed Bandit

This section first discusses the rationale for the Multi-Armed Bandit process, and the

strengths and weaknesses of the Dynamic Multi-Armed Bandit process presented above.

The new Sliding Multi-Armed Bandit process is thereafter described and discussed.

3.1 Discussion

The Multi-Armed Bandit UCB algorithm has been designed in order to minimize the

regret, that is, the loss compared to the cumulative reward obtained by the oracle

strategy (always selecting the best arm/operator) [1]. This makes it compulsory to

determine the best arm (say with reward r): in case the algorithm settles on the second
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best arm (say with reward r′), it incurs some loss r − r′ at each time step, and its

regret increases linearly with the number of time steps. In the meanwhile, unpromising

arms are tried exponentially less and less; since the reward distribution is assumed to

be stationary, the chances of mistaking the best arm for an unpromising one decreases

exponentially with the number of trials.

The main rationale behind the Multi-Armed Bandit exploration (trying other arms

than the one with best empirical q̂) thus is to determine the best arm among the most

promising ones.

Adaptive Operator Selection faces quite different priorities. On the one hand, the

main need for exploration comes from the dynamics of the environment; one cannot

assume the reward distribution to be stationary. Henceforth, mistaking the best and

second best operator has moderate consequences as the loss is small (provided r and

r′ are sufficiently close) compared to the cost of exploration. The point thus becomes

to identify as fast as possible a sufficiently good operator.

Note that if the reward distribution is not stationary, the Multi-Armed Bandit

regret cannot but linearly increase with the number of time steps in the worst case.

The worst case is when the reward distribution of the supposedly best arm does not

change, whereas a previously bad arm covertly becomes the best one. The only way to

detect such a worst-case change would be to try all arms sufficiently often, that is, to

define a minimal selection probability, along the same lines as PM (Section 2.3.1).

In the evolutionary framework, however, such a worst-case change scenario is un-

likely to occur. On the one hand, the average reward of every operator tends to decrease

as evolution goes on (diminishing returns). In the One-Max problem, for instance, the

best mutation operator is the 5-bit mutation when the population is far away from the

optimum; but the reward of the 5-bit mutation gracefully decreases as the population

goes to more fit regions, and at some point the 3-bit mutation operator catches up

(more details on this can be found in [15]). This suggests that when a good operator

has been identified, there is no need for exploration as long as this operator remains

sufficiently good.

The above remark motivated the Dynamic Multi-Armed Bandit approach, i.e., upon

a change detection only, the MAB process is restarted. This restart is made necessary

due to the inertia of the reward update: as the weight of the instant reward is inversely

proportional to the number of times the operator has been tried, adjusting the estimate

of an often used operator takes a long time.

However, the Dynamic Multi-Armed Bandit process presents two weaknesses. On

the one hand, the change-point detection test is triggered just in the case of an abrupt

change, whereas the reward of an operator usually decreases gradually. This makes it

difficult to calibrate the test. On the other hand, upon triggering the test, the whole

memory of the Multi-Armed Bandit process is lost, and the exploration must start

anew. These remarks motivated the introduction of the Sliding Multi-Armed Bandit.

3.2 Using a sliding window

Several heuristics have been proposed to update statistical estimates in a non-stationary

context. The most natural one is the relaxation update rule, as involved in the Proba-

bility Matching and Adaptive Pursuit rules (Section 2.3.1), in which the weight of the

instant information rt is set to some constant learning rate α (0 < α < 1) :

q̂i,t+1 = (1 − α)q̂i,t + αri,t
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The difficulty with the above rule is that the instant reward ri,t has a constant

weight α, regardless of how frequently the i-th operator has been applied in the last

time steps. Still, in the Adaptive Operator Selection framework different operators are

applied with different frequencies; if an operator has not been applied for a long time,

the weight of the instant reward should be higher everything else being equal, in order

to enable a more rapid adjustment of q̂i,t.

The update rule must thus take into account the number of time steps elapsed since

the previous time step ti in which the i-th operator has been applied. Finally, in order

to preserve the Multi-Armed Bandit trade-off between exploration and exploitation, one

must also maintain the ni,t counters reflecting the frequency of application of operators

up to time step t.

Considering a window of size W, the sliding exploitation and exploration terms can

then be defined as follows:

q̂i,t+1 = q̂i,t
W

W+(t−ti)
+ ri,t

1
ni,t+1

ni,t+1 = ni,t

(

W
W+(t−ti)

+ 1
ni,t+1

)

The above update rule is designed in such a way that, if an operator is applied with

frequency W/nt, then nt is constant3.

If an operator is performing well and is almost always applied, the counter ni,t

rapidly increases up to W and sticks to this value, while its reward estimate q̂i,t ac-

curately reflects the reward expectation for the current stage of the search. The main

difference compared to the Multi-Armed Bandit and Dynamic Multi-Armed Bandit

settings is that ni,t is upper bounded by W . Equivalently, the inertia of the reward

estimate is bounded: the weight of the instant reward cannot be less than 1/W .

If an operator is rarely applied, q̂i,t is an outdated, hence optimistic, estimation

of the actual reward expectation (assuming that the operator reward decreases on

average as evolution goes on). On the other hand, if the operator is rarely applied, it

can only be because its reward estimate is lower than that of the best operator. The

over-estimation of q̂i,t thus modestly favors its exploration. If, however, the operator

has not been tried in the previous W time steps, ni,t is low and the reward estimate

rapidly goes toward the instant reward, potentially correcting the over-estimation.

4 Benchmark Problems

While some artificial benchmarks or scenarios have been used for the comparison of

Adaptive Operator Selection mechanisms [40,7], their representativeness with respect

to actual situations faced by Adaptive Operator Selection schemes along evolution re-

mains limited. After describing these early scenarios for the sake of self-containedness,

this section discusses some complexity factors hindering Adaptive Operator Selection

and proposes a comprehensive benchmark generator. Finally, the Royal Road [25] is

described, an optimization problem intensively investigated in the literature of Evolu-

tionary Computation, which is here used as a real benchmark to be solved by a Genetic

Algorithm.

3 The reward estimate attached to some operator is updated only when the operator has
been applied.



11

4.1 Earlier Artificial Scenarios

Thierens’ original benchmark [40] involves a set of 5 operators, in which the reward

distribution associated to each operator is constant during an epoch (∆T time steps).

During every epoch, the operator reward is uniformly drawn in some interval: {4, 6}

for the current best operator, {3, 5} for the second best, and so forth, until {0, 2} for

the worst operator. Note that, since these intervals overlap, the second best operator

occasionally gets better rewards than the best one. The reward distributions associated

to all operators are permuted at the end of every epoch, using pre-defined permuta-

tions4 to decrease the experimental noise. The performance associated to an Adaptive

Operator Selection scheme is the cumulative reward obtained during this sequence of

10 epochs.

Within this benchmark, thereafter referred to as Uniform, an operator always gets

some positive reward. Still, in an actual evolutionary context, an operator would most

often bring no improvement at all (after the first generations), thus providing the

Adaptive Operator Selection with no information whatsoever. For this reason, two vari-

ants of the Uniform benchmark, respectively referred to as Boolean and Outlier, were

considered in [7].

In the Boolean scenario, the best operator gets a reward of 10 with probability

50% (and 0 otherwise). The second best operator gets a reward of 10 with probability

40% and 0 otherwise, and so forth, until the worst operator, getting a reward of 10

with probability 10% and 0 otherwise. In this scenario, operators only differ by their

probability of getting a non-null reward; the reward takes the same value in all cases.

In particular, the best operator has the same reward expectation than in the Uniform

scenario, though with a much higher variance.

Quite the contrary, in the Outlier scenario all operators get a non-null reward with

the same probability (10%); the difference lies in the reward value, set to 50 for the

best operator, 40 for the second best and so forth. While the reward expectation is still

the same as in the Uniform benchmark, the Adaptive Operator Selection is provided

with much less information (only 10% of the trials produce some information) and the

reward variance is much higher than in the previous Boolean scenario.

The Adaptive Operator Selection ability to match the dynamics of evolution is

assessed by varying the length of the epoch, set to ∆T = 50 for fast dynamics and

∆T = 200 for slow ones. As the reward expectation of the best operator is 5 in all

scenarios, the maximal cumulative reward is 2,500 in the fast case (5 × 10 × 50) and

10,000 in the slower one (5 × 10 × 200).

4.2 Discussion

The operator reward distribution can challenge an Adaptive Operator Selection scheme

in two different ways. Firstly, by varying the probability of getting some useful infor-

mation about the actual quality of the operator. This probability is high (for the best

operator) in the Boolean benchmark; it is low (for all operators) in the Outlier bench-

mark. Secondly, by varying the usefulness of the information it provides. Typically, the

4 These permutations are: 41203 7→ 01234 7→ 24301 7→ 12043 7→ 41230 7→ 31420 7→ 04213 7→
23104 7→ 14302 7→ 40213. More precisely, the best operator in the first epoch is the op4, which
becomes the worst one in the second epoch. The best operator in the second epoch is op0,
which was the fourth one in the first epoch.
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Boolean scenario does not provide useful information (all rewards have the same val-

ues, only the probabilities differ), while the Outlier scenario involves very informative

rewards.

