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Abstract

The notion of reactive graph generalises the one of graph by allowirigathes
accessibility relation to change when its edges are traversed. Can vesarpr
these more general structures using points and arrows? We provanhie done
by introducing higher order arrows: the switches.

The possibility of expressing the dependency of the future states of¢hesic
bility relation on individual transitions by the use of higher-order relatitimes, is,
coding meta-relational concepts by means of relations, strongly ssggesise of
modal languages to reason directly about these structures. We irgradudrid
modal logic for this purpose and prove its completeness.

1 Introduction

In computer science the word reactivity has been used totedesystems that react to
their environment and are not meant to terminate, as coip&beli and Harel ir [25].

In this paper the word has affirent meaning, reactive systems are history-dependent
relational structures, where the accessibility relatsoadtermined not only by the point
where one is, but also by the previous transitions. Thiseptwas introduced by Dov
Gabbay in 2004, see [14] and the extended version [15]. We st the concept of
reactivity by presenting some structures that embody itsamde logics to reason about
them. Let us start by explaining how this concept of reatstiwias born and outlining

its short life-story.
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New kind of arrows. In [14], Dov Gabbay introduced the idea of enriching graph-
based structures with arrows of a new type, calling it thebttarrows. Double arrows,
instead of connecting points, connect arrows with arrowstoer double arrows, see
Figure[1. The idea is that this new kind of arrows can repregendependence of
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Figure 1: An enriched graph.

the state of the targeted arrow (or double arrow) upon thesang of the arrow in its
origin. In this first presentation the double arrows woulafgy change the targeted
arrow state. Let us see how it works by playing with the examplFigure[l. We
represent the fact that an arrow i by drawing its body as a dotted line. Let us see

Figure 2: The fect of crossing edges.



the dfect that crossing some of its edges has. As shown in Figurén@nwe cross
the edgeqa,b) (left) or (b,c) (right), the arrows that are in the scope of the double
arrows coming out of them, becom#& or on if they are on or b respectively (that is,
their state changes). This process is cumulative, aftessarg(a, b) we can also cross
(b,c) and the fects are determined by the new state of double arrows, seecEig
These ideas were presented using suggestive motivatiasescfor example in Figure

Figure 3: The &ect of crossing edges.

[ we see how these new arrows can represent a classicatamtoernetworks case.

o ——> O [ ] [ ]

Son of Tweetie Special Penguin Penguin Bird Does Fly

Figure 4: A classical inheritance networks example. We egnasent simple excep-
tions: birds do fly, but although penguins are birds they diflyo And we can also
represent higher order exceptions (exceptions to exaeptieven though the son of
Tweety is a special penguin (so also a penguin) he does fly.

The general idea that a relational structure may vary whenmaves through it
and the enriched kind of frames that came along with it fuefiablications in many
areas. Indeed, there are applications of the reactive idesagh diverse areas as modal
logic, preferential non-monotonic logic, inheritancetsyss, context-free grammars,
automata theory, deontic logic and contrary to duty, arquaten and other networks,
see papers [5, 20, 12,116,123] 21} 22,[17, 28]. For example wheradds these kind
of double arrows to the structure of an automata, one allowc finodify its transi-
tion relation while reading a sentence, that is, one make=aittive. This alternative



paradigm competes with non-determinism in the task of abtgiautomata with mini-
mal number of states accepting a language. Indeed, thefaticheorem (Proposition
6.1, [12]) is proven:

If Ais deterministic automaton witk!' states, it has an equivalent reactive
automatorR(A) with kn states.

Another interesting application of this kind of enrichedjgins (though not using the
dynamical counterpart) can be found [n[[28], where Dung'strtt argumentation

theory is extended incorporating the meta-level arguntiemidoased reasoning, about
possibly conflicting preferences between arguments.

Changing Kripke structures One can say that the relational semantics of modal
logic already encompasses change. In fact, one can cor{sidaccess to) dierent
worlds, and the propositional truths, given by the proposil variables valuation,
may change. Also the accessible worlds may change with thassitions. Yet, the
truths at a given world are ‘still’. In a Kripke model both pasitional truths and the
accessible worlds are fixed for each world. One can take g@fsirther and let these
vary. In many situations it makes sense to consider sensasiich that when certain
operators are evaluated, the model, where the formula ryb®raluated, changes.
Therefore, the interpretation of a formula in the scope ofoalah operator is given by

a general condition of the type:

MXE Cpif M X E ¢

wherex' is a point in a new modéelt’. Indeed there are various examples of such
approaches, e.g.:

e in dynamic epistemic logics with agent’s public announcets€33];
e in sabotage logics edges can be deldted [32];

e in memory logics one may keep the information that a certairidwvas visited,
adding it to the memory of the modél [4];

¢ in Hyper-modalities the meaning of the modal operators dépen where in the
formula they occur [13];

e in product logics one may think that while moving along onediion the valu-
ation of the remaining hyper-plan is changing, for exampteleiling valuation
change in time if that direction is a time flow [18].

Local view: reactive logics, making Kripke reactive In [15] Kripke structures are
made reactive. Gabbay introduces a semantics based oneirgokes enriched with
double arrows, where the basic relation changes along tegpnetation of a formula
by the action of the double arrows. The dependence is on wimrdas been before,
that is, neither relation nor propositional variables ealachange with the clock ticking
but they react when and because we move. Moreover, the changesensitive to the



way we got to the current world. Subsequently it is proven this semantics strictly
generalises the Kripke semantics, in fact, we may have edaskthese frames origi-
nating logics that are not closed under substitution. Iisalaimed that the classical
Kripke frames cannot cope with these types of change, theeniatmore about how to
incorporate these meta-level notions into the models aridhnbnguage to consider
in order to reason about them. [n[19] 27] is introduced a nabstract notion of reac-
tive Kripke frames. Whereas ih [IL5] the changes in the adokesslation are the ones
produced by the action of the double arrows, in the abstratidm of reactive Kripke
frames these changes are given. In reality, in the usualrg&@saf modal logic the
only important information to the value of a modal formulathe set of successors
at each moment, i.e tHecal accessibility relation. Therefore the notion of reactive
Kripke frame boils down to a set of admissible sequences iitpahat is, the set of
admissible paths. One can picture the initial accessibiétation by considering the
paths of size two, and its evolution is encoded in the one gtelpngment relation
on the bigger paths. The semantics presented in [15] is gkset over these abstract
structures, allowing the valuation to vary along the padingl the language is enriched
with an extra operator relating paths that have the sameoémtdprhis is similar to
what it is done in the branching-time logic with quantificetiover branches in [34].
Finally results of soundness and completeness are presgmdeacterising some prop-
erties of these frames (generalising some familiar prageedf ‘static’ Kripke frames:
reflexivity, symmetry and transitivity). Furthermore sonesults regarding the decid-
ability of the resulting logics are obtained. Let us look toomcrete case and see some
examples of what can be expressed in the considered language

Example 1.1. Let us consider the situation of a traveller with a budgete $ét of his
possible moves depends on whether he has enough money terddtthpay tolls, oil,
train or flight tickets), furthermore his actual moves alstedmine his future possibil-
ities. So the paths of the correspondent reactive frameharedquences of cities he
can visit with a certain budget. The formulas are interpteteer these paths. Letg
stand for the dynamics operator, that is, correspondinigg@ctcessibility relation, and
Op to the relation identifying the paths with the same endpoBud, Orp means that
after the current path we can access to a city such that tiingspath satisfies.
Oryp Means that there is a path to the current world satisfyinbet us consider that
the propositional symbolp, and p,, correspond to the predicate of being able to buy
bread and wine respectively, antbe true if there is still some money left. See Table
[ for examples of what can be said.

