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Abstract Outsourcing algebraic computations in dynamic geometry is a pos-
sible strategy used when software distribution constraints apply. Either if the
target user machine has hardware limitations, or if the computer algebra sys-
tem cannot be easily (or legally) packaged inside the geometric software, this
approach can solve current shortcomings in dynamic environments.

We report the design and implementation of a web service using Singular,
a program specialized in ideal theory and commutative algebra. Besides its
canonical address, a virtual appliance and a port to a low-cost ARM based
computer are also provided. Any interactive geometric environment can then
outsource computations where Singular is used, and incorporate their results
into the system. In particular, we illustrate the capabilities of the web service
by extending current abilities of GeoGebra to deal with algebraic loci and
envelopes by means of a recent algorithm for studying parametric polynomial
systems.
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1 Introduction

Dynamic geometry (DG) software refers to computer programs where accurate
geometric constructions can be done. Some elements of a construction can be
dragged and, as they do, the whole diagram moves accordingly, preserving es-
sential relations and constraints. Consider, for instance, the ruler and compass
construction of the midpoint of a pair of points. Its DG construction involves
two free points, A and B, and their midpoint. Dragging A (or B) the midpoint
also moves but maintaining its defining characteristic, while if the user tries
to drag the midpoint nothing happens or the entire contruction is moved.

Although a remote antecedent of this paradigm can be traced back to
Sutherland’s Sketchpad [1], there is consensus about considering Cabri Geom-
etry1 and The Geometer’s Sketchpad2 as the environments marking the birth
of massive use of DG for mathematics education. DG environments, apart
from their educational uses, fastly attracted the attention of the community
of automated deduction in geometry. Coordinate-based approaches for auto-
matic proving, such as the method of Wu and the Groebner bases method,
have been successfully used during the last thirty years. DG software incor-
porating Wu’s method are MMP/Geometer [2] and Geometry Expert [3], to
mention a few. Concerning the Groebner basis method a proposal for linking
DG environments with this technique was given in [4] and realized in academic
prototypes (see for example [5,6]).

Meanwhile, a new DG system was proposed in 2001. GeoGebra3 is an
open source environment written in Java aiming to support under a com-
mon tool the elementary study of algebra and geometry. The software rapidly
spread throughout the math educational world, and has become a collabora-
tive project with impressive figures regarding users, languages versions and
web visitors. Although initial plans of GeoGebra developers were distributing
the software as a whole, the authors and other colleagues have considered en-
riching GeoGebra through the remote access to specialized software, mainly
for tasks related to automating proof and discovery of geometric properties.
One tool is Singular [7], specially well suited for dealing with ideal theory and
commutative algebra. Section 2 describes a web service using Singular. Al-
though designed with GeoGebra in mind, it can be used with any DG system.
As an illustration of its possibilities, Section 3 gives an account of a pair of Ge-
oGebra commands where the web service plays an outstanding role. By using

1 http://cabri.com
2 http://www.keycurriculum.com/products/sketchpad
3 http://www.geogebra.org
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a recent algorithm for solving parametric polynomial systems, GroebnerCover
[8], an existing GeoGebra command for computing the algebraic description
of geometric loci is improved and a new one dealing with envelopes of curves
is implemented. Both commands will be part of the forthcoming version 5.0
of GeoGebra.

2 The SingularWS web service

Singular is mostly written in C++. Embedding it into GeoGebra would be the-
oretically possible. GeoGebra is shipped as two kinds of main but completely
different platforms: the classical, desktop based version, running in a Java
Virtual Machine (JVM) can include embedded systems written in different
languages than Java. The standard technology here is Java Native Interface
(JNI, [9]). Unfortunately, the Java standard is no longer well supported in the
recent mobile devices including tablets and smartphones.

This is why GeoGebra has been moving towards a new platform, HTML5,
since it is the de facto standard of many of the present developments world-
wide. The HTML5 based web version of GeoGebra [10] may also include a
compiled version of Singular via a C++ to JavaScript or Native Client com-
piler. This kind of embedding has already been succeeded with the Giac CAS,
also being written in C++. See [12] for more details. Despite the theoretical
possibility, for size and simplicity reasons using Singular from GeoGebra was
definitely planned and implemented as an external service. According to site
documentation4, the minimal Windows installer of Singular 3.1.6 is 36 MB of
length which is about four times bigger than GeoGebra itself. For comparison,
Giac can be compressed to fit in 4 MB as a native library and in 7 MB as
JavaScript code. On the other hand, Giac is rather a general purpose CAS
and lacks of the algorithm used throughout this note.