In brief, any Adaptive Operator Selection is provided with some (more or less)

informative results (the reward amount, everything else being equal); and it is more or

less likely to be provided with any information at all. Typically, the Multi-Armed Bandit

process is well equipped to deal with Boolean-like settings, where operators (arms) get

the same reward in case of success and only the probability of success differs.

Along these lines, a general frame for Adaptive Operator Selection benchmarks,

referred to as Two-Values benchmarks, is proposed. Every operator is assumed to get

one out of two reward values, a small one noted r and a large one noted R. The

informativeness of the reward distribution is defined by the ratio R/r. The reward

distribution is specified from r, R and the probability p to get reward R.

Formally, the reward distribution specified from the triple (p, r, R) is defined as:

{

T V(p, r, R) = R with probability p

r with probability 1 − p

with expectation and variance respectively noted IE(p, r,R) and V (p, r, R):

IE(p, r, R) = pR + (1 − p)r

V (p, r, R) = p(1− p)(R − r)2

In the rest of the paper, r is set to 1 and will be omitted in the notations for the sake

of simplicity – a reward distribution will be noted T V(p, R) instead of T V(p, 1, R).

The respective roles of p and R are exemplified in Fig. 2, displaying two samples

of size 100 of distributions with the same expectation and high versus low variance.
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Fig. 2 Two samples drawn from two Two-Values distributions with same expectation
IE(.1, 10) = IE(.9, .2) = 1.9; the distribution on the left picture presenting a much higher
variance (V (.1, 10) = 7.29) then the one on the right (V (.9, 2) = .09).
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4.3 Two-Values Artificial Scenarios

The experiments presented in Section 6 will aim at answering three questions.

The first one examines what happens when the Adaptive Operator Selection faces

two operators with same reward expectation. Is there a bias, e.g. does the Credit

Assignment used (e.g. Instantaneous vs Extreme vs Average) tend to favor the operator

with high or low variance? More generally, the point is whether a given Adaptive

Operator Selection can be considered as a Risk-taker (favoring high variance operators)

or a Risk-adverse (favoring low variance operators) one.

The second question regards the soundness and agility of the Adaptive Operator

Selection scheme. Specifically, does the candidate Adaptive Operator Selection pick up

the operator with best reward expectation? Does it catch up after each change of the

reward distributions?

The third one investigates the sensitivity of an Adaptive Operator Selection with

respect to its hyper-parameters. How much attention/effort should be paid for the

tuning of each parameter? Identifying the parameters that most affect its performance

becomes even more important in case just a limited budget is available for the off-line

tuning phase.

In all cases, the experimental setting involves two operators, the reward distribu-

tions, which are modified every ∆T time steps (considering short and long epochs,

∆T = 50 and 200, as in Section 4.1). The exchanges done after each epoch will obey

a fixed sequence5 to decrease the experimental noise. Finally, to check how fast each

Adaptive Operator Selection mechanism can adapt to a new situation after a long pe-

riod of stability, experiments with 2 longer epochs will also be performed (∆T = 500

and 2000 respectively), with just one permutation of rewards happening between the

two epochs (01 → 10). The Uniform, Boolean and Outlier scenarios are also used by

the agility and the sensitivity analyses, as well as the embedded Royal Road scenario,

described in the following.

In the following, a scenario involving T V(p1, R1) and T V(p2, R2) will be denoted by

ART (p1, R1, p2, R2). While many different and more general settings could have been

used (considering more Two-Values operators, or more complex reward distributions,

e.g., taking uniformly drawn values in two intervals centered in the r and R values,

or smoother transitions between epochs), this experimental study primarily aims at

analyzing the effect of the reward margin R/r and probability p on the Adaptive Op-

erator Selection performance. More complex and realistic reward landscapes will be

considered in further studies.

4.4 The Royal Road Problem

The Royal Road (RR) is an optimization problem that was intentionally created to be

easy for GAs [35], with the crossover operators exploring the “building blocks” of the

function, while being difficult for hill-climbing algorithms. Due to unexpected difficul-

ties (the so-called hitch-hiking phenomenon), a revised version was later proposed in

[24] and analyzed in [25]. The revised version is the one considered in this work.

The solutions are represented as bit-strings. Each bit-string is composed of 2k re-

gions, referred to as first-level schemata. Higher level schemata are formed by combining

5 as follows: 01 7→ 01 7→ 10 7→ 01 7→ 10 7→ 10 7→ 10 7→ 01 7→ 01 7→ 10.
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lower-level ones; formally, a higher level L has 2k−L schemata composed by 2L first-

level ones (the building-blocks, supposedly defining a crossover-friendly landscape).

Each first-level schema is further divided into a block and a gap string, of respective

lengths b and g. A bit-string is thus represented by 2k × (b + g) bits.

For the calculation of the fitness of a candidate solution, each first-level schema is

independently evaluated, with the fitness resulting in the sum of the evaluations of all

the schemata. Just the block region of each low level schema is considered, the gap

region being completely ignored. The fitness is measured by the PART function or by

the BONUS one, as follows. The PART function computes the number z of correct bits

in the b-length block, resulting in a function value of z × v if z < m and (b − z) × v

for m < z < b, where m is a threshold that tunes the level of local deception in the

function. The completed blocks in the bit-string, i.e., the ones that have z = b, are

evaluated by the BONUS function instead, which accounts a score of u∗ for the first

block to be completed, and u for the additional ones.

The Royal Road was found to be an interesting scenario to empirically analyze the

Adaptive Operator Selection combinations within a real evolutionary algorithm as, by

considering common crossover operators, the following can be stated (intuitively, and

confirmed in [37]): the uniform crossover is the best operator during the initial evolution

stages (exploration), 1-point crossover is the best in the final stages (exploitation),

while the 4-point crossover is the best in-between. This operator set was used for

the experiments presented in the following, adding yet another crossover operator,

the 2-point crossover, as well as a disruptive bit-flip mutation operator that flips on

average 8 bits (and hence possibly one block); after every crossover application, a

mutation operator was also systematically applied, flipping each bit with a probability

of 1%. These operators were applied within a (100,100)-GA with weak elitism, i.e., at

every generation, the entire population of 100 individuals is completely replaced by the

newly generated 100 offspring, with the possible exception of the best parent, which is

maintained if better than the best offspring (and the worst offspring is removed).

The problem function was defined using the default parameter values proposed

by Holland [24]: k = 4, b = 8, g = 7, m = 4, v = 0.02, u∗ = 1.0 and u = 0.3.

The parameter m = 4 defines a medium level of deception; the fully deceptive case

(m = 1) and the not deceptive one (m = 7) were also investigated, but the former was

found too difficult to be solved within the given budget of 25,000 generations, while the

latter was too easy, thus not allowing any distinction to be made between the Adaptive

Operator Selection schemes. With 2k regions involving (b + g) bits, the dimension of

the considered search space accounts to 240 bits.

5 Experimental Setting

This section summarizes the different Adaptive Operator Selection combinations, which

will be experimentally assessed and compared with the Sliding Multi-Armed Bandit.

Further, the details of the experiments are described together with the performance

indicators and plots that will be used in Section 6.
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5.1 Adaptive Operator Selection schemes and their parameters

An Adaptive Operator Selection mechanism is made of an Operator Selection and a

Credit Assignment, as described in Section 2.

The Sliding Multi-Armed Bandit Operator Selection, presented in Section 3, has

been compared with other Operator Selection schemes: Probability Matching, Adaptive

Pursuit, Multi-Armed Bandit, and Dynamic Multi-Armed Bandit (Section 2.3). The

corresponding parameters are listed in Table 1.

Table 1 Components of Adaptive Operator Selection schemes studied here, together with
their hyper-parameters.

Probability-based Operator Selection
Probability Matching (PM) α Adaptation rate

Pmin Minimal value for operator probability
α Adaptation rate

Adaptive Pursuit (AP) β Learning or “greediness” rate
Pmin Minimal value for operator probability

Bandit-based Operator Selection
Multi-Armed Bandit (MAB) C Scaling factor
Dynamic Multi-Armed Bandit (DMAB) C Scaling factor

γ Threshold for Page-Hinkley test
Sliding Multi-Armed Bandit (SlMAB) C Scaling factor

Credit Assignment
Instantaneous - -
Average W Window length
Extreme W Window length

All Operator Selection schemes can be combined with any of the Credit Assignment

mechanisms (Section 2.2), respectively using the Instantaneous, the Average or the

Extreme reward associated to an operator. In the artificial scenarios, the operator

reward is drawn from the operator reward distribution (Section 4). In the case of the

Royal Road problem within a real GA, the reward reflects the fitness improvement of

the offspring over its parent (its best parent in the case of crossover operator), although

the diversity of the offspring could also be taken into account, as discussed in Section

2.2.

