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Abstract

We suggest a general logical framework for causal dynamic rea-
soning. As a first step, we introduce a uniform structural formalism
and assign it two kinds of semantics, abstract dynamic models and re-
lational models. The corresponding completeness results are proved.
As a second step, we extend the structural formalism to a two-sorted
state-transition calculus, and prove its completeness with respect to
the associated relational semantics.

1 Introduction

The general, though distant, aim of our study consists in singling out and
exploring the ultimate logical ingredients of dynamic reasoning. In this pa-
per, however, we will restrict ourselves to a few initial steps in this general
quest.

As a starting point, we will contend that, at the most fundamental level,
an adequate logical description of a dynamic world can be achieved by defin-
ing an appropriate dynamic consequence relation among (propositions denot-
ing) temporally extended events and processes. In this respect, the logical
formalism, described below, can be viewed as a particular implementation



of the ‘dynamic turn in logic’ advocated already in [van Benthem, 1996].
Namely, it is a substructural consequence relation defined directly on se-
quences of propositions. It will be shown, in particular, that the theory of
such an inference relation can be developed to the depth and levels compa-
rable to theories of ordinary consequence relations.

A more specific idea we adhere to in this study is that the above mentioned
dynamic consequence relation should reflect the basic causal relationships
among events and processes. In other words, we believe that a natural and
systematic description of dynamic domains can be given once we settle what
causes or enables what in these domains; the rest of the properties and facts
about the domain or situation should follow (at least in principle) by logical
means. Furthermore, the rules and postulates that characterize such a causal
consequence relation should be viewed not as entailments that follow logically
from the meaning of the consequence relation and propositions involved, but
rather as nontrivial claims about the (causal) structure of the dynamic world.
Accordingly, such postulates provide an indirect, ‘functional’ description of
the concept of causation itself.

The idea that causal relations should constitute the basis of representation
and description of dynamic universes is not new; as a matter of fact, it is
widely used as a guiding principle in the main fields that deal with such
dynamic descriptions, such as linguistic semantics, artificial intelligence and
even general theory of computation. Taking only a few examples, it has
been persuasively argued in [Steedman, 2005] that the so-called temporal
semantics of natural language should not primarily deal with time at all, but
rather with representation of causality and goal-directed action (see also [van
Lambalgen and Hamm, 2004] for a similar approach). Similarly, a number of
causal approaches to reasoning about action and change have been developed
in Artificial Intelligence (see, e.g., [Giunchiglia et al., 2004]). In fact, our
approach can be seen as a logical counterpart of a qualitative causal modeling
in Al developed a long time ago in [Forbus, 1984].

The paper is organized as follows. We introduce first a basic structural
calculus of dynamic inference that is defined on sequences of propositions
(called processes) and satisfies certain ‘sequential’ variants of familiar infer-
ence rules such as Identity, Monotonicity and Cut. This calculus will be
assigned first an abstract monoid-based dynamic semantics, and the com-
pleteness results will be proved. Then we will show that the latter semantics
can be transformed into more familiar relational, or transition models. More-
over, it will be shown that our dynamic inference constitutes in this respect



a generalization of the inference relation of dynamic predicate logic [Groe-
nendijk and Stokhof, 1991].

As a second step, we will introduce a two-sorted extension of the ba-
sic formalism in which the underlying set of propositions will be split into
transitions (actions) proper, and static propositions (also known as fluents,
or tests). This extension of the formalism will be called a state-transition
calculus. It will be shown that (under some additional conditions) the state
transition calculus is also complete for the corresponding relational seman-
tics.

2 The Structural Dynamic Calculus

The language of the calculus will be a set L = {A, B,C, ...} of propositions
that will denote primitive transitions or events. Finite sequences of events
will be called processes, and we will use small letters a, b, ¢, ... to denote such
processes. The set of all processes will be denoted by L*. It will include, in
particular, an empty sequence denoted by e. As usual, ab will denote the
concatenation of sequences a and b from L* (and similarly for aA, aAb, etc.).

A dynamic consequence relation will be a set of rules, or sequents, of the
form a IF b, where a,b € L*. The intended meaning of such rules is that a
processes a causes (or enables) a process b. This consequence relation will
be required to satisfy the following postulates:

Identity el €.
Left Monotonicity If a I- b, then Aa I b.

Cut If alF b and ab IF ¢, then a IF be.

Already the very form of our sequents involving sequences of propositions
(instead of usual sets) indicates that the dynamic consequence relation is
substructural, that is, it does not satisfy the usual structural rules for con-
sequence relations such as contraction, permutation and weakening. Note,
in particular, that a minimal premise or a conclusion of a sequent is not an
empty set, but an empty sequence e. Still, we will show in what follows
that the analysis and representation of our dynamic calculus can proceed
quite along the same lines as the usual theoretical development for standard
consequence relations.



Though all the above postulates constitute a certain weakening of well-
known structural rules for a (classical) sequent calculus, we argue that these
postulates should rather be viewed as informed claims about the structure
of processes and their interactions. In other words, we see the above pos-
tulates as assertions that have a non-trivial content that jointly determine
the structure of the dynamic universe (more exactly, of its representation).
Varying or extending these postulates (as will actually be done in subsequent
sections) means changing the structure and relations of this universe.

In this respect, it is interesting to note that our postulates preserve lo-
cality and continuity of processes. Thus, if the premises of some postulate
describe relations among contiguous processes, then its conclusion will also
have this property. This feature is especially evident in the form of the Cut
postulate, which does not allows us to infer, e.g., a I ¢ from a I b and ab I+ ¢;
such an inference would break continuity and create non-local influences.

Remark. As could be noticed already at this stage, the sequents of our
dynamic calculus, though interpreted informally as causal claims, do not
correspond precisely to a commonsense notion of causation. A primary wit-
ness of this discrepancy is a postulate of Left Monotonicity that allows us to
strengthen the premises of a rule with additional propositions (though in a
restricted way). Apparent counterexamples to the corresponding strength-
ening of commonsense causal claims are easy to come by, since Striking a
match causes it to light obviously does not imply Putting a match in water
and then striking it causes it to light. Unfortunately, an attempt to establish
a precise correspondence between our formal causal rules and their common-
sense counterparts would bring us far beyond the scope of the present study.
So we mention only that arguments of the above kind are quite familiar
to logicians in the form of reservations against taking classical material im-
plication as a representation of commonsense conditionals in general. And
in the latter case, such arguments do not deprave the classical implication
of its role in logic. Similarly, the assertions made by our dynamic rules
could be called proto-causal claims. We argue, however, that such proto-
causal claims form an essential ingredient of the corresponding (more com-
plex) commonsense causal assertions. Moreover, ‘monotonic’ causal claims
of a similar kind form a basis for a quite successful causal theory of rea-
soning about action and change in Al (see, e.g., [Giunchiglia et al., 2004;
Bochman, 2004]). This theory shows, in particular, that the above-mentioned
counterexamples can be successfully dealt with as part of its general non-



monotonic component.

Due to the Horn form of the rules characterizing a dynamic consequence
relation, intersection of a set of consequence relations is again a consequence
relation. This implies, in particular, that, for any set of sequents, there exists
a least dynamic consequence relation containing it.

Now we introduce the basic notion of a theory of a dynamic consequence
relation. Intuitively, theories characterize admissible sets of processes (with
respect to a given dynamic consequence relation).

Definition 2.1. A set U of processes will be called a theory of a dynamic
consequence relation IF if, whenever a I b holds, and s is some process such
that sa € U, then sab € U.

Slightly reformulated, a theory is a set of processes such that whenever
it includes a process s that ends with a (as its end-segment), and a causes b,
then the process sb should also belong to the set.

An important property of our dynamic theories (common with ordinary
Tarski theories) is that intersections of theories are again theories of a con-
sequence relation. This immediately implies that, for any set of processes
there exists a least theory containing it. In other words, we have a natural
closure operator Th(V') that assigns any set V' of processes a unique least
theory containing it.