As a conclusion, we decided to use an outsourced solution by installing a
Singular instance on a machine accessible via Internet [11]. Our demonstra-
tional public server (also used in GeoGebra 5.0 by default) is currently at
singularws.idm.jku.at, what is more, its full software content is also avail-
able for downloading at [13] (375 MB .zip file). Thus a teacher has two options:
he either uses our default public server, or has the opportunity to download the
ISO image of SingularWS, install it into VirtualBox and set the remote ma-
chine to the locally installed Singular web service (SingularWS) instance. This
latter option gives more flexibility for heavy computations. A detailed docu-
mentation of this technical process can be read in [14] and [15]. The end user
(the student or the system administrator of the classroom) needs to add the
command line argument --SingularWS=remoteURL:http://... when using
GeoGebra as in the second option; here ... is the IP address (or fully qualified
domain name) of the SingularWS instance.

4 http://www.singular.uni-kl.de/index.php/singular-download/install-windows-single-file.html
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Fig. 1 GeoGebra communicates with SingularWS via the HTTP protocol. Caching layer
software Varnish can also be inserted to speed up classroom usage when the same queries
may be sent by more students, but only one computation is preferred for all of them. Newest
version of SingularWS itself can maintain caching without any extra software required.

Besides the ISO image, a port of SingularWS for ARM architecture can
also be downloaded5. This image (3 GB .zip file), specifically taylored for the
low-cost Raspberry Pi computer, uses Singular through its embedding in Sage.
Although computation times will rise by a factor of ten, this solution could
be well suited for wireless use at schools with no Internet access and heavy
budget constraints. By switching SingularWS caching on with command line
argument --SingularWS=caching:true in GeoGebra, the teacher can pre-
generate the heavy computations for the local SingularWS instance before the
classroom showtime and the students will use the pre-computed results on
their workstations in an immediate time. In this case it is suggested to use
such teaching materials where the free points are constrainted to a reduced
set than the whole Euclidean plane, for example to grid points (in GeoGebra
Options . Point Capturing . Fixed to Grid).

GeoGebra communicates with Singular via a simple HTTP connection
string (Fig. 1) via some simple PHP scripts. In many cases the computation
time is below 10 milliseconds, and the communication (assuming an acceptable
Internet bandwidth between the student machine and the Austrian university
network) is below 40 milliseconds. As a result, GeoGebra with SingularWS
computes a wide range of geometry problems below 50 milliseconds. On the
other hand, this technology offers new perspectives in real time locus or en-
velope equation computations, especially when lots of such consecutive com-
putations are needed. Online Resource 1 shows a short introductory video on

5 http://193.146.36.205/pi_SingularWS_Sage5.8.img.zip
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using the LocusEquation command6 in GeoGebra 5.0 communicating with
a locally installed SingularWS instance via the HTTP protocol.

We needed to restrict the Singular command set to prohibit harmful ac-
cess to the SingularWS instance. Thus we made some internal modifications7

on Singular to run it in sandboxed mode by using the command line option
--no-shell. This mode will be available in Singular 3.1.7. (SingularWS cur-
rently uses version 3.1.6.)

3 GeoGebra computations via SingularWS

Current DG environments exhibit limited abilities when manipulating sym-
bolic geometric objects while CAS are particularly strong on such issue. Fur-
thermore, usual development of DG software pays special attention to graph-
ical aspects, neglecting the data structure needed for dealing with non–trivial
constructions. As a consequence, academic proposals for using CAS (Math-
ematica, Maple, CoCoA,. . .) as symbolic solvers for DG systems were made
repeatedly. See, for instance, [5,6,16]. As GeoGebra attracted a lot of attention
from teachers, so were the proposals using it as a frontend for applying results
coming from the automated deduction in geometry community. Nevertheless,
being GeoGebra a free open source program, the use of a vast repository of
knowledge and algorithms using proprietary environments poses intrinsic prob-
lems regarding its massive spread. Despite some moves of CAS corporations
allowing a kind of free access to their tools (cf. Wolfram|Alpha), we think
that it is not a safe approach relying on centralized closed software. Thus,
SingularWS offers free open access to any existing Singular algorithm on a
decentralized basis.