In the Average and Extreme cases, there is an additional parameter involved, the

size of the window W from which the average and the extreme reward are computed.

Specifically, the average reward (respectively the extreme reward) associated to an

operator is averaged over (resp. is the maximum reward gathered out of) the last W

times this operator has been applied.

5.2 Hyper-Parameter Setting

It is generally desirable to compare the Adaptive Operator Selection schemes at their

best, in the sense that an equal amount of resources should be devoted to tune the

hyper-parameters of the new proposed scheme, and those of the baseline schemes.

Accordingly, an off-line tuning was performed preliminarily to every experiment in

order to determine the best hyper-parameter values in the ranges listed in Table 2.
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Table 2 Value Range for Adaptive Operator Selection parameters

Parameter Used by |values| Values
Pmin PM and AP 4 {0, .05, .1, .2}

α PM and AP 4 {.1, .3, .6, .9}
β AP 4 {.1, .3, .6, .9}

C all MABs 14
{

[1, 5] × [10−4, ...,101], 25, 100
}

γ DMAB 17
{

[1, 5] × [10−4, ...,102], 25, 250, 1000
}

W Avg. and Ext. 4 {10, 50, 100, 500}

In brief, the Operator Selection settings include: 16 possible configurations for PM,

64 for AP, 14 for MAB and SlMAB, and 238 for DMAB. The Credit Assignment

setting involves 4 configurations for the Extreme and the Average, the possible values

for window-size W . For the SlMAB, the same W value was used by its update rules,

except on its combination with the Instantaneous, when the Credit Assignment window

size was set to 1, but all the 4 values were also tried for its update rule.

Instead of a complete factorial design of experiments, we used the F-Race off-line

parameter tuning method [4] in order to find the optimal values of all hyper-parameters

for each Adaptive Operator Selection combination on each of the analyzed scenarios.

The general idea of Racing techniques is to run all configurations, discarding some of

them as soon as there is enough statistical evidence showing that they will not likely

be the best one. Racing thus allows one to allocate the computational resources in

an optimal way, by focusing on the most promising configurations, and consequently

achieving lower variance estimates for them.

After running each configuration for a minimal number of 11 runs, the Friedman

two-way analysis of variance by ranks statistical test [6] used in F-Race is applied

with a confidence level of 95%. The stopping criterion is when a single configuration

remains; or all ”survivors” have been run on the maximal number of runs, set to 50

in the experiments. In the latter case, the retained configuration is the one with the

best mean amongst the survivors, as done in [4] (although different alternatives could

be used, e.g., in a critical situation the configuration with best worst case could be

considered).

In all cases, 50 runs are launched for the retained configuration and the results

presented in this paper are based on statistics over these 50 runs unless otherwise

stated.

5.3 Performance indicators and displays

Several complementary views and indicators for analyzing the Adaptive Operator Selec-

tion performance will be used, distinguishing off-line performance, on-line performance,

and empirical cumulative distribution functions.

For the artificial scenarios, the most natural performance indicator is the total

gain brought by an Adaptive Operator Selection scheme, the Total Cumulated Reward

(TCR), computed as the sum of the rewards gathered by the algorithm over the com-
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plete run. A related but not equivalent indicator, the percentage of times the best

operator was selected, is also presented for an illustrative purpose6.

The off-line performance results associated to each Adaptive Operator Selection

scheme7 are represented within a matrix (e.g., Table 3) in which each cell corresponding

to a Credit Assignment (line) and an Operator Selection (row) indicates:

– the average and standard deviation of the TCR;

– the values of the best hyper-parameter configuration determined after the racing

procedure (Section 5.2).

– the average percentage of choice of the best8 operator.

The best results are indicated in bold; the results which are statistically equiva-

lent9 are displayed with a grey background; small result variations among the different

Adaptive Operator Selection schemes thus translate into many grey cells. The caption

of the table finally indicates the performances of the Oracle strategy (always choosing

the best operator) and the Naive strategy (uniformly selecting among all operators).

The former corresponds to the best possible performance, while the latter corresponds

to the baseline.

The off-line performance, however, does not tell whether an Adaptive Operator Se-

lection fails to detect the best operator due to an excess of exploration, or exploitation.

In the former case, the Adaptive Operator Selection fails to stick to the best operator

after the change; in the latter case, it fails to swiftly adapt whenever a change oc-

curs. The on-line performance plots (e.g., Fig. 3) depict for each operator its instant

selection rate (averaged over 50 runs) along time. The best parameter configuration is

recalled in the captions of the figures. Additionally, on all such plots for DMAB, the

small peaks below the x-axis indicate the restarts (still averaged over 50 runs).

For the case embedding the Adaptive Operator Selection schemes within a real

evolutionary algorithm, applied to the Royal Road problem, the results are assessed

as the number of generations needed to achieve the optimal solution. Given the high

dispersion of the results, it is not meaningful to present the averages and standard

deviations: no significantly difference could be found between the performance of all

the Adaptive Operator Selection schemes, according to the same statistical tests used

for the artificial scenarios (see Footnote 9).

Because of this, in order to be able to figure out the difference of performance be-

tween the techniques, the empirical distribution of the results over 50 runs is presented,

depicted using Empirical Cumulative Distribution Functions (ECDFs): for each level of

performance (number of generations to achieve the optimum, on x-axis) the percentage

of runs reaching this score is indicated (on y-axis; see Fig. 8). Better than standard box-

plot diagrams, ECDFs display the full distribution, enabling a fine-grained comparison

of the different schemes, accounting for the fact that one scheme might outperform

6 Two techniques might present the same rate of “best operator selection”, although pre-
senting very different cumulated reward due to the difference between the sub-optimal choices
done by each of them, the so-called error costs, which are not considered by this measure.

7 In fact, the Probability Matching Operator Selection will be omitted in the rest of the
paper due to its poor performances in all scenarios.

8 In the experiments involving two operators with same expectation and different variances,
the operator with highest variance is considered by convention.

9 According to at least one of both unsigned Wilcoxon rank sum, and Kolmogorov-Smirnov
non-parametric tests, applied at confidence level 90%.
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another scheme with regard to some quantile performance, despite the fact that it is

outperformed with respect to the average or median value.

In Section 6.3, ECDFs are also used to assess the sensitivity of the scheme with

respect to its parameters. More precisely, ECDFs aggregating series of runs correspond-

ing to several parameter configurations will be presented for each Adaptive Operator

Selection; these plots graphically show how fast the performance decreases when leaving

the optimal parameter configuration.

6 Experimental results

This section reports on the experimental comparative analysis of all Adaptive Operator

Selection schemes presented in the paper, combining Adaptive Pursuit, Multi-Armed

Bandit, Dynamic Multi-Armed Bandit and Sliding Multi-Armed Bandit with Instan-

taneous, Average and Extreme rewards. The goal of the experiments is to answer the

three questions presented in Section 4.3.

The long-term goal indeed is to determine the niche of the diverse Adaptive Operator

Selection schemes, the operator reward distribution and the dynamics for which they

best fit. A first step towards this goal, investigated in Section 6.1, regards the Adaptive

Operator Selection bias with respect to the reward variance. Specifically, the question

is whether and when a given Adaptive Operator Selection tends to be Risk-taker or

Risk-adverse, preferring the operators with higher or lower variance everything else

being equal. This is answered using a set of Two-Values scenarios in Section 4.3.

The other two questions, respectively aimed at the general soundness and agility

of the schemes (Section 6.2) and their sensitivity to the hyper-parameters (Section

6.3) are answered using some Two-Values scenarios, and also the so-called Uniform,

Boolean and Outlier scenarios (presented in Section 4.1), that involve 5 operators. The

Royal Road problem is also used for both analyses, assessing the performance of the

Adaptive Operator Selection techniques within a real evolutionary setting, as described

in Section 4.4.

6.1 Adaptive Operator Selection Bias and Risk-Adversity

As discussed in Section 4.2, the variance of the reward distribution is the most impor-

tant factor of complexity for every Adaptive Operator Selection technique. Accordingly,

the behavior of the diverse Adaptive Operator Selection schemes when facing two oper-

ators with same reward expectation and different variance, is investigated, examining

the instant operator selection rate (since the Total Cumulated Reward or ECDFs do

not bring any information when considering operators with same reward expectation).

Let us consider the artificial benchmark ART (0.1, 10, 0.9, 2), involving the two

reward distributions illustrated in Fig. 2. While both distributions have the same ex-

pectation (IE1 = IE2 = 1.9), the former one has a high variance, V1 = 7.29, while the

latter has a low one, V2 = 0.09.