The following simple lemma provides a direct syntactic description of the
least theory containing a single process. It will be used in what follows.

Lemma 2.1. Th(a) = {ab | a IF b}.

Proof. Let T, denote the set {ab | a IF b}. Tt is easy to see that any theory
containing a should include also T,. Note also that a € T, since a IF € by
Identity and Left Monotonicity. Hence it is sufficient to show that T, is a
theory. Assume that c IF d and sc € T, for some process s. Then sc = ab, for
some b such that a I- 0. Now, ¢ IF d implies sc IF d by Left Monotonicity, and
hence ab IF d. Therefore a IF bd by Cut, and consequently abd = scd € T,.
Thus, T, is a theory of I-. This completes the proof. m

3 Dynamic Monoid Semantics

We will introduce first the following very abstract notion of a dynamic se-
mantics.



By a dynamic frame we will mean an arbitrary monoid (P, -, 1). In other
words, - is an associative binary operation on P, and v -1 =1-u = u, for
any u € P. Elements of P will be called paths. The operation - on P can be
viewed as a concatenation of paths. It can be canonically extended to sets
of paths as follows: if U,V C P, then U -V ={wv |u € U & v € V}. This
extension is also an associative operation.

In what follows, we will often omit the operation sign - and write ab
instead of a -b. In addition, x < y will denote the fact that y = xz, for some
z. It is easy to verify that < is a partial order. We will call it a prefix relation
on paths.

Definition 3.1. An abstract dynamic model is a tuple D = (P,U,-,1,V),
where (P, -, 1) is a dynamic frame, U C P (called the set of allowable paths),
while V is a valuation function assigning each proposition from the language
a subset of P, that is, V(A) C P, for any A € L.

A set of dynamic models will be called a dynamic (monoid) semantics.

A dynamic model can be seen as a restriction of a dynamic frame to the
set of allowable paths. In other words, it can be viewed as a partial monoid in
which the concatenation operation - is defined only if it produces an element
of U'. Note, however, that the valuation function V also becomes a partial
function on this view.

As a preparation, we will extend the valuation function to sequences of
propositions (i.e., processes) from L* as follows:

We will extend V also to an empty sequence by stipulating V(e) = {1}.
Every dynamic semantics D determines a dynamic consequence relation
IFp defined as follows:

alkFp b = For any D € D and any u,x € P, if ux € U and
x € V(a), then uxry € U, for some y € V(b).

The following simple lemma verifies that the above relation satisfies all
the postulates of a dynamic consequence relation.

Lemma 3.1. IFp is a dynamic consequence relation.

!This notion also coincides with the notion of a partially associative operation, used in
[Barwise et al., 1995] (Definition 4.5).



Proof. Identity is immediate.

Left Monotonicity. 1If Aa Wp b, then, for some dynamic model in D, there
exist u and z such that uz € U, = € V(Aa), but there is no y such that
ury € U and y € V(b). By definition, z = zt, where z € V(A) and t € V(a).
Now if uy = uz, we have u1t = uxr € U, and uxry = u;ty, and consequently
a “47_) b.

Cut. If a Wp be, then, for some dynamic model in D, there must exist
uw and z such that ux € U, x € V(a), but there is no y such that uzxy € U
and y € V(bc). But if a IFp b, then uzz € U, for some z € V(b), and hence
xz € V(ab). On the other hand, if it were the case that uxzyy € U, for some
yo € V(c), then we would have zy, € V(bc), contrary to the supposition.
Hence ab ¥p c. O

If a consequence relation IF coincides with IFp, for some dynamic seman-
tics D, we will say that I is generated by D.

It turns out that, similarly to ordinary consequence relations (see, e.g.,
[Gabbay, 1976], or [Bochman, 2001]), any dynamic consequence relation can
be generated by a canonical dynamic semantics constructed from the set of
its theories.

Given a theory U of a consequence relation |-, we can construct an asso-
ciated dynamic model Dy = (L*,U, -, ¢,V), where the dynamic frame is the
set of all processes L* with an operation of concatenation and € as a unit,
while V is a trivial function V(A) = {A}. Let T be the set of such dynamic
models, for all theories of I-. Then we have

Theorem 3.2. [Representation Theorem] If |+ is a dynamic consequence
relation, then |- = -7 .

Proof. We have to show that a IF b holds iff for any theory U of I, and any
sequence s, if sa € U, then sab € U. The direction from left to right follows
directly from the definition of a theory. In the other direction, we take s
to be an empty sequence, and choose U = Th(a). Then ab € Th(a) and
therefore a I- b by Lemma 2.1. This completes the proof. O

As a result, we obtain that dynamic consequence relations are complete
with respect to the dynamic monoid semantics.

Corollary 3.3. IF is a dynamic consequence relation if and only if it is
generated by a dynamic monoid semantics.



Actually, the above result can be strengthened by making use of the fact
that the canonical dynamic semantics 7, described above, is a dynamic
semantics of a very special kind. Its specific properties are reflected in the
following definition.

Definition 3.2. A dynamic semantics D will be called homogeneous if

e all its dynamic models involve the same dynamic frame (P, -, 1) and the
same valuation function V.

e The function V is singular: V(A) € P, for any A € L.

Thus, the variation of models in a homogeneous semantics reduces to the
variation of admissible sets U of paths.
Now the Representation Theorem 3.2 immediately implies the following

Corollary 3.4. I is a dynamic consequence relation iff it is generated by
some homogeneous dynamic semantics.

The above result will imply a number of consequences important for our
study.

Another consequence of the above representation theorem is that dynamic
consequence relations are uniquely determined by their theories. Moreover,
for more expressive languages the above Representation Theorem can serve
as a basis of constructing full-fledged semantics. In this case theories of
a consequence relation will play, eventually, the role of its canonical mod-
els. In particular, just as for ordinary inference relations, inclusion among
consequence relations amounts to inverse inclusion for their sets of theories.
Accordingly, imposing further requirements on our consequence relations will
amount to imposing additional properties on the associated theories.

Remark. To conclude our discussion in this section, we should mention an
important dimension of generality that is embodied in the above notion of a
dynamic monoid semantics and, in particular, in the very idea of allowable
paths. As the reader may have noticed, the set of allowable paths is not
required to be closed with respect to concatenation or sub-paths, so con-
catenations of allowable paths are not always allowed, and not all parts of
allowable paths constitute allowable paths by themselves. Now, an important
way to see this consists in viewing a compound process as possibly proceed-
ing ‘in one leap’ in which we cannot temporally (or sequentially) separate its
constitutive parts. As an important extreme case, all the transitions in the
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process may be performed concurrently. For instance, a compound process
of carrying a table by two people could still be described as a path a - b con-
sisting of two concurrent actions of carrying, respectively, the left and right
edge of the table. The causal and inference relations of such a process with
other processes cannot be reduced directly to corresponding relations for its
two components. Speaking more generally, the general dynamic monoid se-
mantics allows us to accommodate the basic idea of [Pratt, 2003] that, unlike
the sequential modeling, the evolution of time and information need not be
synchronized.

4 Relational Semantics

In this section we are going to show that our dynamic consequence relations
can also be given a (suitably generalized) relational semantics.
We begin with the following well-known notion of a relational semantics.

Definition 4.1. A relational model is a triple M = (S, L, F), where S is a
set of states, L is a set of propositions, and F is a function assigning each
proposition from L a binary relation on S:

F:L— P(S?.

For any binary relation R, dom(R) will denote its domain, and range(R)
- its range. The function F can be canonically extended to sequences of
propositions:
F(Ar...A,) = F(A)o---0F(A,),

where o denotes the composition of binary relations. We will extend F also
to an empty sequence by stipulating

F(e)={(s,s)|se S}

Now, in order to provide a semantics for our dynamic inference, the above
notion of a relational model has to be generalized as follows.

