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Abstract.
We consider planning problems on a punctured Euclidean spaces, RD − Õ, where Õ is a collection of obstacles. Such

spaces are of frequent occurrence as configuration spaces of robots, where Õ represent either physical obstacles that the robots
need to avoid (e.g., walls, other robots, etc.) or illegal states (e.g., all legs off-the-ground). As state-planning is translated
to path-planning on a configuration space, we collate equivalent plannings via topologically-equivalent paths. This prompts
finding or exploring the different homology classes in such environments and finding representative optimal trajectories in
each such class.

In this paper we start by considering the problem of finding a complete set of easily computable homology class invariants
for (N − 1)-cycles in (RD − Õ). We achieve this by finding explicit generators of the (N − 1)st de Rham cohomology
group of this punctured Euclidean space, and using their integrals to define cocycles. The action of those dual cocycles on
(N − 1)-cycles gives the desired complete set of invariants. We illustrate the computation through examples.

We further show that, due to the integral approach, this complete set of invariants is well-suited for efficient search-
based planning of optimal robot trajectories with topological constraints. Finally we extend this approach to computation
of invariants in spaces derived from (RD − Õ) by collapsing subspace, thereby permitting application to a wider class of
non-Euclidean ambient spaces.

1. Introduction.

1.1. Motivation: Robot Path Planning with Topological Constraints. In numerous robotics
applications, it is important to distinguish between configuration space paths in different topological
classes, as a means of categorizing continuous families of plans. This motivation — connected com-
ponents of paths relative to endpoints — leads to classifying up to homotopy. Examples motivating
a classification of homotopy classes of paths include: (1) group exploration of an environment [5],
in which an efficient strategy involves allocating one agent per homotopy class; (2) visibility, espe-
cially in the tracking of uncertain agents in an environment with dynamic obstacles [19]; and (3)
multi-agent coordination, in which (Pareto-) optimal planning coincides with homotopy classifica-
tion [11].

Although homotopy is a natural topological equivalence relation for paths, the computational
bottlenecks involved, especially in higher dimensional configuration spaces, present severe chal-
lenges in solving practical problems in robot path planning. Thus we resort to its computationally-
simpler cousin — homology (Figure 1.1). We assume a basic familiarity with first-year algebraic
topology, as in [13] for homology and [4] for differential forms and de Rham cohomology.

The methods we employ, following [3], construct an explicit differential 1-form, the integration
of which along trajectoriesgives complete homology class invariants. Such 1-forms are elements
of the de Rham cohomology group of the configuration space, H1

dR(RD − Õ). To deal with the
obstacles, we replace O with topologically equivalent codimesion-2 skeleta (e.g., Figure 2.1) and
then compute the degrees (or linking numbers) of closed loops with the skeleta.

1.2. Contributions of this Paper. We generalize the path-planning problem to higher homol-
ogy classes and linking numbers of arbitrary submanifolds (not merely 1-dimensional curves rep-
resenting trajectories). In particular, we will consider (N − 1)-dimensional closed manifolds as
generalization of 1-dimensional curves that constituted the trajectories. Obstacles will be repre-
sented by codimension N closed manifolds (which, in many cases will be deformation retracts of
the original obstacles).

Degree and linking numbers are closely related to homology [13, 7]. We will in fact show that
the proposed integration along trajectories give homology class invariants for closed loops (some-
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Fig. 1.1: Homology classes of robot trajectories in Euclidean spaces with obstacles.

thing that was claimed in [3], but not proved rigorously).
The primary aim of this paper is two-fold:

1. To find certain differential (N − 1)-forms in the Euclidean space punctured by obstacles,
and show that integration of the forms along (N − 1)-dimensional closed manifolds give a
complete set of invariants for homology classes of the manifolds in the punctured space (i.e.
the value of the integral over two closed manifolds are equal if and only if the manifolds
are homologous),

2. To adapt and extend the tools used in [3] for robot path planning with topological reasoning
to arbitrary dimensional Euclidean configuration spaces punctured by obstacles.

1.3. Overview and Organization of this Paper. The main concept behind the treatment in
this paper is to exploit the pairing HN−1(RD−Õ;G)⊗HN−1(RD−Õ;G)→ G, which evaluates
(N−1)-cocycles over (N−1)-cycles. Given a cycle ω ∈ ZN−1(RD−Õ;G), and a large enough set
of cocycles, A = {α1, α2, · · · , αm}, αi ∈ ZN−1(RD − Õ;G), one can hope that the set of values
{α1(ω), α2(ω), · · · , αm(ω)} ∈ Gm will provide some information about the homology class of ω,
that is the value of [ω] ∈ HN−1(RD − Õ;G). In fact choosing the coefficients in R, and with some
assumptions on Õ, we will show that it is sufficient to choose the elements of A such that their
cohomology classes generate HN−1(RD − Õ;R).

However, the challenge lies in explicitly finding the cochains, αi, that will serve our purpose
and are easy to evaluate on cycles. Due to De Rham’s theorem, the cocycles, αi, can be represented
by some (N − 1)-form, φi ∈ ΩN−1(RD − Õ), so that the evaluation of the cocycle over a cycle is,
precisely, integration of the form over the cycle. In order to find this form, we exploit the difference
map p : (RD −Õ)×Õ → (RD −{0}). The codomain of this map is the D-dimensional Euclidean
space with the origin removed, and is much simpler and well-studied. Thus, if η0 ∈ ΩD−1(RD −
{0}) is a differential (D − 1)-form in (RD − {0}), a simple pull-back via p gives the form η =

p∗η0 ∈ ΩD−1(RD − Õ)× Õ). Upon integration of η over some (D −N)-cycle, S, one may hope
to obtain the desired (N − 1)-form, φi =

∫
S
p∗η0. Considering the space (RD − Õ)× Õ as a fiber

bundle over (RD − Õ) with Õ as the fibers, one may be tempted to integrate p∗η0 over the fibers.
However, the nature of Õ) (its topology, dimensionality) can be quite arbitrary in general.

Thus we begin by constructing a suitable skeleton S̃) with which to replace Õ), so that the
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Fig. 2.1: Obstacles, O, can be replaced by equivalents, S, without change to HN−1 of the complement.

spaces (RD − Õ) and (RD − S̃) are identical as far as their (N − 1)th homology groups are
concerned. However, in that construction, we will ensure that S̃ is a collection (disjoint union) of
codimension-N manifolds, thus simplifying the problem.

The rest of the paper is organized as follows: In Section 2 we first try to simplify the problem by
suggesting the replacements, S̃ , of Õ. Thus we obtain the reduced problem definition of Section 2.1.
In Section 3 we describe some concepts on linking number, where we introduce the map p for the
first time from a fairly general perspective. We thus establish the relation of linking numbers with
homology classes. In Section 4 we specialize some of the results obtained in Section 3 to fit the
reduced problem we described in Section 2.1. We hence obtain an explicit formula for the complete
set of invariants for homology class. This is the invariant described in Equation (4.14). We discuss
how plugging in some specific low values of D and N in the formula gives us some well-known
results from complex analysis, electromagnetism and electrostatics. In Section 5 we demonstrate
one example with D = 5, N = 3, and show that the proposed formula indeed computes a complete
invariant for homology class in that example. Moreover, we illustrate how the proposed formula can
be used in search-based robot path planning with topological constraints. Finally, in Section 6, we
attempt to achieve certain level of generalization of the discussed approach to ambient spaces that
are not Euclidean. We achieve this by considering subspace, L, of the punctured Euclidean space,
and trivializing every chain in it. This, in effect, lets us consider homology classes of relative cycles
in (RD − Õ, L). We demonstrate that the invariants thus computed for such spaces can once again
be efficiently used for search-based path planning in robotics.