Modal language | Natural language
-m— Orl If the traveller has no money left then he cannot move

<Op(Orpe A OrT) | There is a path to the current city, after which the traveller is not blogked
and he has enough money to buy bread every city he can access to
(pw A OrRPW) If the traveller can buy wine now, and at any immediate next stop, th

— OpPo | he would always be able to buy bread in the current city regardless ¢
how he got there

%
=g

Table 1: Possible statements in the considered modal sesant



The truth values of the sentences in Tdllle 1 depend on thieyartvaluation we
pick, but we noticed above, with this language we can caphtezesting structural
aspects of these frames (seel [19]).

1.1 Global view: Switch graphs and their frames

While the notion of reactive frame contains exactly the ngagsinformation to gen-
eralise the usual Kripke semantics to the reactive caggatres the state of the global
accessibility relation. In order to model this global degemce we consider the con-
cept of reactive graphs. Intuitively a reactive graph cstssin a graph that may change
its configuration when a certain edge is crossed.

As in the case of reactive frames, we define a reactive graphacset of admissible
sequences of edges. Clearly, from such a set one can exteastalution of the whole
relational structure while transversing the graph edgesaRy admissible sequengge
the relational state of the reactive graph aftés given by

Ry = {(w,w) : A(w,w) is an admissible sequence of edges

At this point a natural question arises: can all these lati behaviours be en-
coded by double arrows? In order to answer this question teeduace the concept of
a switch graph.

Switch graphs A switch graph is a graph enriched with two kinds of doublewas,
the connecting and the disconnecting switches. As theiesaunggest, when the origin
of a connectinflisconnecting switch is crossed its target is conngdiscbnnected.

Given a seW, a switch is either an edges W? (switch of level 0, neither connect-
ing or disconnecting) or a triple= (a, s, *) (of leveln > 0), where

e acW?in the edge that triggers its action,
e S is the targeted switch (of level- 1)

e x ¢ {o,0} says ifitis a connecting (black circle) or disconnectindite circle)
switch.

The type of the switches of level 0 és(the empty sequence) and 8 (a, s, *) is
o+ whereo is the type ofs’. We use the following notation to refer to switches in an
easier fashion:

e (abe) =(ab),
o (ViVo,.. ., Vone1Vone2, & *1.. . *np1) = ((V1,V2), (VaVa, . .., Voni1Vons2, *1. .. %n), *net)-

In graphical representations we use white headed arroweptesent the disconnect-
ing switches and black headed arrow to represent the cangemtes. Let us see an
example of a situation where the dynamical restrictionsasdly represented by these
structures.



Example 1.2. Switches can easily grasp the fact that certain resourectnite, that
is, one can use them a finite number of times. Depending on #danimg of the ac-
cessibility relation (e.g. crossing a bridge, driving adptaking a pill from a tablet,
printing pages, ask a person for a cigarette, etc) the switafiguration presented in
Figure[1.2 represents the fact that a particular action eanken exactlk > 1 number
of times. The set of switches is given Kya,b), (ab,...,ab oe¥1)}. Fork = 0 we
would have(a, b) and(ab, ab, o) on, and would not need more switches.

Figure 5: The edgéa, b) can be crossed exactky> 1 times.

The main result of sectiop] 2 answers to the above questiorproxe that any
reactive graph can be generated by a switch graph. We alsapran example where
switches are used to represent the dynamical restrictemsined for the solution of
the mutual exclusion problem.

Switch reactive hybrid logic In order to reason about switches and their actions we
introduce an interpretation of a hybrid modal language d¢iriggke frames generated
by switch graphs dynamics. Usually nominals are valid incyeone point in each
model. In the reactive setting they are valid in exactly oamipfor each of the com-
ponents representingftBrent reactive moments, withftérent relational states. The
general idea is has follows:

¢ Instead of having an operator relating th&elient relational states of a point, we
use nominals to identify them.

e Also, using the fact that double arrows are relations (fiedent arities) over the
carrier, we consider the correspondent modal operatorsadlbo type of switches
we consider the associated 2 2 relation

R = {(W1, Wy, ..., Won 1Wons2) : (WiWo, . .., Wons1Wone1, 07) IS ON.}

for |o| = n, and its correspondent modal operator2l-ary modal operatot, .



e Moreover the use of the hybrid operator @ allows us to havelaadview over
the switch configuration at each moment.

e To the fragment of the language introduced above, that allsxo talk about the
switches state in each moment, we add the modal opegatetating the diter-
ent states of the switch graph, being the real dynamics tpgi@rresponding
to Orin the reactive Kripke frames).

In sectior B we give an axiomatisation of the switches eu@hiby capturing the inter-
action between these components but for now let us look a¢ sxamples of what we
may express in this language.

Example 1.3. Let us consider a non-local version of Examjplel 1.1. Instdacbo-
sidering a single traveller, that can be only at one placeteh@, let us consider the
same problem but with a truck company (or group of travelleith a common budget.
Clearly each movefgects all the subsequent possible moves. We know from thé resu
proven in Chaptdr]2 that any such reactive dynamics can hessgd by switches. If
we consider a switch graph generating this dynamics andtigubge described above
we may express the local interdependencies explicitly, e.g

@a A Oo(b,c,d)

means that the fact that a truck angoes tob implies that no truck irc can go tod.
That is
@a@ (b_’ @c—' @d)
In the case of Example_1.2 dealing with bounded resourcestemiie allow only
certain kinds of switches:
@a(dcb A ©o(ba, b))

means thata, b) can be crossed exactly once, @ (b -~ @,- @ b),
@a(®eb A= 4>0 (ba a7 b) A= @oo (b7 aa ba aﬂ b) A @ooo(b» aa b’ a-; b7 aa b))

means thafa, b) can be crossed exactly three times, @b - @, ¢ (b -~ @,-¢b)),
and so on.

We do not claim that this is the most appropriate languageason about all cases
of reactivity. For instance, in Examples1l.1 1.3 we cansage a language that
could explicitly reason about the cost of each move and thei@ng budget after
it. And in the case of Example_1.2, where only some shapes iblssg are allowed,
the language could be simplified. Still, the fact is that akative systems can be
generated by switches and this language seems adequataés®the local dynamic
dependencies on each move, imposed by the switches. We lhaipi tepresents a
kind of skeleton for the various possibilities. In the carsibn of sectiofl3 we discuss
possible extensions of this language with operators of thd we find inCTL and
CTL*. The main result of this section is the proof of the usual lybompleteness
result in this dynamic context. An important fact to retaéntiat in each moment
the whole future relational dynamics is coded in the swigclse it may be that some
properties (that depend only on the worlds - correspondinmuite formulas, having no
propositional symbol that is not a nominal) can be deriveddasoning locally, using
only the information contained in switches configuration.



2 Switch graphs

A graph is the abstract representation of a binary relat&twéen objects. There are
many graph-based structures, and often, to read (somesoif)fihrmation represented
in them, one needs to travel across their vertices followleg edges, e.g. to check if
two points are connected or to interpret modal formulas iiplk& model. In the usual
notion of graph the vertices that are accessible from ayearifixed.

When we modify the notion of graph allowing that the accessigrtices depend
on the sequence of edges we have crossed we obtain a reaetple ¢So, to each
sequence of crossed edges corresponds a (relationalpftiagegraph, where the edges
that are available are the ones that can prolong the cureenesce. The information
in such a graph boils down to the sequences of edges (or attwar a certain set.

A direct way of representing such a graph would be to drawre given by the
admissible sequences of edges, and, perhaps, to draw abfeésimodes the state of
the graph at that point. Although this idea of havinfetient points representing the
relational state of the same point is useful [in/[19] we used dbtain a relation with
classical modal logic), it does noffer an easy reading of the changes that crossing
an edge implies. As stated in the introduction, the concépeactivity was initially
introduced using an enrichment of graphs with new kinds amives representing the
local dfects of traversing an edge in the global relation. The remtasion dfered
by these structures seems to be much more interesting asyitgasps the reactiv-
ity flavour. Furthermore, we prove that these new multill@reowed structures are
enough to code all the relational dynamics (Thedrerh 2.8).