Definition 4.2. A generalized relational model is a quadruple M = (S, v', L, F),
where (S, L, F) is a relational model, and v" is a subset of states called ter-
mination states.



The notion of a termination state is actually known in the computational
literature. In the latter, it denotes states in which a program, or its parts,
successfully terminate, as opposed to other states that do not have compu-
tational meaning. In our setting, we will stretch this notion to a general
distinction between real and wvirtual states, guided by an idea that atomic
transitions in a compound process are not necessary separated by real states.
As we already mentioned at the end of the preceding section, we allow for
a possibility that a process b may proceed in one leap, in which we cannot
observe, or single out, sequential parts and associated intermediate states.
Of course, this idea conflicts somewhat with the very notion of a relational
model, where transitions are defined as pairs of states. Still, the suggested
way out consists in distinguishing between states that are actual (real) and
all other, virtual states that may be viewed as purely theoretical constructs
without ‘physical’ meaning. This distinction will also serve as a preparation
for the state-transition calculus that will be introduced later.

Now we are ready to formulate the following definition of validity for
dynamic inference rules in this semantics:

Definition 4.3. A dynamic rule a IF b will be said to be valid in a generalized
relational model M if, for any states s € S and ¢t € v' such that (s,t) € F(a),
there exists a state r € v' such that (¢,7) € F(b).

Ik will denote the set of sequents that are valid in a relational model
M.

— —
Let v denote pairs of states that end in v/, that is, v = {(s,t) | t € vV'}.
Then the above definition can be compactly written as follows:

%
alby b = range(F(a)) Nv Cdom(F(b)N V).
To begin with, it is easy to verify the following

Lemma 4.1. If M is a generalized relational model, then |-y, is a dynamic
consequence relation.

In order to show that this relational semantics is also adequate for dy-
namic consequence relations, it is sufficient to demonstrate that any dynamic
monoid semantics can be transformed into an equivalent relational model.

For the purposes of the construction that follows, we will use an expression
x € U € D as ashorthand for x € U, for an admissible set U of some dynamic
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model from D. Now, given such an admissible set U, let U] denote the set
of prefixes of the elements of U, that is,

Ul ={z|z =y, for some y € U € D}.

Then the set of states of the relational model corresponding to a monoid
semantics D will be a disjoint union of all U], for every admissible set U.
As usual, in order to achieve disjointness, each path x € U] will be indexed
with the corresponding set U to become a new object xy. As a result, we
obtain the following construction of a generalized relational model Mp:

o S={zy |z =y, for some y € U € D};
o v ={uy|ueUceD}
e For any A € L, F(A) = {(zv, (xy)v) | y € V(A) & (zy)v € S}.

The following theorem shows that the resulting relational model validates
the same rules as the source dynamic semantics.

Theorem 4.2. If Mp is the relational model corresponding to the dynamic
semantics D, then lFp = Iy, .

Proof. Note that, for any process a, (s,t) € F(a) if and only if (s,t) =
(xy,yu), for some z,y such that y = xz, for some z € F(a), and y < yo, for
some yo € U € D.

Assume first that a IFp b and (s,t) € F(a). Hence (s,t) = (zy,yv),
for some z,y such that y = zz, for some z € F(a), and y < yo, for some
Yo € U € D. Since U is an admissible set of a dynamic model in D, we have
xzzy = yz € U, for some z; € F(b). Let r = (yz1)y. Then clearly r € v/
and (t,r) € F(b). This gives the direction from left to right.

Now assume that a Iy, b and ux € U € D, for some z € V(a). Then
let us put s = uy and t = (ux)y. Clearly t € v and (s,t) € F(a). Since
a lFar, b, there exists » € v such that (t,7) € F(b). By the definition of
F, this can happen only if r = (uxy)y, for some y € V(b), and therefore
uzry € U, which shows that a IFp b holds. This completes the proof. O

The above result immediately implies that dynamic consequence relations
are also complete for the above notion of validity in generalized relational
models.
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Corollary 4.3. |- is a dynamic consequence relation iff it coincides with
IFar, for some generalized relational model M .

As a matter of fact, the above completeness result can be strengthened
by exploiting the fact that the dynamic semantics can be safely restricted to
homogeneous one (see Corollary 3.4).

Recall that a relational model is deterministic if F(A) is a partial func-
tion, that is, for any A € P, if (s,t) € F(A) and (s,r) € F(A), then
t = r. Now, it is easy to verify that the relational model corresponding
to the canonical dynamic semantics 7y by the above construction is actu-
ally deterministic. Consequently, we immediately obtain that, at this stage,
imposing determinism does not produce new valid rules of dynamic inference.

Corollary 4.4. I+ is a dynamic consequence relation if and only if it is
generated by a generalized deterministic relational model.

This result will no longer hold, however, when we will impose some ad-
ditional conditions on dynamic consequence relations.

5 Sequentiality

A dynamic consequence relation will be called sequential if it satisfies
Right Anti-Monotonicity If a IF bB, then a I b.

Remark. It should be noted that the above postulate, when compared with
Left Monotonicity, makes vivid another essential difference between our con-
sequence relations and common sequent calculi, namely the fact that both
antecedents and consequents of our rules are interpreted conjunctively, unlike
the usual, disjunctive understanding of succedents in sequents.

The postulates of sequential consequence relations almost coincide with
the axiomatization of the calculus G, presented in [Kanazawa, 1994] with
the only exception that the latter does not have the Identity postulate (but
appropriately restricts the discussion to non-empty sequences). As has been
shown by Kanazawa, such consequence relations can be given a relational
semantics of the kind used in dynamic predicate logic of [Groenendijk and
Stokhof, 1991]. In what follows we will reproduce this result as an ‘unfolding’
of the corresponding representation theorem.

To begin with, note that sequentiality can be alternatively characterized
by strengthening the Cut rule to the following ‘contextual’ Cut:
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C-Cut If a IF bd and ab I ¢, then a It be.

Indeed, the original Cut rule is a special case of C-Cut (when d = e).
Moreover, the latter implies Right Anti-Monotonicity: Identity implies ab I €
by Left Monotonicity, and hence if a |- be holds, then a IF b follows by C-Cut.
In the other direction, given Right Anti-Monotonicity, C-Cut is derivable
from Cut, since a IF bd implies a I b.

Sequentiality corresponds to the following restriction of the dynamic monoid
semantics:

Definition 5.1. A dynamic semantics D will be called sequential if, for any
model D € D with an admissible set U, if u,v € U and v < v, then w € U,
for any w such that u < w < v.

Thus, in a sequential dynamic model the set of admissible paths is interval-
closed with respect to the prefix relation <. The next lemma shows that such
a semantics generates a sequential consequence relation.

Lemma 5.1. If D is a sequential dynamic semantics, then |Fp is a sequential
consequence relation.

Proof. We need only to check Right Anti-Monotonicity. If a ¥p b, then there
exist a dynamic model and s € P such that sz € U, for x € V(a), and there
is no y such that szy € U and y € V(b). Assume that uzz € U, for some
z € V(bB). Then z = 2129, where z; € V(b) and 2z, € V(B), and hence
sxz; € U by sequentiality, which contradicts the supposition. Therefore
a HLD bB. [

A theory of a consequence relation will be called sequential if it is interval-
closed with respect to the prefix relation on processes. As before, the fol-
lowing technical lemma plays the main role in the subsequent representation
theorem.

Lemma 5.2. IfIF is a sequential consequence relation, then Th(a) is a se-
quential theory.

Proof. Given Right Anti-Monotonicity, Lemma 2.1 implies that if abB €
Th(a), then ab € Th(a). It can be easily seen that this property ensures
sequentiality of Th(a). O
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As a result, we can extend the main Representation Theorem 3.2 above
to sequential inference and immediately obtain the following completeness
result:

Corollary 5.3. A dynamic consequence relation |- is sequential if and only
iof it is generated by a sequential dynamic semantics.

