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Abstract

The notion of contact algebra is one of the main tools in the region
based theory of space. It is an extension of Boolean algebra with an ad-
ditional relation C called contact. The elements of the Boolean algebra
are considered as formal representations of spatial regions as analogs of
physical bodies and Boolean operations are considered as operations for
constructing new regions from given ones and also to define some mere-
ological relations between regions as part-of, overlap and underlap. The
contact relation is one of the basic mereotopological relations between re-
gions expressing some topological nature. It is used also to define some
other important mereotopological relations like non-tangential inclusion,
dual contact, external contact and others. Most of these definitions are
given by means of the operation of Boolean complementation. There are,
however, some problems related to the motivation of the operation of
Boolean complementation. In order to avoid these problems we propose
a generalization of the notion of contact algebra by dropping the opera-
tion of complement and replacing the Boolean part of the definition by
distributive lattice. First steps in this direction were made in [8, 9] pre-
senting the notion of distributive contact lattice based on contact relation
as the only mereotopological relation. In this paper we consider as non-
definable primitives the relations of contact, nontangential inclusion and
dual contact, extending considerably the language of distributive contact
lattices. Part I of the paper is devoted to a suitable axiomatization of the
new language called extended distributive contact lattice (EDC-lattice) by
means of universal first-order axioms true in all contact algebras. EDC-
lattices may be considered also as an algebraic tool for certain subarea of
mereotopology, called in this paper distributive mereotopology. The main
result of Part I of the paper is a representation theorem, stating that
each EDC-lattice can be isomorphically embedded into a contact alge-
bra, showing in this way that the presented axiomatization preserves the
meaning of mereotopological relations without considering Boolean com-
plementation. Part II of the paper is devoted to topological representation
theory of EDC-lattices, transferring into the distributive case important
results from the topological representation theory of contact algebras. It
is shown that under minor additional assumptions on distributive lattices
as extensionality of the definable relations of overlap or underlap one can
preserve the good topological interpretations of regions as regular closed
or regular open sets in topological space.

Keywords: mereotopology, distributive mereotopology, contact algebras,
distributive contact algebras, extended distributive contact algebras, topological
representations.
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1 Introduction

In this paper we continue the research line started in the publications [8, 9],
devoted to certain non-classical approach to the region-based theory of space
(RBTS), which roots goes back mainly to Whitehead [30]. In contrast to the
classical Euclidean approach, in which the notion of point is taken as one of the
basic primitive notions in geometry and geometric figures are considered as sets
of points, RBTS adopts as primitives the more realistic spatial notion of region
(as an abstraction of spatial or physical body), together with some basic rela-
tions and operations on regions. Some of these relations come from mereology
(see [20]): e.g., part-of (x ≤ y), overlap (xOy), its dual underlap (xÔy), and
some others definable in terms of these. RBTS extends classical mereology by
considering some new relations among regions which are topological in nature,
such as contact (xCy), nontangential part-of (x ≪ y), dual contact (xĈy), and
some others definable by means of the contact and part-of relations. This is
one of the reasons that the extension of mereology with these new relations is
commonly called mereotopology. There is no clear difference in the literature be-
tween RBTS and mereotopology, and by some authors RBTS is related rather to
the so called mereogeometry, while mereotopology is considered only as a kind of
point-free topology, considering mainly topological properties of things. In this
paper we consider all these names almost as synonyms representing collections
of various point-free theories of space. According to Whitehead the point-free
approach to space should not disregard points at all - on the contrary, they are
suitable high level abstractions which, as such, should not be put on the base
of the theory, but have to be definable by means of the other primitive notions
of the theory. The Whitehead’s criticism is based on the fact that points, as
well as the other primitive notions in Euclidean geometry like lines and planes,
do not have separate existence in reality, while for instance, spatial bodies as
cubes, prisms, pyramids, balls, etc are things having analogs in reality. In this
sense the point-free approach to space can be considered as certain equivalent
re-formulation of the classical point-based approach by means of more realistic
primitive notions.

Survey papers about RBTS (and mereotopology) are [24, 4, 14] (see also
the handbook [1] and [3] for some logics of space). Let us mention that in a
sense RBTS had been reinvented in computer science, because of its more sim-
ple way of representing qualitative spatial information and in fact it initiated a
special field in Knowledge Representation (KR) called Qualitative Spatial Rep-
resentation and Reasoning (QSRR). One of the most popular systems in QSRR
is the Region Connection Calculus (RCC) introduced in [18]. Note that RCC
influenced various investigations in the field both of theoretical and applied na-
ture. Survey papers about applications of RBTS and mereotopology in various
applied areas are, for instance, [5] and the book [16].