The behavior of the diverse Adaptive Operator Selection schemes on this bench-

mark is depicted in Figs. 3-4; operator op0 is associated to the high variance reward

distribution for the first two epochs (solid black line), and the reward distributions
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(a) Extreme AP (P.05 α.6 β.9 W10)
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(b) Average AP (P.05 α.1 β.6 W50)
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(c) Extreme DMAB (C5 γ25 W100)
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(d) Average DMAB (C10 γ.5 W50)

Fig. 3 Behavior of AP and DMAB with Extreme and Average reward on ART (0.1, 10, 0.9, 2)
scenario for ∆T = 50 (averaged over 50 runs). The solid black line depicts the instant selection
probability of operator op0 (high-variance reward during the first two epochs). The small peaks
below the x-axis indicate Dynamic Multi-Armed Bandit restarts, still averaged over 50 runs.

are swapped between both operators after the second, third, fourth, seventh and ninth

epochs.

The behavior of AP with Extreme and Average Credit Assignment (Figs 3(a) and

3(b)) can be considered as risk-adverse. The operator associated with the low-variance

reward distribution is selected in about 80% of the time. AP quickly adapts to the

changes when Extreme Credit Assignment is used, always following the low-variance

operator, contrasting with the Average Credit Assignment, which takes longer to switch

and cannot catch up with the changes.

Quite the contrary, Dynamic Multi-Armed Bandit with Extreme Credit Assign-

ment shows highly risk-taker at the beginning (mostly using the high-variance opera-

tor during the first two epochs) and stubborn thereafter (sticking to the same operator

although it has become low-variance, Fig. 3(c)). Meanwhile, Dynamic Multi-Armed

Bandit with Average Credit Assignment shows an unbiased behavior, selecting both

operators with equal probability. Interestingly, except when combined with AP (Fig.

3(b)) the Average Credit Assignment leads to an unbiased behavior. The same holds

for the Instantaneous Credit Assignment mechanism.

The behavior of Multi-Armed Bandit with Extreme Credit Assignment is depicted

on Figs. 4(a) and 4(b) for an epoch length ∆T respectively set to 50 and 200. Multi-

Armed Bandit also shows a clear risk-taker bias; when dealing with a fast dynamics
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(a) Extreme MAB (C5 W10) ∆T = 50
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(b) Extreme MAB (C50 W50) ∆T = 200

Fig. 4 Behavior of MAB with Extreme reward on ART (0.1, 10, 0.9, 2) scenario for ∆T = 50
(left) and ∆T = 200 (right), averaged over 50 runs. The solid black line depicts the instant
selection probability of operator op0 (high-variance reward during the first two epochs).

(∆T = 50) however, it is hardly able to follow the changes. For a slow dynamics

(∆T = 200), Multi-Armed Bandit follows the changes almost perfectly and sticks to

the high-variance operator. The same trends hold for the Sliding Multi-Armed Bandit.

Complementary experiments done (ART (0.1, 10, 0.6, 2.5), ART (0.1, 10, 0.225, 5)

and ART (0.1, 10, 0.1385, 7.5)) show that the differences between behaviors tend to

vanish when the difference between the variances goes to 0, as could have been expected.

In summary, the lessons drawn from these experiments are the following. For all

bandit-based Operator Selection rules, the Extreme Credit Assignment mechanism is

risk-taker (biased toward high variance reward operators); the Average Credit Assign-

ment is unbiased. For AP, the Extreme Credit Assignment mechanism is risk-adverse

(biased toward low variance reward operators); the Average Credit Assignment equally

is risk-adverse, though less so.

Additionally, no scheme proved able to swiftly follow the changes, which might be

explained as both operators have the same reward expectation. Further experiments

are considered in the following Section to confirm/infirm this tentative explanation.

This analysis explains previously published results in the context of the Long 3-

Path problem [16], in which the Extreme - Dynamic Multi-Armed Bandit (embedded

within a (1+50)-GA with 4 different mutation operators) greatly outperformed the

probability-based approaches. In such a scenario, being a risk-taker in the initial stages

can be highly beneficial, as follows: the 1-bit mutation (flips one randomly chosen bit)

will very probably increase the fitness by 1 each time it is applied, while the 3-bit

mutation has a much higher chance of taking the solution out off the path; however,

with a minimal probability, “shortcuts” can be taken by the application of the latter,

what provides very large fitness gains, possibly taking a shortcut from the early stages

directly to the optimal value.

6.2 Adaptive Operator Selection, Soundness and Agility

Several Two-Values scenarios (Section 4.3) involving two operators with different ex-

pectations and variances, the Uniform, Boolean and Outlier scenarios (which involve

5 operators), and the Royal Road problem within a real GA, are considered here.
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6.2.1 Soundness and Agility on the Two-Values Scenarios

The ART (0.01, 101, 0.5, 10) problem involves a low average/high variance distribution

(IE1 = 2, V1 = 99) and a high average/low variance distribution operator (IE2 = 6

and V2 = 20.25. The fact that the high-variance operator also is the one with lower

expectation should make it easy to be discarded.

The overall results (Table 3) show that Dynamic Multi-Armed Bandit and Sliding

Multi-Armed Bandit significantly outperform Multi-Armed Bandit and Adaptive Pur-

suit in terms of TCR. Sliding Multi-Armed Bandit has a slight edge due to the many

restarts of Dynamic Multi-Armed Bandit (plots not shown). It seems that, as far as the

operators have distinct variances, the diverse Operator Selection rules do not matter,

considering long or short time dynamics.

The AP scheme hardly deals with the Exploration vs Exploitation issue, being

hindered by the minimum selection rate in the fast dynamics case (pmin = .05 for

∆T = 50). For slower dynamics, no minimum selection rate is retained by the Racing

procedure (pmin = 0 for ∆T = 500), but AP still remains dominated by Dynamic

Multi-Armed Bandit and Sliding Multi-Armed Bandit, taking more iterations to adapt

to the changes. For very slow dynamics (∆T = 2, 000), there is no longer any significant

differences between bandit-based and AP schemes.

Table 3 ART (0.01, 101, 0.5, 10) scenario, ∆T = 200 (Naive = 8000, Optimal = 12000).

Reward SlMAB DMAB MAB AP

Inst.
10656 ± 226 10503 ± 223 10182 ± 243 10200 ± 308

C5 W10 C5 γ50 W1 C10 W1 P .05 α.9 β.9 W1
5.1 ± 1.40 7.1 ± 1.33 11.6 ± 1.94 11.6 ± 3.38

Ext.
10680 ± 216 10636 ± 440 9322 ± 1010 10149 ± 300

C10 W10 C1 γ.5 W10 C10 W10 P .05 α.9 β.9 W10
4.6 ± 1.73 5.5 ± 6.67 23.9 ± 15.52 12.4 ± 3.26

Avg.
10637 ± 229 10483 ± 262 10063 ± 260 10159 ± 303

C5 W10 C1 γ10 W10 C10 W10 P .05 α.9 β.9 W10
5.2 ± 1.38 7.5 ± 2.66 13.5 ± 2.34 12.3 ± 3.27

Let us consider the opposite situation, illustrated by ART (0.1, 39, 0.5, 3). This

problem involves a high average/high variance distribution (IE1 = 4.8, V1 = 130) and a

low average/low variance distribution operator (IE2 = 2 and V2 = 1). Other problems

with similar characteristics have been investigated with same empirical results and will

be omitted for the sake of brevity.

Tables 4(a)-4(d) display the overall behavior of all Adaptive Operator Selection

schemes for ∆T ∈ {50, 200, 500, 2000}. In all cases, the best Adaptive Operator Selection

is Dynamic Multi-Armed Bandit with Extreme reward. Broadly, Dynamic Multi-Armed

Bandit and Sliding Multi-Armed Bandit dominate Multi-Armed Bandit (even more in

terms of best operator choice than in terms of Total Cumulated Reward), and all bandit-

based approaches very largely dominate AP. The Extreme-based Credit Assignment

performs slightly better than the Average and Instantaneous, especially for large ∆T .

Interestingly, the improvement over the Naive strategy increases with ∆T , which

is explained as the relative importance of the transient regime decreases. Notably,

both Dynamic Multi-Armed Bandit and Sliding Multi-Armed Bandit reach a quasi-

perfect score when ∆T = 2000 (Table 4(d)), being reminded that only two epochs are
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considered for ∆T ∈ {500, 2000}, whereas ten epochs are considered for ∆T ∈ {50, 200}

(Section 4.3).