As before, we can use Corollary 3.4 to conclude that the sequential dy-
namic semantics can be safely restricted to a homogeneous one.

Corollary 5.4. A dynamic consequence relation |- is sequential if and only
if it is generated by a homogeneous sequential dynamic semantics.

This strengthening of the general representation result will be used in the
next section.

5.1 Relational Dynamic Inference

It turns out that sequential consequence relations can be given a simpler
relational semantics. More precisely, sequential dynamic inference amounts
to validity in plain relational models, that is, models in which all states are
termination ones.

Definition 5.2. A dynamic rule a I- b will be said to be wvalid in a plain
relational model M if

range(F(a)) C dom(F(b)).

The above notion of validity corresponds to what has been called Update-
to-Domain Consequence in [van Benthem, 1996, and it describes the in-
ference relation adopted in dynamic predicate logic of [Groenendijk and
Stokhof, 1991]. Unfolding the definition, it says that a I- b holds iff, for
any (s,t) € F(a) there exists r € S such that (¢t,r) € F(b).

To begin with, we have the following

Lemma 5.5. If M is a relational model, then Iy is a sequential consequence
relation.

The proof amounts to a simple verification of Right Anti-Monotonicity.
In order to show that the relational semantics is also adequate for sequen-
tial consequence relations, we will make use of Corollary 3.4 and show that
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any homogeneous sequential dynamic semantics can be transformed into an
equivalent relational model. Note, however, that the construction below is
essentially different from the translation of the general dynamic semantics,
described in the preceding section. Most importantly, the construction below
creates an indeterministic model even from homogeneous dynamic semantics.

Given a homogeneous sequential dynamic semantics D with a common
frame (P, -, 1), we will construct a relational model Mp as follows:

e The set of states S is the set of all paths P together with all labeled
paths from the the disjoint union of D:

S = PU{uU]uEUED};

e For any A € L, F(A) is a set of all pairs (s,t) from S such that, for
some paths z,y € P,y = z-V(A), and one of the following cases holds:

1. s=xzand t =y,
2. s=zand t=yy,ifye U € D;
3. s=axyand t=yy,ifz,yc U €D.

The following theorem shows that the constructed relational model vali-
dates the same rules as the source sequential semantics.

Theorem 5.6. If Mp is a (plain) relational model corresponding to the ho-
mogeneous sequential semantics D, then lFp = Iy, .

Proof. For any s € S, § will denote the underlying path, that is, & = v and
uy = u. Also, to simplify the notation, for a process a, we will use [a] to
denote V(a). Note, in particular, that if (s,t) € F(a), then always ¢ = [a).

Assume first that a IFp b and (s,t) € F(a). We have to consider two
cases. If t € P, then let r = t[b]. Clearly, r € S and (¢t,r) € F(b), as
required. So assume now that ¢t = xy, for some x € U € D. In this case we
have = §[a], and therefore z[b] = §[ab] € U (since a IFp b). Now we put
r = (z[b])y. Suppose that b = By ... B,,. Then we define t; = (¢[B; ... B;])v,
for every 1 <i < m (note that sequentiality secures that t,elU ). It is easy
to see that tF(By)t; ... tm—1F (By)r, which implies (¢,r) € F(b). This gives
the direction from left to right.

Now assume that a Iy, b and s[a] € U. Let us put t = (s[a])y. If
a= Ay...A,, we define s; = s[A;...4;] for any 1 < ¢ < n, and then we
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have sF(A1)s1...5,-1F (An)t, which implies (s,t) € F(a). Since a Ik, b,
there exists r € S such that (¢,7) € F(b). By the definition of F, this can
happen only if r = (s[a][b])v, and therefore s[a][b] € U. This completes the
proof. n

As an immediate consequence of Corollary 5.4, we conclude with the
following completeness result.

Corollary 5.7. A dynamic consequence relation is sequential if and only if it
coincides with a dynamic inference generated by some plain relational model.

As we noted in the course of the above construction, the relational models
obtained by transforming sequential dynamic models are not deterministic,
in general. As we are going to see in the next section, this liberty is essential,
because restriction of arbitrary relational models to deterministic ones will
make valid an additional postulate of dynamic inference.

6 Deterministic Inference

A dynamic consequence relation will be called deterministic if it is sequential
and satisfies the following postulate:

Cumulativity If a I- Be, then aB IF c.

It should be clear that a repeated application of Cumulativity generates
the following structural rule for processes:

al- be
ablF ¢

Now, in deterministic consequence relations, any rule a IF be is reducible
to a pair of simpler rules:

Lemma 6.1. Ifl- is a deterministic consequence relation, then a |- be if and
only if a lF b and ab I c.

Proof. The direction from left to right follows from Cumulativity and Right
Anti-Monotonicity, while the opposite direction follows directly by Cut. [J
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As a consequence, any rule can now be reduced to a set of rules a IF A
involving only singular conclusions (including €). Moreover, this property can
be viewed in some sense as a characteristic property of deterministic dynamic
relations. In order to show this, let us introduce the following notions. Let
us say that a sequent a I b is singular, if b is either an atom B, or an empty
sequence €. Then a singular consequence relation, defined below, can be
viewed as a restriction of a general dynamic consequence relation to singular
sequents.

Definition 6.1. A singular dynamic consequence relation is a set of singular
sequents that satisfies Left Monotonicity and Identity.

It can be easily verified that a set of singular sequents belonging to an ar-
bitrary dynamic consequence relation forms a singular consequence relation.
Moreover, it can be shown that the above two postulates exhaust the struc-
tural properties of such an inference relation?. So a singular consequence
relation is actually a very simple inference relation.

Now, given a singular consequence relation I, we can inductively extend
it to arbitrary sequents a IF b as follows: if a IF b is already defined, then we
stipulate that a IF bA holds if and only if both a IF b and ab IF A hold. Let
IF™ denote the resulting consequence relation. Then the next result shows
that any deterministic consequence relation can be viewed as a definitional
extension of a singular consequence relation.

Theorem 6.2. IF is a deterministic consequence relation if and only if IF=
IFG", for some singular consequence relation Ik.

Proof. For the direction from right to left, it is sufficient to show that if Ik
is a singular consequence relation, then IFj' is a deterministic consequence
relation. Identity is immediate, while both Right Anti-Monotonicity and Cu-
mulativity follow directly from the inductive construction. For the two re-
maining postulates of deterministic inference, we will show that I-{" is closed
with respect to each by induction on the number of propositions in the con-
sequents.

Left Monotonicity. Assume that a IF* bB. If the consequent is singular
(that is, b = €), then Aa IFj* bB holds due to the fact that Ik, satisfies
Left Monotonicity. Otherwise by construction of ', we have a IF{* b and

2A similar fact (though without €) has been mentioned in [van Benthem, 1996].
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ab IFf* B. By the inductive assumption, we have Aa IF;* b, while Aab IF]* B
holds by Left Monotonicity for Iky. Therefore Aa ;" bB by the construction.

Cut. Note first that a IF]* b and ab IF* C' imply a IF* bC' by the inductive
construction itself. Assume now that a IFj* b and ab IF* ¢C. Then ab IF]" ¢
and abc I-]* C' by the inductive construction. The inductive assumption says
that a IF;* b and ab IFf' ¢ jointly imply a IF{* be by Cut. Taken together with
abe IF(* C, this gives us a IFj" beC' by the inductive construction.

For the direction from left to right, assume that I is deterministic, and
let Iy be the set of singular sequents from IF. Clearly, IF{* is a singular
consequence relation. Also, IFj" is included in |- (since IF is closed with
respect to Cumulativity). Moreover, due to Lemma 6.1, any sequent from
IF can be obtained, ultimately, from the singular sequents of |- by applying
the inductive construction. Thus, I coincides with I-{*. This completes the
proof. O]

Now let us turn to a semantic description. A dynamic monoid semantics
of deterministic consequence relations can be defined as follows.