Throughout this paper we consider homology and cohomology with coefficients in the field
R. As a consequence, all the homology and cohomology groups are freely and finitely generated.
Also, for simplicity, we will throughout consider N > 1 to avoid the special treatment of the 0th

(co)homology groups. All topological spaces referred to in this paper are assumed to be Hausdorff.

2. On Building Obstacle Equivalents. As preparation for the technical details involving link-
ing numbers, we consider the replacement of our obstacles with their (D − N)-dimensional rep-
resentatives. This is trivial for contractible obstacles in the plane (point representatives) and in
3-dimensional space (cf. the skeletons of [3]). The intuition is that replacing obstacles by their
homotopy equivalents leaves the homology classes of trajectories in the complement unchanged
(Figure 2.1); however, we have dimension constraints, and there exist simple obstacles that do not
have a (D − N)-dimensional deformation retract (e.g. for the D = 3, N = 2 case, a hollow torus
does not have a D − N = 1 dimensional homotopy equivalent). We therefore turn to (D − N)-
dimensional equivalents faithful to homology in the desired dimension (Figure 2.3).

In the proposition and related corollaries that follow, we represent the ambient configuration
space (without obstacles) by RD, an obstacle by O, and S the (D −N)-dimensional equivalent of
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Fig. 2.2: A solid torus [left] with valid [right] and invalid [middle] equivalents. This is an example with
D = 3, N = 2. The replacement needs to be such that the inclusion map i : (RD −O) ↪→ (RD − S) induces
the isomorphism.

the obstacle with which we replace O for computational simplicity.
PROPOSITION 2.1. Let O be a compact, locally contractible subspace of RD. Let S be a com-

pact, locally contractible subspace of O, such that the inclusion i : S ↪→ O induces an isomorphism
i∗ : HD−N (S) → HD−N (O). Then the inclusion map i : (RD − O) ↪→ (RD − S) induces an
isomorphism i∗ : HN−1(RD −O)→ HN−1(RD − S).
Proof.

Consider the following diagram.

HD−N (O)
f //

i∗

��

HN (RD,RD −O)
∂ //

i∗

��

HN−1(RD −O)

i∗

��
HD−N (S)

f // HN (RD,RD − S) ∂ // HN−1(RD − S)

The vertical arrows are induced by the inclusions i and i. The arrows labeled f are the isomorphisms given
by proposition 3.46 of [13] (it is here that we use the hypotheses that O and S be compact and locally
contractible). The arrows labeled ∂ are the boundary homomorphisms in the long exact sequence for the
pairs (RD,RD −O) and (RD,RD − S). These are also isomorphisms, by the contractibility of RD .

The square on the right commutes by the naturality of the long exact sequence. The square on the
left commutes as well, and while this is not explicitly stated in [13], it follows easIly from the proof of
Proposition 3.46, ibid..

The vertical arrow on the left is an isomorphism by hypothesis (using the Universal Coefficient Theo-
rem over R), and all the horizontal arrows are isomorphisms, so the vertical arrow on the right must also be
an isomorphism.

In light of robot path planning,O in the above proposition is a solid obstacle in the environment,
and S is its equivalent/replacement (in the terminology of [3] these are representative points of
obstacles on a 2-dimensional plane, and skeletons of obstacles in a 3-dimensional Euclidean space).
The aim of the above proposition is to establish a relationship between the homology groups of the
complement (or free) spaces, (RD −O) and (RD − S), from some known relationship between the
spaces O and S. In the corollaries below, we suggest couple of approaches for identifying valid
replacements, S, of a given obstacles, O.

The following is trivial, but stated formally for future reference.
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Fig. 2.3: A hollow (or thickened) torus as an obstacle in a D = 3 dimensional space, with N = 2 for the
problem of robot path planning (i.e. we are interested in homology classes of (N − 1) = 1-dimensional
manifolds, which are closed trajectories). It does not have a (D − N) = 1-dimensional deformation retract
or homotopy equivalent. However, we can replace it by its generating 1-cycles (left). Other choices (right) are
invalid, when HD−N (O,S) u/ 0.

COROLLARY 2.2. If S and O are compact, locally contractible subspaces of RD such that S is
a deformation retract ofO, then the inclusion map i : (RD−O) ↪→ (RD−S) induces isomorphisms
i∗ : H∗(RD −O)→ H∗(RD − S)

COROLLARY 2.3. Let O ⊂ RD be compact and locally contractible. Suppose there exists
a set of pairwise-disjoint, connected, closed, oriented (D − N)-dimensional manifolds Sk ⊆ O,
k = 1, . . . ,m, such that the fundamental classes [S1], . . . , [Sm] form a basis for the homology
group HD−N (O). Let S̃ =

⋃m
k=1 Sk. Then the inclusion map i : (RD − O) ↪→ (RD − S̃) induces

an isomorphism i∗:N−1 : HN−1(RD −O)→ HN−1(RD − S̃).
Proof.

By construction, the inclusion induces an isomorphism HD−N (S̃) → HD−N (O), and so the result
follows from Proposition 2.1.

The consequence of the last two corollaries is that instead of computing homology classes of
(N − 1) cycles in the original punctured space (X − O), we can replace the obstacles O with
equivalents S while preserving the relevant homology (cf. [3] for special cases). In cases where
(D −N)-dimensional deformation retracts do not exist (e.g., Figure 2.3), Corollary 2.3 allows one
to replace obstacles by (D−N)-dimensional equivalents (generating cycles of (D−N)th homology
group).

2.1. Reduced Problem Definition. Thus we have established that obstacles Õ ⊂ RD (which
represent illegal zones in robot planning problems) may be replaced by equivalents S̃ preserving
the appropriate homology. We may (and do) choose the equivalents S̃ to be a disjoint union of
connected, closed, orientable (D − N)-dimensional manifolds. The reduced problem definition
follows:

Given: (1) the singularity manifolds — a disjoint collection S̃ = S1tS2t· · ·tSm of
(D −N)-dimensional (N > 1), connected, closed, orientable submanifolds, of RD; and
(2) the candidate manifolds) — a collection of (N − 1)-dimensional, closed, orientable
manifolds in (RD − S̃).

Problem: identify the homology classes of the candidate manifolds in the complement
of the singularity manifolds. Specifically, design a complete set of easily-computed invari-
ants for these homology classes by finding a set of explicit generators forHN−1(RD−S̃)
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Fig. 3.1: Illustration of intersection number in R3 with N = 2 in light of Definition 3.1.

and integrating these generators over candidate manifolds.