Table 4 Results on the ART (0.1, 39, 0.5, 3) scenario for all 4 analyzed dynamics

(a) ART (0.1, 39, 0.5, 3) scenario ∆T=50 (Naive = 1700, Optimal = 2400)

Reward SlMAB DMAB MAB AP

Inst.
1980 ± 246 1869 ± 207 1869 ± 207 1724 ± 224
C25 W100 C25 γ500 W1 C25 W1 P.2 α.1 β.3 W1
67.2 ± 6.07 61.5 ± 4.23 61.5 ± 4.23 51.5 ± 7.01

Ext.
2012 ± 301 2040 ± 238 2036 ± 239 1793 ± 252
C100 W10 C100 γ1000 W10 C100 W10 P.1 α.1 β.6 W10
71.1 ± 5.87 69.4 ± 4.52 69.5 ± 4.51 54.2 ± 9.08

Avg.
1890 ± 245 1946 ± 247 1894 ± 228 1761 ± 229
C25 W10 C10 γ100 W10 C10 W10 P.1 α.6 β.6 W50

62.8 ± 4.77 63.3 ± 6.20 61.8 ± 6.54 53.0 ± 7.99

(b) ART (0.1, 39, 0.5, 3) scenario, ∆T=200 (Naive = 6800, Optimal = 9600)

Reward SlMAB DMAB MAB AP

Inst.
8337 ± 537 8232 ± 475 8009 ± 549 7277 ± 639
C10 W50 C10 γ100 W1 C25 W1 P.2 α.1 β.1 W1

77.5 ± 3.78 74.2 ± 2.95 71.0 ± 3.45 59.1 ± 5.00

Ext.
8746 ± 511 8834 ± 451 8555 ± 530 7931 ± 606
C100 W50 C25 γ5 W50 C100 W10 P.1 α.3 β.6 W50
84.3 ± 2.94 85.8 ± 1.64 80.5 ± 3.28 70.6 ± 5.27

Avg.
8522 ± 497 8372 ± 545 8160 ± 466 7795 ± 741
C10 W50 C5 γ25 W50 C10 W10 P.1 α.6 β.3 W50

79.4 ± 3.35 77.3 ± 3.71 73.0 ± 4.35 67.9 ± 7.43

(c) ART (0.1, 39, 0.5, 3) scenario, ∆T=500 (Naive = 3400, Optimal = 4800)

Reward SlMAB DMAB MAB AP

Inst.
4357 ± 312 4265 ± 506 4202 ± 431 3737 ± 402
C25 W500 C5 γ250 W1 C10 W1 P.2 α.1 β.1 W1
84.6 ± 4.98 79.2 ± 12.74 77.2 ± 8.59 61.6 ± 5.56

Ext.
4590 ± 324 4597 ± 339 4421 ± 297 4148 ± 397
C50 W50 C25 γ250 W50 C100 W50 P.1 α.1 β.3 W50

91.8 ± 1.92 92.0 ± 4.26 85.8 ± 3.46 76.1 ± 7.76

Avg.
4309 ± 371 4377 ± 366 4175 ± 400 4116 ± 481

C5 W50 C5 γ100 W10 C10 W10 P.05 α.6 β.1 W100
80.7 ± 6.38 83.6 ± 7.28 76.5 ± 8.14 74.7 ± 11.43

(d) ART (0.1, 39, 0.5, 3) scenario, ∆T=2000 (Naive = 13600, Optimal = 19200)

Reward SlMAB DMAB MAB AP

Inst.
17725 ± 835 18261 ± 928 17994 ± 848 15021 ± 860

C5 W50 C5 γ500 W1 C10 W1 P.2 α.1 β.1 W1
86.6 ± 3.65 91.2 ± 5.43 89.0 ± 4.06 62.5 ± 3.40

Ext.
18970 ± 716 18992 ± 714 18606 ± 743 17901 ± 1083

C50 W50 C25 γ100 W50 C100 W50 P.05 α.1 β.9 W50
97.7 ± 0.64 97.9 ± 0.75 94.4 ± 1.86 87.8 ± 6.21

Avg.
18169 ± 755 18310 ± 865 17962 ± 837 17873 ± 1272

C5 W50 C5 γ250 W50 C10 W10 P.05 α.9 β.1 W100
90.4 ± 2.45 92.0 ± 5.44 88.7 ± 3.86 87.7 ± 7.14

The differences among the performances can be explained from the behavioral plots

(Figs. 5-6). For all Operator Selection rules, the Average Credit Assignment adapts
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much more slowly to the changes than the Extreme one. Similarly, when combining

the Extreme Credit Assignment with different Operator Selection, it appears that AP

reacts slowly, even compared to MAB.

Quite the contrary, Dynamic Multi-Armed Bandit and Sliding Multi-Armed Bandit

react quite rapidly to the changes, as shown by the steep slopes in Figs. 5(e) and 5(g),

respectively. This good behavior of Dynamic Multi-Armed Bandit is explained by the

well-positioned restarts (see the grey traces below the x-axis on Fig. 5(e)). For Sliding

Multi-Armed Bandit, which does not use any change detection test and involves one

parameter less than the Dynamic Multi-Armed Bandit, this robust pursuit behavior is

good news. Both Dynamic Multi-Armed Bandit and Sliding Multi-Armed Bandit found

the window size of 50 to be optimal, and both reach almost 100% of use of the optimal

’operator’, except during transition phases, or, more suprisingly, during the very first

epoch for Sliding Multi-Armed Bandit. Note also that the Average strategy for DMAB

results in too many restarts, that hinder the global search for optimal reward.

This analysis is confirmed by the results obtained for a very slow dynamics (∆T =

2000), where the reward distribution is changed once after 2000 time steps, as shown

by Figs. 6(a)-6(d). AP (Fig. 6(a)) needs quite some time to focus on the best operator;

additionally it does not use it 100% due to the value of pmin = 0.05. Even MAB (Fig.

6(b)) switches faster than AP. In the meanwhile, Dynamic Multi-Armed Bandit (due to

the well-tuned PH test) and Sliding Multi-Armed Bandit (thanks to its sliding window

and the associated forgetting mechanism) select the best operator about 98% of the

times (Table 4(d), Figs. 6(c) and 6(d)).

6.2.2 Soundness and Agility on the Uniform, Boolean, and Outlier Scenarios

Let us examine the soundness and agility of the Adaptive Operator Selection schemes

when considering five instead of two operators. All three Uniform, Boolean and Outlier

scenarios have been detailed in Section 4.1.

For the Uniform scenario, DMAB with Instantaneous reward is a clear winner for

all epoch lengths (∆T = 50, 200, 500 or 2000). This outstanding performance (TCR =

99.7% of the Oracle Total Cumulated Reward; the best operator is selected about 99.5%

of the times) is explained from the well calibrated PH test (Fig. 7). For faster dynamics

(∆T goes to 50), the performance is gracefully degraded (Total Cumulated Reward

becomes 98%, 95% and 77% respectively for ∆T 500, 200 and 50) due to the extra

exploration needed after each restart.

In all cases, Adaptive Pursuit is significantly outperformed by bandit-based Adap-

tive Operator Selection mechanisms; this limitation is blamed on an excess of explo-

ration (lower bounded by the pmin parameter; the behavior plots are omitted for the

sake of brevity). Meanwhile, Multi-Armed Bandit and Sliding Multi-Armed Bandit,

both require a large scaling factor in order to enforce a sufficient exploration.

Finally, for all epoch lengths and all Operator Selections, the Instantaneous reward

gives the best results, though the difference with the other Credit Assignment variants

is rather small. A tentative interpretation is that the number of operators (5 in the Uni-

form, Boolean and Outlier scenarios), the subtle overlapping difference between their

performances, and the number of changes, make it necessary to build operator reward

estimates as accurately as possible. In the Extreme or Average cases, for instance,

up to W steps are needed before adjusting the operator estimates, thus entailing a

significant delay for the Adaptive Operator Selection adaptation. This interpretation

is supported by the fact that the best configuration retained by the Racing process
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(f) Average DMAB (C5 γ25 W50)
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(h) Average SlMAB (C10 W50)

Fig. 5 Behavior of AP, MAB, DMAB and SlMAB combined with Extreme and Average Credit
Assignment, on ART (0.1, 39, 0.5, 3) for ∆T = 200. The solid black line depicts the instant
selection probability of operator op0 (high-variance reward during the first two epochs). The
small peaks below the x-axis of Dynamic Multi-Armed Bandit plots indicate restarts, still
averaged over 50 runs.
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(d) Extreme SlMAB (C50 W50)

Fig. 6 Behavior of Extreme AP, MAB, DMAB and SlMAB on ART (0.1, 39, 0.5, 3) for ∆T =
2000. The solid black line depicts the instant selection probability of operator op0 (high-
variance reward during the first two epochs). The small peaks below the x-axis of Dynamic
Multi-Armed Bandit plots indicate restarts, still averaged over 50 runs.

for all combinations involving parameter W sets it to 10, i.e., the lowest value in the

parameter range tried.

Table 5 Uniform Scenario, ∆T=2000 (Naive = 60000, Optimal = 100000).