Definition 6.2. A dynamic model D = (P,U,-,1,V) will be called deter-
ministic, if the valuation function V is singular (that is, V(A) € P, for any
A € L), and the admissible set U is closed with respect to the prefix rela-
tion: if ab € U, then a € U. A dynamic monoid semantics will be called
determanistic, if all its dynamic models are deterministic.

The next result verifies that any deterministic dynamic semantics gener-
ates a deterministic consequence relation.

Lemma 6.3. If D is a deterministic dynamic semantics, then lFp is a de-
termanistic consequence relation.

Proof. Note first that, due to singularity of V, we have V(a) € P, for any
a € L*. As before, to simplify the notation, we will write [a] instead of V(a).

We need only to check Cumulativity. If aB W¥p ¢, then there exists a
dynamic model with an admissible set U such that s[aB] € U, but s[aB][c] ¢
U. But then s[a] € U, since s[a] is a prefix of s[aB]. Moreover, s[aBl][c] =
sla][Bc] by associativity of concatenation, and therefore s[a][Bc] ¢ U. Thus,
a Wp Be. This completes the proof. m

A theory of a dynamic consequence relation will be called deterministic if
it is closed with respect to the prefix relation. Clearly, the canonical dynamic
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model corresponding to a deterministic theory will be a deterministic model.
Moreover, we will show that the corresponding canonical dynamic semantics
is fully adequate for deterministic consequence relations.

As before, the set of deterministic theories is closed with respect to inter-
sections, so any set of processes is included in a unique least deterministic
theory. As a technical preparation for the next representation theorem, the
lemma below gives a direct description of the least deterministic theory con-
taining a given process.

Lemma 6.4. D(a) is a least deterministic theory of a deterministic conse-
quence relation |- containing a process a iff

D(a)={bc|b=<a & bl c}.

Proof. 1t is easy to check that any deterministic theory containing a should
contain also D(a). So we check only that D(a) is a deterministic theory.

Assume that d IF e and sd € D(a), that is, sd = be, for some b, ¢ such that
b < a and bIF c. Then d I e implies sd I e by Left Monotonicity, and hence
be Ik e. Given b IF ¢, this implies b IF ce by Cut, and therefore bce € D(a).
But bece = sde, and hence sde € D(a). Thus, D(a) is a theory of IF.

Assume that * < y and y € D(a), Then y = bc, for some b, ¢ such that
b < aand b IF c. Now if x < b, then x < a, and therefore x € D(a)
(since z IF €). Otherwise b < z, in which case x = bd, for some d < ¢. In
this case b IF ¢ implies b I d by Right Anti-Monotonicity, and hence again
x = bd € D(a). Thus, D(a) is a deterministic theory. This completes the
proof. O

Now we are ready to prove the following

Theorem 6.5 (Representation Theorem). If 7,4 is a set of deterministic
theories of a dynamic consequence relation I, then & is deterministic if and
only if I+ = IFa.

Proof. The direction from right to left follows from Lemma 6.3. So let IF be
a deterministic consequence relation. If a IF b, then a IF7a b directly from
the definition of a theory. Assume then that a “_Td b, that is, for any s and
any U € T2, if sa € U, then sab € U. We take s = ¢ and U to be the least
deterministic theory containing a. By Lemma 6.4, we obtain ab € D(a), and
therefore ab = cd, for some c,d such that ¢ < a and ¢ I d. Let a = ce,
for some e. Then d = eb, and hence c I eb. By Cumulativity we conclude
ce Ik b, that is a IF b. This completes the proof. ]
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As a result, we can conclude with

Corollary 6.6. A dynamic consequence relation |- is deterministic if and
only if it is generated by a deterministic dynamic semantics.

Note now that any deterministic dynamic semantics is already sequential,
and hence corresponds to some relational model. Moreover, we are going
to show that deterministic semantics correspond precisely to deterministic
relational models in which the accessibility relations are partial functions.

To begin with, we have the following

Lemma 6.7. If M is a deterministic relational model, then Iy is a deter-
ministic consequence relation.

The proof amounts to a straightforward verification of Cumulativity.

As before, in order to show that deterministic consequence relations are
complete with respect to deterministic relational models, we will show that
any deterministic dynamic semantics can be transformed into an equivalent
deterministic relational model. The construction is actually a simplification
of the transformation described earlier for general relational models.

Given a deterministic dynamic semantics D, we will construct the corre-
sponding deterministic relational model Mp as follows:

o S={ay|aeUeD};
e Forany A€ L, F(A) ={(ay,by) |beU €D & b=aA}.

It is easy to see that the above relational model is deterministic. The fol-
lowing theorem shows that it validates the same rules as the source dynamic
semantics.

Theorem 6.8. If Mp is the relational model corresponding to the determin-
istic dynamic semantics D, then lFp = k.

Proof. In our present (simpler) case we have that (s,t) € F(a) if and only if
(s,t) = (zy,yu), for some =,y € U € D such that y = za.

Assume first that and (s,t) € F(a). Hence (s,t) = (zy,yv), for some
x,y € U € D such that y = za. Since U is an admissible set, we have
xab = yb € U. Let r = (yb)y. Then clearly (t,7) € F(b). This gives the
direction from left to right.
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Now assume that a |-y, b and ma € U, for some m € L* and U € D.
Since U is prefix-closed, we also have m € U. So let us put s = my and
t = (ma)y. Clearly (s,t) € F(a). Since a -y, b, there exists r € S such that
(t,r) € F(b). By the definition of F, this can happen only if r = (mab)y,
and therefore mab € U, which shows that a IF-p b holds. O

Combined with Corollary 6.6, the above correspondence immediately
gives us

Corollary 6.9. A dynamic consequence relation is deterministic if and only
if it coincides with a dynamic inference generated by some deterministic re-
lational model.

This result concludes our study of the basic variety of dynamic inference.

7 State-Transition Calculus

At this stage of our development, we will distinguish between two kinds of
events, proper transitions (or actions) and states, or conditions. So, for-
mally, our language L of events will become a union Tr U St of the set
Tr = {p,q,...} of transitions and a disjoint set St = {A,B,C,...} of
state propositions (also called conditions or tests). Still, as before, finite
sequences of events (from L*) will be called processes, and we will use the
letters a, b, c,... to denote such processes. Moreover, such processes will be
assumed to satisfy all the postulates of dynamic inference, stated earlier, de-
spite the fact that processes correspond now to mixed sequences of transitions
and states. The actual difference with our basic, uniform setting will amount
to a stipulation that states form a special kind of events that possesses some
additional properties.

The distinction between states and transitions is actually much more sub-
tle than it appears. Intuitively, states correspond to temporally extended oc-
currences with a relatively stable temporal behavior. As was argued in [Pratt,
2003, though physical states are never completely stationary, we usually as-
sume that during a given state time passes while information remains fixed.
Accordingly, states on our understanding include relatively static properties
and facts (though extended in time), as well as cases of inertial change.

In a commonsense structuring of the dynamic universe, states are usually
seen as boundaries, or limits of transitions and change, in the same sense as
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points play the role of boundaries of linear geometric segments. And just
as in geometry, this role is two-fold. First, boundaries separate, and thereby
single out, parts of the continuum. But on the other hand, they are links, or
junctions, that combine these parts into larger pieces. This natural view of
the continuum and its boundaries is not too familiar in our modern times,
though it can be traced back at least to Aristotle. We owe this situation to
the predominant alternative representation, namely the point-based model
of the continuum where these two functions are less transparent (though
definable).

Now we will turn to a syntactic description. The above understanding
of states and transitions is embodied in the following extension of our basic
dynamic calculus.

Definition 7.1. A dynamic consequence relation in a two-sorted language
will be called an ST-consequence relation if it satisfies the following additional
rules for static propositions:

S-Identity Al- A.