The simplest ffect crossing an edge can have over the accessibility nelatito
turn on or df a connection. These elementary changes can be represgrdealting
an arrow from the crossed edge to the edge representing timection being altered.
Crossing an edge does not have necessarily always the séatis.eTo represent these
changes we use arrows from the edges to the arrows repregtheielementaryfiects,
and so on, obtaining infinite levels of arrows.

In this context we refer to the arrows as switches. The edgesecting points are
0-level switches and the switches connecting O-levelraledel switches ara+1-level
switches. The switches of level greater than 0 can be of twdithe connecting and
disconnecting ones. A set equipped with a set of switcheallisccswitch graph.

The state of the relation after a certain sequence of acitioaswitch graph takes
into account its levelled structure. The switches of levggbr than 0 do not represent
the accessibility relation between points but how thistr@echanges after each action,
corresponding to the O-level arrows. When we cross an edgerweryoft the switches
that are the targets of the connecfitigconnecting switches coming out of it.

In Figure[® we can see the switch graph representing theiveaptaph with set
of points{a, b}, and admitting as set of actions the set given by the follgwagular
expression (beinga, b}? the alphabet):

((a.a) + (ah))"(b.b)((a.b) + (b,b))"(a.a)((a.a) + (b,b))".

We see that oncéh, b) is crossed, the disconnecting switch coming frgama) to



a e e b

Figure 6: The white pointed arrows represent the conneativitches, the black ar-
rows the disconnecting ones and the dashed line the facthtbagwitch is initially
disconnected.

(a,b) becomes connected. Thus, after crosgind) and(a, a), (a,b) can no longer
be crossed.

Many other kinds of switches, havingfitirent éfects, could be considered. These
seem to be the most primitive ones, since they incorpora@ddésic actions in graph
reactivity, connecting and disconnecting edges. We slealthat this is enough to
represent all reactive graphs. That is: any reactive behawgan be decomposed into
this kind of local actions.

2.1 Reactive by Switch
Definition 2.1. A reactive graphs a pair(W A), where

e Wis a non-empty set, the setwbrlds, and

e A, thebehaviour is the set of admissible sequences of edges, i.e., a subset o
(W x W)* closed under prefixes containirg(the empty sequence is always
admissible).

The state of the accessible relation after an admissibleeseg of edges being
covered is given by
Ri={(w,w) : A(w, W) € A}.

We now introduce the enriched notion of graph, the switciplgsaand formalise
in which sense they can be used to represent (or generattiyesgraphs highlighting
the dfects that moving around the base graph has on the acceagsitliition.

Definition 2.2. For a non-empty sa&/ andn < w, the set4,(W) of switchesoverW
of levelnis defined as:

o Ag(W) =W x W (of level 0),
o An1(W) = (WxW) x An(W) x {e,0} (of leveln).
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A switch with e (o) as its third component is calleccannecting (disconnecting) switch
The set of all switches oW is defined by takingd(W) = Un<,, An(W).

Definition 2.3. A switch graphis a pair(W,R), where
¢ Wis a non-empty set, the setwbrlds and
o Rc A(W) is the set obwitches
We say tha{W, R) hasreactivity of level rif Rc Ui, Ai(W).

Remark 2.4. In the graphical representation we use normal arrows forOthevel
switches, a black (white) pointed arrow for the connectidigdonnecting) switches
and switches that arefcare drawn with a dashed line.

Here we introduce some notation to refer to switches in ameetshion:

Definition 2.5. (ViVa,...,Von_1Von,8,0) for o = §1...5 € {o,0}", n < w anda ¢
A(W) is defined as:

e (a,¢)=1a,
o (VaVo,...,Vone1Vons2, &, St ... Shet) = (V1. V2), (VaVa, . .., Vone1Voni2, &, St - - $n), Shed)-
We say tha{v,va, . . ., Von_1Von, o) is @ switch of typer-.
For example,
(WaWa, WaWa, Ws, We, @ )5 = ( (W, Wa), ((Wo, Wa), ((Wa, Wa), (Wa, Ws), ), #), 0
is of typeoc e e,

Definition 2.6. Given a switch grapts = (W, R), the behaviour of Sis the smallest
set,As, such that:

° EEAs,

o If a € AL thena(w,w') € Ag for all (w,w') € R,.

WhereR, ¢ A(W) is the switch stateof our switch graph after crossing the
sequence of edges

— R. = R, the initial state,
- Ryuw) = (R —{a: (w,w),a,0) e R, }) u{a: (w,w),a ¢) € R, }.
(W Ag) is the reactive graph generated ®@nd
AS:{R(I:Q'GAS}
of switch statesf S.

Notice that the reactive level &, is the same for allr. Neither the highest order
arrows can ever be turnedfonor higher order ones can be introduced, since a switch
that acts over a switch of ordaras orden + 1.

11



Remark 2.7. When we informally introduced the switches dynamics we didspec-
ify what should happen when a connecting and a disconnestiigh act simulta-
neously over the same switch. In the previous definition threvention is that the
connecting action prevails. We could have opted instead for

¢ the disconnecting switch would prevail
Reww) = (Reu{a: (W,w),a,¢) eR,}) - {a: (w,w),a,0) €R,},

e or that it would depend on the state of the target, by, for gptapalways chang-
ing its state

Ryww) = (Ry —{a: (w,w),a,0) e R,})u{a: (w,w),ae)eR, & a¢R,}.
We are interested in studying how expressive these stegtare regarding the

generation of reactive graphs. It is easy to see that giveactive grapti = (W A)
the switch grapt® = (W, R° uR*) where

R* {(WJ_WZ, . ,W2|0-‘+1W2‘0-‘+2,0') 1O € {0}*, Wi...Wos42 € A},

R = {(W,WiWy, ..., Wyps1Wasjs2,00) : 0 € {0}, V,V,W; € W},
generatesy if the connecting switches prevaiFor the other options there does not
seem to be such a direct way of coding the reactive behaw@eican then ask whether
these options are relevant for this goal. Next theorem shbassif one allows un-
bounded levels, these options do not limit the switch gragipsessivity. Furthermore,

it presents a general construction such that given anyiveagiaph we obtain a switch
graph that, regardless of the chosen option, generate$vire rgactive graph.

Theorem 2.8. Any reactive graph can be generated by a switch graph, fanlbes
this switch graph can be chosen such that no connecting aswbdnecting switches
ever act simultaneously over the same switch.

Proof. Given a reactive graptW, A), we define a relatio ¢ {e,0}* x (W x W)* by
taking

C(o,a) iff either the number ofs ino is even and € A,
or the number oés ino is odd andx ¢ A.

This definition clearly implies the following:
Lemma 2.9. C(oe,a) < -C(0o, ).
Now let
R= {(W1W2s cee 7W2|0'|+1W2|rr|+2’ 0-) : C(O’, (Wls WZ) s (WZ\O'\+1’W2|0'|+2)): g€ {.’ O}*’
w; € Wandw; .. -Wos| € A}
We claim that, for every € Ag, the following hold:

Lemma 2.10. For every(B,0) ¢ A(W), (B,0) e R, < C(o,ap).

12



We prove the lemma by induction @n Fora = € this is just the definition oR.
Now suppose that(w,w') € Ag and Lemm&2Z.10 holds fer. Then, by Lemm&219,
we have that

((w,w)B,ce) e R, < ((W,W)B,00)¢R,. (1)

Now by (1) we have:
forevery(8,0) e A(W), (B,0) €Ryuw) <= ((WW)B,0e)eR,. (2
Now we can show LemniaZ110 faw, w'):

(ﬁ’o-) € RO/(W,W’)
iff (by (2))
(w,W)B,ce) € R,
iff (by the IH)
C(oe,a(w,w)p)
iff

C(o, a(w,wW)B).

