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Abstract

We continue previous work by Mattei et al. [41] in which they study
the computational complexity of bribery schemes when voters have con-
ditional preferences modeled as CP-nets. For most of the cases they con-
sidered, they showed the bribery problem is solvable in polynomial time.
Some cases remained open—we solve several of them and extend the previ-
ous results to the case that voters are weighted. Additionally, we consider
negative (weighted) bribery in CP-nets, when the briber is not allowed to
pay voters to vote for his preferred candidate.

1 Introduction

This work is based on the findings of Mattei, Pini, Rossi, and Venable [41].
They considered the computational complexity of computing optimal bribery
schemes in voting scenarios in which the voters decide on a fixed assignment
for a common set of issues for which they might have conditional preferences.
The typical example for this setting is the choice of a common meal consisting
of several courses and drinks. Here it is a natural assumption that some voters’
preference over their choice of wine is conditioned on the kind of meat being
served, which again might depend on the choice of previously chosen dishes.
In such a setting, the set of candidates to vote on is exponentially large in the
number of common issues. A compact and convenient way to condense and
represent the voters’ possibly conditional preferences over this set is given by
the CP-net formalism introduced by Boutilier et al. [5], see also earlier works
by Boutilier et al. [4, 6].

∗The final publication is available at Springer via
http://dx.doi.org/10.1007/s10472-015-9469-3 .
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In a CP-net, a voter’s dependencies for a set of issues are modelled by a
directed graph, and the conditional aspect of his preferences is expressed by
so-called ceteris paribus conditional preference statements for each issue.

Preference aggregation in CP-nets was first investigated by Rossi et al. [47]
and was further pursued in various works such as Purrington and Durfee [46],
Li et al. [36, 37], Xia et al. [50], Conitzer et al. [9], to name just a few. Among
the approaches for voting with CP-nets, there are one-step methods that, given
the voters’ CP-nets, derive a linear preference order (or relevant parts of it) over
the candidates and apply one of the existent rules for elections where prefer-
ences are given as linear orders. Lang [33] proposed a sequential approach which
aggregates preferences issue by issue, see also the work of Lang and Xia [34] and
Xia et al. [51, 52]. In their work, Mattei et al. [41] use the one-step meth-
ods One-Step-Plurality (OP ), One-Step-Veto (OV ), and One-Step-k-Approval
(OK) (and a variant called OK∗) which are derived from the well-known vot-
ing rules for linear preference orders, as well as the sequential voting system
Sequential Majority (SM).

A central challenge in the field of computational social choice consists in de-
termining the computational complexity of voting problems [7, 25]. One seeks
to assess the extent to which voting systems are—in some sense—vulnerable to
or resistant against manipulative actions such as strategic behavior (manipula-
tion), election control, or bribery. These properties are measured in terms of
computational hardness of the corresponding decision problems. For the defini-
tion of these problems and for surveys on this topic we refer to the article by
Faliszewski et al. [25] and the bookchapter by Faliszewski et al. [22] on manip-
ulation, bribery, and control, the article by Faliszewski and Procaccia [26] on
manipulation, the survey by Rothe and Schend [48] on manipulation and con-
trol, and to the bookchapters by Conitzer and Walsh [10] for the manipulation
problem, and by Falizewski and Rothe [27] for bribery and control.

In this work, we consider the bribery problem which asks whether an external
agent, the briber, can influence the voters by spending money on changing
their preferences over the candidates in such way that his preferred candidate
wins, respecting a given budget. This problem was introduced and intensively
studied by Faliszewski et al. [21]. The original version deals with individual
but fixed prices for each voter, independent of the specific changes made if
the voter is bribed. Several variants have been considered [21], among them
the model of nonuniform bribery introduced by Faliszewski [19] and the model
of microbribery studied by Faliszewski et al. [23] which may incorporate the
amount of change the briber asks for. The Swap Bribery problem introduced
by Elkind et al. [17] additionally takes into account the ranking aspect of the
voters’ preferences by assigning costs for swapping two consecutive candidates
in a preference order.

Given that bribery of an election represents some kind of dishonest behavior,
one is interested in deriving hardness results for voting systems with respect to
the computational complexity of the bribery problem, even if this only consti-
tutes a worst case analysis.
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However, the bribery problem can also be considered in a positive way in
terms of convincing voters by (possibly) cost-involving actions like campaigning
to change their votes, and is referred to as election campaign management then,
see the works of Elkind et al. [17], Elkind and Faliszewski [16], Schlotter et
al. [49], and Baumeister et al. [2].
Considering the bribery problem as a campaign management problem, one is
of course less interested in obtaining computational hardness than in finding
efficient polynomial time algorithms.

In this work, we further investigate the complexity of the bribery problem
in the setting of voting with CP-nets as initiated by Mattei et al. [41]. The
difference to the ‘classical’ setting where preferences are given as linear orders
is that the briber does not directly execute changes in the preference orders of
the voters, but in the CP-nets, i.e., he can affect the dependencies. From the
point of view of campaign management, this seems very natural as well. One
can easily imagine a systematic campaign to convince voters to drop dependen-
cies in their preferences, without having to deal with their implicit preference
order. For instance, if a voter prefers some special kind of wine in the case that
meat is served as a main dish, one might run a campaign for the quality of the
alternative varieties of wine offered and therewith directly affect the CP-net,
without having to care about the induced preference order.
Bribery in CP-nets has also been investigated by Maran et al. [38] in the context
of interaction and influence among voters and by Pini et al. [45] in connection
to representation of the voters’ preferences via soft constraints.

In the ‘classical’ setting of unconditional preferences, the basic bribery prob-
lem is solvable in polynomial time for the voting rule k-approval [21], and there-
fore also for its special cases plurality and veto. In contrast, the Swap Bribery

problem for k-approval is solvable in polynomial time if all swaps have a cost
of one, but becomes NP-complete as soon as different costs are allowed, al-
ready for the case k = 2 (see the work of Dorn and Schlotter [13], Betzler and
Dorn [3] and Elkind et al. [17]); the complexity hence depends—additionally to
the voting system used—on the amount of change that the briber has to pay
for.

For bribery in the CP-net setting, the amount of change that the briber
has to pay for is incorporated by a cost scheme. Mattei et al. introduce five
cost schemes, called Cequal, Cflip, Clevel, Cdist, and Cany, which are inspired
by the classical setting, ranging from unitary costs irrespective the amount of
change per voter, over the scenario of swap bribery where specific costs for
swaps in the preferences can be modelled, to the case where arbitrary cost
can be incorporated. Additionally, these cost schemes are extended by a cost
vector Q ∈ (N)n which allows for modelling an individual cost factor for each
voter. Also, different bribery actions are considered. Mattei et al. distinguish
the cases that the briber can affect changes in so-called independent variables
only (IV), meaning that he can only make changes concerning issues for which
the preferences are independent of the outcome for other issues, in dependent
variables only (DV), or in all kinds of variables (IV+DV).
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In most of the cases they considered, Mattei et al. obtained that the bribery
problem is easy, i.e., solvable in polynomial time. An overview of their results
is given in Table 1. Three cases with different variants remained unanswered:
The complexity for the voting systems OP , OV , OK∗ with the cost scheme
Clevel for bribery actions DV and IV + DV , the complexity for the voting
systems OP , OV , OK∗ with the cost scheme Cany for all bribery actions, and
the complexity for SM with the cost scheme Cdist for all bribery actions. The
first two cases were believed to be NP-complete. We show that these two are
solvable in polynomial time as well.

Moreover, we extend Mattei et al.’s results for the case that voters are
weighted. So far, the weighted version of the bribery problem in CP-nets
was considered for the voting system SM only. Mattei et al. obtained NP-
completeness for all cost schemes and all bribery actions in this case. Addi-
tionally, for the cost scheme Cflip, they showed that the problem is solvable
in polynomial time if no individual voter costs are allowed, see Table 1. We
complement their results by proving NP-completeness for most variants of the
weighted version for the other voting rules as well, and further illuminate the
influence of individual voter costs for the complexity of the weighted versions.
We find that considering individual extra costs for voters only makes a differ-
ence in terms of complexity for the voting system weighted SM combined with
the cost schemes Cflip and Clevel.
Additionally, we investigate the case of negative bribery, a variant introduced
by Faliszewski et al. [20], where it is not allowed to pay voters to vote for the
preferred candidate, both for the unweighted and weighted versions. We obtain
that the unweighted negative bribery problem is likewise solvable in polynomial
time for almost all variants considered so far, except for SM combined with
Cequal where it is NP-complete, and for SM combined with Cdist, which still
is unsolved, like its correspondent in the positive version. The weighted nega-
tive version is NP-complete for all variants considered so far. Our results are
summarized in Table 2 in Section 4.