S-Monotonicity If ab IF ¢, then aAb |- c.

S-Cut If a lF A and aAb I ¢, then ab IF c.
S-Expansion If a IF bc and ab I- A, then a IF bAc.

S-Reduction If a I- bAc, then a I be.

As a first example of the acquired possibilities of derivation in the above
system, the following lemma shows formally that ST-consequence relations
satisfy the permutation and contraction/dilution rules for state propositions.

Lemma 7.1. The following rules hold for ST-consequence relations:

Left Contraction If aAAbIF ¢, then aAblF ¢;
Left Permutation If aABb I ¢, then aBAb IF c.
Right Dilution IfalF bAc, then alF bAAc;

Right Permutation Ifal- bABc, then alF bBAc.
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Proof. (1) aAlFA by S-Identity and Left Monotonicity, so if aAAblkc, then
aAblkc is derivable by S-Cut.

(2) BIFB by S-Identity, so BAIFB by S-Monotonicity and hence aBAIFB
by Left Monotonicity. Now if aABb IF ¢ holds, then aBABb I+ ¢ by S-
Monotonicity. Together with aBAIFB, this gives precisely aBAb IF ¢ by
S-cut.

(3) abA I+ A holds by S-Identity and Left Monotonicity, so a IF bAc
implies a IF bAAc by S-Expansion.

(4) abA I A holds by S-Identity and Left Monotonicity, so abAB IF A
by S-monotonicity. Combined with a |- bABc, it gives us a I bABAc by
S-Expansion, and hence a IF bBAc by S-Reduction. This completes the
proof. ]

Note that, due to S-Monotonicity, we actually have that a AAb I ¢ holds
if and only if aAb IF ¢. Similarly, S-Reduction implies that a I+ bAc holds
iff a IF bAAc. Consequently, ST-consequence relations admit all the usual
structural rules for static propositions.

Finally, we will mention the following property that will be used in the
sequel.

Lemma 7.2. If s is a sequence of static propositions, then, for any a, al- s
holds iff a Ik A, for any A that occurs in s.

Proof. Let s = Ay ... A,. Now, the implication from left to right follows by
S-Reduction. The other direction can be proved by induction on the length
of s. Suppose that the claim holds for n — 1. Then a I+ A;... A,_;. But
a - A, implies aA; ... A,_1 IF A, by S-Monotonicity, so a I A;... A, 1A,
follows by S-Expansion. O

7.1 Trace Calculus

In order to achieve ‘freedom of expression’ in working with state propositions,
we will extend our dynamic calculus to a language that explicitly contains
arbitrary sets of static propositions. Our main objective in this section will
consist in showing that the resulting calculus in the extended language will
still satisfy all the postulates of an ST-consequence relation.

Definition 7.2. e A trace is a finite sequence a = Xy X;...X,,, where
each X is either a proposition, or a set of static propositions.
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e An instantiation of a trace a = Xy X;...X, is a process r1Zy...T,
such that x; = X;, if X, is a proposition, or else x; is a finite sequence
of (static) propositions taken from the set X;.

Traces can be viewed as folded representations of sets of processes having
similar behavior. Clearly, ordinary processes can viewed as a special case
of traces. Moreover, by the above definition, any process constitutes also a
unique instantiation of itself.

As could be expected, due to contraction and permutation properties that
hold for static propositions, any two instantiations of a trace that contain
the same static propositions will have the same logical properties. It should
be noted, however, that traces may include arbitrary, in particular infinite,
sets of static propositions. For such traces, no instantiation can provide
a complete information about the source trace. Note also that, even for
fully finite traces, the number of instantiations is in general infinite due to
possible repetitions and varying orders of appearance of static propositions
in instantiation sequences.

Definition 7.3. A trace o = XoX;...X,, will be said to subsume a trace
B =YyY1...Y, (notation o > ) if either X; =Y; (if both are propositions),
or else Y; C X, for any ¢ < n.

Using these notions, we will extend the sequents of our calculus to rules
that relate general traces by stipulating that such generalized rules will hold
when certain ordinary sequents hold that relate corresponding instantiations.

Definition 7.4 (Trace Inference). If o and § are traces, then a |- § will
be taken to hold if, for any instantiation b of 3, there is an instantiation a of
a such that a IF b holds.

The first fact that we will note about the above generalization is that the
resulting inference relation on traces is monotonic with respect to subsump-
tion.

Lemma 7.3. For any traces a,  and v,
1. If y> a and al- 3, then v IF B.
2. If alF B and B 1>y, then a I 7.

Proof. Immediate from the fact that if v subsumes «, then any instantiation
of  is an instantiation of ~. [
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It turns out to be convenient to view the above defined consequence rela-
tion on traces as a plain ST-consequence relation in the extended language
obtained by adding arbitrary sets of static propositions as new static propo-
sitions. We will refer to this extended language as a trace language. The
following result shows that this view has a solid formal support.

Theorem 7.4. IfIF is a trace inference corresponding to an ST-consequence
relation I+, then IF is an ST-consequence relation in the associated trace
language, and it is a conservative extension of I-.

Proof. The conservativity of IF' with respect to the source language follows
immediately from the fact that the only instantiation of an ordinary process
is the process itself.

In the proof below, we will repeatedly use the following construction on
instantiations. Suppose that « is a trace, and let (71, ..., Zx) be the list of all
sets of static propositions appearing in « (in that order). Then an instantia-
tion of a amounts to replacement of every Z; in this list with a corresponding
sequence of states. Suppose now that a; and as are two instantiations of «
that correspond, respectively, to two such lists (sq,...,s;) and (t1,..., ).
Then it should be clear that the ‘combined’ list (sit1,. .., sktx) also corre-
sponds to some instantiation of . The latter instantiation subsumes, in a
sense, both a; and as. We will denote this instantiation by a;+as.

Now we will check the validity of all the postulates of an ST-consequence
relation for the trace inference. Identity is immediate.

Left Monotonicity. Assume that o IF 3, and let X be either a proposition
or a set of static propositions. For any instantiation b of (3 there exists an
instantiation a of a such that a I b. Now if = is an instantiation of X, then
xa lF b by Left Monotonicity, and hence X« IF b holds.

Cut. Assume that a IF 5 and af IF v, and let b, ¢ be some instantiations
of, respectively, § and ~. By the second rule, there are instantiations a; of
a and by of f such that ai1b; IF ¢. Then ay(b;+b) IF ¢ by S-Monotonicity.
Now, the first rule implies that there exists an instantiation as of a such
that ag IF by+b. Let a = a;+as. Then a l- by+b and a(b;+b) I+ ¢, therefore
a I (b+b1)c by Cut, and consequently a IF be by S-Reduction. Thus, « IF 5y
holds.

S-Identity. We need only to check the rule X IF X when X is a set of
static propositions. By definition, this amounts to verifying that if s is a
finite sequence of static propositions, then s IF s holds. Note first that, if A
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occurs in s, then s IF A follows from A IF A by S-Monotonicity. Hence s IF s
holds by Lemma 7.2.

S-Monotonicity. Assume that af IF v holds, ¢ is an instantiation of -,
and let X be a single static proposition or a set of static propositions. Then
there exist instantiations a of a and b of 3 such that ab IF ¢. Now if x is
an instantiation of X, then axb I ¢ holds by S-Monotonicity. Therefore
aX B IF ~ holds.

S-Cut. Assume that o IF X and aXf IF v, where X is either a static
proposition, or a set of static propositions. Let ¢ be an instantiation of ~.
Then ayzb IF ¢, for some instantiations ay, z, b of a, X and 3, respectively. In
addition, a IF X implies that there exists an instantiation a, of « such that
as IF x. Let a = a;4as. Then a I x and axb IF ¢ by S-Monotonicity. Now,
if x is a single proposition, we obtain ab I ¢ by S-Cut. The same result also
follows in the case when x is a set of static propositions, this time by using
Lemma 7.2 and multiple applications of S-Cut. Hence af IF v holds.