In order to compute the action of the cocycles on the candidate manifolds, we represent them
as (N − 1)-cycles (i.e. top-dimensional covering cycles). Thus, given a candidate manifold ω, we
can use a cellular cover of the manifold, ω, which is also an (N − 1)-cycle in (RD − S̃) under
the inclusion map ω ↪→ (RD − S̃) (a map that we will assume implicitly most often). However,
given two cycles ω1, ω2 ∈ ZN−1(RD − S̃), instead of checking if or not ω1 − ω2 is boundary in
HN−1(RD−S̃), we will compute complete invariants φS̃(ω1) and φS̃(ω2), comparing them to make
the desired assertion. In particular, we construct the function φS̃(·) to be in form of an integration
over ω of some set of differential (N − 1)-forms. Our strategy — using integration and differential
forms — is a traditional method for understanding (co)homology of manifolds and submanifolds
[4].

3. Preliminaries on Linking Numbers. Equipped with the notion of the (D−N)-dimensional
replacements of the obstacles/punctures, Si, we proceed towards computing the homology classes
of (N −1)-cycles (in light of robot planning problem those are the closed trajectories) of (RD−S̃).
In this section we recall various notions of intersection and linking number, and from this:

i. Infer homology classes of the (N − 1)-cycles in (RD − Si) from linking data (Proposi-
tion 3.4),

ii. Computing the linking number using an integration over the (N − 1)-cycle and a top-
dimensional cycle of the Si (Proposition 3.5).

We illustrate the ideas using examples from robot planning problems.

3.1. Definitions. Recall the definition of intersection number:

DEFINITION 3.1 (Intersection Number – Ch. VII, Def. 4.1 of [7]). Suppose X and Y are
sub-manifolds of RD, and A ⊂ X ⊂ RD, B ⊂ Y ⊂ RD are such that A ∩ Y = ∅, X ∩ B = ∅
(Figure 3.1). Consider the map p : (X × Y,A × Y ∪ X × B) → (RD,RD − {0}) given by
p(x, y) = x− y. The composition

HN (X,A)×HD−N (Y,B)
×−−−−−→ HD(X×Y,A×Y ∪X×B)

(−1)D−Np∗−−−−−−−→ HD(RD,RD−{0})
is called the intersection pairing (where ’×’ denotes the homology cross product – see p. 268 of
[13]). We write
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Fig. 3.2: A simplified illustration (following from Figure 2.2(c)) of intersection number and linking number in
R3 with N = 2. This is a special case of Definition 3.1 when X = R3, A = R3 − S, Y = S and B = ∅.
Figure (a) on the left: The intersection number is computed between a N -chain, ξ (more precisely it is a
relative cycle in (X,A) that we consider – the boundary of ξ trivialized), and the (D − N)-cycle, µ, that is
a top-dimensional cycle on S. In this figure the said intersection number is ±1 due to the single intersection
marked by the ‘cross’ at u. Then, by definition, that is equal to the linking number between ς = ∂ξ and µ.
Figure (b) on the right: The precise definition requires a mapping, p, from pair of points in the original space
(one point from the 2-chain, ξ, embedded in the ambient space, R3, and another from S) to (a different copy
of) R3. The intersection/linking number is then, informally, the number of times intersection points in the pre-
image of p (points like u) maps to the origin, 0 (with proper sign), in the image, or equivalently, the number of
times the image of ς × µ, under the action of p, wraps around the origin. Thus, it is the homology class of the
cycle p(ς × µ) in the punctured Euclidean space (RD − 0).

I (ζ, µ) = (−1)D−Np∗(ζ × µ), for ζ ∈ HN (X,A), µ ∈ HD−N (Y,B)

and call this element of HD(RD,RD − {0}) u R the intersection number of ζ and µ.

DEFINITION 3.2 (Linking Number – Adapted from Ch. 10, Art. 77 of [16]). We borrow
definitions of X,A, Y and B from Definition 3.1. Recall from the long exact sequence of the pair
(X,A) the connecting homomorphism ∂∗ : HN (X,A)→ HN−1(A). If ς ∈ HN−1(A) is such that
it can be written as ς = ∂∗ζ for some ζ ∈ HN (X,A), and if µ ∈ HD−N (Y,B), then the linking
number between ς and µ is defined as L (ς, µ) = I (ζ, µ).

These definitions, being based on homology classes, of course are applicable to cycle represen-
tatives. Figure 3.2 illustrates the intuition behind these definitions using a simple example.

3.2. Propositions on Linking Number. We state and two propositions related to linking num-
bers, and how they relate to homology class of cycles. The first is well-known but stated for com-
pleteness.

PROPOSITION 3.3 (Uniqueness of linking number). If HN (X) = HN−1(X) = 0 holds, then
L (ς, µ) is independent of the choice of ζ in Definition 3.2 [16].

PROPOSITION 3.4 (Connection to homology of A). Consider a fixed non-zero µ ∈
HD−N (Y,B). If, in addition to the condition of Proposition 3.3, we have HN (X,A) u
HN−1(A) u R, and if there exists at least one (N − 1)-cycle in A such that its linking number
with µ is non-zero, then the value of L (ς, µ) tells us which element of HN−1(A) is the chosen ς .
In other words, the map H ≡ L (·, µ) : HN−1(A) → HD−1(RD,RD − {0}) u R is an injective
homomorphism.
Proof.
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The map H is given by H(ς) = (−1)D−Np∗(∂−1
∗ ς × µ). This clearly is a group homomorphism

between HN−1(A) and HD−1(RD,RD − {0}). Since by hypothesis, both the domain and the co-domain
ofH are isomorphic to R,H can either be a trivial homomorphism (i.e. maps everything in its domain to 0
in its co-domain), or it can be an injection. The former possibility is ruled out by the hypothesis of existence
of at least one (N − 1)-cycle in A with non-zero linking number with µ. Thus the result follows.

The result implies that the linking number with µ is a complete invariant for the homology class
ς .

3.3. Computation of Intersection/Linking Number for Given Cycles. We describe how to
compute the linking number between the cycles ς and µ. As discussed in the beginning of this
paper, we would like to be able to compute the homology class of (N − 1)-cycles (top-dimensional
cycles on (N − 1)-dimensional manifolds) as an explicit number (or a set of numbers). Equipped
with Proposition 3.4, that problem can be converted to the problem of computation of the linking
numbers.

Let η0 ∈ ΩD−1
dR (R − {0}) be a closed differential form that represents the standard generator

of HD−1(RD − {0}). Let j∗ : HDN (Y )→ HD−N (Y,B) denote the quotient map.
PROPOSITION 3.5. Assume the same hypotheses as in Proposition 3.3. Fix µ ∈ HD−N (Y,B),

and suppose there exists a class u ∈ HD−N (Y ) such that j∗(u) = µ. Then for any ς ∈ HN−1(A),
the linking number L (ς, µ) is uniquely determined by the value of the integral

(−1)D−N
∫
ς×u

p∗(η0). (3.1)

Proof.
First, note that the map

HD(RD,RD − {0})
∂∗−→ HD−1(RD − {0})

∫
· η0−−−→ R

is an isomorphism, so that every element m ∈ HD(RD,RD −{0}) is uniquely determined by the value of
the integral

∫
∂∗m

η0.
Choose a class ζ ∈ HN (X,A) such that ∂∗(ζ) = ς . Then, by definition,

L (ς, µ) = I (ζ, µ) = (−1)D−Np∗(ζ × µ) ∈ HD(RD,RD − {0}).