Now we can complete the proof of the theorem as follows. Fiast A n As.
Otherwisea(w, W) € As iff @ € As and(w,w') € R, iff (by LemmdZ.ID} € As and
C(e,a(w,wW)) iff @ € As anda(w,wW') € A iff a(w,wW') € A. o

Remark 2.11. Notice that the condition thatw. . w,, € A in the definition of R is not
necessary but avoids the inclusion of switches that wilehaw part in the dynamics.
Indeed it is easy to see that in what respects to the behawibarswitch graph only
such switches matter.

2.2 Modelling multiple agents or processes

ReactivgSwitch graphs can model situations where the accessibdigtions change
when an edge is crossed. Without any limitation on the nurobérdividuals going
through its edges. In fact a reactive graph may be used tgragarticular interaction
between many agents going around in a graph.

In ak-agents (processes, individuals, etc.) setting, the bvaibnfiguration ceases
to be the only relevant information, we need to keep traclkacheagent’s position. The
k-behaviour of a switch graph with set of initial configuraiscC ¢ WX is the set of
allowed sequences of moves when khagents are located they start in position€in
elements are allowed to do. Let us formalise this notion.

Definition 2.12. Given a reactive graptR = (W A) and a number k of agents wan-
dering about in the graph we define:

e (WK)* s the subset ofWK)* formed by the sequences where each element dif-
fers from its successor of only one component, that is:

_ Wk c (Wk)%,

13



— a(Wy, ..., W,..., W) € (W) thena(wy, ..., Wi,...,W)[i = w] e (WK)%
foranyl<i < n, where

a(Wy, ..., Wi, ..., Wi)[i > W] = a(W,...,Wi,..., W) (Wp,...,W,...,W).
o £: (WK% (Wx W)* is defined as:

— a e WKthen&(a) = ¢,
—a=a (Wi,...,W,...,W)[i = w] e (WK)% then

E(a) =E(a(Wy,...,Wi,...,Wk))(Wi,w).

Let C< WK be a set of initial allowed configurations for the k-agentgéherated
k-behaviour is:

AE = {a e (W% : £(a) e A¥ and existy ¢ C that is a prefix ofr}.

Switch graphs can be useful in modelling programs or prdspamapturing the
intended interaction between the entities involved. Thegieof the constraints can be
directly imposed by strategically locating the approgriswitches. Ideally, this double
perspective on the dynamics, would allow that the veriftzatf such properties over a
switch graphS, departing from a given configuration could either be extracted from
the shape 08 switches or exhaustively checked ove.

Example 2.13. Let us consider the mutual exclusion problem, taken fionh. [26ere
we can find a model-based approach to the verification of tipgined properties in a
given system, presented as the solution to this problem., thedidea is to code the
intended properties i@ T L and verify if the transition system associated to the sofuti
satisfies them. Here we lay the basis for fiedtient approach.

As we referred in the introduction, ih [12] by adding higheder arrows to the
structure of an automata, and thus allowing its transitadyiet to change while it is
reading a sentence, the authors achieved an exponentigti@din the minimal num-
ber of states needed to accept a language. Therefore, thisfwapresenting systems
may have impact in model checking, where the state explgsioblem is a serious
drawback. The switches configuration at each point detexsnati the future dynam-
ics, coding the interdependence of actions. Of course thatd obtains less states
when considering the switch graph corresponding to a eeptaitocol instead of con-
sidering its associated transition system, is not because snformation was thrown
away. The fact is that this information is coded in &eatient form, hopefully in a
more intuitive and accessible way. It is the extra expréysiyiven by the higher order
arrows, that allows us to identify flierent states with the same point by associating
them to diferent switches configuration. Moreover, if one finds an apgate way to
extract the corresponding switch graph of a program or padt@ne may expect that
the verification of some properties can be reduced (by mefssme intermediary
reasoning) to a simpler verification over the switches. élifjh we do not develop the
verification part, in the next section we introduce a langutgreason about switches
and their &ects. We believe that this language can be extended to a\wbare we
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can reason about both the switch view and the usual transtistem view, and de-
rive enough knowledge about their interaction in such a viwa in order to verify

some properties at one level it is enough to guarantee sdiatedeproperties in the
other and vice-versa. Nevertheless, here, we concentragh@ving how switches
can be integrated in transition systems to improve theiretliog) expressivity. We

understand that in this case the switches are associatexhdiitional commands and
changes on the auxiliary variables used in these conditiblmsvever, no systematic
knowledge about that connection was obtained yet. We wilitlourselves to present
examples of switch graphs ‘associated’ (in an informal amdifive way) to protocols

that constitute possible solutions to the problem and dstiiem.

The mutual exclusion problem as presented in Chapter[3 $i§26

When concurrent processes share a resource (such as a filelisk ar a
database entry), it may be necessary to ensure that theytdwme access
to it at the same time. Several processes simultaneougingthe same
file would not be desirable. We therefore identify certaiitical sections
of each process’s code and arrange that only one process ean fis
critical section at a time. The critical section should indé all the access
to the shared resource (though it should be as small as pessdthat
no unnecessary exclusion takes place). The problem we egel faith
is to find a protocol for determining which process is allowednter its
critical section at which time. Once we have found one whiehthink
it works, we verify our solution by checking that it has sompeeted
properties, such as the following ones:

Safety: The protocol allows only one process to be in its criticattien at
any time.

This safety property is not enough, since a protocol whiatmp@&ently
excludes every process from its critical section would be,daut not very
useful. Therefore, we should also require:

Liveness: Whenever any process wants to enter its critical sectiowijli
eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis thatdkiele through
the processes, making each one in turn enter its criticatisec Since

it might be naturally the case that some of them request aese® the
shared resource more than others, we should make sure otoqaichas
the property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

We modelN processes, each of which is in its non-critical stae ¢r trying to
enter its critical statet), or in its critical state€). Each individual process undergoes
transitions in the cyclea -t - c—>n— .., seein FigurEﬁ’the caseN = 2, but the
two processes interleave with each other.

Lin the graphical representation one finds numbers juxtaptosthe letters, this is due a limitation of the
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Figure 7: The mutual exclusion problem: combining procesbaring resources, two
processes scenario.

One immediate solution (fdx = 2) one can think of, is to use switches to impose
directly the condition that one process gets to its critara@a the other cannot — us-
ing (t1€1,1t2Cy, 0) and (t2Cy, t1C1, o) — and to remove this restriction when it returns to
the non-critical state — usin@;ny, t2C2, ) and (cany, t1C1,0), see Figurél8. The two
processes startffoin their non-critical states as indicated by the incomingesdwith
no source. Either of them may now move to its trying state doly one of them can
ever make a transition at a time (asynchronous interlegqwvifige problem here is that
nothing prevents one of the processes from getting studkeatrying state while the
other one accesses continuously to the critical area, sndss fails.

A way to guarantee liveness is, when a process requires ggomito move to the
critical state (moves to state t), to allow the other pro¢esgquire access the critical
area only once until the first process accesses to it. In Efguve can see that the extra
switches do exactly this. The situation is symmetric sodbtsck liveness for the first
process, that is, if it moves t, it will eventually be able to move to,. If process
1 moves ta, it turns on(cany, Naty, o) (by the action of(nyty, cony, Noty, 0e)), which
guarantees that if process 2 does the whole cycle once,$here(cany, naty, o) is on)
it can only try again if process 2 passesdy (t1C1, Nptp, o) and (t1¢y, Cony, Noty, 00)
remove that restriction. But this is done by restrictinggass’s 2 ability tarequire
access to its critical section, thus failing the non-blagkéonstraint.

This is easily solved in Figuie 110, where the limitation isckd only at the last
stage. One can see that the two switch graphs are reallyasjthié diference is that the

application used, thus they should be seen has being unig¢ss©utside the figures we will use the proper
form to avoid that with their intense use the text becomesadabkle. E.gtl in the figure corresponds tp
in the text.
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Figure 8:N = 2: liveness fails.