Reward SlMAB DMAB MAB AP

Inst.
95872 ± 2745 99781 ± 72 96954 ± 128 89617 ± 156

C5 W10 C.1 γ10 W1 C5 W1 P .05 α.3 β.9 W1
83.3 ± 13.10 99.5 ± 0.03 92.2 ± 0.29 78.5 ± 0.46

Ext.
94716 ± 613 99492 ± 79 96658 ± 99 89560 ± 154
C10 W10 C.5 γ10 W10 C5 W10 P .05 α.9 β.9 W10

85.6 ± 1.90 98.9 ± 0.09 91.7 ± 0.23 78.9 ± 0.40

Avg.
95135 ± 663 97915 ± 985 96332 ± 330 89242 ± 174
C10 W10 C1 γ25 W10 C5 W10 P .05 α.9 β.9 W10

86.2 ± 2.38 91.6 ± 4.88 91.1 ± 0.74 76.9 ± 0.64

On the Boolean scenario, the situation is slightly different for small values of

∆T , where all Adaptive Operator Selection perform equally poorly: For ∆T = 50, only

47% of good choices for SlMAB, less than 40% for DMAB and MAB, and less than
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(b) Extreme DMAB (C.5 γ10 W10)

Fig. 7 Behavior of DMAB on the Uniform scenario combined with Instantaneous and Ex-
treme Credit Assignment: restarts are perfectly triggered by the PH test in the transitions, as
indicated by the small peaks below the x-axis.

30% for AP; with SlMAB being slightly (but not statistically significantly) better than

the others, and AP a little worse.

When ∆T increases, DMAB gradually becomes significantly better than the others,

and its overall performance increases. Interestingly, for ∆T = 200 (Table 6), SlMAB

still has the better proportion of best-operator-choice (almost 60% vs 52% for DMAB)

though its TCR is significantly less than that of DMAB. And for larger values of ∆T ,

DMAB is significantly better than all other techniques.

As for the Uniform scenario, the best Credit Assignment is the Instantaneous re-

ward; the Average performs almost as good; while the Extreme reward is outperformed

by far: the only values that are taken here are 0 or 10, which makes it difficult for the

Extreme reward to distinguish among operators. On the other hand, the changes in

averages (or in q̂ in Eq. (4)) are slow: DMAB performs very few restarts (the PH test

is almost never triggered), and MAB performs almost as good here as DMAB.

Again similarly to the Uniform scenario, all bandit-based techniques outperform

AP, although the pmin value is set to 0 most of times (all the time for ∆T = 500

or 2000). The behavior plots (omitted here) suggest that AP fails to identify the best

’operator’ in all cases in which the best becomes the second best in the following epoch,

due to its high inertia.

Table 6 Boolean scenario, ∆T=200 (Naive = 6000, Optimal = 10000)

Reward SlMAB DMAB MAB AP

Inst.
8167 ± 271 8164 ± 338 8154 ± 348 7966 ± 249
C25 W500 C5 γ250 W1 C5 W1 P .05 α.1 β.6 W1
59.6 ± 6.27 51.1 ± 8.37 50.8 ± 8.58 47.5 ± 6.07

Ext.
7414 ± 420 7451 ± 502 7402 ± 429 7477 ± 526
C10 W10 C.5 γ10 W10 C5 W10 P0 α.9 β.9 W10

30.5 ± 9.45 31.1 ± 9.44 31.3 ± 5.46 31.4 ± 9.66

Avg.
7979 ± 380 8122 ± 265 7921 ± 313 7871 ± 271
C5 W10 C1 γ5 W10 C5 W10 P .05 α.9 β.6 W10

46.5 ± 9.63 48.3 ± 6.44 45.7 ± 6.15 45.0 ± 4.98
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On the Outlier scenario, all techniques perform very poorly for small values of

∆T . This is not a surprise, because of the small chance of seeing some outlier reward

within 50 or even 200 time steps. Best TCR for instance is 1722 for ∆T = 50 (naive

would reach 1500) and 7560 (vs 6000 for the naive strategy) for ∆T = 200; the situation

changes as ∆T increases. For ∆T = 2000 (Table 7), DMAB and MAB reach about 90%

of the maximum TCR with a slight advantage to MAB, outperforming SlMAB and AP.

For ∆T = 500 however, AP is not significantly worse than DMAB and MAB.

Here, the Extreme Credit Assignment becomes clearly the best, as could be ex-

pected: when an outlier value is triggered, the Extreme Credit Assignment will main-

tain this operator in some top position longer than any other strategy. Interestingly,

the Instantaneous reward is clearly a complete disaster for AP, while maintaining a fair

level of performance (at least similar to that of the Average reward) for the bandit-

based techniques: some average actually takes place in the computation of q̂ in Eq.

(4), keeping some memory of the outlier value, while the benefit of such value vanishes

more rapidly within the two-tiered mechanism of AP.

Table 7 Outlier scenario, ∆T = 2000 (Naive = 60000, Optimal = 100000)

Reward SlMAB DMAB MAB AP

Inst.
79965 ± 3385 84169 ± 3217 81842 ± 2705 69735 ± 2054
C25 W500 C10 γ500 W1 C10 W1 P .05 α.1 β.6 W1
48.8 ± 7.08 55.8 ± 7.93 50.4 ± 7.78 29.5 ± 2.51

Ext.
86372 ± 2602 91622 ± 2673 92119 ± 1982 86595 ± 2035
C100 W50 C50 γ500 W50 C100 W50 P .05 α.9 β.1 W50
60.8 ± 9.15 76.1 ± 5.96 81.2 ± 2.40 70.6 ± 3.07

Avg.
80723 ± 3381 84601 ± 2580 81949 ± 2759 79059 ± 2394

C5 W50 C10 γ500 W10 C10 W10 P .05 α.6 β.1 W100
41.7 ± 10.61 56.7 ± 6.57 51.3 ± 7.71 44.5 ± 5.72

6.2.3 Soundness and Agility on the Royal Road Problem

The Royal Road problem is used here to assess the Adaptive Operator Selection tech-

niques within a real evolutionary algorithm, a (100,100)-GA, as described in Section

4.4. The objective is to autonomously and efficiently select among the following oper-

ators: 1-Point, 2-Points, 4-Points and Uniform crossover operators, and 1/30 mutation

operator (that flips 8 bits on average); the impact of the application of each operator

is measured by the fitness improvement achieved by the newborn offspring compared

to that of its best parent.

The main difference with the artificial scenarii is that the behavior of each operator

is very difficult to guess: besides being real evolutionary operators (crossover and mu-

tation), their performance is related to the region of the landscape that is being locally

explored by each of the 100 parents. Despite the 1/30 mutation operator, the other 4

crossover operators (especially the n-point ones) tend to present a similar behavior, all

exploring the building blocks of the intentionally designed search space. Besides, there

is no “fine-tuning operator” between them: even the 1-point crossover substantially

modifies the solution to which it is applied to, what makes it easier to miss the target,

thus explaining the high variance of the results.

The comparison of the Adaptive Operator Selection schemes under scrutiny is thus

only presented by means of Empirical Cumulative Distribution Functions (see Section
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Fig. 8 ECDF performance plots for the Royal Road scenario.

5.3), which shows in a very detailed way the performance of each technique (as well

as that of the naive uniform approach). Fig. 8(a) somehow summarizes the results

by comparing all Operator Selection rules at its best, i.e., associated with the Credit

Assignment that gave the best results with it. In Figs. 8(b)-8(d), the Operator Selection

rules are analyzed using the Instantaneous, Extreme, and Average Credit Assignment

schemes. The performance averages and standard deviations of each technique are

recalled in the legends of the ECDF figures.

The best Adaptive Operator Selection combination was found to be the Instanta-

neous - SlMAB, very closely followed by the Instantaneous - DMAB. By considering

just the Extreme values, SlMAB was also the best, while DMAB achieved the best

performance among all Operator Selection using Average values. MAB and AP showed

their best performance using Average values, generating rather poor results with the

other two Credit Assignment. Although no significant difference could be found be-

tween them (given the high variances of the results), an improvement in the order of 2

was achieved with relation to the average performance of the naive uniform approach.

These results extend those published in [16] by considering also the newly proposed

Sliding Multi-Armed Bandit. Another difference is the use of ECDFs, that we believe

gives another point of view on the results. We refer the reader to [14,15,31,16] for other
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comparative results of Adaptive Operator Selection applied to different binary and SAT

problems, for some of the Adaptive Operator Selection combinations analyzed in the

present work.

6.3 Sensitivity Analysis

As discussed in Section 5.1, the Adaptive Operator Selection mechanisms analyzed in

this work have their own (hyper-)parameters (Table 1), which values might critically

impact their performance. This issue has been addressed using the F-Race described

in Section 5.2, and the best hyper-parameter combination for each considered Adaptive

Operator Selection has been determined and further used on the empirical comparisons.

It is, however, important to study the sensitivity of these hyper-parameters, in order

to identify which parameters should receive more attention when addressing a new

problem.

When only 1 or 2 parameters are concerned, a 3-D plot of the response surface

of these parameters would give a clear picture (as has been done in [7] for AP and

DMAB on Thierens’ scenarii, for instance). However, by including the window size W ,

the common parameter for Average and Extreme Credit Assignment, AP and DMAB

involve, respectively, 4 and 3 parameters. This is why ECDFs plots will be also used

for this analysis, as described in Section 5.3.