S-Expansion. Assume that o IF Sy and af IF X, and let bzc be some
instantiation of SX~. Then there exist instantiations a; and b; of a and
B, respectively, such that ayb; I- x. Let by = b+b;. Then there exists an
instantiation as of v such that as IF bye. If @ = a1+as, then a Ik byc and abg I+
x by S-Monotonicity, so a |- byzc by S-Expansion (multiple applications of
S-Expansion in case x is a sequence of static propositions). But then a I bxc
follows by S-Reduction, so « IF X holds.

S-Reduction. Assume that a IF X+, and let bc be an instantiation of
B~v. If x is an instantiation of X, then bxc is an instantiation of SX~, so
there exists an instantiation a of a such that a I bzc. But then a I+ be by
S-Reduction, so « I 37 holds. This completes the proof. O

The above result shows, in effect, that ST-consequence relations provide
a necessary and sufficient basis for inference relations on arbitrary traces.
This fact will be extensively used in the next section, where we will prove
completeness of the corresponding sequential ST-calculus with respect to the
relational semantics.

To end this section, we will mention an important property that we will
use in what follows, namely that adjacent sets of static propositions can be
safely united.

Lemma 7.5. For any sets X,Y of static propositions,

1. aXYBIF v if and only if ao(X UY)S IF ~.
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2. alk XYy if and only if alF (X UY)y.

Proof. Both the above equivalences can be easily obtained from the following
two facts:

1. Any instantiation of XY [ is an instantiation of a(X UY")p;

2. Any instantiation of a(XUY")S can be transformed into an instantiation
of aXY( by using permutation, namely be putting all propositions
from X'\Y before all propositions from Y.

]

Using the above property, any trace can be transformed into a trace in
with all adjacent static sets are united. Such traces will be called regular,
and they will be used in constructing the canonical model of our calculus.

8 Relational Semantics

In what follows, we will restrict our attention to sequential consequence rela-
tions, since they have a simple relational semantics. It should be mentioned,
however, that one of the main objectives of our general study consists in
exploring the logical properties and representation capabilities of general dy-
namic inference, not only sequential one. We suspect, however, that it would
require a more drastic generalization of the relational semantics than what
has been suggested in the present paper.

Relational models for sequential ST-consequence relations can be defined
as a straightforward extension of general relational models.

Definition 8.1. A relational ST-model is a relational model M = (S, L, F),
in which the valuation function F satisfies the following constraint: for any
state proposition A € St, F(A) C Id where Id = {(s,s) | s € S}.

We will keep intact the original definition of dynamic inference in plain
relational models. Then the next lemma can be obtained by a straightforward
verification of the rules for static propositions.

Lemma 8.1. If M is a relational ST-model, then I-nq is a sequential ST-
consequence relation.
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In order to show that ST-consequence relations are also complete for this
relational semantics, we are going to construct a canonical relational model of
a consequence relation. As a matter of fact, it constitutes a generalization of
the corresponding construction of a canonical relational model for sequential
dynamic inference, described in [Kanazawa, 1994].

8.1 Canonical Model
As a preparation, we will single out the following special kind of traces:

Definition 8.2. A regular trace is a finite alternating sequence
a=Xop1 X1 ... pnXy,
where each p; is a transition, and every X; is a set of static propositions.

Regular traces constitute, in a sense, a canonical structural representation
of ST-processes, since they explicitly embody the fact that sub-sequences of
static propositions behave essentially as sets. Thus, any process a corre-
sponds to a unique regular trace (that will be denoted by a) obtained by
grouping all maximal segments of static propositions into sets. Moreover,
by using contraction and permutation properties of static propositions, it is
easy to verify that a is inferentially equivalent to a, that is, for any trace [3,
B Ik a if and only if S IF a, and a I £ if and only if a I 5.

For a regular trace a = Xop1 Xj ...pnX,, (o) will denote X,,. Also, we
will use o to denote a regular prefix Xop1 X ... p; X; of . Note, in particular,
that o is X,.

A concatenation o -  of regular traces a = Xop1 Xy ...p, X, and § =
Yoq1 Y1 ... gmYm will be defined only if 3° C I(«) (that is, Yy C X,,), in which
case it will be taken to be a (regular) trace

a-f=XopiXi... 00 Xn@1Y1 .. Yo

Finally, we will say that a regular trace a« = Xop1 X7 ...p, X, is S-closed,
if A € X;, for any static proposition A such that of IF A.

It is easy to verify that, for any regular trace a = Xop1 X ... p, X, there
exists a least S-closed trace that subsumes «; it is obtained by replacing every
X; in o with the set X] = {A € St | o’ |- A}. In what follows, we will use
cl(a) to denote this trace.

In what follows, we will use the following fact about S-closures.
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Lemma 8.2. For any regular trace o and any trace 5, cl(a) - B if and only

if alk 3.

Proof. The implication from right to left follows by subsumption. Assume
that cl(«) IF B, and let @« = Xop1 Xy ... pp Xy Then cl(a) = X{p1 X1 ... ppX],
where X! = {A € St | o' I+ A}. Using Lemma 7.5, we can safely transform
cl(a) into a (non-regular) trace o' = XoZop1 X121 ... pnXnZ,, where Z; =
XN\ X;, for any i < n. Clearly, Z; C X/, and hence o' I Z; by Lemma 7.2.
Now let 7' = XoZop1 X121 ...p;X; and 8; = pit1...pnXnZ,. Then o =
7' Z;0; and hence v'Z;0; I+ 3. In addition, of IF Z; implies v* I+ Z; by
subsumption, and therefore 7%9; IF 3 by S-Cut. Notice that ~%J; is obtained
from o by removing Z;. So, repeating this procedure for every Z; in o/, we
finally obtain «a IF 3. m

In addition to regular traces, we will follow [Kanazawa, 1994] and use
trace-pairs: sequences of the form «|f, where «, 5 are regular traces such
that o IF 3. A trace-pair a8 will be said to be S-closed if A € (%), for any
static proposition A such that a8* IF A. Moreover, for an arbitrary trace-pair
alB, we will denote by cl(«|f) the trace pair obtained from «|f3 by replacing
each [() with

{A| A€ St& aB'I- A}

As can be seen from the above definition, cl(«|f) has the form «al|f,
where 3’ subsumes . Moreover, using S-Expansion, it is easy to verify that
if alF B, then a I . So, cl(a|f) is indeed a trace-pair. It can be viewed as
a least S-closed trace-pair that contains a/f.

Now, given a dynamic consequence relation Ik, we will construct a canon-
ical transition model My = (S}, P, F) as follows:

e The set of states S is a set of all regular S-closed traces and trace-pairs.

e For any transition p € P, (s,t) € F(p) if one of the following cases
holds:

— s and t are traces, and t = spX, for some X C St;

— s is a trace, and t = cl(f|e), for some trace [ such that (s, ) €
F(p);
— s =«|f and t = o|SpX, for some X C St.
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e For any state proposition A,
F(A) = {(a.a) | Aei(a)} | J{(alB.alf) | A€ U(B)}.

It is easy to see that the above construction determines a relational ST-
model.
We will prove first the following technical result.

Lemma 8.3. 1. Ifs,t € Sy are traces, then (s,t) € F(a) iff t = s -, for
some trace 7y > Q.

2. If a|B € Sk, then, for any state s, (a|B,s) € F(a) iff s = «|f -, for
some trace y > aQ.

3. If s is a trace, then (s,cl(Ble)) € F(a) iff (s,B) € F(a).

Proof. By a simultaneous induction on the length of a. The correspond-
ing inductive bases hold by definition of F. Z below denotes an arbitrary
proposition.