Figure 9:N = 2: non-blocking fails.

disconnected edge {,, ;) instead of(n,,t2). That is, instead of using the following
set of switches

{(niti,cjnj,njtj,o-), (tiCi,njtj,O), (tici,cjnj,njtj,oo) tije{1,2},i+j},
we use

{(niti, cjn;j, tjCj, oe), (tiCi, tjcj, @), (tiCi, CjN;j, tjCj, 00) =0, j € {1,2},i # j}.
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So when one process requires to access to the critical 8tatether may access only
once to it, though being still able require access to it,luhé first's access is granted
(other levels could be as easily set). Thus this solutionpti@® with all the problem
requirements.

Figure 10:N = 2: a complete solution.

Hence, the advantage of the switch graph representatibatisve can forceheck
the properties at the meta-level. We directly observe thecethat each transition
has on the global accessibility relation. This stronglygagis how these solutions
could be implemented by programming. Though the other time¢from programs to
switch graphs) is not approached here, it seems a fundahségpan evaluating these
structures potential.

Till now we tried solutions where each process runs aroundifé@rent connected
components of the presented switch graph, but there is somda be so. If we allow
more process to run around the solution§lin 9 [add 10, thenleimess and non-
blocking properties would clearly be lost. Let us look to gosolutions with only
one connected component where all process run, thus sawvihg humber of required
points in the graph.

In Figure[11 we have a general straightforward solution lierN processes case,
but again liveness is not guaranteed. Again nothing forhiggocess (or a group of
N’ < N processes) to keep accessing the critical area making isailple for some
processes to do it. There does not seem to be a way of avoldggith this base graph
(without losing the Non-blocking property), at least if we kot use multiple connec-
tion between each point, which are not allowed in our deéinitf switch graphs. Of
course it would be easy to consider labelled switch grapherevthis was allowed but
it would be closer to consideringftiérent connected components.

Instead, in order to guarantee the other properties we wiilsicler a slightly more
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Figure 11:N arbitrary: safety and no strict sequence only.

complex base graph. We use a number of ‘trying’ states equilet number of pro-
cesses. We learned the kind of restrictions needed fronTé&{fl and we can see in
Figure[12 a switch graph using the same idea for avoidingase of liveness. Since
here both processes share the same graph point for nacetaitid critical sections the
way of imposing it changes slightly. First we need to guarame do not have more
than one process in the same point representing ‘trying taogeritical section’, by
having (ntj, nt, o) and(tic,nt, ), fori = 1,2, controlling that. Initially we have both
(cn tic, o) and(cn, toc, o) on. One way to avoid the loss of liveness is to have that when
a process moves tthen(cntjc,») (for j = 3-i) becomes fi, that is we have the
switch (nt, cn tjc, eo). Clearly when that process moves out;ahe restriction is not
needed anymore, and so we hatie, cn tjc, ee). This constitutes a complete solution
for N = 2 but forN > 2 it loses liveness and non-blocking. If we want to accommo-
date more processes we can simply add more trying statesaasas the number of
processes being considered and have the same switch strbetween every patr,

tj fori # j. Meaning that a solution for arbitrafy is given bySy = (Wy, Ry) with

Wy = {n,c,t5,...,tn} and

Rv = {(nt),(t,c),(cn),
(ng,ng, o), (tic,nt, »), (cntic, ), (Cntjc, e), (tiC, tjc, o),
(nt,cn tjc, eo), (tic,cn tjc,ee) : 1<i, j < N,i # j}

Clearly forN > 2, Sy is not as easily visualised, but this is also a cost to paywalsn
drawing the transition system associated to the protocdhf® mutual exclusion with
various processes. We believe that it is still impressiesfalot that the switch structure
is easily definable for alN, being clear from thé\ = 2 case analysis why it works in
the general case.
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Figure 12: N arbitrary: safety, liveness, no strict sequencing and lloonking for
N=2.



2.3 Comments and remarks

Level of Reactivity Being true that all reactive graphs can be represented kgtswi
graphs, the level of reactivity of the representation istofious practical importance.

Given a reactive graph, it is easy to see that the minimatikeslevel for a switch
graph representing it, depends on the choice of dynamicsseassed above. Consider
R = ({a,b},A), whereA = {a: 1 = (a,a)" ora = (a,2)*"(a,b),n < w}. Using the
definition where the connecting switches win we cannot finchiefireactive level
switch graph that represents it. Whereas using the alteqatie it can be represented
by a switch graph of reactivity level 1:

({a,b},{(aa),(ab),((a.a),(ab),0),((aa),(ab),e)}).

Figure 13: Alternating dynamics example with the followinghaviour:A = {a: 1 =
(a,@)"ora = (a,a)(a,b),n< w}.

It is also easy to cook a reactive graph that cannot be repuexs®y a finite level
graph for any of the options we mentioned above, nor with arntckes with ‘recursive
behaviour'. Letf be a non recursive binary sequence and

R=({a,b},A), whereA = {e:a = (a,a)"ore = (a,a)%(a,b),n < w, f(k) = 1}.

Question 2.14. For each of the considered options which is the set of reagiaphs
generated by switch graphs of reactivity leved @?

Further extensions We have seen how arrows can represent more than the basic tran
sitions, they can represent the transitions between stéditbee accessibility relation
itself. These new arrows are a natural extension of the gtrdeyraph corresponding
to a kind of meta-transitions in the above sense. They peoaidexplicit way of ex-
pressing the meta-level graph’s notion of reactivity, inaywhat allows an immediate
(and complete) reading of théfects of crossing an edge.

In Sectior 2.2 we considered multiple entities going thiotite graph, thefeects
of each action were independent of whom was doing it and nasgnous movements
were allowed. Other types of dependences can be considered:

e Dependence on the identity of the individual entities cdaddnodelled by hav-
ing different relations for each entity, or groups of entities.
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e Synchronous movements could also be represented by spel@tibns. Of
course switches can connect arrows regardless of theorekdey represent.

Thus leading to the question:

Question 2.15. Is the switches formalism enough to represent these mokrgdre-
haviours?

Model Checking Above we gave an example of how a mutual exclusion protocol
may be coded by a switch graph. Specifically, we model at thigk€ level’, how the
action of one agent (i.e. the transition between wgslidges) precludes the execution
of an action (i.e. transition) of another agent. In this cewéches are associated to
changes on the auxiliary variables keeping the criticad aede. It is clear that the fact
that we directly express that when one process access totibal@area, all the others
will not be able to access to it (by having the appropriatdawin place, and no other
switch acting on it), may give enough evidence to guaranfgtgavithout the need to
check the whole state space.

It may be that depending on the property in question, the eftesttive way of verify-
ing a certain system satisfies involves consideriritptint types of models associated
to that system, and checking a stronger property that sritailopefully switch graphs
are among the useful structures to do it. In the future we hofiad more meaningful
examples that allow us to understand the general case.

3 Reactive hybrid switch logics

In the previous section we have shown that switch graphs wtabte structures to
embody and represent the reactive paradigm. In this seatoimtroduce a logic that
allows us to reason about switches and thé&&as and prove completeness. A basic
feature of such a logic would be to be able to express thatef@in switch is on, then
after such move the state of certain switch will be such.

In the introduction we gave some motivation for the used lagg. On one hand,
given a switch graplfW, R), for each switch typer € {o,e}*, the set ofo-switches
forms|o| + 2-ary relation oveW and there is thér| + 1-ary modal correspondent,,.

On the other hand, similarly tor in [19], there is the operator corresponding to its
behaviour,>. The goal is to relate both, expressing how the switchesmé@ie the
behaviour.

The logics we considered in [19] were suitable to talk abocil éfects of reactiv-
ity, but here we are dealing with its globdfects and at the same time we feel the need
to to explicitly refer to specific states. Ordinary modalitdglack of mechanisms for
dealing with states explicitly is a recognised weaknes$adhthe idea of adding vari-
ables that are used to name worlds dates back to the piogeeoitk of Prior [30/29]
and especially of Bull[11](se€ [24]). Recently the studyttd$ idea gained popular-
ity ad%d its development became an autonomous subfield of Inagle, calledhybrid
logiai.