Now, consider the diagram below.

HN (X,A)⊗HD−N (Y )

1⊗j∗ssggggggggggg
∂∗⊗1 ++VVVVVVVVVV

×

��

HN (X,A)⊗HD−N (Y,B)

×

��

HN−1(A)⊗HD−N (Y )

×

��

HD(X × Y,A× Y )

j∗ssggggggggggg
∂∗ ++VVVVVVVVVV

p∗

��

HD(X × Y,A× Y ∪X ×B)

p∗ ++WWWWWWWWWW
HD−1(A× Y )

p∗

��

HD(RD,RD − {0})

∂∗ **VVVVVVVVV

HD−1(RD − {0})

It is a standard fact that every part of this diagram commutes, and as a consequence we have that

∂∗p∗(ζ × µ) = ∂∗p∗(ζ × j∗u) = p∗(∂∗ζ × u) = p∗(ς × u)
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Fig. 4.1: The specific problem under consideration, illustrated for D = 3, N = 2.

Finally, by the naturality of integration, we have∫
∂∗L (ς,µ)

η0 = (−1)D−N
∫
p∗(ς×u)

η0 = (−1)D−N
∫
ς×u

p∗(η0).

Thus the integral on the right uniquely determines the value of the linking number L (ς, µ).

Note that linking number, by definition, is defined between a cycle in A and a relative cycle in
(Y,B). However, for computing the integration of Equation (3.1), the cycles we choose are from
A and Y . Thus it is possible to use the standard notion of integration over chains [4]. However, if
B = ∅, a relative cycle in (Y,B) becomes a cycle in Y .

4. Construction and Explicit Computation.

4.1. Construction of the Complete Invariant. We specialize the results of the previous sec-
tion to match the description of the reduced problem definition in Section 2.1. At present, we con-
sider the case where there is a single path-connected component of S̃, namely S. In connection to
the definitions stated in Section 3 (cf. Figure 3.2), we set

X = RD, A = RD − S, Y = S and B = ∅

Moreover, since Y ≡ S is a (D−N)-dimensional closed, connected and oriented manifold, we have
HD−N (S) u R. We thus choose µ = S ∈ ZD−N (S) to be a cycle representing the fundamental
class of S, i.e. the generator 1 ∈ HD−N (S). Also, note that sinceB = ∅, the map j′ : ZD−N (Y )→
ZD−N (Y,B) is the identity map. So in this case [S] ∈ HD−N (S,B) ≡ HD−N (S).

For this choice it is easy to verify that the conditions of Propositions 3.3, 3.4 and 3.5 hold.
i. Proposition 3.3: HN (RD) = HN−1(RD) = 0 follows from contractibility of RD.

ii. Proposition 3.4:
a. By Alexander duality [13], HN (RD,RD−S) u HD−N (S). Using Poincaré Duality

for S, HD−N (S) u H0(S) u R. Finally, from the long exact sequence for the
pair (RD,RD − S), using the contractibility of RD, we have, HN (RD,RD − S) u
HN−1(RD − S). Combining these three isomorphisms we have,

HN (RD,RD − S) u HN−1(RD − S) u R (4.1)

.
b. Consider a point v ∈ S. Since S covers S, this point is also in (the image of) S. Since
S is (D −N)-dimensional, we can choose a small N -ball, B, centered at v such that
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it intersects S transversely only at v. Let B ∈ CN (RD) be a top-dimensional non-
zero chain that covers B. Clearly the intersection number between S and j(B) (where
j : RD → RD/(RD − S) is the quotient map) is non-zero. Thus the linking number
between ∂B

∣∣
(RD−S)

(which, by our construction, is a (N − 1)-cycle in (RD − S))

and S is non-zero. Thus there exists at least one (N − 1)-cycle in (RD − S) that has
non-zero linking number with S (see Figure 4.1).

iii. Proposition 3.5: Follows from the fact that B = ∅.
Construction: A complete invariant for homology classes of (N−1)-cycles, ω ∈ ZN−1(RD−

S), is, by Proposition 3.4, the linking number between ω and S. Using Proposition 3.5, the complete
invariant, φS , for the homology classes of such chains is given by the integral

φS(ω) = (−1)D−N
∫
ω×S

p∗(η0)

= (−1)D−N
∫
ω

∫
S

p∗(η0) [Fubini theorem] (4.2)

4.2. Computation of φS . Let x ∈ (RD − S) ⊂ RD be the coordinate variable describing
points in (RD−S), and let x′ ∈ S ⊂ RD be the one describing points in S. Thus we have p(x,x′) =
x− x′. A well-known [1, 9] explicit generator for the deRham cohomology HD−1

dR (RD − {0})) is,

η0 =

D∑
k=1

Gk (−1)k+1 ds1 ∧ · · · ∧ dsk−1 ∧ dsk+1 ∧ · · · ∧ dsD =

D∑
k=1

Gk (−1)k+1
D∧
i=1
i6=k

dsi (4.3)

where,
Gk(s) =

1

AD−1

sk

(s2
1 + s2

2 + · · ·+ s2
D)

D/2
(4.4)

for s = (si) ∈ (RD −{0}), and AD−1 = Dπ
D
2

Γ(D2 +1)
, the (D− 1)-volume of the (D− 1)-dimensional

unit sphere.
The pullback of η0 under p is given by the following formula,

η(x,x′) = p∗(η0) = η0

∣∣
s=x−x′ =

D∑
k=1

Gk (−1)k+1
D∧
i=1
i6=k

d(xi − x′i) (4.5)

Now consider the quantity of interest, φ(ω) =
∫
x∈ω

∫
x′∈S η(x,x′). On ω × S, at most (N −

1) unprimed differentials can be independent, and at most (D − N) primed differentials can be
independent (since x represents a point on the image of the (N − 1) chain ω and x′ represents
a point on the image of the (D − N) chain S). Thus we can conveniently drop all the terms in
the expansion of η (which is a (D − 1)-differential form on (RD − S) × S) that do not satisfy
these conditions on maximum number of primed/unprimed differentials. Thus we obtain a simpler
differential form η̃,

η̃(x,x′) =

D∑
k=1

Gk(x− x′) (−1)k+1+D−N
∑

τi∈{0,1}
τ1+···+τD=D−N

D∧
i=1
i6=k

dx
(τi)
i

 (4.6)

[where, x(τ)
i represents x′i if τ = 1, otherwise represents xi if τ = 0.]
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This differential form, though simpler, has the property that

φS(ω) = (−1)D−N
∫
x∈ω

∫
x′∈S

η(x,x′) = (−1)D−N
∫
x∈ω

∫
x′∈S

η̃(x,x′) (4.7)

Finally, we re-write the formula for η̃ using a new notation as follows,

η̃(x,x′) = (−1)D−N
D∑
k=1

(
Gk(x− x′) (−1)k+1 ·

∑
ρ∈partD−N (ND−k)

sgn(ρ) dx′ρl(1) ∧ · · · ∧ dx′ρl(D−N) ∧ dxρr(1) ∧ · · · ∧ dxρr(N−1)