1. If s,t € Si are traces, then (s,t) € F(aZ) iff there is a trace r € S
such that (s,7) € F(a) and (r,t) € F(Z). By the inductive assumption,
(s,7) € F(a) iff there is a trace v, >>a such that r = s-7,. Also, (r,t) € F(Z)
iff there is a trace v, > Z such that ¢t = 7 - v2. Now let v = 71 - 72. Clearly,
~y > aZ and t = s - ~. Moreover, suppose that the last two conditions hold.
If Z is a transition, then v has the form ~;pX, where v, > a. Hence we can
define a state r as t-7, and then we will have (s,r) € F(a) and (r,t) € F(Z),
as required. In case Z is a static proposition, the same outcome is achieved
by putting r to be equal to t.

2. (a|B,t) € F(aZ) iff there exists a state s such that (a3, s) € F(a) and
(s,t) € F(Z). By the inductive assumption, («|f3,s) € F(a) iff s = a|f - 7,
for some trace v>a. Hence t is also a trace-pair by the definition of F. Now,
if Z is a state proposition, then (s,t) € F(Z) holds iff s = ¢t and A € (7).
But then v subsumes (aZ), and t = a|f-v. Conversely, if t = «|f-~, for some
v > (aZ), then > @), and we have both (a|8,t) € F(a) (by the inductive
assumption) and (t,t) € F(Z), as required.

In case Z is a transition, say p, we have t = «|(5 - 7) - pX, for some set
X C St. Then we let v9 = v - pX, which gives us t = «|f - 7o and 7o > (ap).
Conversely, if the last two conditions hold, then we can define s as «|f - 71,
where 7, is a maximal regular prefix of vy that does not include p. Clearly,
71 B> a, and hence we have both («|f, s) € F(a) and (s,t) € F(p), as required.
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3. If s is a trace, then (s,cl(Ble)) € F(aZ) iff there exists a state ¢ such
that (s,t) € F(a) and (t, cl(Ble)) € F(Z). If Z is a state proposition, then t =
cl(Ble) and § IF Z. Consequently (s, 5) € F(a) by the inductive assumption.
But (s,8) € F(a) and S I+ Z are jointly equivalent to (s,3) € F(aZ), and
we are done. In case Z is a transition, (¢,cl(Ble)) € F(Z) can hold only
if ¢ is a trace, in which case (t,cl(fSle)) € F(Z) iff (¢,8) € F(Z). Now,
since (s,t) € F(a), we have (s, ) € F(aZ). Conversely, if (s,) € F(aZ),
there is a trace t such that (s,t) € F(a) and (¢,8) € F(Z). But then
(t,cl(Ble)) € F(Z), and hence (s,cl(fBle)) € F(aZ). This completes the
proof. O

Now we are ready to prove the main result of this section:
Theorem 8.4. If My is a canonical model of I, then |- = Iy, .

Proof. From left to right, assume that a I b and (s,t) € F(a). If b = ¢, then
(t,t) € F(b), and we are done. If b # ¢, then let b = sop151 ... ppS,, Where
each s; is a sequence of static propositions, and each p; is a transition.

Suppose first that t is a trace. Then s is also a trace, and we have s-a <t
by the preceding lemma. In this case we define r = ¢l(t - Z;) Note that a IF b
implies a IF sg, so a IF sg and consequently ¢ |- sy by Left Monotonicity and
subsumption. Hence b° C I(t) (since ¢ is S-closed), and r is well-defined.
Also, since t is already S-closed, r = t - v, for some ~ > b. Consequently,
(t,r) € F(b) by the preceding lemma, as required.

Suppose now that ¢ is a trace-pair «|f. Then we will define a state r
as cl(alf - 13) By the preceding lemma, we have to show only that r € Sy,
that is, r is well-defined, and « IF BZ;. Two cases should be considered here.
Assume first that s is a trace-pair a|5y. Then t = cl(a|Sy-a) by the preceding
lemma, hence 8 subsumes 3 - @, and therefore a IF b implies 3 IF b. Since t is
S-closed, the latter implies that (8 bis defined, so r is well-defined. Moreover,
we also have a IF 3 (since t is a state), and consequently « |- Bb follows by
Cut. Otherwise s is a trace, in which case (s,t) € F(a) can hold only if
there is a state sp = cl(ale) such that (s, so) € F(a1), (so,t) € F(az), and
a = ajay. Now, (s,s0) € F(ay) implies a>s-a;. In addition, (so,t) € F(az)
implies 5> as. Consequently, a IF b implies af IF b by subsumption and Left
Monotonicity. Then af I+ s by Right Anti-Monotonicity, and consequently
R b is defined due to the fact that ¢ is S-closed. Moreover, af I+ b obviously
implies af I+ l;, while the latter and o IF 3 give us a I+ Bl; by Cut. Thus, we
have « I b in both cases, and consequently (¢,7) € F(b) by the preceding
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lemma. Therefore a Iy, b holds. This completes the direction from left to
right.

From right to left, suppose that a IFy; b holds, and let @ denote cl(a).
Then we put s = a° and ¢t = cl(ale). Since a is S-closed, we have t = all(a).
Clearly, @ = a"-a and at>a. Hence (s,t) € F(a) by the preceding lemma, and
therefore there must exist a state r such that (¢,7) € F(b). Using the previous
lemma once more, the latter implies r = a|l(a) - v, for some v > b, which is
well-defined only if @ IF [(a)y. But then a IF v by S-Reduction (since I(a)
is a set of static propositions), and therefore a I- b by subsumption. Now
a I+ b follows by Lemma 8.2, which reduces to a I b by permutation and
contraction properties for static propositions. This completes the proof. [J

The above theorem is sufficient for establishing strong completeness of
our ST-calculus with respect to the relational semantics:

Corollary 8.5 (Completeness). IF is a sequential ST-consequence relation if
and only IF = |k, for some relational ST-model M .

9 Conclusions and prospects

As we mentioned in the introduction, the present study constitutes only a first
stage in a prospective development of a comprehensive formalism for causal
dynamic reasoning. Hopefully, we have succeeded in showing, however, that
the suggested substructural formalism has significant representation capabil-
ities and depth that justify further development. Still, a lot of things need
to be added to our basic structural calculus in order to fulfil its purpose.

The first required extension of the formalism presented above consists
in augmenting the underlying language with appropriate logical connectives.
This will raise our abstract structural formalism to a full-fledged logic. Actu-
ally, a basic logic of this kind has been suggested in [Bochman and Gabbay,
2010]. It is based on (dynamic versions of) ordinary propositional connec-
tives of conjunction, disjunction and negation, but is shown to have the same
expressive capabilities as propositional dynamic logic (PDL).

One of the major objectives of our ‘research program’ consists in pro-
viding a solid logical basis for a general theory of action and change in Al
that would be able to cope with temporally extended actions, concurrency
and triggered (natural) events. At least, this will require an extension of our
calculus to a concurrent dynamic logic. In addition, the formalism should
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be able to cope with traditional AI problems of inertia, frame, ramification
and qualification. This would require a corresponding extension to a non-
monotonic formalism that implements the idea of inertia in a systematic way.
These are the subjects of the ongoing work.

Finally, it should be mentioned that our calculus apparently provides an
enhanced starting point for studying the process of computation itself. In
particular, our main notion of causal inference, being restricted to (voluntary)
computing actions, coincides, in effect, with the relation of enabling used in
event theories of computation (see, e.g, [van Glabbeek and Plotkin, 2009
for the present stage of development). In addition, the main problems in
describing concurrent actions and change in Al are actually species of the
general task of describing distributed processes and distributed computation.
All this suggests that a further development of our formalism along these
lines could be beneficial for both these fields. Moreover, it will hopefully
provide a better understanding of the basic principles of logical reasoning in
dynamic domains.

Acknowledgment. We are very grateful to the unanimous referee for the inci-
sive comments and questions concerning this study, even though we still do
not have complete answers to some of them.
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