2For more details se&l[2] [T, 6].
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Hybrid languages are a very simple extension of modal onespétial set of
propositional variables, called nominals, is added arglutsied to name worlds. Nom-
inals are true at exactly one world in any model. Many opesgatelated to the nomi-
nals were studied. A particularly simple one is @ that allows to jump to particular
worlds, in the sense that, for each nomina® ¢ is true if¢ is true in the world named
i, which suits our need to think globally.

We consider models constructed from switch graphs in suchyathat for each
admissible sequence of edges we get an usual hybrid modsd baghe Kripke frame
given by the switches’ state at that point. Of course eachimalrmust be true in the
same world in all these models but all the other variables chayge.

This language allows us to express some strong reactivetiasse Consider the
formula

@o(j->@-2j).
This says that if we cross the edge from the world narinem the world named;,
that connection will be turnedfio Another way to say this is to say that there is a
disconnecting switch from that edge to itself:

@i <I>o (j,i, J)

We obtain completeness for the introduced logic adaptiegugual Henkin style
proof of completeness for hybrid logics, seéel[7, 9]. ThigHar justifies the choice of
language by showing that it is appropriate to capture th&ckes’ dynamics.

3.1 Switch Models

Definition 3.1. We consider theeactive switch similarity type

S= ({®} U {q><r ‘o€ {O’ .}*}7,0),
wherep(®) = 1 andp(<®,) = 2|o| + 1. Thus we define the hybrid modal language
Hs(@) is defined by
@Y == I | p| @ | 901/\()02 | @SO | ®0(§01’~-"902|(r|+1) | @i‘,ﬂ,

wherep e I1, i e NOM ando € {o,e}* . The other connectives, 1, v, -, <>, @ and
m, are introduced by the usual abbreviations.
Givenl e (NOM x NOM)* we define the abbreviatioa¢ by recursion:

e Qp=0¢p,
o 00D =@ & (j A 0') (clearly@(-D1p = 1D o1 ¢),
andzly = - % .

Definition 3.2. Given a switch grapls = (W,R) and using the dynamics defined in
[2.8 we generate, for eadhe As, a reactive graphS, = (WR;).

A switch frame is the Kripke frame given by the disjoint uniofall these switch
graphs, where- switches inR, give origin to local(2|o| + 2)-ary relations and with a
global accessibility relation connectimgin S; andw’ in Sy, see Figuré14.

Formally, theswitch frame overS is §s = (W x Ag, Iis) where
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L IE{S = {ﬁg}(re{o,o}*,/leAs and

L4 ((Wls /l), D) (WZI'HZ’/I)) € Ifaj— iff (WlWZ’ oo Wony1Wons 2, 0-) € R/l'

Figure 14: A representation of a switch frame. The variousmonents are limited by
a dashed line, the switches of that component representttetarrows as before and
the (reactive) transitions by the line formed by lines antsdo

A switch modebver Js is a pairt = (&, v), wherev is a function

v:ITUNOM — 28*W

such that forse NOMwe haveV(s) = {w} x As for somew ¢ W.

Given a switch modebt = (W x As, Rs, v), for every(w, 1) € W x As and every
L-formulay, we define the notiop is true at(w, 1) in M (M, (w, 1) E ¢) inductively
as follows:

o M, (w, ) = piff (w, ) € v(p) for variablesp,
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o M, (w, ) = siff (w, 1) € v(s) for nominalss,
M, (W, 2) E =@ iff M, (W, 1) # ¢,

(w, 2)
(W, 2)

o M, (W, ) E @1 A iff M, (W, ) Ep; andM, (W, ) E @,
(W, )

o I,
901
Notice thati(w, w') iff (w,w') = (W,W, €) € Ry iff (w,w) € R,

w, ) £ @piffthereisv € Wsuch thait(w,w') € A andIn, (W', A(w,w'))

o M, (W, ) E @piff M, (W, Q) = pforv(i) =As x {w'},

o M, (W,2) = Op(e1,- . ,y2n+1) iff there arevy ... Von1 € W such that
(W,V1,..., Van, Vons1) € R @ndMi, (4, Vi) = o

We say thaty is true inMt iff M, (w, 1) = ¢ for every(w, 1) € As x W. We say that
is valid ina switch frame if it is true in every switch model over it.

3.2 Axiomatising

In this section we prove that the axiomatisation presemegigure[ 15, generates all
the Hs(@)-formulas that are valid in all switch frames. Furthermose, obtain the
usual hybrid automatic completeness for pure axioms. Thafing axiomatisation is
the natural adaptation of the ones for the standard hybgidsagiven in [8] 9].

Remark 3.3. Notice that if we considered aftierent dynamics for the switchedyn
would have to be dierent. For example the alternative$in2.7 correspond to:

e the disconnecting switch would prevail

®(i’j)@i1 q>-0_- (iz, . ._.,i2n+2) g . . i i
@ Poo (Jri1--sione2) A (@i, Oo (2. sione2) V@ Do (Jsi1---,12n42)),

e always changing state

®(i’j)@i1 Oo (I2,...,1on42) < . . i,i i
(@i14>"'(|_2’ ey |.2n+2)/\ﬂ@i4>(ro(.1,-|l e ,.|2n+2)\/
—|@i14>o'(|2, ceey |2n+2)/\@i @O’I(J’ Ii..., |2n+2))-

Here is the theorem we shall prove:

Theorem 3.4. Let A be a set of puré{s(@) formulas. A set of{s(@) formulasX is
Ls + A-consistentff X is satisfiable in a model satisfying the frame propertiesngefi
byT. Where s + A is the above axiomatisation extended with the axioms. of

Lemma 3.5. The following are derivable
o Kg: - (@i¢ ~ @v) ~ @(¢—y),
e Nom:- @ij - (@i¢ ~ @jp),
e Sym:- @ — @ji,
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Ls

Axioms:
CT All classical tautologies
Klllhr \I|U—((,01,...,(,D—>lﬁ,...,902n+1) —
(B (@155 @y s @one1) = Do (@15 W, oo @2041))
wherel is the component whekg — i is.
Ke @i(¢ > ¥) > (@~ @y)
Selfduap @ip < -@i—¢
Ref @i
Agree @@jp < @jp
Intro i > (p < @ip)
Sync Q1 < O
Det,, o(ing) »a(i—¢)
Ko (¢ > ) — (B ~ BY)
Dyn QU@ Oy (i2,. .. i2n42) <
(@i, O (i2,..-5i2n42) A =@ Poo (Joi1--,12n42) V@ Do (J,11--.,02n42))
Rules:
MP If - ¢ andr+ ¢ - y then+ y
Subst If - ¢ then- ¢?
Geny, If - pthenr @y (L,..., L, 1,...,1)
Geng If — ¢ then @;p
Gemn, If - ¢ then+ @
Name If - @;¢ andi does not occur ip thenr ¢

Paste,iy, If - '@ o (j1.-.-, j2ne1) A @ (Atsizons1 @jr) — ¥ andj # i
does not occur iy or ¢ then- '@ Gy (91, .., P2n11) = ¥

Past¢,., If+ '@ @ j A @' @ @j¢ ~ ¢ andj # i does not occur i or y then
'@ QoY

Figure 15: Thd_s axiomatisation.

e Namé: If ~i — ¢ thenr ¢ where i does not occur ig,
® BaCk@U: q>0'((101’ e @i‘Pk, cees 902n+1) - @i‘Pky
e Bridgey,: @ Oy (J1---» Joni1) A (Awsisone1 @ji¢1) = @i Oo (@1, - -+, P2ni1)-

Proof. The first 4 are proved i [9].

e Back,
Agree Agree
@@~ @@ O Y
@u Q)D. ((p]_, A ,¢2n+l) A @l@l<p - @U@JQD Past%(r
@ Po (¢1,.- -, @jp,..., p2n11) > Qu@jp
KaName

4>0’(()017 ceey @190’ ceey ‘102n+1) - @190

e Bridge,- by induction oro, o = € is trivial and
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Ka

e

Te(—¢ = =) = (Demp = De—])