)
(4.8)

where,
1. ND

−k = [1, 2, · · · , k − 1, k + 1, · · · , D] is an ordered set,
2. partw(A) is the set of all 2 partitions of the ordered set A, such that the first partition

contains w elements, and each of the partitions contain elements in order.
Thus, after some simplification, the final formula for the complete invariant for homology class of
ω ∈ ZN−1(RD − S) is,

φS(ω) = (−1)D−N
∫
x∈ω

∫
x′∈S

η̃(x,x′)

=

∫
x∈ω

D∑
k=1

∑
ρ∈partD−N (ND−k)

Ukρ (x;S) ∧ dxρr(1) ∧ · · · ∧ dxρr(N−1) (4.9)

where,

Ukρ (x;S) = (−1)k+1 sgn(ρ)

∫
x′∈S

Gk(x− x′) dx′ρl(1) ∧ · · · ∧ dx′ρl(D−N) (4.10)

and by convention, S is a top-dimensional cycle covering S such that [S] = 1 ∈ HD−N (S).
Also, note that the quantity inside the integral in the formula for φS is a differential (N − 1)-

form in (RD − S). Thus we can integrate it over ω. We represent the differential (N − 1)-form by
ψS

ψS =
∑

ρ∈partD−N (ND−k)

Ukρ (x;S) ∧ dxρr(1) ∧ · · · ∧ dxρr(N−1) (4.11)

It should be noted that the η0 we used in (4.3) is just a particular choice, but this choice is
the only symmetric one (up to a scalar multiple) under rotations about the origin. This symmetry
enables us to write a clean formula in coordinates, but in general any closed form η0 would work.
The resulting invariant would differ from ours by a constant multiple.

4.3. Incorporating Multiple Connected Components of S̃. So far we have worked in the
case of a single connected obstacle S. However, recall that the original space under consideration
was (RD−S̃), with S̃ =

⊔m
i=1 Si, such that each Si is a path connected, closed, locally contractible

and orientable (D − N)-manifold. A straightforward induction argument computes the homology
of the smaller space, (RD − S̃), in terms of the larger spaces, (RD − Sk).

PROPOSITION 4.1. HN−1(RD − S̃) u
⊕m

k=1HN−1(RD − Sk) u Rm, where the first
isomorphism is induced by the direct sum of the inclusion maps ĩk : (RD − S̃) ↪→ (RD − Sk).
Proof.

11



Recall that the spaces Si are pairwise disjoint, so that for any p

(RD − Sp) ∪ (RD − tmi=p+1Si) = RD

(RD − Sp) ∩ (RD − tmi=p+1Si) = RD − tmi=pSi

From the Mayer-Vietoris sequence [13] for the triad
(
RD; RD− Sp, RD− tmi=p+1Si

)
, one obtains an

isomorphism

HN−1(RD − tmi=pSi)
(ũp∗,ṽp∗)−−−−−−→ HN−1(RD − Sp)⊕HN−1(RD − tmi=p+1Si) (4.12)

Note that ũ1∗ = ĩ1∗ and, ṽ1∗ ◦ ṽ2∗ ◦ · · · ṽ(p−1)∗ ◦ ũp∗ = ĩp∗.
By induction on p, we obtain a sequence of isomorphisms

HN−1(RD − S̃)
(̃i1∗,ṽ1∗)−−−−−−−→

u
HN−1(RD − S1)⊕HN−1(RD − tmi=2Si)

(̃i1∗ ,̃i2∗,ṽ2∗)−−−−−−−−→
u

HN−1(RD − S1)⊕HN−1(RD − S2)⊕HN−1(RD − tmi=3Si)

· · · · · ·
⊕mk=1 ĩk∗−−−−−−−→

u

m⊕
k=1

HN−1(RD − Sk) (4.13)

The fact that this is isomorphic to Rm follows from Equation (4.1), where we showed HN−1(RD − Sk) u
R.

The following theorem hence follows directly from Propositions 4.1 and Equation (4.2).
THEOREM 4.2. For any ω ∈ ZN−1(RD − S̃), a complete invariant for the homology class of

ω is given by,

φS̃(ω)
def.
=


φS1

(ω)
φS2

(ω)
...

φSm(ω)

 (4.14)

where, φSi is given by the formula in Equation (4.9).
Note that we have implicitly assumed a inclusion map ĩk : (RD − S̃) ↪→ (RD − Sk) being

applied on ω for computation of the kth component. For simplicity we do not write it explicitly,
since the map is identity as far as computation is concerned.

Thus, [ω1] = [ω2] if and only if φS̃(ω1) = φS̃(ω2), for any ω1, ω2 ∈ ZN−1(RD − S̃).
We remark that for low values of D and N , one recovers well-known integral formulae (Fig-

ure 4.2). In particular, with D = 2, N = 2 we obtain ψS = 1
2π Im

(
1

z−Sc dz
)

— the differ-
ential 1-form in the Residue Theorem from complex analysis; with D = 3, N = 2 we obtain
ψS = 1

4π

(∫
S

dl′×(x−x′)
|x−x′|3

)
· [dx1 dx2 dx3]T (where dl′ = [dx′1 dx′2 dx′3]T ) — the differential 1-form

in Ampere’s Law; and with D = 3, N = 3 we obtain ψS =
(

1
4π

x−S
|x−S|3

)
· [ dx2 ∧ dx3 , dx3 ∧

dx1 , dx1 ∧ dx2]T — the differential 2-form in Gauss’ divergence theorem.

5. Examples and Applications. We implemented the general formula for computing ψS(ω)
in C++ for arbitrary D and N . The singularity manifolds, S, and the candidate manifold, ω, are
discretized to create simplicial complexes S and ω respectively, thus enabling us to compute the
integral in equations (4.9) and (4.10) as a sum of integrals over simplices. In the following section,
for simplicity, we use the same notation for the manifolds and their simplicial equivalents. We used
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R2

Ω

ω

S1

S2

S3
S4

(a) D = 2, N = 2

Ω

S1 S2

S3

R3

ω

(b) D = 3, N = 2

Ω

S3

S4
S1

S2

R3 ω

(c) D = 3, N = 3

Fig. 4.2: Schematic illustration of some lower dimensional cases of the problem: (a) the Residue theorem, (b)
Ampere’s law, and (c) Gauss’ theorem.

the Armadillo linear programming library [15] for all vector and matrix operations, and the GNU
Scientific Library [10] for all the numerical integrations.

5.1. An Example for D = 5, N = 3. We present numerical validation for a simple case
of dimension greater than three: D = 5 and N = 3. The candidate manifold is of dimension
N − 1 = 2. We consider a 2-sphere centered at the origin in R5 as the candidate manifold: let
ω(RC) = {x | x2

1 + x2
2 + x2

3 = R2
C , x4 = 0, x5 = 0} be the boundary of the ball Ω(RC) =

{x | x2
1 +x2

2 +x2
3 ≤ R2

C , x4 = 0, x5 = 0}. The candidate manifold ω(RC) is easily parametrized
via spherical coordinates θ and φ. Let the singularity manifold S be the 2-torus as follows: x1 =
0, x2 =0, x3 =(RT + r cos(φ′)) cos(θ′)− (RT + r), x4 =(RT + r cos(φ′)) sin(θ′), x5 = r sin(φ),
with RT > r and the parameters θ′ ∈ [0, 2π] and φ′ ∈ [0, 2π]. For all examples that follow, we
choose r = 0.8, RT = 1.6.