6.3.1 ECDF Sensitivity Plots

Though ECDF sensitivity plots have been generated for all Adaptive Operator Selec-

tion schemes and all scenarios presented before, only 3 series of plots offering typical

behavior will be presented in detail here: Fig. 9 displays the ECDF sensitivity plots

for all Operator Selection rules on the ART (0.1, 39, 0.5, 3) scenario for ∆T200, Fig.

10 considers the Uniform scenario for ∆T500, and Fig. 11 refers to the Royal Road

scenario. All of them consider the Operator Selection rules with the Extreme Credit

Assignment. The Extreme Credit Assignment was chosen because it performs best in

most cases. For a few exceptions, the Instantaneous performed slightly better, but the

corresponding ECDF plots looked rather similar, though involving one parameter less,

the size W of the rewards window (expect for SlMAB, which needs W anyway).

All sub-figures display a number of ECDFs representing the results of the same

Adaptive Operator Selection on the same scenario. For the artificial scenarios, the x-

axis represents the TCR, ranging from the value of the optimal strategy (i.e., the

highest possible value on average for any Adaptive Operator Selection) down to the

value that would, on average, be gathered by the naive uniform strategy (hopefully the

lowest possible value on average for any Adaptive Operator Selection). For the Royal

Road case, the x axis represents the number of generations to achieve the optimum,

starting from zero (the optimal strategy is not known) up to the average number

of generations taken by the naive uniform choice. The y-axis shows the proportion

of runs that reached the corresponding x value, out of 50 runs: even the parameter

combinations that did not make it through the end of the Racing procedure have been

run 50 times for the sake of the sensitivity analysis.

Two lines are given as references on each plot: the top-left-most line (continu-

ous, and blue on color printouts), labelled with a “**” and referred to as “Best/All”,
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represents the overall best results, in terms of average TCR (or number of genera-

tions to the optimum in the Royal Road case), obtained on this scenario by a single

hyper-parameter configuration, between all the Adaptive Operator Selection combina-

tions considered. The next line going down/right, labelled with a “*” and referred

to as “Best/This”, represents the results obtained by the best combination of hyper-

parameters for the Adaptive Operator Selection scheme named on the caption of the

sub-figure, under the plot. The discrepancy between both lines shows in detail how

different are the performances of the considered Adaptive Operator Selection and of

the one that performed best on this scenario.

At the other extreme of each sub-figure, the bottom-right-most line represents

the ECDF of all runs for the particular Adaptive Operator Selection, i.e., for all hyper-

parameter combinations ever tried (the average performance of the factorial DOE from

values given on Table 2). The lines in-between represent partial aggregations of these

runs. More precisely, if the best results have been obtained for a given set of hyper-

parameters (recalled in the legend), each line represents the ECDF obtained when

one hyper-parameter is varied over all its values used in the racing procedure, while all

others are kept to the optimal value found. If a line corresponding to a given parameter

is close to the line of the best combination, it is a clear indication that the results are

not very sensitive to this parameter. Oppositely, a high difference indicates a high

sensitivity.

6.3.2 Sensitivity Analysis on the ART (0.1, 39, 0.5, 3) scenario with ∆T = 200

Global comments: As can be seen from Fig. 9, the three bandit-like techniques (asso-

ciated with the Extreme Credit Assignment) perform rather similarly on this scenario:

the same (small) proportion of runs reach the best possible value. SlMAB even has

slightly more runs reaching the best values than DMAB, the champion here (for which

the two “Best” curves are on top of one another). At the other end, all runs are much

better than the Naive strategy (plateau on the top right for all “Best/This” curves).

Oppositely, AP perform significantly worse, both for the TCR high values (no run does

reach the ’Optimal’ value) and for the low values (no plateau at 100% on the right).

Sensitivity hints: For the AP, the adaptation rate α and the learning rate β are very

robust parameters indeed: their aggregated ECDF plots are very close to the one of

the best combination for this technique. The minimal probability pmin is a much more

sensitive parameter, which was expected, as discussed in Section 2.3.1. The window

size W is the most sensitive parameter from those plots. Altogether, AP seems to be

robust with respect to its parameters, but its poor global performance make it a poor

choice anyway.

The MAB and SlMAB only have 2 parameters. For both techniques, the scaling C

factor is definitely a very sensitive parameter – much more sensitive than the window

size W . Indeed, C controls the heart of the bandit algorithm, the balance between the

exploration and exploitation terms, and thus determines the actual behavior of the

strategy. The seemingly robustness with respect to W for SlMAB is slightly surprising,

as W plays a double role in the SlMAB algorithm: it is used both to compute the

extreme of the reward, and to tune the size of the memory of the armed bandit.

The DMAB has one additional parameter, the threshold γ of the Page-Hinkley

test. Although 17 different values were tried for γ, it surprisingly demonstrates to be

quite robust, with its aggregated distribution performing very close to the best one.
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Fig. 9 ECDF sensitivity plots for ART (0.1, 39, 0.5, 3), ∆T200. See text for line label details.

On the other hand, the window size W and, even more, the scaling factor C, are more

sensitive, in a similar way than for the MAB Adaptive Operator Selection scheme.

These conclusions hold quite well for the other epoch sizes experimented with (50,

500, 2000). However, the longer the epoch, the more sensitive the scaling factor C (for

all the bandit-based techniques), and the less sensitive the γ for DMAB: the scaling

C controls the UCB Exploration vs. Exploitation balance during the whole run, while

γ is important only in the transition phases, which represent a smaller fraction of the

total run as ∆T increases.

6.3.3 Sensitivity Analysis on the Uniform scenario with ∆T = 500

Global comments (see Fig. 10): DMAB is again here the best performing Adaptive

Operator Selection, even though the overall best is DMAB together with the instanta-

neous reward (the two curves “Best/All” and “Best/This” are distinct here). However,
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Fig. 10 ECDF sensitivity plots for the Uniform scenario for ∆T500.

MAB comes next, followed by AP, and SlMAB performs rather poorly. Also note that

the variance of the results is way higher for SlMAB than for all others, which display

almost vertical curves (i.e., no variance at all).

Sensitivity hints: For AP, again the adaptation and the learning rates α and β are

very robust. However, the sensitivity of pmin is here higher than that of W . This

is clearly a consequence of having more operators, as for a given value of pmin, the

amount of exploration is proportional to the number of operators.

Regarding the bandit-based Operator Selection mechanisms, the conclusions that

can be drawn from those plots are very similar to the findings in the case of the

ART (0.1, 39, 0.5, 3) scenario: the scaling factor C is always the most sensitive param-

eter. However, for DMAB, parameter γ seems relatively more sensitive than in the

previous scenario; and for SlMAB, W and C now seem equally sensitive.
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Fig. 11 ECDF sensitivity plots for the Royal Road problem.

6.3.4 Sensitivity Analysis on the Royal Road scenario

Global comments: As shown in Fig. 11, in this case the SlMAB with instantaneous

rewards is the overall best one, presenting a performance very similar to the extreme

SlMAB. Given the high dispersion of the results, all of them are likely to be statisti-

cally equivalent. As shown by the absence of plateaus at 100% on the right, none of the

techniques is able to outperform the expected performance of the naive uniform on all

the runs; however, the instantaneous and the extreme variants of SlMAB outperform

the naive strategy on around 90% of the runs – around 10% more than the extreme

AP and DMAB, and 20% more than the extreme MAB.

Sensitivity hints: For AP, the same remarks done for the sensitivity analysis on the

Uniform scenario are totally valid here: α and β very robust, with pmin being very

sensitive (the more available operators, the more pmin will affect the AP performance).
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For the three bandit-based techniques, the scaling factor C shows again to be very

sensitive, but less than the change-detection threshold γ for the DMAB. Differently

from the analyzed artificial scenarios, the size of the sliding window W is not the most

sensitive parameter, except for the MAB technique.

6.3.5 Sensitivity Analysis: Discussion

Although further analyses should be done in more complex problems to confirm these

sensitivity hints, the agreements found between the analyzed scenarios in that respect

is somehow comforting. These findings can thus be used to guide the parameter tuning

of the proposed Adaptive Operator Selection combinations, e.g., the most important

parameter to tune for all bandit-based procedures is definitely the scaling factor C,

while the PH threshold γ for DMAB is also quite sensitive.

These two parameters become more difficult to tune in Royal Road case (and this is

likely to be the case for every real scenario), probably because the range of the rewards

tends to vary as the search advances. Because of this, there is no value for C and γ

that performs in an optimal fashion during the whole run. A solution to try to alleviate

this issue is currently being explored, considering the use of rank-based rewards, that

seems to be the path towards more robust settings.