This work is organized as follows. In Section 2, we give the basic notions used
from CP-nets, voting, and bribery. We introduce the setting of Mattei et al.,
the definitions of the bribery variants to be investigated, and the NP-complete
problems that we use in our reductions. Our results are contained in Section 3.
We start with proving Theorem 2 for finding the ‘cheapest subsets’ of a finite
set which helps in solving some of the open problems from Mattei et al. [41]
in the unweighted variants of the bribery problem. The subsequent subsections
deal with the complexity of the weighted case, where reductions from the NP-
complete Partition problem are given, and investigations for the unweighted
and weighted cases of negative bribery. An overview of our results and open
problems is provided in Section 4, together with a discussion and directions for
future research.
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Table 1: Complexity results obtained by Mattei et al. [41] for the bribery prob-
lem in CP-nets. P stands for solvability in polynomial time, NP-c for NP-
completeness. The given results hold for the bribery actions IV , DV , and
IV + DV . Questions that were unsolved by Mattei et al. are marked with
‘?’. The case of weighted SM with Cflip labeled with two complexity classes
means that the problem can be solved in polynomial time if no individual voter
costs are allowed, and that it is NP-complete if individual costs are taken into
account.

Cequal Cflip Clevel Cany Cdist

SM NP-c P P P ?
OP P P P for IV / ? for DV , IV +DV ? P

OV P P P for IV / ? for DV , IV +DV ? P

OK* P P P for IV / ? for DV , IV +DV ? P

weighted SM NP-c P, NP-c NP-c NP-c NP-c

2 Preliminaries

We mostly use notation and definitions as introduced by Mattei et al. [41].

2.1 CP-nets

In our setting, we are given a set of m issues M = {X1, . . . , Xm} each of which
has a binary domain D(Xj) = {xj , xj}, where j ∈ {1, . . . ,m}. A complete
assignment to all issues is called an outcome or a candidate, the set of candidates
D(X1)× · · · ×D(Xm) hence consists of 2m elements. Each of the n voters has
(possibly) conditional preferences over the values assigned to the issues: the
value assigned to an issue by a voter might affect the values of other issues.
In this case, the latter issues are called dependent issues; an issue is called
independent if its value does not depend on the value of another issue. The
dependencies can be modeled by a directed dependency graph having vertex
set M and a directed edge going from Xi to Xj if and only if the assignment
of the value of Xj depends on the assignment of the value of Xi. A CP-net
over M consists of a dependency graph together with a conditional preference
table for each issue Xi (or vertex of the dependency graph, respectively) where
the voter specifies a strict total order over the values of Xi for each complete
assignment of the issues on which it depends on. Each of these specifications is
referred to as a cp-statement. For example, if for an independent issue A, the
assignment A = a is unconditionally preferred to A = a, the cp-statement is
written as a > a; if the assignment A = a is preferred to A = a, we write a > a.
For a set of issues {A,B} with domains D(A) = {a, a} and D(B) = {b, b} in
which B is dependent on A, if a is unconditionally preferred over a, and b is
preferred over b in case the value of a is assigned to A, and b is preferred over b
in case the value of a is assigned to A, we have one cp-statement for A, namely
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a > a, and two cp-statements for B, which we write as

a : b > b,

a : b > b.

A CP-net is called acyclic if the corresponding dependency graph is acyclic;
it is called compact if the number of issues each issue depends on is bounded
by a constant. We remark that the original definition of CP-nets by Boutilier
et al. [5] does not require acyclicity, but this assumption is natural [33] and
also employed by Mattei et al. [41]. In acyclic CP-nets, there is only one most
preferred candidate which can then be found in linear time by going through
the CP-net in topological order and assigning the most preferred value to each
issue according to the cp-statements [5].
Throughout this work, we assume that the voters’ preferences on the set of
issues are given by acyclic and compact CP-nets. The collection of CP-nets of
all voters is called a profile.

Example 1. A group of friends wants to go on vacation. They can choose
between going to Austria or Italy for hiking or alpine skiing in the summer or
the winter holidays. The three issues to decide on are hence Where, When,
and What. So the corresponding domains are D(Where) = {Austria, Italy},
D(When) = {summer,winter}, and D(What) = {skiing, hiking}. A possible
candidate would be skiing in summer in Italy. Figure 1 shows two possible
conditional preferences modelled as CP-nets, each of them consisting of a de-
pendency graph and a conditional preference table.

CP-nets only define a partial order over the candidates, i.e., some candidates
are incomparable. There are several ways to create strict total orders over the
candidates ([7, 11]). We use the linearization method that is also used by Mat-
tei et al.: Each voter provides a fixed strict total order Xi1 > Xi2 > · · · > Xim

over the issues X1, . . . , Xm such that each issue is independent from all issues
following it in this order; this is possible because the CP-net is acyclic. Then we
associate a binary vector of length m to each candidate, for which the entry at
position j corresponds to issueXij in the voter’s fixed ordering. This entry is set
to 0 if the preferred value of its binary domain is assigned to it, and 1 otherwise.
Hence, the most preferred candidate is associated to the vector (0, . . . , 0), and
the least preferred one to the vector (1, . . . , 1). Given a candidate, the next best
candidate can be found efficiently by increasing the binary number represented
by its vector by one.

In the general setting, every voter may have an individual fixed total order
over the issues. The voting system SM (defined below) relies on a sequential
approach to voting and therefore requires existence of a strict total order O over
the issues such that for each CP-net, each issue is independent from all issues
following it in O. A profile that fulfills this property is called an O-legal profile
by Lang [33], see also the work of Lang and Xia [34]. Mattei et al. [41] use this
notion as well as the notion of a constant linearization scheme across all agents
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Alice

Where

When

What

Bob

Where

When

What

Where summer: Italy > Austria,

winter: Austria > Italy

When summer > winter

What summer: hiking > skiing,

winter: skiing > hiking

Where Italy > Austria

When summer > winter

What Italy, summer: hiking > skiing,

Italy, winter: skiing > hiking,

Austria, summer: hiking > skiing,

Austria, winter: hiking > skiing,

Figure 1: Two CP-nets over the issues Where, When, and What. The possible
values are Austria or Italy in the summer or the winter holidays for hiking or
alpine skiing. Alice thinks that a summer vacation always is the better choice,
but if it has to be winter she prefers alpine skiing in Austria. Bob thinks that
alpine skiing is not an appropriate summer activity and that only Italy has good
ski regions.

for such an order O. In Example 1, the profile consisting of Alice’s and Bob’s
CP-nets is O-legal for the order O: When > Where > What.

2.2 Voting

Given a profile of CP-nets over a set of issues, one can determine the winning
outcome(s) by a voting rule which maps a profile to a set of candidates. In the
unique winner model, the rule determines a single winning candidate, whereas
in the non-unique or co-winner model, the output of the rule is a whole set of
candidates which are all considered as winners. In this case, the notion of a
voting correspondence is also used for the notion of a voting rule. We consider
the same voting rules for CP-nets as Mattei et al. [41].

• Sequential majority (SM): Given a total order O for which the profile is
O-legal, we follow this order issue by issue, and execute a majority vote
for each issue. The voters fix the winning value of the corresponding issue
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in their CP-net and then go on to the next issue. The (unique) winning
candidate is the combination of the winners of the individual steps taken.

• One-Step-k-Approval (OK): The k most preferred candidates of each
voter obtain 1 point each, the remaining candidates obtain 0 points. The
(co-)winners of the election are the candidates with the maximum number
of points. In particular, we consider the two following special cases:

– One-Step-Plurality (OP ), where k = 1, i.e., only the most preferred
candidate of each voter has to be considered, and

– One-Step-Veto (OV ), where k = 2m− 1, i.e., only the least preferred
candidate of each voter has to be provided.

For OK, O-legality of the profile is not necessarily required. Mattei et al. also
consider the special case of OK, denoted by OK∗, where k is a power of two.
For more details and several examples for the use of these rules, we refer to
Mattei et al. [41].

2.3 Bribery

We consider the problem that an external agent, the briber, who knows the CP-
nets of all voters, asks them to execute changes in their cp-statements. Mattei et
al. [41] define this in a way that the briber can ask the voters to flip the value of
one or more issues in their CP-nets, which might imply several further changes,
according to the dependencies. They distinguish the case that the briber can
ask for a change in the cp-statements of the independent issues only (IV), the
dependent issues only (DV), or in any cp-statement (IV+DV).
Moreover, they introduce five cost schemes:

• Cequal, where any amount of change in the CP-net has the same unit cost,

• Cflip, where the cost of changing a CP-net is the total number of individual
cp-statements that must be flipped to obtain the desired change,

• Clevel, where the cost to flip a cp-statement is linked to the depth of the
associated issue in the dependency graph.
The cost of a bribery is computed as

∑

Xj∈M flip(Xj) · (k+1− level(Xj)),

where k is the number of levels in the CP-net, level(Xj) corresponds to
the depth of issue Xj in the dependency graph, and flip(Xj) is the number
of flips performed in cp-statements associated with Xj . (Note that for the
voting rules we consider, we have flip(Xj) ∈ {0, 1} for all j, see the remark
below.) More precisely,

level(Xj) =











1 if Xj is an independent issue;

i+ 1 if level(Xi) ≤ i holds for all parents Xi of Xj and

there is at least one parent Xl with level(Xl) = i.
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• Cany, where the cost is the sum of the flips, each weighted by a specific
cost, and

• Cdist, where we require a fixed order of the issues for each voter (but not
necessarily the same for each of them), which induces a strict total order
over all candidates. The cost to bribe a voter to make candidate c his top
candidate is the number of candidates who are better ranked than c in
this order.