Consider the particular candidate manifold ω(1) (i.e. RC = 1). By numerical computation of
integrals in (4.9) and (4.10), the value of φS(ω(1)) that we obtain for the above example is −1. In
order to interpret this result we first observe that ω(1) does not intersect S. However on S, when
x1 = x2 = x4 = x5 = 0, x3 can assume the values 0, −2r, −2RT and −2(RT + r). Thus, if
2r > RC , S intersects Ω(RC) (the ball whose boundary is ω(RC)) only at one point, the origin. A
simple computation of the tangents reveals that the intersection is transverse. Since that is a single
transverse intersection with Ω(RC), the linking number between ω(RC) and S (i.e. intersection
number between Ω(RC) and S according to Definition 3.2) is ±1 for all RC < 2r, just as indicated
by the value of φS(ω(1)). The sign is not of importance since that is determined by our choice of
orientation. In fact, with different values of RC , r and RT , as long as RT > r > RC

2 , we obtain the
same value of −1 for φS(ω(RC)).

However with RC = 2 for the candidate manifold, and the singularity manifold remaining the
same (i.e. r = 0.8, RT = 1.6), the value of φS(ω(2)) we obtain numerically is 0. In this case, the
points at which S intersect Ω(2) are the origin and the point (x1 = x2 = x4 = x5 = 0, x3 = −0.8).
Of course, in the family of candidate manifolds ω(RC), RC ∈ [1, 2], we can easily observe that
ω(1.6) indeed intersects S, thus indicating that ω(1) and ω(2) are possibly in different homology
classes.

Next, consider the following family of candidate manifolds: ω′(TC) = {x | x2
1 + x2

2 + x2
3 =

2, x4 = 0, x5 = TC}, and a corresponding Ω′(TC) such that ω′(TC) = ∂Ω′(TC): Ω′(TC) =
{x | x2

1 + x2
2 + x2

3 ≤ 2.0, x4 = 0, x5 = TC}. With the same S as before, if TC > r, clearly
there is no intersection between Ω′(TC) and S. Thus it is not surprising that indeed by numerical
computation, we found that φS(ω′(1)) = 0.

Now, since we computed φS(ω(2)) = 0 (although Ω(2) intersects S at 2 points) and
φS(ω′(1)) = 0 (and Ω′(1) does not intersect S), it suggests that ω(2) and ω′(1) are in the same
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(a) A graph created by uniform square dis-
cretization of an environment. The dark cells
represent obstacles. Each vertex is connected
to its 8 neighbors (except inaccessible ver-
tices).

(b) A trajectory in the continuous configura-
tion space can be approximated by a path in
the graph.

Fig. 5.1: Graph, G, created by uniform discretization of an environment. This specific type of graph shown in
the figures is referred to as the 8-connected grid.

homology class. We verify this by observation. None from the family of candidate manifolds
ω′(TC), ∀TC ∈ [0, 1] intersect S, and each is a 2-sphere. Thus ω′ defines an embedding of S2 × I
in R5−S such that ω′(0)t−ω′(1) is its boundary. It follows that ω′(0) and ω′(1) are homologous.
However, ω(2) = ω′(0). Thus it follows that ω(2) and ω′(1) are homologous.

5.2. Application to Graph Search-based Robot Path Planning with Topological Con-
straints. One consequence of φS̃ being a cocycle is that it is a linear function. As a result, if we
have a cycle ω that can be expressed as a sum of chains, i.e. ω =

∑
i τ i, with τ i ∈ CN−1(RD − S̃),

then we can write

φS̃(ω) =
∑
i

φS̃(τ i) (5.1)

where by φS̃(τ i) we simply mean the vector formed by evaluation of the integrals in Equa-
tions (4.14).

REMARK 1. Given (N − 1)-chains, τ1 and τ2 in X , such that ∂τ1 = ∂τ2, by an abuse of
terminology in the following discussions, we will say that they are in the same homology class if
τ1 − τ2 is null-homologous in X . It should however be remembered that homology classes are not
formally defined for chains, and are defined only for cycles or relative cycles.

That is, in the context of our problem where X = (RD − Õ), τ1 ≈ τ2 iff φS̃(τ1 − τ2) = 0

(where S̃ is the equivalent of Õ satisfying the property of Proposition 2.1). In context of robot path
planning problem, the candidate manifolds are all 1-dimensional. Thus we have N = 2. While
trajectories connecting two points in a configuration space (RD − Õ) themselves are not closed
manifolds, two trajectories connecting the same points together form a closed manifold.

Next we outline the basic graph construction for search-based planning with topological con-
straints (cf. the H-augmented graph of [3]). Discrete graph search techniques for robot path plan-
ning problems are widely used and have been shown to be complete and efficient [17, 8]. Given
a D-dimensional configuration space, the standard starting point is to discretize the configuration
space, place vertices inside each discrete cell, and establish edges between the neighboring vertices
to create a directed graph, G = (V, E) (Figure 5.1(a)). The discretization itself can be quite arbitrary
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and non-uniform in general. A directed edge [v1,v2] ∈ E connects vertices v1 to v2 iff there is
a single action of the robot that can take it from state v1 to state v2. Since an edge [v1,v2] ∈ E
is a 1-dimensional manifold embedded in (RD − S̃), we can evaluate the function φS̃ on (a top-
dimensional covering chain on) it we and write it as φS̃([v1,v2]). Likewise, a path, λ, in the graph
(Figure 5.1(b)) can be represented by a covering chain λ ∈ HN−1(RD − S̃), and φS̃ can be evalu-
ated on it. For simplicity, we often write φS̃(λ) to indicate this quantity, which is made possible due
to the assumption that such covering chains are essentially constructed out of simplices with unit
coefficients. The weight/cost of each edge is the cost of traversing that edge by the robot (typically
the metric length of the edge). We write w([v1,v2]) to represent the weight of an edge. Inaccessible
coordinates (lying inside obstacles or outside a specified workspace) do not constitute nodes of the
graph. A path in this graph represents a trajectory of the robot in the configuration space. The trian-
gulation of any path in the graph essentially consists of the directed edges of the graph that make up
the path.

Suppose we are given a fixed start and a fixed goal coordinate, represented by vs,vg ∈ (RD −
Õ) respectively, for the robot (by the boldface v’s, with a slight abuse of notation, we will indicate
both the vertex in the graph as well as the coordinate of the vertex in the original configuration
space). We next construct an augmented graph, Ĝ = {V̂, Ê , from the graph G in order to incorporate
the information regarding the homology class of trajectories leading from the given start coordinate
to the goal coordinate, as follows.

1.

V̂ =

{v, c}
∣∣∣∣∣∣∣∣
v ∈ V, and,
c is a m-vector of reals such that c = φS̃(λ)

for some 1-chain, λ, with boundary vs t −v
(i.e. λ is a covering chain of some path in G connecting vs to v).


2. An edge [{v, c}, {v′, c′}] exists in Ê for [v, c] ∈ V̂ and [v′, c′] ∈ V̂ , iff

i. The edge [v,v′] ∈ E , and,
ii. c′ = c + φS̃([v,v′]).