3.1 The GroebnerCover algorithm

We will use this algorithm to solve parametric polynomial systems describing
GeoGebra constructions that involve loci or envelopes. Thus, we recall the
main properties of the algorithm for the case of two parameters.

A locus or envelope construction is described by a polynomial system
{fi(x, y, x1, . . . , xn) : i = 1, . . . ,m}, where x, y are the parameters (the co-
ordinates of a generic locus point or the variables in the family of enveloped
curves), and x1, . . . , xn the rest of the construction variables. The solution
V(I) = {(x, y, x1, . . . , xn) ∈ Cn+2 : ∀i, fi(x, y, x1, . . . , xn) = 0}, where ideal
I = 〈fi〉, can be computed by the GroebnerCover algorithm. Given the ideal
I ⊂ Q[x, y][x1, . . . , xn] and a monomial order, there exists a unique set of pairs
{(Sj , Bj) : 1 ≤ j ≤ s}, called Groebner cover, such that

– The segments Sj ⊂ C2 are disjoint.

6 http://wiki.geogebra.org/en/LocusEquation_Command
7 https://github.com/kovzol/Sources/commits?author=kovzol
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– The segments Sj are locally closed subsets of the parameter space C2.
– Associated to each segment Sj there is a basis Bj ⊂ Q[x, y][x1, . . . , xn] that

specializes to the reduced Groebner basis of I for every pair (x, y) ∈ Sj .

The fact that for all elements in a segment the types of system solutions are
the same (finite, infinite or no solution) helps to decide about the membership
of each segment to the sought locus or envelope. Since a detailed description
of the procedure is in [17] and the goal of this note is the illustration of new
GeoGebra abilities by means of SingularWS, we will use it here without further
explanation.

3.2 Loci computation

The consuetudinary DG approach for loci is also implemented in GeoGebra
since its earlier version. A mover point bounded to a linear path determines
another point, the tracer, whose trajectory is the sought locus. This locus is
found as a linear object after sampling the mover’s path, and getting a list
of tracers. Heuristic rules are used to join contiguous points. See [18] for a
discussion of intrinsic problems within this approach.

Reacting to the mere graphical knowledge of loci, GeoGebra, starting from
version 4.2, included the new command LocusEquation. There, elimination
is performed on the algebraic description of the locus construction in order to
return such locus as an implicit curve. As it is well–known, such process finds
the Zariski closure of the projection on the space of locus coordinates, thus
possibly incorporating spurious points. As an illustration, consider the unit
circle, the hyperbola xy = 1 and a point A moving along the hyperbola. The
vertical projection of A sweeps the circle except both poles, while elimination
will return the whole unit circle, since it is the smallest variety containing the
locus. The GroebnerCover algorithm proceeds a step further in the description
of sets defined by first-order formulae. Instead of returning varieties, as it is
the case with algebraic elimination, results are expressed by constructible sets
since the base field is the complex one. In the case we are illustrating, the
projection of A would be declared as a locally closed set, that is, a difference
of varieties: V(x2 + y2 − 1) \ V(y2 − 1, x).

The current GeoGebra data structure does not allow representing con-
structible sets. Therefore, whenever a locus or envelope include a constructible
set not expressable by means of a single variety, for instance V1 \ V2, the sys-
tem drops V2 out and plots V1 as a GeoGebra implicit curve. This would be
the case when computing the pedal of an ellipse with respect to its center.
The center is included in the variety obtained after elimination, and, although
GroebnerCover takes it out, the GeoGebra implicit curve introduced in the
construction includes this extra point. So, any further computation with the
curve will be unsound, as can be tested trying to get again its pedal with
respect to the original center. A second ad–hoc strategy deals with points. If a
constructible set is a point (a, b) defined by V(x− a, y− b) GeoGebra includes



A Singular web service for geometric computations 7

Fig. 2 The wrong locus due to degeneration (if SingularWS is not used).

it as the implicit curve (x−a)2+(y− b)2 = 0, despite their different algebraic
meaning.