Remark. We remark that for the considered voting rules and for each reason-
able bribery, flip(Xj) in the definition of Clevel is equal to 0 or to 1 for each
issue Xj. We call a bribery reasonable if there is no lower priced bribery that
has the same benefit for the briber. Clearly, flip(X) ∈ {1, 0} holds for an in-
dependent issue X because there is only one cp-statement associated with an
independent issue. All dependent issues have more than one cp-statement, but
for the four voting rules we consider, it is never reasonable to bribe for changes
in more than just one cp-statement per issue, as those additional changes may
generate additional costs but are of no help.

• For SM , when the majority vote is executed for an issue X, this means
that for each voter all the issues that X depends on already have a fixed
value. Therefore only one cp-statement per issue is relevant.

• For OP , the briber only has to change the most preferred candidate of a
voter in case he decides to bribe him. This is achieved by changing the
value of some of the issues in the corresponding CP-net, and this can be
done by flipping a single cp-statement in the issues that are concerned.

• For OV , this is almost the same. The briber only has to change the least
preferred candidate, which means that the value of some issues has to be
flipped, which can be done by flipping a single cp-statement per issue.

• For OK, we have a set of approved candidates and a set of disapproved
candidates. There is at most one cp-statement per issue which implies a
change of these two sets if it is flipped. A flip of the other cp-statements
only changes the order of the candidates within these sets.

Additionally, these cost schemes are extended by a cost vector Q ∈ (N)n which
allows for modelling an individual cost factor for each voter. The factor for
voter vi is denoted by Q[i] and is multiplied with the costs calculated by a cer-
tain cost scheme to obtain the amount that the briber has to pay to vi. We
remark that all our tractability results, except the one of Theorem 12, hold for
arbitrary cost vectors, while all of our hardness results still hold with Q[i] = 1
for all 1 ≤ i ≤ n.

The (D,A,C)-bribery problem is then defined in the following way:
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(D,A,C)-Bribery

Given: A profile of n CP-nets over m common binary issues, a
winner determination voting ruleD ∈ {SM,OP,OV,OK}, a bribery
action A ∈ {IV,DV, IV + DV }, a budget β, a cost scheme C ∈
{Cequal, Cflip, Clevel, Cany, Cdist}, a cost vector Q ∈ (N)n, and a
preferred candidate p. For the voting rule SM, we also require O-
legality for a given total order O over the issues.
Question: Is it possible to bribe the voters to make changes in
their cp-statements in such a way that p becomes a (co-)winner of
the bribed election, without exceeding β?

In this work, we focus on the non-unique winner model to keep the proofs as
simple as possible. All our results still hold for the unique winner model. Our
proofs can easily be adapted for this model, e.g. by adding a tie-breaking voter
who initially votes for p, cf. Faliszewski et al. [21], or some similar adjustment.
Note that in general, tie-breaking is not an easy task and an interesting question
of its own ([24, 40, 43, 44]).

We also consider Weighted-(D,A,C)-Bribery, which is defined in the
same way, but with weighted voters, which is a typical variant for bribery prob-
lems (see the overview of Faliszewski et al. [21]). Moreover, we investigate the
computational complexity of weighted and unweighted (D,A,C)-Negative-

Bribery, which are defined as their non-negative versions, but where the briber
is not allowed to bribe voters to vote for his preferred candidate, see also Fal-
iszewski et al. [21], who introduced this variant in the original setting of the
bribery problem.

For the polynomial time algorithm we give in Theorem 12, we consider the
bribery problem as the optimization version of the Knapsack problem [30],
which is defined as follows.

Knapsack

Given: A finite set U , for each u ∈ U a size s(u) ∈ Z
+ and a value

v(u) ∈ Z
+, and a positive integer S.

Task: Find a subset U ′ ⊆ U such that
∑

u∈U ′ s(u) ≤ S and
∑

u∈U ′ v(u) is maximal.

The Knapsack problem is known to be NP-complete and can be solved in
time O(n ·S) or O(n ·T ), where T :=

∑

u∈U v(u), with a dynamic programming
algorithm, see the work of Dantzig [12]. This running time is pseudo-polynomial
since it depends on the representation of the integers S or T . We will see that in
our case, however, T is bounded by n ·m. Neither n nor m can be exponential
in the input size, since each of the n voters is given by his CP-net and each
such CP-net consists of at least m cp-statements. This will lead to solvability
in polynomial time with respect to the input size.

To show NP-completeness for variants of the bribery problem, we use reductions
from the following problems.
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Partition

Given: A set A of (not necessarily different) integers with
∑

a∈A a = 2ψ.
Question: Is there a subset A′ ⊂ A such that

∑

a∈A′ a = ψ?

This problem is one of Karp’s first 21 NP-complete problems [31].
The following problem is used for the reductions in the negative case.

Negative Optimal Lobbying

Given: An n × m 0/1 matrix E , a positive integer k, and a 0/1
vector x of length m. (Each row of E represents an agent. Each
column represents a referendum in the election or a certain issue to
be voted on by the legislative body. The 0/1 values in a given row
represent the natural inclination of the agent with respect to the
referendum questions put to a vote in the election. The vector x
represents the outcomes preferred by The Lobby.)
Parameter: k (representing the number of agents to be influenced)
Question: Is there a choice of k rows of the matrix, such that these
rows can be edited, without setting them equal to x, so that in each
column of the resulting matrix, a majority vote in that column yields
the outcome targeted by The Lobby (= x)?

This problem is the negative version of the NP-complete Optimal Lobbying

problem [8]. As the following theorem states, it is NP-complete as well. In fact,
Optimal Lobbying is even W [2]-hard with respect to the number k of agents
to be influenced. This number (which is part of the input) is called a parameter
in the context of parameterized complexity theory. The classW [2] belongs to the
so-called W -hierarchy within this theory. We refer to Downey and Fellows [14]
for these definitions, or the books of Flum and Grohe [28] or Niedermeier [42]. To
prove membership and hardness with respect to the classes of the W -hierarchy,
so-called parameterized reductions are used which have to meet certain require-
ments on the parameters that are considered. The polynomial-time reduction
we give in the proof of the following theorem preserves the parameter k and
therefore is a simple case of a parameterized reduction, implying W [2]-hardness
with respect to k for Negative Optimal Lobbying. Informally speaking, this
means that the problem is not expected to be solved efficiently even for small
values of k.

Theorem 1. Negative Optimal Lobbying is NP-complete and W [2]-hard
with respect to the number of agents to be influenced.

Proof. We give a reduction from Optimal Lobbying. Starting with an in-
stance IOL of Optimal Lobbying with an n × m 0/1 matrix E , a positive
integer k, and a 0/1 vector x of length m, we construct the instance INOL of
Negative Optimal Lobbying by extending the vector x of the preferred out-
come of The Lobby by n positions, all of them set to 0. The matrix E is extended
by n additional columns as well. We use the n× n identity matrix for this ex-
tension. Therefore exactly one entry is 1 in each of the additional columns, and
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each row has one 1-entry in exactly one new column. All remaining entries in
this extension are set to 0. The parameter k is left unchanged.

We make two observations: First, the new matrix still has n rows, so the
majority in the new columns is always 0. And second, there is exactly one 1 in
each row in the new columns. So there is no need for the Lobby to edit anything
in the new columns and no row has to be changed to x. It is not hard to verify
that IOL is a yes-instance if and only if INOL is a yes-instance.

3 Computational Complexity of Bribery Schemes

in CP-nets

3.1 Results for the unweighted case

In this section, we address several cases left open by Mattei et al. [41]. They
showed that the unweighted bribery problem is solvable in polynomial time for
the one-step voting systems OP , OV , OK∗ for several cost schemes. For the
cost scheme Cany and all bribery actions, and for the cost scheme Clevel with
bribery actions DV and IV +DV , the computational complexity was still open.
In this section, we show that all of these problems are polynomially tractable as
well, thus completing the complexity table for OP , OV , OK∗ in the unweighted
case. An overview of all results (both from Mattei et al. [41] and ours) can be
found in Table 2 at the end of this work.

One task in the proofs of Theorems 3 and 7 which address the open problems
consists in finding the n cheapest candidates in the exponentially large set of
candidates. We give a general formulation of this problem in terms of finding
the “smallest subsets” of a set as follows. By P(A), we denote the power set of
a finite set A.

K-Smallest Subsets

Given: A finite set A = {a1, a2, . . . , am}, size s(ai) ∈ Z
+ for 1 ≤

i ≤ m, and a unary coded integer K ∈ N, K ≤ 2m = |P(A)|.
Wanted: The “K smallest subsets” of A, i.e., the first K elements
of the power set P(A), when its elements are sorted ascendingly (ties
broken arbitrarily) by the sums of the sizes of their elements.