: , T - Intg,CT
e~ A Dej = Ge(j A=) A9 — @

Back

Geng, K@
K@a,CT,AgregSelfduap

Te—p A Dej = Ge@j—gp T Ce@j-p ~ @j—p
@ (Te—¢ A $e]) > @@j—¢
@i De —p A @; Oe | > @j~p
@ Ce j A @jp —> @i Dep

The proof for arbitrary-’s consists in the repetition of this derivation applied to
each of the r| - 1 coordinates, where in each time an argument eats a conjunct

O
Lemma 3.6. The following are derivable:
o 2ty o @ (j-nly),
o Geny: If - g thenr zty,
o Ky 2 (¢~ y) > (2'¢ > 2'y),
e Dety: o' < lp A &1,
o Ger,.: - ¢~y thenr &g > o'

Furthermore from Geg: and K. we easily ge (¢ A ) < 1o A >ty and (¢ v
) < &lp v oty

Proof. e a("Dlg = -@; & (j A @'-p) thatis equivalent to @ (j - - &' —¢) =
@z (j-az'y).

e Gen,: by induction ony, e is trivial and

2
o CT
Ji(peerh

2(j » 2'e)
@z (j—o'y)

e Ky by induction o, A = €is trivial and

-
2D (o > y)
@2 (- (@e=a9)
@o(j-o'y)—>@a(j->o'y)
2Dy gDy

IH

Ka, Kae
def
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e Det, .. by induction onq, 1 = € is trivial and

Def,IH

oMMy~ @ o (inf@era ™) | or

oMy > @ o (jrr'y)
oDy 5 piDig p oy
oDy o gDy A DIy

CT
CT

(i.j)a
2D A DT S5 (DA, K", CT

e Gerl,, by induction o, A = € is trivial and

gy
2' (¢ > ¥)
' TABY (¢ > ¥)
2o A T > Bl A Q1T
Qg — My

GerbA
CT

Ky, CT
Det®A

Definition 3.7. LetX be a set of{s(@)-formulas:

e Y is named if one of its elements is a nominal.

o X is ¢,-saturated if for allo’ and &' @; G (01....,¢2n:1) € = there are nom-
inals ji,..., jons1 SUCh that@‘@i Oor (j15---5J2n41) € X and @A@jktpk €2,
k=1,...,2n+ 1.

e Xis ¢-saturated if for allo'@; © ¢ € T there is a nominal j such tha'@; ©
(ing)=0'typex.

Lemma 3.8. (Lindenbaum Lemma). Every k I'-consistent set of formulas can be
extended to a named;-saturated andp-saturated MCS, by adding countably many
new nominals to the language.

Proof. Let (in)n<w be an enumeration of the new nominals &ag),.., an enumeration
of the formulas in the extended language.
We definez® = £ Uiy, Namé guarantees that it is consistent.

If X" u {¢n} is inconsistent theB"! = X", Otherwise:
1. ™1 = "0 {p,} if ¢ is not of the forme'@; G (Y1, ..., Yaks1) OF 1 @; W,

2. 2" =3"U {en} U {2'@ Do (im,-- . ime2ne1) } U (0@ 0 - 1< 1 < 2k+ 1}
if it is of the form &'@: ®o (Y1,...,Yaks1),
3. 2™ =3y {pn ) u{1@ @ (imA W)} ifitis of the form &' @; @ .

Whereiy, is the first new nominal that does not occuthor ¢,.

LetZ? = Une, 2. ThenZ c T andZ® is named®,-saturatedg-saturated, maximal
and consistence. The only non-trivial step is in 2, and herssistency is guaranteed
by Paste,.q,, andPaste,,, . m
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Definition 3.9. (Henkin model fron). LetT” be a maximal consistent set &H(@)
formulas. For all nominals i, lefi| = {j : @;j € T'}. Then thelir = (W A, T,v) is given
by:

W = {Ji] : i is @ nominal,

A={{1): o' TeT},

é: {TZ’/—U}(J’,(/I),

FV%)(“l izns2]) iff @' @i, Oo (i2, ..., I2n42) €T,

v(p) = {(fi.(4)) : &' @peT},

v(i) = {(fil. (1)) : (2) € A},

)
where(e) = € and (A(i, j)) = () (li|,]j]). ThatM is well-defined follows from Ref,
Sym, Nom and Gg.

geeey

Lemma 3.10. (D g = 21@; @ (j A @).

Proof. By induction on:
For A = € the two formulas coincide trivially and for = (s;t)y

®(&t)v(iwj)‘p = o8 o) ¢ _IH ®(St) Y@ o (jry)= ®(&t)7@i 2 (jre).
O

Lemma 3.11. M is a switch model wheréW x A, R) is the switch frame generated
by S= (W,R) such that

R={(fialliz], ... liznsalliznsal, ) = (lial, fizl, - lizneal fizne2]) € RT}.

Proof. Let As andRs = {R]} as defined ifi.:2]6. The proof that= As andlij’ =R]is
done by induction on the length ¢i).

The case of1) = e is trivial since itis in both (T € I' by CT) andAg, furthermore
R’ = R by definition.

The induction step{@) — (4(i, j))):

(A(lil.1iD) € As iff

(1) € As and([il, |j[) € Ry iff (1) € As andRe, (il |j]) iff (IH)

&' eTandRy, (fiL.]j]) iff '@ @ (jAT) = DT eTiff

() (fil. 1j]) € A.

And,

(|?1|“2|,~~,“2n+1|“2n+2|,0') € Ragipy) iff' o _ '

(lialliz], - - ., [izneallizne2], o) € R(/l) and([i|lj], lilliz], . .- liznealliznez], o70) ¢ Ru)
or

(lill3] iallizls - - . liznsallizne2], o) € Regy

iff (IH)

RS (fias[izls- .- izneal lizne2l, o) @andRge (il [, lial, lizl, - - - » lizneals lizne2])
or

[l
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R7* (il [il: ] izl - . lizneals izns2])

iff

1@, Go (i2,-.-,ione2) €T AN @i Gro (Jyi1.. ., ions2) ¢T

or

'@ Boe (Jri. .. ions2) €T

iff

@A@h@o’(iZ» ey i2n+2)/\®/l_‘@i<bo-o(j, i1 ey i2n+2)v®}@i <]>(T'(j’ il e i2n+2) er
iff (Dyn, Geri,, and Lemm&316)

ot D) @i, Oy (iz,...,0ne2) €T

iff (Lemma[3.ID)

@A("J)@il O (i2,---»ione2) €T

O

Lemma 3.12(Truth lemma) For all ¢-saturated andp,-saturated Ly + A-MCS'sT,
nominals i and formulag,

M, (fil, (1) @ iff &' @peT.

Proof. By induction on the length ap.

propositional symbols and nominals by definition;
= —|¢/
Mr, ([il, (1)) = -~y iff M, ([i|, (2)) # ¥ andMr, (fil. (1)) =7
iff (IH)
1@y ¢T ando*@ T eTiIf - @y AT eT
iff (Selfduap, Geri,, andDet,.)
' @i-y;
¢ =1 — Y as in the previous case we aply, K@l, Gerl,, andDet,;
¢ = @y applyAgreeandGeri, ,;

@Y= 4>0-l//,
If Mr, (Ji], (1) & ©o(¥1,...,¥2n+1) then there argjy), ..., |jons| Such that

I:v\)'(f/l)(|i|’ [Jals- s lJ2ns])

andMir, ([ji, (1)) & ¢1. By definition 1@; ®o (j1,...,inp1) € T and (IH)
@jy €T for1<1<2n+1. Thus, usingridge,,, Geri,, and Lemma 316, we
have that
'@ Oo (p1,. .., 0ons1) €T

Conversely, suppose@; ®o (¢1,...,¢m:1) € I' then byo+-saturation there
areji,..., jons1 such tha'@/{@i oo (jl, cey j2n+1) el avnd®”@,-|¢| elforl<
I <2n+1. By IHM, (|ji], (1)) = ¥ and by definitiorR‘&>(|i|,|j1\,...,|j2n+1|).
Hence,

Mr, ([i[,(2)) & O (Y1, ¥2ns1).
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* 9=y
Mr, (fi|, (1)) = @@ iff
exists|j| such that 1) (|i|,|j|) € A such thatir, (|j|, (1) (i, |i])) & @ iff (1.H.)

exists|j| such thatx' D @jp = &'@; @ (j A @j¢) € I'iff (using&-saturation
andcCT)

'@ @ pel.