Another source of inaccuracy is due to construction degeneracies. As a
simple example (Figure 2), consider a circle centered at A and passing through
B. Let C be a point on the circle and define D as the intersection of lines AB
and AC. It is obvious that the locus of D when C moves along the circle is
its center, as GeoGebra finds (although the locus is not drawn, one can try to
construct a point on it and check its position). Nevertheless, LocusEquation,
if SingularWS is not used, will return a line as locus. This line comes from
a degeneration: when C coincides with B, also do lines AB and AC, their
intersection is not defined and the whole line is considered as a faithful part
of the locus.

The locus can be derived from a parametric polynomial system, where
A(0, 0), B(1, 2). Thus, the circle is x2+y2−5, C(x1, x2) satisfies x

2
1+x2

2−5, and
D(x, y) is defined by y−2x and yx1−xx2. The Groebner cover of the ideal I =
〈x2

1 + x2
2 − 5, y− 2x, yx1 − xx2〉 for the degree reverse lexicographical ordering

(chosen by default) consists of three segments with bases as shown in Table
1. After dropping out the segment with basis {1} (meaning that no solution
of the system exists), there are two segments where the system is solvable.
The second one states that there are exactly two construction instances such
that for parameters values satisfying y = 2x the system has solution, namely
(x1, x2) = (1, 2) or (−1,−2). Finally, there are infinite solutions, the circle
x2
1 + x2

2 = 5, for parameters x = 0 and y = 0. We reject the line y = 2x since
its dimension is greater than the one spanned by the corresponding variables,
and the point in third segment is declared as the locus.

The above locus construction and other illustrative examples are included
in Online Resource 2. The constructions available as supplementary material
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Table 1 The Groebner cover for the circle center as a locus.

Nr. Segment Basis

1 C2 \ V(2x− y) {1}
2 V(2x− y) \ V(y, x) {2x1 − x2, x2

2 − 4}
3 V(y, x) {x2

1 + x2
2 − 5}

should be opened with GeoGebra version 4.9.241.0 or greater8. Options related
to SingularWS are fully documented in the release notes of the new beta
version9.

3.3 Envelopes computation

Whereas computing envelopes is an option present in most DG environments,
GeoGebra lacks such ability. Only a simple procedure is suggested to get a
rough visualization of envelopes: trace an element of the family. This approach
relies on an incomplete definition of envelope and can be extremely difficult of
visualizing, even for expert users. Here we use the standard envelope definition
[19]: Given a family of curves F (t, x, y) where (x, y) ∈ R2, parameter t ∈ R,
the envelope of F is the set

{(x, y) ∈ R2 : ∃t ∈ R, F (t, x, y) = ∂F/∂t(t, x, y) = 0},

provided that, for each t, 0 is a regular value of Ft(x, y) = F (t, x, y). If the fam-
ily is multi–parametric, F (t1, . . . , tn, x, y), where the parameters are bounded
by n − 1 constraints, {g1(t1, . . . , tn) = 0, . . . , gn−1(t1, . . . , tn) = 0}, the above
conditions are replaced by F = g1 = . . . = gn−1 = 0 and∣∣∣∣∣∣

∂F/∂t1 . . . ∂F/∂tn
∂g1/∂t1 . . . ∂g1/∂tn

∂gn−1/∂t1 . . . ∂gn−1/∂tn

∣∣∣∣∣∣ = 0

Therefore, the problem, as in loci, can be posed as solving a parametric
polynomial system, restricting the base field to Q and being aware that solu-
tions will be found in C. Again, generic elimination for computing envelopes
could include extra branches due to degeneration and extra parts due to Zariski
closures.

As an illustration (Figure 3) consider a circle centered at A(4, 2) and pass-
ing through B(4, 4), a point C moving on it, and the line BC. We look for the
envelope of the family of perpendicular lines to lines BC passing through C.
Tracing the lines of the family the whole plane is swept, so no clear envelope
can be decided (technically, the envelope, as boundary of the region filled by
the lines, is empty). Eliminating the coordinates of C, x1, x2, in the system

(x1 − 4)2 + (x2 − 2)2 − 4, (y − x2)(x2 − 4) + (x− x1)(x1 − 4),

8 http://download.geogebra.org/installers/5.0
9 http://wiki.geogebra.org/en/Release_Notes_GeoGebra_5.0#New_Command_Line_Arguments
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Fig. 3 The envelope of a simple family of lines.

the line x = 4 is returned, that is a false result since this line comes from a
degeneration when C = B (see Section 3.2). The true envelope consists of the
point (4, 0), as it is computed by the new Envelope command10 and shown
as an implicit curve.