In the following, by the size of a subset, we refer to the sum of the sizes of
its elements. The empty set has size zero. The K-Smallest Subsets hence
asks for the K elements of P(A) with the smallest size.

Example 2. Let A = {a1, . . . , a6} with s(a1) = s(a2) = 1, s(a3) = 2, s(a4) =
3, s(a5) = 4, s(a6) = 7. For a better readability, we use the notation A =
{1, 1̂, 2, 3, 4, 7} in this example, where we mark one 1 with a hat to be able to
distinguish between a1 and a2. Then the seven smallest subsets of A are the sets
{1}, {1̂}, {1, 1̂}, {2}, {1, 2}, {1̂, 2}, {3}. For n = 8, there are several possible
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solutions, each of them consisting of the seven sets {1}, {1̂}, {1, 1̂}, {2}, {1, 2},
{1̂, 2}, {3} and one of the sets {1, 1̂, 2}, {1, 3}, {1̂, 3}, {4}, respectively.

This problem is the enumeration variant (see the recent survey of Epp-
stein [18] on enumeration variants) of Kth Largest Subset [30] which was
shown to be #P -complete by Lawler in 1972 [35]. The procedure given by
Lawler is designed to be applicable to many different problems and therefore
is not optimal in terms of the running time. To the best of our knowledge, it
was not improved further. Since the applicability of Lawlers procedure to K-

Smallest Subsets can be easily missed, we give a specialized algorithm with
the same running time if m equals K and a better running time in every other
case1.

Theorem 2. The problem K-Smallest Subsets is solvable in O(min{K,m}·
(Km+K)) time.

Proof. Since P(A) contains exponentially many subsets of A, we cannot sim-
ply sort them by their sizes if we ask for a polynomial time algorithm. In-
stead, we proceed in an iterative way as described in Algorithm 1. We as-
sume that the elements of A are sorted in ascending order by their sizes, i.e.,
s(a1) ≤ s(a2) ≤ · · · ≤ s(am).
The idea of the algorithm is the following. Assume we have an array A con-
taining the (up to) K smallest subsets of the set Ai := {a1, . . . , ai}, for some
i ∈ {0, 1, . . . ,m− 1} (A0 being the empty set), sorted ascendingly by their size.
Then we can extend this solution to a solution to K-Smallest Subsets for
the set Ai+1 = {a1, . . . , ai, ai+1}: We generate an array B containing the same
subsets as A (in the same order). We then adjoin the element ai+1 to each of
the subsets in B. The solution to K-Smallest Subsets for Ai+1 consists of
the (up to) K subsets contained in A and B with the smallest size. For finding
these we can make use of the sorting of A and B, and do a two-way merge [32,
p. 158] until we find the first (up to) K subsets.

We start this procedure with the solution for A0, which consists of the empty
set only. Then we extend the solution in an iterative way as described above
until we obtain the solution for Am = A.

Correctness. We show that the following statement I is an invariant for the
loop in line (a) of Algorithm 1:

I: Array A contains the (up to) K subsets of Ai = {a1, . . . , ai} with
the smallest size in ascending order.

When the algorithm first enters line (a), A contains the only subset of A0,
namely ∅, so I holds. Now we show that I still holds after each repetition of

1Lawler’s procedure has a running time of O(Kmc(m)), with c(m) being the time required
to compute an optimal solution with m variables. In our case c(m) is a constant. Taking
into account the time required to find the minimum in the list [35, Step 1] and the creation
of the instances [35, Step 3], this leads to a running time of O(K(K +m2)) for K-Smallest

Subsets.
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the loop.
For an iteration i ≥ 1 of the loop, A stores the (up to) K smallest subsets of
the last iteration i− 1. We create (up to) K+1 smallest subsets of Ai which all
contain the element ai, by subjoining ai to each of the subsets that we copy from
A, and by creating the set {ai} (line (c)). There cannot exist any ai-containing
subset X of Ai which is smaller than the most expensive one in B, because by
I, the set X \{ai} has to be contained in A. By choosing the (up to) K smallest
subsets of A and B to be contained in A for the next iteration, I holds again
at the end of the repetition.
After min{K,m}−1 iterations of the outer for-loop in line (a), A contains the so-
lution to K-Smallest Subsets. ForK ≥ m, this is clear because Am = A. For
K < m, the elements an+1, . . . , am cannot be contained in any subset belong-
ing to a solution to K-Smallest Subsets, i.e., the solutions to K-Smallest

Subsets for A and An are identical.

Running time. Most of the operations in Algorithm 1 can be performed in
constant time. The for-loop in line (b) needs to rewrite at most each entry of
B. Since B can be represented by a 2-dimensional boolean array with dimension
(K + 1)×m, this can be done in O((K + 1) ·m) time.
In line (e) we compare the sums of the elements of two different subsets. The
sum of the elements of each subset can be stored and maintained (line (c))
and can therefore be obtained in constant time for line (e). So, the for-loop in
line (d) can be processed in time O(K). The copying process in line (f) takes
time O(K ·m) because of the size of C, but one can avoid this by swapping the
roles of A and C in each iteration.
We hence obtain a running time of O(min{K,m} · (Km+K)).

We are now ready to prove some of the open questions that were stated by
Mattei et al. [41].

Theorem 3. (OP,A,Cany)-Bribery is in P if A ∈ {IV,DV, IV +DV }.

Proof. In this proof, for ease of presentation, the briber’s preferred candidate
is called c1. Moreover, for every voter vi, we denote by costsi(cj) the costs to
bribe vi such that cj becomes his favorite candidate. We show Theorem 3 by
construction of a flow network that can be solved with a minimum cost flow
algorithm (which also maximizes the flow in polynomial time, cf. Ahuja et
al. [1]), similarly as initially proposed by Faliszewski [19]. This method has
proven to be useful for showing tractability for many voting problems and is
also used by Mattei et al. [41]. For each r ∈ {1, . . . , n}, we check if the voters
can be bribed with budget β such that the preferred candidate c1 wins with a
score of r votes. If this is possible for at least one r, then we accept, otherwise
we reject. For each 1 ≤ r ≤ n, we define a flow network consisting of a source
node s, a target node t, and the following sets of nodes and directed edges. All
edges have costs 0 and capacity 1, unless specified otherwise.

V(oters): For every voter vi we create a node vi and an edge (s, vi). The set
of nodes constructed in this step is called V .
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Input: set A = {a1, . . . , am} with s(ai) ∈ Z
+, K ∈ N, K ≤ 2m

Output: array A containing the K smallest subsets of A
% assumption: s(a1) ≤ s(a2) ≤ · · · ≤ s(am)
initialize A as an empty array of sets
A[1] := ∅ % now A contains only one subset, the empty set

(a) for i := 1, . . . ,min{m,K} do
initialize B,C as empty arrays of sets
% create up to K+1 new subsets, all containing element ai
% ‘|A|’ denotes the number of subsets (elements) in array

A
(b) for j := 1, . . . , |A| do
(c) B[j] := A[j] ∪ {ai}

% find up to K elements with smallest size (like a

two-way merge)

indexA, indexB := 1
(d) for j := 1, . . . ,min{K, |A|+ |B|} do

% by ‘size of A[k]’ we mean the size of the subset

stored in A[k]
(e) if indexA ≤ |A| and size of A[indexA] < size of B[indexB] then

C[j] := A[indexA]
indexA++

else
C[j] := B[indexB]
indexB++

(f) A := C
return A

Algorithm 1: Pseudocode for solving K-Smallest Subsets.

B(ribery): For each voter vi, we determine the set consisting of the n cheapest
candidates (the candidates for which the briber has to pay least if he
bribes vi to make them his new top candidate) and add c1 to this set (if
not present within those n candidates). For each candidate cj of this set,
we create a node cij. Note that at least one candidate with zero costs is
contained in this set (for instance the top candidate). For each such node
cij we create an edge (vi, c

i
j) with costs costsi(cj). The flow on these edges

tells the briber who and how he has to bribe. We call the set of all nodes
created in this step B.

C’(ollection): We create a node c∗j if there exists a j ∈ [1,m] with cij ∈ B, i ∈

[1, n]. For each node cij ∈ B, we add the edge (cij , c
∗
j ). We call the set of

all nodes created in this step C′.

Gadget node: We create one gadget node g and add the edges (c∗j , g) for all
nodes c∗j ∈ C′ \ {c∗1}. These edges all have capacity r. Finally we add the
edge (c∗1, t) with capacity r and the edge (g, t) with capacity n− r.
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An example for a small instance consisting of two voters is given in Figure 2.
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Figure 2: Example for a flow network of an election with two voters v1 and v2.
All edges have costs 0 and capacity 1. The only exceptions are the dashed edges
that have a different capacity stated, and the connecting edges (vi, c

i
j) between

V and B that have the costs to bribe vi to vote for cj .

As explained above, we create n such networks, each differing only in the
value of r which is the maximum score all candidates can reach and the preferred
candidate c1 will win with, and solve the corresponding flow problem with a
minimum cost flow algorithm. The resulting flow will always be n, but the costs
may differ. We then choose the solution with the lowest costs, and if they do
not exceed the given budget, we found an optimal one. Otherwise there is none.
The constructed networks have a number of nodes that is polynomial in n and
we are only building up to n of them. This results in a polynomial running time
of the overall algorithm.