3. The cost/weight associated with an edge [{v, c}, {v′, c′}] is same as the cost/weight asso-
ciated with edge [v,v′] ∈ E . That is, the weight function we use is ŵ([{v, c}, {v′, c′}]) =
w([v,v′]).

It can be noted that {vs,0} is in V̂ (where 0 is an m-vector of zeros).
For finding a least cost path in Ĝ that belongs to a particular homotopy class, we can use a

heuristic graph search algorithm (e.g. weighted A*) [12, 6, 14]. In particular, we used the YAGSBPL
library [2] for constructing the graph and performing A* searches in it. Starting from the start vertex
{vs,0} we expand the vertices in Ĝ. The process of vertex expansion eventually leads to vertices
of the form {vg, ci}, where ci = φS̃(λsg) for some path λsg in G connecting vs to vg . Each of
these vertices in Ĝ correspond to an unique homology class of the path taken to reach vg from vs.
Let those vertices in the order in which we expand them be {vg, c1}, {vg, c2}, etc. Say during
the search process, we expand the vertex {vg, cj} ∈ V̂ . Depending on whether we are trying to
search for a particular homology class of trajectories or exploring multiple homology classes, we
can choose to take one of the following actions:

i. If cj is the desired value (or an admitted value) for the φS̃ -value of the trajectory we are
searching for, we store the path up to {vg, cj} in Ĝ, and stop the search algorithm.

ii. If cj is an admitted value for the φS̃ -value of the trajectory we are searching for, we store
the path up to {vg, cj} in Ĝ, and continue expanding vertices in Ĝ.
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(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5

(f) Class 6 (g) Class 7 (h) Class 8 (i) Class 9 (j) Class 10

Fig. 5.2: The first 10 homology classes of trajectories in order of length/cost. The gray regions are the obstacles.
The trajectories are in different homotopy classes as well.

iii. If cj is not an admitted value for the φS̃ -value of the trajectory we are searching for, we
continue expanding vertices in Ĝ.

Clearly, the projection of any of the stored trajectories onto G are paths in G connecting vs to vg .
Since both Ĝ and G use the same cost function, if

{
{vs,0}, {v1∗, c1∗}, {v2∗, c2∗}, · · · , {vg, cj}

}
is the jth stored path using an optimal search algorithm (e.g A*), then

{
vs,v

1∗,v2∗, · · · ,vg
}

is
the optimal path in G with φS̃ -value of cj (i.e. least cost path belonging to the particular homology
class). Thus we can explore the different homology classes of the trajectories connecting vs to vg .

If cg is the desired value of φS̃ evaluated on the trajectory we are searching for, we follow the
above process of expanding the vertices using the graph search algorithm until we expand {vg, cg}.
Given two paths λ1, λ2 in G, and if λ1, λ2 are their respective covering chains, since λ1 t −λ2 ∈
CN−1(RD − S̃), we notice that (φS̃(λ1) − φS̃(λ1)) ∈ Zm (with unit coefficients on the simplices
that constitute the chains, and with the choice of φS̃ as described in Equations (4.9) and (4.14)).
Thus, if we know the value of a cj = χS̃(λj), we can construct another m-vector that is a valid
value for φS̃ evaluated on some other trajectory connecting vs to vg as cj′ = cj + ζ for some
ζ ∈ Zm. This we can hence set as cg for finding the least cost path in the new homology class.

A consequence of the point 3 in the definition of Gχ is that any admissible heuristics (which is a
lower bound on the cost to the goal vertex) in G will remain admissible in Ĝ. That is, if h(v,v′) was
the heuristic function in G, we can define ĥ({v, c}, {v′, c′}) = h(v,v′) as the heuristic function in
Ĝ. As a consequence, if we keep expanding vertices in Ĝ as described in the previous section, the
order in which we will encounter states of the form {vg, ci} is the order of the costs of the least cost
paths in the different homology classes.

5.2.1. Planning in Low Dimensional Configuration Spaces. Figure 5.2 shows a 2-
dimensional region punctured by two obstacles. The graph G is constructed by uniform square
discretization (200×200), placing a vertex in each cell, and by connecting the free/accessible neigh-
boring vertices (Figure 5.1(a)). During the search of graph Ĝ, we adopt the action ‘ii.’ whenever we
encounter a vertex of the form {vg, cj} ∈ V̂ , until we have stored 10 paths. One can choose the
bump 1-form [4] for constructing ψS̃ as discussed earlier. The supports of that form are illustrated
in the figure as the thin rays.
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Fig. 5.3: Exploration of 3 homology classes of robot trajectories for a D = 3-dimensional configuration space.

Figure 5.3 demonstrates an example of search for 3 homology classes in a configuration space
with D = 3. The graph G is created by uniform discretization of the region of interest into 16 ×
16 × 16 cubic cells, and connecting the vertices corresponding to each cell to their immediate 26
neighbors.

5.2.2. Exploring Paths in Different Homotopy Classes in a 4-dimensional Space. Just as
we developed formulae for complete invariants for homology class in the 2 and 3 dimensional cases
in [3], we can now extend the formula to trajectories in higher dimensional spaces using the invariant
described in Equation (4.14).

In this example we explore homology classes of trajectories in a 3-dimensional space with
moving obstacles. However that makes the configuration space a 4-dimensional one consisting of
the coordinates X , Y , Z and Time. Thus we present a result in a X−Y −Z−Time configuration
space where we find multiple shortest paths in different homology classes in the 4-dimensional
space. Figure 5.4 shows the exploration of 3 homology classes in a 4-dimensional configuration
space consisting of a dynamic obstacle in 3-dimensions. The loop-shaped obstacle is rotating about
an axis. The X,Y and Z axes are shown. As we observe in the sequence, trajectories numbered 0
and 1 take off from the start coordinate (green dot) and move towards the “center” of the loop. They
wait there while 2 takes a different homotopy class to reach the center later. From there 0 and 2 head
together towards the goal (red dot), while 1 wait to take a different trajectory to the goal. Thus the 3
trajectories are in different homotopy classes.

6. Extension to non-Euclidean Ambient Spaces. Let L be a subspace of (RD − S̃). In this
section we would like to compute complete invariants for homology classes of (N − 1)-cycles in
the quotient space (RD − S̃)/L.

We write the inclusion map as ι : L ↪→ (RD−S̃). We consider (N −1)-chains in CN−1(RD−
S̃), and their images under the quotient map q# : C•(RD − S̃)→ C•(RD − S̃)/C•(L).

PROPOSITION 6.1. Consider α ∈ CN−1(RD − S̃) such that its boundary, ∂α, is either empty
or lies completely in L. Consider the set of all the (N − 1)-chains in L with boundary coinciding
with ∂α (if ∂α = 0, we consider all (N − 1)-cycles in L), and let Q denote the set of φS̃ -image of
those. Then, [q#(α)] = 0 ∈ Hn(X,L) if and only if φS̃(α) ∈ Q.
Proof.