Online Resource 3 is a video of an envelope computation where three Singu-
larWS instances are used: the first one calls a locally installed instance through
VirtualBox while the others use the canonical address and a remote Raspberry
Pi, respectively. The connection to remote servers was done via ADSL, sug-
gesting that no significant timing differences with the local instance exist if
the canonical SingularWS is used. The construction (see Figure 4) consists
of a circle with center A(5, 2) and passing through B(5, 4), a point C on it,
and the family of lines CF , where F is another point on the circle at a fixed
distance from C (this distance is controlled with points D and E by means of
the Compass tool). The Envelope command, when applied to a line a = CF
and the point C, returns the implicit curve e. Note that replacing line CF by
CG identical result will be obtained, since F and G are algebraically indis-
tinguishable points. Furthermore, if the distance from C is set to 4 (that is,
both circles in the figure are tangent), the points F and G coincide, and the
envelope is exactly the point A, as GeoGebra indicates through the implicit
curve x2 − 10x+ y2 − 4y+29 = (x− 5)2 + (y− 2)2 = 0. Currently, GeoGebra
allows users to select an undefined object as the line a in this case for com-
puting the envelope. Finally, if the distance is greater than 4, the envelope
remains defined, while not having real points. Future GeoGebra versions will

10 http://wiki.geogebra.org/en/Envelope_Command
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Fig. 4 The envelope of lines CF when C moves along the circle c.

Fig. 5 The envelope of the vertical lines through the moving point D does not exist.

ban the use of undefined objects, and checks for testing imaginary objects will
be implemented.

Both envelopes above described are included as GeoGebra constructions in
Online Resource 4, together with other illustrative examples.

There are families of lines which do not have envelope. Consider a vertical
line at fixed distance of a moving point in the horizontal axis. Let A(x1, x2)
be the point on the axis (x2 = 0) and set the distance to 1 (line x = x1 − 1).
The parametric system {x−x1 +1, x2,−1} has no solution, and therefore the
envelope does not exist. In such cases, GeoGebra returns the implicit curve
0 = −1 (see Figure 5 and Online Resource 4 for construction download).

Finally, since GeoGebra can compute envelopes, it also can deal with off-
sets, caustics,... Figure 6 shows the 1-offset of the ellipse x2 + 5y2 = 5. Note
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Fig. 6 The 1-offset of an ellipse.

that currently the conic must be defined through the Ellipse command. If a
user defines the ellipse as an implicit curve through the Input window and
asks for the envelope, an internal exception is declared and the new Envelope
object is labeled as undefined. The reason of this behavior is that the current
data structure of GeoGebra does not yet include implicit curves as paths of
points parametrizing families of curves. Note also that any user trying to com-
pute caustics should not use GeoGebra commands related to reflection, since
they do not yet give adequate answers for SingularWS.

3.4 Future extensions

An obvious work will consist of extending the described GeoGebra abilities
to 3D loci and envelopes. Preliminary work on such computations in spatial
DG has been discussed in [20], and the ongoing development of GeoGebra3D
should allow such extension.

A common task for both 2 and 3D environments in GeoGebra will be ex-
tending the current data structure to efficiently manage an algebraic descrip-
tion of constructions. Besides completing the definition of GeoGebra com-
mands to use with SingularWS (recall the above limitations of reflection and
caustics), plotting procedures need to accommodate to objects that are not
anymore described by polynomials, but by constructible sets. And, since the
procedures here described work in the complex field, decisions on unveiling non
real results should be implemented. These rules will come on a twofold basis:
theoretical results from the mathematical side and pedagogical experiences
with DG users.
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4 Conclusions

We described the design and implementation of SingularWS, a web service
allowing access to Singular, a computer algebra system for polynomial com-
putations. By using a Singular algorithm for parametric polynomial systems
solving, new GeoGebra commands dealing with geometric loci and envelopes
are illustrated. These commands extend current dynamic geometry abilities,
returning new knowledge about the structure of loci and envelopes. Although
the service has been primarily designed for GeoGebra use, its free open source
character allows an easy connection with any other environment. As a conse-
quence, it is argued that this new knowledge demands a new data structure
for representing objects in dynamic geometry development.

Acknowledgements The authors want to thank Antonio Montes for his personal com-
ments on the GC algorithm and Miguel Abánades for his constructions involving envelopes.
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