For the correctness, observe that there is a flow of value n on the constructed
network if and only if the bribery problem can be solved: Assume there exists
a flow of value n in the network. Since all capacities and costs are integral,
the flow is integral as well [1]. The edges connecting nodes in C′ with g and t,
respectively, guarantee that a flow of value r is going through vertex c∗1, hence
ensuring that the preferred candidate c1 obtains r points, and that no flow of
value greater than r leaves any vertex c∗j ∈ C′ \ {c∗1}, hence ensuring that no
candidate can end up with more than r points, making c1 a (co-)winner. This is
achieved if the briber changes those votes corresponding to the edges connecting
V and B: For each node vi, there is one edge (vi, c

i
j) connecting vi to a node cij

of the set B, carrying a flow of value 1. This edge tells the briber that vi has
to be bribed in such a way that cj becomes his new top candidate. Therefore,
there exists a successful bribery in which c1 wins with r votes.

Conversely, given a bribery that makes c1 a winner of the election without
exceeding budget β, we can construct a flow in the following way: Since c1 is
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a winner of the bribed election, he must have obtained a total of r points for
some 1 ≤ r ≤ n. So we choose the network with capacity r on the edges (c∗j , g)
and (c∗1, t). We set the flow on the edges (s, vi) with vi ∈ V to 1. We distinguish
two types of voters: If after the bribery, candidate cj is on the top position
for voter vi and the node cij is created for B (meaning that cj is among the

cheapest n candidates for vi), we set the flow on the edges (vi, c
i
j) and (cij , c

∗
j )

to 1, otherwise we call the voter vi an overpaid voter and ignore him for now.
Note that ci1 is a node in B for each i. Having set as much flow on the edges
between nodes of V and C′ as this rule allows, we carry on preserving the flow
from nodes in C′ to t. This is easy, because there is exactly one path from each
node in C′ to t. For each voter vk in the set of overpaid voters, the flow on the
edges between the node vk and nodes of B as well as on the edges leaving these
nodes of B has not been set yet. For each such voter vk, we just have to find an
augmenting path (cf. the Edmond-Karp algorithm [15] for the Ford-Fulkerson
algorithm [29] for solving the flow problem) from vk to t. There are at least n
nodes in C′ and n different nodes ckj for each vk, so by the pigeon hole principle,
there exists at least one such path, and the cost of each such path is lower than
the amount paid by the briber to bribe vk. Therefore there is a flow of value n
for this network with costs of at most β.

There are two more things to be observed. First, as described by Mattei et
al. [41, Theorem 8], for each voter, it suffices to choose the n cheapest candidates
when constructing the set B in the network instead of including all 2m possible
candidates: There are n − 1 other voters who can give one vote each to a
candidate. By the pigeonhole principle, it is not possible that each of the n
cheapest candidates for a voter already has a score of r votes, hence in an
optimal solution, no additional (more expensive) candidate has to be bribed.
Second, the selection of the nodes in B corresponds to solving the K-Smallest

Subsets problem, where the sizes of the elements in A correspond to the allowed
individual costs for flipping every issue of voter vi. This can be done with the
algorithm presented in the proof for Theorem 2. Each subset F belonging to
the solution to the K-Smallest Subsets algorithm represents one candidate,
where the size of the elements in F are the costs of the required flips to bribe vi
to vote for this candidate. To cope with the different bribery actions, one can
simply adjust A. There are no further changes needed.

Theorem 3 implies that (OP,A,Clevel)-bribery can be solved in polynomial
time as well, because Clevel is a special case of Cany. In fact, the same holds
for the cost schemes Cflip and Cdist, but the complexity for those was already
shown by Mattei et al. [41].

Corollary 4. (OP,A,Clevel)-Bribery is in P if A ∈ {IV,DV, IV +DV }.

Theorem 3 can be extended to the voting system OK for O-legal profiles,
when k is a power of 2, which is called OK∗ then. To show this, we use Lemma 1
from Mattei et al.:

Lemma 5 (Mattei et al. [41]). Given an acyclic CP-net X and a constant
linearization scheme across all agents and k = 2j, for some j ∈ N, the top k
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outcomes of X are all the outcomes differing from the top one on the value of
exactly j issues. Moreover, given two CP-nets in the same profile and with the
same top element, they have the same top k elements.

We recall that existence of a constant linearization scheme across all agents
means O-legality of the profile for some given strict total order O. Lemma 1
implies that any (OK∗, A, C)-Bribery instance can be treated as a (OP,A,C)-
Bribery instance, for any cost scheme C and bribery action A, by ignoring the
last log2 k issues.

Corollary 6. (OK∗, A, C)-Bribery with bribery action A ∈ {IV,DV, IV +
DV } and cost scheme C ∈ {Cany, Clevel} is in P.

Similarly as in the proof of Theorem 3, one can show tractability for the
voting system OV with cost scheme Cany.

Theorem 7. (OV,A,Cany)-Bribery is in P if A ∈ {IV,DV, IV +DV }.

Proof. We distinguish two cases: n < 2m and n ≥ 2m. The first case is straight-
forward, the second case can be translated into a network flow problem. The
solution flow indicates who has to be bribed and how such that the preferred
candidate p wins the election.

n < 2m: By the pigeonhole principle, there must exist at least one candidate
who got no veto at all and is therefore the winner of the election. The
preferred candidate p has to get rid of all his vetoes to be one of the
winners. Therefore the briber has to bribe every voter who vetoes against
p, by choosing the cheapest bribery possible.

n ≥ 2m: We construct a flow network similar to the one in the proof of The-
orem 3. Again, the preferred candidate p of the briber is called c1. We
take a source s and a target t for the network and construct the following
sets of vertices and edges. All edges have costs 0 and capacity 1, unless
specified otherwise.

General:

V(oters): For every voter vi we create a node vi and an edge (s, vi).
These edges each have capacity 2m − 1.

A(pproval): For each voter vi and each candidate cj who gets approved
by vi, we create a node ĉij together with the edge (vi, ĉ

i
j).

B(ribery): For each voter vi and every candidate ci, we create a node cij .
Let cx be the candidate vi vetoes against. For each candidate cj 6= cx
we then create the edge (ĉij , c

i
j) with costs 0. If it is allowed (depend-

ing on the bribery action) to bribe voter vi to veto for candidate cj ,
we additionally create the edge (ĉij , c

i
x) with the costs to bribe vi this

way. Flow in the solution on those additional edges indicates the veto
is bribed from cx to cj. Note that the costs for the edge (ĉij , c

i
x) can

be calculated in time polynomial in m.
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C’(ollection): For each candidate cj we create a node c∗j . For each node

cij created in the previous step, we add the edge (cij , c
∗
j ).

Gadget-node: We create one gadget-node g and add the edges (c∗j , g) for
all nodes c∗j created in the previous step except for c∗1. These edges
all have capacity r. Finally we add the edge (c∗1, t) with capacity r
and the edge (g, t) with capacity n · (2m − 1)− r.

An example is given in Figure 3.
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Figure 3: Example of a flow network created from an election with three voters
and m = 2 resulting in 4 candidates. Only the first two voters are shown in
detail. Voter v1 casts his veto against c4, while voter v2 casts his veto against
c3. The costs of all edges are 0 except for the dashed (ĉij , c

i
x) ones which carry

the costs to bribe vi in a way to veto against cj (instead of cx). The capacities
are all 1 except for the edges where a different value is specified in the graph.
Here, δ = 2m − 1 and γ = n · (2m − 1)− r, where r ranges from 1 to n for the n
networks constructed.

We proceed as in the proof of Theorem 3. We again construct a flow network
for each r with 1 ≤ r ≤ n·(2m−1) and take the solution with a flow of n·(2m−1)
and minimal costs as the solution to the bribery problem. Again, solving the
flow problem is equivalent to solving the bribery problem. We remark that the
case n = 2m can also be handled with a smaller network.

As before, Clevel is a special case of Cany, implying the following corollary.

Corollary 8. (OV,A,Clevel)-Bribery is in P if A ∈ {IV,DV, IV +DV }.
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3.2 Results for the weighted case

In this section, we analyze the weighted version of the bribery problem. Mattei
et al. [41] also consider the case of weighted voters for the voting system SM for
which they obtain NP-completeness. To the best of our knowledge, no result
in the weighted case for OP , OV , and OK has been published yet. We show for
almost all of these remaining systems that the bribery problem is NP-complete
as well by reductions from the Partition problem.

The idea in all of the reductions in this section is the following. We construct
an election in which one candidate called c2 is the winner with a total of 2ψ
points which he obtains by a set of voters whose weights correspond to the
elements in the set to be partitioned. The preferred candidate p obtains ψ
points. The instance is built in such a way that for the briber, the only way to
make p win consists in transferring points from c2 to another candidate c3, thus
solving the Partition problem, such that c2, c3 and p end up with the same
score of ψ as co-winners.