The statement follows directly from the definitions of relative homology which guarantees the exis-
tence of a β ∈ CN−1(L) such that, φS̃(α − ι ◦ β) = 0 if and only if [α − ι ◦ β] = 0. Moreover, due to
the linearity of φS̃ , we have φS̃(α− ι ◦ β) = 0 ⇒ φS̃(α) = φS̃(ι ◦ β). For all computational purpose, ι
becomes the identity map since we use a single coordinate chart on (RD − S̃).
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(a) t = 1s (b) t = 4s

(c) t = 7s (d) t = 10s

(e) t = 13s (f) t = 16s

Fig. 5.4: Screenshots from exploration of 3 homotopy classes in a X − Y − Z − T ime configuration space.
The loop-shaped obstacle is rotating about an axis. The X,Y and Z axes are shown. Their apparent rotation is
due to movement of the camera for viewing from different angles.

One motivation for considering this kind of spaces arise from frontier-based exploration prob-
lems in robotics [18], where L represents the unexplored/unknown region in a configuration space,
and the task at hand is to deploy robots, starting from a point in the known/explored region, to reach
L following different topological classes. While we do not discuss a complete exploration problem
in this paper, we will describe, with example, how optimal trajectories in the different homology
classes for reaching L can be obtained using a graph search-based approach. As far as implementa-
tion for search-based planning for robot trajectories is concerned, we will mostly be interested in α
that has empty boundary (formed by trajectories sharing the same start and goal points in (RD−Õ),
as shown in Figure 6.1). Thus the Q that will be of our interest is the one for ∂α = ∅.
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S1

α
β

L

S3

S2

Fig. 6.1: An example of computation in quotient space X/L. Here X = R2 − (S1 t S2 t S3), N = 2.
The region, L, consists of everything that lies outside the small disk-shaped region, moding which out gives
us the 2-sphere with two punctures (images of S1 and S2). α is a non-trivial cycle in R2 − (S1 t S2 t S3)
since φS̃(α) = [1, 1, 0]. However it is trivial on the punctured sphere. To see this, we observe that in this
case Q = {[0,0,0],[±1,±1,0],[±2,±2,0],··· ,[0,0,1],[±1,±1,1],··· ,[0,0,2],··· ,···}. Thus we see that φS̃(α) ∈ Q. A
β ∈ CN−1(L) corresponding to the class is shown in the figure.

6.1. Search-based Implementation. A graph search-based algorithm, as described earlier,
can once again be employed for the case with N = 2, for finding optimal trajectories in different
homology classes on (RD − S̃)/L. Homology classes of trajectories (which are relative chains in
C1(RD − S̃, L)) are defined informally in a way similar to one in Remark 1.

The complete environment, RD − Õ, is discretized to create a graph, G, as before. Edges of
the graph lying in L are assigned zero costs (a small positive value is used in practice for numerical
stability), while for ones in the complement space is assigned the costs induced by a metric of
choice (we choose the Euclidean metric of the ambient space for the example in Figure 6.2). The
construction of the augmented graph is similar to the construction of Ĝ as before, except that now a
vertex {v, c} is identified with {v, c} if c − c ∈ Q (where Q is the set corresponding to ∂α = ∅).
We call this derived graph G̃.

Figure 6.2 shows an environment that is similar to the one illustrated in Figure 5.2, except that
now everything outside a rectangular region containing the two obstacles is considered to be part ofL
(the region near the boundary, where the metric, and hence the cost of every edge is set to zero). The
space under consideration is thus topologically a sphere, with L collapsed to a single point. For the
search algorithm, we choose the same start coordinate as before (near the bottom of the environment
– almost symmetrically placed with respect to the two obstacles), but we place the goal vertex inside
L (Exact choice does not matter. Although, if there were multiple path-connected components of L,
we would have to place one goal vertex in each connected component for exploring all the homology
classes).

Figures 6.2(a)-(e) shows exploration of first 5 homology classes (in order of path lengths) in
(RD − Õ)/L by searching in G̃. However, we notice that in the classes 3 and 5, the parts of the
trajectories lying in (RD − Õ − L) have disconnected components. Notice that it is not possible
to alter such trajectories through small variations to make them fall inside (RD − Õ − L), and
still remain close to optimal. This is because we use the Euclidean metric on RD for length of the
trajectories instead of the round metric on SD u RD/L.

While these solutions are technically optimal in the augmented graph, for exploration problems,
where computed trajectories are not desired to have multiple connected components, we can alter
the search algorithm slightly in order to obtain trajectories as shown in Figures 6.2(f)-(j) belonging
to the same classes, but connected. Instead of searching in G̃, we first perform a pre-computation
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(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 (e) Class 5

(f) Class 1 (g) Class 2 (h) Class 3 (i) Class 4 (j) Class 5 (The trajec-
tory winds around the
left obstacle twice.)

(k) This trajectory belongs to
the same class as Class 3 (fig-
ure (c), (h)) on (RD − Õ)/L.

Fig. 6.2: The thin region near the boundary of the rectangular environment, as shown in the figures is L, which
we collapse to a single point. The gray rectangles are the obstacles. (a)-(e): The first 5 homology classes of
trajectories in (RD − Õ)/L connecting a given start point in (RD − Õ − L), and an arbitrarily chosen point
in L (exact choice does not matter since we mod out L, which has a single path connected component) found
using graph search algorithm in Ĝ. (f)-(j): The solutions obtained using modified algorithm to ensure that the
trajectories have single connected components in (RD − Õ − L).

step where we execute a Dijkstra’s search in the subgraph of G that lies in L starting from the ‘goal’
vertex, and compute the value of φS̃ up to every other vertex in the subgraph following some path
lying inside L (and its boundary, ∂L). Let us represent that computed value corresponding to vertex
vL ∈ V|L by p(vL). The main search is then performed using Dijkstra’s algorithm in the subgraph
of Ĝ with vertices lying inside (RD−Õ−L) (and the boundary, ∂L), starting from the ‘start’ vertex,
and expanding vertices until the boundary between L and (RD − Õ − L) are reached. In addition,
a vertex on the boundary, {v′L, c}, is identified with {v′′L, c} if ((c− p(v′L))− (c− p(v′′L))) ∈ Q.

One interesting observation in the result of Figure 6.2 is that apparently the search does not
return any trajectory that winds around the obstacle on the right. This is because on (RD − Õ)/L
(i.e. the sphere punctured by the two obstacles), a trajectory connecting the two chosen points that
wind around one obstacle can be deformed over the sphere to make it wind around the other obstacle
– making them homotopic, and hence homologous. This is illustrated in Figure 6.2(k). The reason
that the obstacle on the left gets preference in the result of the search algorithm is because the start
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coordinate is located slightly closer (by 1 discretization unit) to the obstacle on the left than one on
the right.

7. Conclusion. The problem of optimal path planning (and its higher-dimensional general-
izations to homology HN ) has as prerequisite homology cycle planning. We have addressed this
precursor in the context of obstacle-punctured Euclidean spaces. The novel features of this work
involve (1) the skeletal restructuring of the obstacles Õ to facilitate (2) the design of a set of explicit
cocycles for a complete set of invariants for the homology class of the cycles. In this, the language
of de Rham cohomology is the critical technical step, using integration of differential forms over
cycles. We have demonstrated the use of our methods for solving homologically-constrained opti-
mal path planning problems in robotics, and topological exploration of robot configuration spaces.
A further generalization allowed us to achieve similar objectives in ambient spaces that are not Eu-
clidean, at the expense of an increased computational complexity. Further work is needed to address
this issue.
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