O

Lemma 3.13(Frame lemma) For all ©-saturated andd-saturated s + A-MCS's,
M satisfies the switch frame properties defined\by

Proof. It follows from the fact thaiA c I" containsza!@;¢ wherey is an instance of an
element ofA from S ubstGeng andGeny.. ]

We can now prove Theorelm B.4.

Proof. (Of Theoren 3.4) Supposeis Ls + A-consistent. By Lemma_3.& can be
extended to a named;-saturated aneb,-saturated_s + A-MCS'sT". Leti € X. By
Lemmal3.IR we hav@r, (fi|,(e)) = £. By Lemmal3IBM satisfies all required
frame properties. m|

3.3 Comments and remarks

Small switch frames The fact that the propositional valuation is allowed to a®n
at each move implies that switch frames based on switch gnafth infinite behaviour

have infinite components. Nevertheless, to have a compkateon the switch dynam-
ics it would be enough to have one component for each reagkaliich configuration.

Let As = {R; : 1 € As} be the set of switches’ configurations that are obtainessn

dynamics. One can then consider the Kripke fragge= (W x A, Ii’s) (the small switch

frame overS) where

° ﬁyS = {QT}U'E{O,.}*W
o ((W1,R), ..., (Wani2, R)) € R iff (WiWa, ..., Won,1Won,2, ) € Rand
e (w,R;) connects (reactively) withw', Ry )-

So everything is the same apart from the fact that we do natyaswet a new compo-
nent from a move, the tree structure disappears. It is easgetohafys is finite if and
only if Sis finite. See Figurg_16 for an example.

Let us consider a semanticsi(@) over the small switch frames trivially adapted
from Definition[3.2 (only the interpretation & changes), and call them small switch
models. If the set of propositional symbols is empily £ @) these two classes of
frames trivially generate the same logic. Also, when, egy. niodal checking pur-
poses, everything in the model is finite, including the nundi@ropositional variables
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Figure 16: Small switch frame df{a, b,c}, {(a,b), (a,c), (ab,cd,0)}}.

involved, one would consider similarly a finite represeotaty having one compo-
nent for each configuration of the switches and distributitthe relevant propositional
variables.

Moreover, it is interesting to notice that even if the classiesmall and the original
switch frames are not immediately reducible to one anotey yield the same logic.

It is trivial to define a model ovefs from a model overgs preserving modal
truths, since we just have to copy the valuation of each cordigpn and paste it where
it appears, so

{p e Hs(@) : ¢ is valid over switch framesc
{¢ € Hs(@) : ¢ is valid over small switch framés

The converse is not so immediate since if we cannot fit ti@dint configurations
in the same component of a small switch model. However, ibtshard to see that
these two classes define the same logic. The idea of the rtwé following:

Givengp and a switch modglW x As, Rs, v), (W, €) E ¢ (we can assumg = € since
the past clearly does not interfere with the evaluatiop)ofWe then consider a switch
graphS’ which is a copy ofS plus some switches of a high enough level so that they
do not interfere with the evaluation gfand that during the evaluation gfthe new
switches’ configuration changes and so that we can accontmttzy. Letk be the
higher level of the switches referredgnit is clear we can add new points and switches
such that at each crossing of an edgeftedint switch, of level higher thdqg changes
its state. For example one could add for each admissibleesegof edges covered in

the interpretation 0®, A = (WiW>) ... (Wan_1Wan ), @ pointw; and the switch
(W1W27 «ov s Wop_1Wop, [W/lW/l]k, .n—1+k)

where[wﬁwﬂ]k stands foik + 1-occurrences ofv,w, with a comma dividing each oc-
currence. Thus guaranteeing dféeient component for each sequence of edges and
therefore being able to define the appropriate valuatiomth ®f them.

Decidability and f.m.p. Given a satisfiable formula, that is, such that for some
(w, 1) € Wx Ag and valuationu, we have:

(W x As,Rs, 1), (W, ) E ¢.
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Clearly this is determined by just a part of the whole models e have noticed above
we can start by throwing out the past, that is, assumingthat. It is also clear that
only the fragment corresponding to the paths bounded bytmeodal nesting-depth
of ¢, mdy (¢), matters. Furthermore, the level of the relevant switclsesounded
by n+ md, (¢), wheren is the level of the highest switch in the formula. Thus, the
satisfiability ofp is reduced to checking the satisfiability over certain Kepkodels
corresponding to that kind of fragment. Of coursaiis infinite these fragments are
infinite. The most direct way to finitise such a fragment wdwtdo adapt the filtration
method by identifying only the points that satisfy the saelevant formulas in all of
the fragment components.

We start by noticing that this method fails over general slwihodels. Consider
the following switch graph

S = (w,{(0,n), (0n,Nn,0) : n< w}),

see Figur€d7, and & T € Hs(@).

Figure 17: A switch graph originating a filtration problem.

Given a model over the switch frame generatedshyis clear that no two points
will be identified since(n,0n)’ ' = ¢ &T and(n,0m)’ £’ & & T forn= m.

We were also unable to adapt the game-based argument tdiststae PSPACE
upper bound for the satisfiability problem &f( @), see[[3[7]. The problem is, when
adding a new world to a particular component, how to updateother components
without falling in a infinite loop of verifications.

The study of the logics corresponding to carefully chosdatkaisses may result in
more treatable problems and may lead to a better underataodflithe general case.
One interesting example is the class of switch graphs reptieg that each edge can
only be crossed a certain number of times, modelling theefiditrability of certain
resources, e.g. roads, bridges, product stocks, etc. s of switches required to
model this is very simple (see Example]1.2), which may beatftepositively in an
easier understanding of certain properties of the origigdbgics, e.g. the finite model
property.

Relation with Reactive Logics There are no obvious connections (e.g. translations)
between these switch logics and the ones studied_in [19].n Hwae can extract a
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reactive frame from a switch graph by considering its loedddviour (its paths without
jumps), theGp operator allows a global access over all the reactive stdtaspoint
that cannot be mimicked by the operators considered heestWidapproaches are two
transversal extensions of classical modal logic witfedent expressivity. Applications
may assert which should be developed or even determine tessigy of joining both
views.

Further Extensions Many other hybrid operators have been studied and it would be
interesting to investigate how they would play in this cahteA particularly natural
extension of these logics would be to enrify(@) with computational tree logic’s
(CTL) operators ([10]) or evep-calculus ([31]). This would greatly reinforce our
ability to reason about the behaviour of a switch graph anckeawse its usability. The
way this would be done is not completely clear and it wouldestebon one’s particular
interests.

If we want to reason abowt agents acting in the graph (in Sectionl2.3 there are
such examples) and they are not allowed to jump, we are nateisiied in the whole
set of sequences of edges, but only in the ones that the agagtsross, which are
determined by their position at each moment. To expres®thestrictions, it may
be necessary to include in the language the possibility fefrtieg explicitly to the
distribution of the agents in the graph. In this directioppasibility would be to model
each agent’s location by variables, maybe even introduothansort of variables to
deal with it like we did with nominals. In the used language wauld be able to
express for example that each agent can be only in one pairtirae:

@(an-j) - @j-a,

consideringa to be an agent variable. Also, to express their movement,conél
associate a specific modal operatgrwith each agent, and say:

@i(an-jr]) ~2a(j > (@an @-a)).
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