Theorem 9. Weighted-(OP,A,C)-Bribery is NP-complete with bribery ac-
tion A ∈ {IV,DV } and cost scheme C ∈ {Cequal, Cany, Clevel, Cdist, Cflip}.

Proof. We show Theorem 9 by reduction from Partition. Let IP be an in-
stance of Partition with A = {a1, . . . , aℓ} and

∑

a∈A a = 2ψ. The instance
IB of Weighted-(OP,A,C)-Bribery that is constructed from IP has two is-
sues X and Y with domains {x, x} and {y, y}, respectively, and therefore four
candidates. For the bribery action DV these are the following:

xy The preferred candidate p of the briber. He has one ψ-weighted voter voting
for him.

xy The candidate c2, who starts as the winner with 2ψ votes.

xy The candidate c3, for whom no one votes initially, but who will win together
with p and c2 if there exists a partition.

xy The candidate c4 who is not important for the case of bribery action DV
but for the case of bribery action IV .

We achieve this by constructing the following voters:

voter top candidate dependency weight voting for

v1 xy none ψ p
v2 xy X → Y a1 c2
v3 xy X → Y a2 c2

...
vℓ+1 xy X → Y aℓ c2
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Note that the briber is only allowed to bribe the dependent issue Y for every
voter except v1, so he cannot transfer points from c2 to p. He can just split the
points of c2 among c2 and c3, in which case they win together with p. In every
other case p loses.
More formally, we show that IP is a yes-instance if and only if IB is a yes-
instance. Let A′ ⊂ A be a solution to IP . Then the briber bribes those voters
whose weights are the elements of A′. This results in a score of ψ for p, c2 and
c3, so IB is a yes-instance.
Conversely, let IB be a yes-instance, implying there is a bribery that makes p a
(co-)winner of the given election. Since the briber can only bribe the dependent
issue Y , he can make the voters v2, . . . , vℓ+1 vote for the candidate xy = c3 only.
The only possible way to make p a (co-)winner is hence to split the points of c2
among c2 and c3 so that they both end up with a score of ψ. The weights of the
voters that have to be bribed to make them vote for c3 are then the elements of
the subset A′ ⊂ A that solves IP .
Since no costs are involved in this reduction, it works for every cost scheme
considered, assuming an unlimited budget.

For the case IV , we can use the same construction. In this case, the briber
can only bribe the independent issue X , hence split the points of c2 among c2
and c4 = xy, which is again the only possible way to make p a winner.

Since OP is a special case of OK, we obtain the following corollary.

Corollary 10. Weighted-(OK,A,C)-Bribery is NP-complete for bribery
action A ∈ {IV,DV } and cost scheme C ∈ {Cequal, Cany, Clevel, Cdist, Cflip}.

For the voting rule OV we can also reduce from the partition problem when
we restrict the briber to the DV actions only and obtain the following theorem.
The cases of IV and IV +DV are not covered yet.

Theorem 11. Weighted-(OV,DV,C)-Bribery is NP-complete for each cost
scheme C ∈ {Cequal, Cany, Clevel, Cdist, Cflip}.

Proof. We show Theorem 11 by reduction from Partition once more. Let IP
be an instance of Partition with A = {a1, . . . , aℓ} and

∑

a∈A a = 2ψ. The
instance IB of Weighted-(OV,DV,C)-Bribery that is constructed from IP
has two issues X and Y with domains {x, x} and {y, y}, respectively, and
therefore four candidates. For the bribery action DV these are the following:

xy The preferred candidate p of the briber. There is one voter with weight ψ
casting his veto against him.

xy The candidate c2, who initially receives 2ψ vetos.

xy The candidate c3, against whom no one casts a veto initially, but who will
win together with p and c2 if there exists a partition.

xy An unimportant clone u of p.
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We achieve this by constructing the following voters:

voter top candidate dependency weight vetoes agains

v1 xy none ψ p
v2 xy none ψ u
v3 xy X → Y a1 c2
v4 xy X → Y a2 c2

...
vℓ+2 xy X → Y aℓ c2

Note that the briber is only allowed to bribe the dependent issue Y for every
voter except v1, v2, so he can only transfer vetos from c2 to c3. The best he can
do is to split the vetos of c2 among c2 and c3, in which case they win together
with p and u. In every other case p loses. As in the proof of Theorem 9, the two
instances are equivalent. As no costs are involved here, the reduction works for
every cost scheme considered, assuming an unlimited budget.

We now investigate the weighted case for the voting rule SM . We found that
the situation here has to be analyzed in more detail: Hardness of the weighted
version of the bribery problem can be caused just by the use of the cost vector.
Mattei et al. [41, Theorem 6] showed that Weighted-(SM,A,C)-Bribery is
NP-complete for all bribery actions and for all cost schemes they considered.
However, for the cost schemes C ∈ {Clevel, Cdist, Cflip, Cany}, their reduction
implicitly makes use of the cost vector Q. Hence, the computational hardness
originates from the individual costs for each voter.
This is not the case for Cequal, where NP-completeness already follows from
the result in the unweighted case, without any requirement on individual costs.
Mattei et al. observe that for the cost scheme Cflip, if the cost vector Q con-
tains only ones, Weighted-(SM,A,Cflip)-Bribery is in P with bribery action
A ∈ {IV,DV, IV + DV } ([41, Theorem 7]). We found the same property for
Weighted-(SM,A,Clevel)-Bribery, which is also solvable in polynomial time
for all bribery actions considered in this work if the cost vector contains only
ones.

Theorem 12. Weighted-(SM,A,Clevel)-Bribery with bribery action A ∈
{IV,DV, IV + DV } is, for the special case that Q[i] = 1 for each voter vi,
solvable in time O(n2m2), .

Proof. For the voting system SM , it is sufficient to look at the issues one after
another, since they do not affect each other, even with dependencies. For each
issue, a certain amount of weighted voters has to be bribed to flip the value of
the corresponding issue. The briber just needs to know which of the voters are
the cheapest ones to bribe. We first start with bribery action IV +DV .

Let V be the set of all voters, let wi be the weight of voter vi, W =
∑n

i=1 wi

the sum of all weights, and costs(vi) the cost to bribe voter vi in the considered
issue. The set of all voters who vote in the given issue for the same value
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that is taken by p in this issue is called G for the good voters, and B = V \ G
denotes the set of the remaining beneficiary voters. The briber is interested in
finding a subset S ′ ⊆ B, such that

∑

vi∈S′∪G wi > ⌊W
2 ⌋ and

∑

vi∈S′ costs(vi) is

minimal. This is the same as finding a subset S ⊆ B, such that
∑

vi∈S wi ≤ ⌊W
2 ⌋

and
∑

vi∈S costs(vi) is maximal. The latter problem is the same as solving the
Knapsack problem on the set B where the bribery costs costs(vi) correspond to
the values, and the weights of the voters correspond to the size of the items to be
packed in the knapsack, respectively. The crucial observation here is that with
Clevel, the cost for flipping the value of the relevant cp-statement is bounded by
the number m of issues, as there cannot be more levels than issues by definition,
hence costs(vi) ≤ m for all vi ∈ V . As mentioned in Section 2, one can solve
the Knapsack problem with dynamic programming in time O(n · T ), where T
is the sum of the values of all objects. In our case, T is the sum

∑n

i=1 costs(vi),
hence bounded by n ·m, so that the running time of the dynamic programming
algorithm proposed by Dantzig (see [12]) is polynomial. In detail, we implement
Dantzig’s solution as follows:

We define an n×
∑

vi∈B costs(vi) matrix D with entries di,j being the min-
imum weight of all subsets S ⊆ {v1, . . . , vi} with

∑

vi∈S costs(vi) = j. Setting
di,0 = 0 for all i, d−1,j = ∞ for j > 0, and di,j = ∞ for j < 0, we can compute
all entries of D recursively by

di,j = min

{

di−1,j ,

di−1,j−costs(vi) + wj ,

with wi and costs(vi) being the weight of voter vi and costs to bribe him in the
considered issue, respectively. The optimal solution can then be found as the
entry d|B|,j with maximum j such that d|B|,j ≤ ⌊W

2 ⌋. The set of voters (which
we do not bribe) corresponding to this value can be found by backtracking.

For the considered issue, we hence have a matrix with O(n · nm) entries,
each of which can be calculated in O(1) time. This has do be done for each
issue, so the algorithm has an overall running time of O(n2m2).

With bribery actions IV and DV , the briber is not able to bribe every voter
for specific issues. Therefore we partition the set of beneficiary voters B in
the set of unbribable voters BU and the set of bribable voters BB. We are then
searching for a set S ⊆ BB with

∑

vi∈S costs(vi) maximal such that
∑

vi∈S wi ≤

⌊W
2 ⌋ −

∑

vj∈BU
wj . Such a set can be obtained with the same algorithm as

described above.