Regarding the high sensitivity of the window size W , independently of the Adaptive

Operator Selection scheme, it seems to be more important in the artificial scenarios,

mainly because in these cases there is a strong link between W and the overall per-

formance, e.g., values of W larger than the epoch size ∆T , the period of the changes,

will result in using too old information. Furthermore, even in the case of longer epochs,

each operator has its own window, of size W : in the worst case, a window might con-

tain rewards as old as K × W time steps ago, K being the number of operators (e.g.,

the “steps” on the “W” curves of Figure 10 clearly shows how large values for W are

hindering the overall performance of the aggregated distribution in this case). This

parameter becomes less sensitive in the more realistic Royal Road scenario, in which

there is no clear relation between operator qualities and time. Anyway, very little (or

nothing) is in general known about the dynamics of change of operator rewards within

an evolutionary run, which is likely to be different from one run to another. Trying to

adaptively define W is also a mandatory step for further research.

7 Discussion and Conclusion

The work presented here continues earlier studies devoted to Adaptive Operator Se-

lection, investigating the use of bandit-based approaches [7] as an alternative to the

popular Probability Matching [19] and Adaptive Pursuit [40].

While Multi-Armed Bandit algorithms provide guarantees for an optimal Explo-

ration vs Exploitation trade-off in a static setting [1], they hardly deal with dynamic

environments. Dynamic Multi-Armed Bandit (DMAB), coupling the so-called UCB

algorithm [1] with a change-point detection test, has been first proposed in [22] to

preserve the good UCB properties in an abruptly changing environment, through the

restart of UCB when a change in the reward distribution is detected. The main limi-

tation of DMAB thus relates with the adjustment of the detection test; not only does

this test require a hyper-parameter to be tuned; it further hardly adapts to different
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dynamics of the operator reward distributions, whereas Adaptive Operator Selection

takes place in the highly dynamic environment of evolution.

A first contribution of the present paper has been to propose another dynamic

bandit-based algorithm, referred to as Sliding Multi-Armed Bandit (SlMAB), address-

ing the limitations of DMAB. The SlMAB uses a window-based relaxation mechanism

to update the reward estimates and the counters involved in the UCB algorithm, tak-

ing into account how many time steps have occurred since an operator has last been

tried. While this relaxation enforces the forgetting of past events, it preserves an adap-

tive minimal level of exploration (as opposed to the fixed minimal level of exploration

involved in Probability Matching and Adaptive Pursuit). Given that most Credit As-

signment schemes proposed in the literature rely on windowing the operator reward

distribution, the SlMAB can almost be parametrized “for free”, except for the scaling

factor C, which is needed by all bandit-based Operator Selection mechanisms.

The second contribution of the paper is an extensive and principled experimental

comparison of the considered Adaptive Operator Selection combinations. The most crit-

ical factors of difficulty have been discussed and an original set of artificial scenarios

has been proposed in order to understand how the reward frequency and variance im-

pact the Adaptive Operator Selection. These scenarios generalize previous benchmarks

proposed in the literature [41,7]. All these benchmarks have been used to fairly com-

pare (after a preliminary Racing phase to tune the hyper-parameters) the combination

of Operator Selection rules (PM, AP, MAB, DMAB and SlMAB) and Credit Assign-

ment schemes (Instantaneous, Average and Extreme). We believe, as also argued in

[17,27,43], that operators that are capable of rare but highly beneficial moves might

be more important to evolutionary optimization than operators that repeatedly make

small progress10, and the design of the artificial scenarios was somehow targeted to

reflect such situations. However, the results obtained on the artificial scenarios were

confirmed by those in the Royal Road context: although being also artificial, the Royal

Road problem does not a priori seem biased toward risk-taking operators.

Several lessons can be drawn from the above experiments:

– With respect to Credit Assignment:

– While the Instantaneous Credit Assignment performs well on smooth scenarios,

its performance degrades as the rewards becomes more and more extreme (large

values happening rarely and being too rapidly forgotten).

– On the opposite, the Average Credit Assignment keeps track of too many events,

which may delay the adaptation of the Adaptive Operator Selection mechanism

at hand.

– The Extreme Credit Assignment obtains the best performance for most of the

Two-Values scenarios. While it efficiently captures the critical information even

in the case of smooth reward distributions (as in the Uniform scenario), its lim-

itation is when operator reward distributions only differ by the reward proba-

bility (as in the Boolean scenario).

– With respect to Operator Selection rule:

– Probability Matching has not been presented in the detailed results due to its

consistently poor behavior.

– While Adaptive Pursuit obtains good results on average, it is dominated by

the bandit-based approaches, mainly Dynamic Multi-Armed Bandit and Slid-

10 In the latter case indeed, Hill Climbing might be more efficient than Evolutionary Algo-
rithms.
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ing Multi-Armed Bandit. This failure is blamed on the fixed exploration mecha-

nism (the minimal selection probability pmin attached to all operators) and the

two-tiered reward allocation, seemingly slowing down the change detection and

biasing the Adaptive Operator Selection toward low-variance distributions. Ad-

ditionally, Adaptive Pursuit requires the tuning of 4 hyper-parameters, against

2 or 3 for the bandit-based approaches.

– Multi-Armed Bandit was also found to react slowly, especially if a change hap-

pens after a long steady-state period, as expected.

– Dynamic Multi-Armed Bandit very often obtained the best performance on

the testbed proposed here. If the PH test triggers at the right time, Dynamic

Multi-Armed Bandit is very strong (as witnessed by the results on the Uniform

scenario for instance). But this adds another hyper-parameter, the threshold

to decide when to do a restart. Though this parameter is not as sensitive as

it might have seemed a priori, it must nevertheless be tuned accurately, in

particular in the actual evolutionary optimization context.

– Sliding Multi-Armed Bandit performs almost as good as Dynamic Multi-Armed

Bandit, being able to reach almost 100% of use of the best operator once identi-

fied, while also reacting rapidly to abrupt changes, thanks to its limited memory.

It is sensitive, however, to the window size; no automatic method or adaptive

principle has been proposed insofar to tune this critical parameter.

After the ample empirical evidence gathered in this work, the Extreme Credit As-

signment together with the Sliding Multi-Armed Bandit Operator Selection rule seems

to be a good choice for a robust Adaptive Operator Selection. A critical issue regards

the parameter tuning11, essentially the scaling parameter, which has been found by far

the most sensitive parameter for all bandit-based approaches presented here.

Another limitation of the presented results is that they rely mostly on artificial

scenarios; the Two-Values scenarios involve abrupt changes of the reward distribution

whereas the dynamics of the operator rewards is much more complex in an actual

evolutionary setting, as in the Royal Road embedded case. On the other hand, it is

also often the case in Evolutionary Algorithms, as in natural evolution, that relatively

stable epochs are separated by (a series of) large jumps, after the so-called punctuated

equilibria phenomenon [20].

A first perspective for further research is the extension of the Two-Values scenarios

proposed here, to account for arbitrary frequencies and amplitude of change, and to

analytically investigate the probability of missing the current best operator. A second

perspective is to assess the efficiency of the presented Adaptive Operator Selection

approaches on real optimization problems, with both unimodal and multimodal fitness

functions.

Additionally, as mentioned in the discussion about the sensitivity analysis (Section

6.3.5), different Credit Assignment schemes should be explored in the near future,

considering rank-based rewards instead of raw values. The use of rank-based rewards

will hopefully lead to robust settings for the scaling factor C (and for the DMAB

PH threshold γ), because the range of the received rewards would then be invariant,

no matter the problem and the current stage of the search process. Furthermore, in

11 The reader might wonder what is the point of designing Adaptive Operator Selection
schemes to handle the parameter tuning, if these schemes themselves involve parameters to
be tuned. The gain is that Adaptive Operator Selection schemes take care of many shallow
parameters (e.g. the selection rate of all variation operators) while involving a few general
hyper-parameters (Table 2).
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order to efficiently tackle multi-modal problems, the diversity should also be considered

somehow by the Credit Assignment, following the ideas of [31,32].
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In: Stützle [39], pp. 176–190

16. Fialho, A., Schoenauer, M., Sebag, M.: Analysis of adaptive operator selection techniques
on the royal road and long k-path problems. In: G. Raidl et al. (ed.) Proc. Genetic and
Evolutionary Computation Conference, pp. 779–786. ACM (2009)

17. Fogel, D.B.: Phenotypes, genotypes and operators in evolutionary computation. In: Proc.
Intl. Conference on Evolutionary Computation. IEEE (1995)

18. Gagliolo, M., Schmidhuber, J.: Algorithm selection as a bandit problem with unbounded
losses. Tech. Rep. IDSIA - 07 - 08, IDSIA (2008)

19. Goldberg, D.: Probability matching, the magnitude of reinforcement, and classifier system
bidding. Machine Learning 5(4), 407–426 (1990)

20. Gould, S., Eldredge, N.: Punctuated equilibria: the tempo and mode of evolution recon-
sidered. Paleobiology 3(2), 115–151 (1977)

21. Hartland, C., Baskiotis, N., Gelly, S., Teytaud, O., Sebag, M.: Change point detection
and meta-bandits for online learning in dynamic environments. In: Proc. Conférence
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