3.3 Results for the unweighted negative case

In this section, we analyze the complexity of the unweighted negative bribery
problem in CP-nets. For the voting system SM combined with cost scheme
Cequal, we can easily adapt the proof of the unweighted positive case and ob-
tain NP-completeness as well. Since we use a (parameterized) reduction from
Negative Optimal Lobbying, this also means that the problem is W [2]-hard
with respect to the budget, cf. the remark in Section 2.3.
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Theorem 13. (SM,A,Cequal)-negative-Bribery with bribery action A ∈
{IV,DV, IV +DV } is NP-complete.

Proof. Theorem 13 can be shown by modifying the proof for (SM,A,Cequal)-
Bribery being NP-complete [41, Theorem 5]. We just need to exchange the
term ‘Optimal Lobbying’ by ‘Negative Optimal Lobbying’.

Theorem 14. (SM,A,C)-negative-Bribery is in P for a bribery action A ∈
{IV,DV, IV +DV } and a cost scheme C ∈ {Cany, Clevel, Cflip}.

s
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v2

v1

X free
2

X5
3

X5
2

X5
1

X4
2

X4
1

v5

v4

t

P

F

DE

1

2

1

Figure 4: Example for the flow network of step 2 in the proof of Theorem 14
to adjust a solution for (SM,A,C)-Bribery to the negative version. In the
solution to the non-negative version, the voters v1, v2, and v3 are voting for
p = 111, v4 for 010, and v5 for 000. All edges have costs 0 and capacity 1. The
only two exceptions are the dashed ones going to target t, and the dotted ones
between P and E. The former ones have a different capacity stated, and the
latter ones have different costs. The costs of the edges (vi, X

j
l ) and (vi, X

free

l )
depend on whether vi was bribed in issue Xl.

Proof. We construct the solution in two steps. First, we apply the polynomial
time algorithm given by Mattei et al. [41, Theorem 4] to solve an (SM,A,C)-
Bribery instance. Here, a greedy strategy helps to choose which voter is to bribe
in which issue. Unfortunately, the solution may contain some voters who are
bribed to vote directly for p, therefore it does not solve (SM,A,C)-negative-

Bribery directly. In the second step we repair the first solution by choosing the
cheapest flips such that no voter votes for p. This is done with a flow network.
As the number of nodes in this network polynomially depends on the number of
voters and issues, the flow problem on the network can be solved in polynomial
time, too.
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An example is given in Figure 4.
We take a source s and a target t for the network and construct the following

sets of vertices and edges. All edges have costs 0 and capacity 1, unless specified
otherwise.

P(-Voters): For every voter vi voting for p we create a node vi and an edge
(s, vi).

D(onor Voters): For each voter vj not voting for p we create a node vj and
an edge (vj , t). Let d be the number of issues in which vj ’s top candidate
differs from p. Then the capacity of the edge (vj , t) is set to d − 1. This
ensures that vj cannot vote for p.

F(ree Issues): For each issue Xl, in which k > ⌊n
2 ⌋ + 1 voters vote for p, we

create a node X free

l and an edge (X free

l , t), with capacity k − (⌊n
2 ⌋ + 1) .

Additionally, we create an edge (vi, X
free

l ) for each vi created in P with
costs costsi(Xl). Flow on these edges indicates which voter has to be
bribed in which issue.

E(xpensive Issues): For each node vj in D we create a node Xj
l if voter vj

is not voting for p in issue Xl. For each of these nodes we create an
edge (Xj

l , vj). Additionally, we create all possible edges between each

node vi in P and each node Xj
l in E. Those edges get different costs

depending on whether vi was bribed in issue Xl. If so, they get the cost
costsj(Xl) − costsi(Xl), and costsj(Xl) + costsi(Xl), otherwise. Again,
flow on these edges indicates which voter has to be bribed in which issue.

As in the proof of Theorem 3, one can show that there exists a flow of value n
if and only if the corresponding bribery problem can be solved. The idea here
is that at least one issue has to be flipped for each voter voting for p. This
can be done easily if more than ⌊n

2 ⌋ + 1 voters are voting for p in this issue.
Otherwise the same issue has to be flipped in the vote of a voter who is not
voting for p. Additionally, one has to prohibit those voters to vote for p in the
end. This is ensured by the capacities on the edges to the target t. This way,
the flow algorithm can find the cheapest way to repair the solution of the first
step, which leads to an optimal solution.

For OP , we can adapt the proof of the non-negative case (Theorem 3) and
obtain the following theorem.

Theorem 15. (OP,A,C)-negative-Bribery is in P with bribery action A ∈
{IV,DV, IV +DV } and a cost scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist}.

Proof. We can almost adopt the proof for Theorem 3 here, we just have to
change the definition of the set of nodes B: Whenever p is not the top candidate
of a voter vi, we do not create the node ci1 and its connecting edges. Then, a
voter cannot be bribed to vote for p. This works for Cany, Clevel, Cflip, and
Cdist. For Cequal, we need additional changes. Since all changes have the same
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costs, we can choose n+1 arbitrary candidates (6= p) for each voter to create the
nodes in B together with the one for the top candidate, instead of using only
the cheapest ones as before. Finally, the costs for the edges (vi, c

i
j) connecting

V with B are set to 0 if cj is the top candidate of vi, or 1 otherwise.

To prove the next theorem, we need Lemma 1 from Mattei et al. [41] once more.

Theorem 16. (OK∗, A, C)-negative-Bribery is in P with bribery action A ∈
{IV,DV, IV +DV } and cost scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist}.

Proof. Due to Lemma 5 [41] we know that for OK∗, we only need to consider
the top candidate instead of the first k candidates, or, to be more precise, just
the values of the first m− j issues of the top candidate. So we just need to solve
an instance of (OP,A,C)-negative-Bribery which is possible in polynomial
time due to Theorem 15.

Adapting the proof of Theorem 7, we obtain the following theorem for the
voting system OV .

Theorem 17. (OV,A,C)-negative-Bribery is in P with bribery action A ∈
{IV,DV, IV +DV } and cost scheme C ∈ {Cequal, Cflip, Clevel, Cany, Cdist}.

Proof. We can almost adapt the proof for Theorem 7. We once more distinguish
the two cases

n < 2m: If p got at least one veto, it is a No-instance. Otherwise it is a Yes-
instance.

n ≥ 2m: In this case we create one flow network for each r with 1 ≤ r ≤
n · (2m − 1) as described in the proof of Theorem 7. However, this time,
we do not create the node ci1 and its incident edges if a voter vi is casting
his veto against c1. The rest remains unchanged.

3.4 Results for the weighted negative case

In this subsection, we derive hardness results for all variants of the weighted
negative case of the bribery problem, again by reductions from the Partition

problem following the main idea described in Subsection 3.2.

We have shown in Theorem 9 in Subsection 3.2 that the weighted version of
the bribery problem is NP-complete for OP for all cost schemes and bribery
actions IV and DV . In the given proof, the briber is not able to transfer any
points to his preferred candidate p directly, hence this also solves the negative
cases for bribery actions IV and DV . For the negative case, we can extend this
result to bribery action IV +DV by adding a voter vℓ+2 with weight ψ voting
for c4 without dependencies. Then p can only win if the briber is once more
able to split the votes for c1 between c1 and c2. We hence obtain the following
corollary for Theorem 9.
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Corollary 18. Weighted-(D,A,C)-negative-Bribery is NP-complete for
a voting rule D ∈ {OP,OK}, a bribery action A ∈ {IV,DV, IV +DV }, and a
cost scheme C ∈ {Cequal, Cany, Clevel, Cdist, Cflip}.

To show NP-completeness for the voting rule OV , we can use the reduction
given in the proof of Theorem 11 in Subsection 3.2 for the positive version with
bribery action DV , since in this proof, the briber never asks a voter to cast his
veto from p to another candidate. We will provide yet another reduction from
Partition to cover IV and IV +DV in the negative case, too. Summarizing,
we obtain the following theorem.

Theorem 19. Weighted-(OV,A,C)-negative-Bribery with bribery action
A ∈ {IV,DV, IV+DV } and cost scheme C ∈ {Cequal, Cany, Clevel, Cdist, Cflip}
is NP-complete.

Proof. Theorem 19 follows directly from Theorem 11 for the bribery action DV .
For the bribery actions IV and IV + DV , we use a similar reduction as in
the proof of Theorem 11. Let IP be an instance of Partition with A =
{a1, . . . , aℓ} and

∑

a∈A a = 2ψ. The instance IB of Weighted-(OV,A,C)-
negative-Bribery that is constructed from IP has two issues X and Y with
domains {x, x} and {y, y}, respectively, and therefore the following four candi-
dates:

xy The preferred candidate p of the briber. There is one voter with weight ψ
casting his veto against him.

xy The candidate c2, who starts with a weighted sum of 2 · ψ vetos.

xy The candidate c3, against whom no one casts a veto initially, but who will
win together with the other 3 candidates, if there exists a partition.

xy An unimportant clone of p.

We achieve this by constructing the following voters:

voter top candidate dependency weight vetoes against

v1 xy none ψ p
v2 xy none ψ u
v3 xy X → Y a1 c2
v4 xy X → Y a2 c2

...
vℓ+2 xy X → Y aℓ c2

Note that due to the bribery action IV , the briber is only allowed to bribe the
independent issue X for every voter except v1, v2, so he can only transfer their
vetos from c2 to c3. He is not allowed to bribe voter v1 in the case of negative
bribery, and it is of no use to him to bribe voter v2. The best he can do is to
split the vetoes of c2 among c2 and c3, in which case they win together with p
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and u. In every other case p loses. With the same argument as in the proof of
Theorem 9, the two instances are equivalent. Since no costs are involved here,
this works for every cost scheme considered, assuming an unlimited budget.
The same holds for the bribery action IV +DV . Here, the briber could bribe
the voters vi, i ≥ 2 to cast their veto against c2, c3, and u, but this does not
help because the candidate with the fewest vetos wins and there is a total sum
of 3ψ vetos to distribute among u, c2, and c3.

Last, we show that Weighted-(SM,A,C)-negative-Bribery is compu-
tationally hard, independent of the cost scheme that is used.

Theorem 20. Weighted-(SM,A,C)-negative-Bribery with a bribery ac-
tion A ∈ {IV,DV, IV +DV } and any cost scheme C is NP-complete.

The proof uses a reduction from Partition where no costs are involved.

Proof. We prove Theorem 20 by reduction from Partition. Let IP be an
instance of Partition with A = {a1, . . . , aℓ} and

∑

a∈A a = 2ψ. The instance
IB of Weighted-(SM,A,C)-negative-Bribery that is constructed from IP
has three issues X, Y, Z with domains {x, x}, {y, y}, {z, z}, respectively, and
therefore eight candidates. For the bribery action DV , only the following four
of them are important:

xyz The preferred candidate p of the briber. There is one voter voting for him
weighted with 1.

xyz The candidate c2, for whom no one votes initially.

xyz The candidate c3, for whom no one votes initially, neither. The two candi-
dates c2 and c3 serve as the two partitions.

xyz The candidate c4, for whom almost everyone votes initially, but who will
have no voter voting for him if p wins.

We achieve this by constructing the following voters:

voter top candidate dependency weight voting for

v1 xyz none 1 p
v2 xyz X → Y,X → Z a1 c4
v3 xyz X → Y,X → Z a2 c4

...
vℓ+1 xyz X → Y,X → Z aℓ c4

Note that the briber is only allowed to bribe the dependent issues Y or Z for
every voter except v1, so he cannot transfer points from c4 to p. He can just
split the points of c4 equally among c2 and c3, in which case p wins. In every
other case p loses. As in the proof of Theorem 9, one can show that the two
instances are equivalent. As no costs are involved here, this works for every cost
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scheme considered, assuming an unlimited budget.

For the case IV we use a slightly different construction. In this case we do
not need the issue X , which makes the issues Y and Z independent with the
reduction still working. The latter version has only independent issues, so this
reduction works as well for the bribery action IV +DV .

4 Results and discussion

Our results are summarized in Table 2.
The bribery problem and the variants of microbribery, nonuniform bribery,

and swap bribery in the ‘classical’ setting of unconditional preferences given as
linear orders are tractable for the voting systems plurality and veto ([21], [23],
[19], [17]). One might expect that bribing turns out to be more difficult in the
case of conditional preferences and as soon as more complex cost schemes are
used, but it does not. For the non-negative unweighted version of the bribery
problem, Mattei et al. [41] obtained several tractability results (see Table 2).
We could solve the remaining unknown complexities for the cost schemes Cany

and Clevel. Contrary to the conjecture of Mattei et al. [41], it turned out that
the bribery problem is easy in these cases as well.
These easiness results could be explained by the fact that OP and OV only
require very little information on the voters’ (conditional) preferences. But,
more importantly, using a one-step voting rule, the bribery of one CP-net does
not have an influence on other CP-nets. This is different for the sequential
voting rule SM . If the value of an issue is changed due to bribery of one CP-
net, the cp-statements of dependent issues in other CP-nets are concerned as
well, and this—in combination with the cost scheme—can make the problem
potentially hard.

The interesting case might be the voting rule OK: In the classical setting, the
bribery problem is polynomially solvable for k-approval elections [21], whereas
Swap Bribery is NP-complete for k ≥ 2 [3, 17]. So far, for bribery in CP-
nets, only results for the special case of OK for O-legal profiles and where k is
a power j of 2 (denoted by OK∗ by Mattei et al.) are known; it was shown by
Mattei et al. [41] that the bribery problem is solvable in polynomial time then.
This is due to the fact that in those cases, a voter always approves one package
of k candidates out of 2m−j such packages, which are all fixed and disjoint. It is
so to speak just a slightly different version of OP . It would hence be interesting
to investigate the computational complexity for other values of k.

For the non-negative weighted case, we could show that finding an optimal
bribery is NP-complete for OP , OV , and OK for all considered cost schemes.
However, not all bribery actions are covered yet. For OP , OV and OK, the
computational hardness is due to the weights which enforce that a partition
problem has to be solved—this is typical for the weighted variant of a problem,
cf. the weighted versions of the original family of bribery problems in the work
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of Faliszewski et al. [21]. However, it is interesting to see that weighted vot-
ers do not necessarily make the problem hard—this only holds in the negative
case where we could show NP-completeness for all considered variants of the
problem. We have seen that the complexity for SM in the non-negative case
depends on the choice of the cost scheme and the cost vector, not only on the
weights.
The complexity for SM with cost scheme Cdist remains unsolved for the un-
weighted cases.

Table 2: Complexity results for variants of the bribery problem in CP-nets. We
distinguish solvability in polynomial time (P) and NP-completeness (NP-c).
The given results all hold for the bribery actions IV , DV , and IV +DV , except
for the results in the rows marked with †, which are only shown for bribery
actions IV and DV so far, and the ones in the row marked with ‡, which are
only shown for bribery action DV . Results in bold face are obtained in this
paper, the results in light typeface are due to Mattei et al. [41]. OK∗ is the
special case of OK when k is a power of 2 and an O-legal profile is given. The
results marked with ♦ are partly shown by Mattei et al. [41]; they show the
result only for the bribery case IV , in the paper on hand it is shown to hold for
IV , DV and IV +DV . The cases labeled with more than one complexity class
can be solved in polynomial time if the cost vector Q contains a 1 for each voter,
and are NP-complete for arbitrary cost vectors. In all the remaining tractable
cases, the corresponding problem remains in P even for arbitrary cost vectors,
while all of our hardness results still hold with Q[i] = 1 for all 1 ≤ i ≤ n.

Cequal Cflip Clevel Cany Cdist

SM NP-c P P P ?
OP P P P♦ P P Cor.4/Thm.3

OV P P P♦ P P Cor.8/Thm.7

OK* P P P♦ P P Cor.6

weighted SM NP-c P , NP-c P, NP-c NP-c NP-c Thm.12

OP† NP-c NP-c NP-c NP-c NP-c Thm.9

OV‡ NP-c NP-c NP-c NP-c NP-c Thm.11

OK† NP-c NP-c NP-c NP-c NP-c Cor.10

negative SM NP-c P P P ? Thm.13/14

OP P P P P P Thm.15

OV P P P P P Thm.17

OK* P P P P P Thm.16

weighted SM NP-c NP-c NP-c NP-c NP-c Thm.20

negative OP NP-c NP-c NP-c NP-c NP-c Cor.18

OV NP-c NP-c NP-c NP-c NP-c Thm.19

OK NP-c NP-c NP-c NP-c NP-c Cor.18

Summarizing, the unweighted versions do seem particularly appealing for
election campaign management due to their tractability. The only exception is
SM , depending on the cost scheme used. The weighted versions of SM are all
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NP-complete, with tractability for the cost schemes Cflip and Clevel if weighted
SM is used without individual voter costs. Of course, NP-completeness results
for the considered problems only constitute a worst case analysis and therefore
cannot guarantee resistance against manipulative actions. However, they can
help in acquiring a better understanding of the structure of the underlying prob-
lems and therefore may contribute in finding heuristic approaches to practically
deal with them, or provide a structural decomposition for further investigations
from the point of view of parameterized complexity [42], which again is a desired
property in the setting of campaign management.

In respect of future research, we hope that our work contributes in creating a
more extensive understanding of the nature of voting with CP-nets. The land-
scape of complexity in the ‘classical’ setting where voters have unconditional
preferences given as linear orders over the candidates is already quite elaborate,
and it would be interesting to obtain a similar overview of the complexity of dif-
ferent voting problems for the CP-net setting as well. This includes the study of
additional voting rules and other common voting problems. Considering differ-
ent voting problems for the setting of CP-nets such as the manipulation problem
as initiated by Mattei [39] or election control will be of value for measuring vul-
nerability and resistance of voting in CP-nets.

Another interesting extension is the case that the dependencies of some issues
are linked to those of other voters, as proposed in the setting of mCP-nets by
Rossi et al. [47]. In Example 1, Bob might prefer where to go depending on
Alice’s choice of the destination, or even on Alice’s preference when to go or
what to do in the holiday. Mattei et al. [41] have also suggested to allow the
briber to create dependencies instead of only deleting them, and to pay voters
to create preferences that are conditioned by those of other voters.
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