Let us note that one of the main algebraic tools in mereotopology is the no-
tion of contact algebra, which appears in the literature under different names and
formulations as extensions of Boolean algebra with some mereotopological rela-
tions [27, 21, 25, 26, 4, 10, 6, 7]. The simplest system, called just contact algebra
was introduced in [6] as an extension of Boolean algebra B = (B, 0, 1, .,+, ∗)
with a binary relation C called contact and satisfying several simple axioms:

(C1) If aCb, then a 6= 0 and b 6= 0,
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(C2) If aCb and a ≤ a′ and b ≤ b′, then a′Cb′,

(C3) If aC(b + c), then aCb or aCc,

(C4) If aCb, then bCa,

(C5) If a.b 6= 0, then aCb.

The elements of the Boolean algebra are called regions and the Boolean op-
erations can be considered as some constructions of new regions by means of
given ones. In this definition Boolean algebra stands for the mereological compo-
nent, while the contact relation C stands for the mereotopological component of
the system. For instance the mereological relations overlap O, underlap (dual

overlap) Ô and part-of ≤ have the following definitions: aOb ↔def a.b 6= 0,

aÔb ↔def a+ b 6= 1 and ≤ is just the lattice ordering. The unite element 1 is
the region containing as its parts all regions, and the zero region 0 symbolize
the non-existing region and can be used to define the ontological predicate of
existence: a exists ↔def a 6= 0. According to these definitions the axiom (C1)
says that if a and b are in a contact then they exist, and axiom (C5) says that
overlapping regions are in a contact.

By means of the contact relation one can define other mereotopological rela-
tions: dual contact aĈb ↔def a∗Cb∗, non-tangential part-of a ≪ b ↔def aCb∗,
and some others.

Intuitively if we consider regions as certain sets of points, then contact aCb

means that a and b share a common point, part-of a ≤ b means that all points
of a are points of b, overlap aOb means that a and b share an existing region
(just a.b 6= 0 is a part both of a and of b), underlap aÔb means that there exists
a non-universal region containing both a and b (just a+ b 6= 1 contains both a

and b).
Let us note that standard model of Boolean algebra is the algebra of subsets

of a given universe, so in such a model regions are pure sets and the mereo-
logical relations between regions are just the Boolean relations between sets.
In this model one can not distinguish boundary and internal points of a given
region and hence it can not express all kinds of contact, for instance, the so
called external contact in which the contacting regions share only a boundary
point (external contact is definable by the formula aCb ∧ aOb). For this reason
standard point models of contact algebras are of topological nature and con-
sist of the Boolean algebras of regular closed sets in a given topological space
and the contact between two such sets means that they have a common point.
Another topological model of contact algebra is the Boolean algebra of regular
open sets of a topological space, but in this model contact is not so intuitive
and is definable by the formula: aCb ↔def Cl(a) ∩ Cl(b) 6= ∅, where Cl(a) is
the topological closure operation. Let us mention that the topological repre-
sentation theory of contact algebras can be treated just as a realization of the
Whitehead’s idea of defining points and of recreation the point-based structure
of the corresponding kind of space within a point-free system (see, for instance,
the surveys [24, 4]).

One of the motivations to put Boolean algebra on the base of the notion
of contact algebra is based on the remark given by Tarski (see for this [20],
page 25) that one of the most popular mereological systems, namely the system
of Lesniewski, can be identified with the complete Boolean algebra with zero
deleted. If we are not interested in infinite unions and intersections then we
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can accept just Boolean algebra (with zero considered as non-existing region,
as mentioned above). In the papers [8, 9] a generalization of the notion of con-
tact algebra is presented just by replacing the Boolean algebra by means of a
(bounded) distributive lattice and obtaining in this way the notion of distribu-
tive contact lattice. Some motivations for this generalization are the following.
First, that Boolean algebra is a bounded distributive lattice and that the axioms
of the contact relation do not use the operation of Boolean complementation ∗

and have the same formulation in the language of bounded distributive lattice.
Second, that the same can be said for the basic mereological relations part-
of, overlap and underlap - they have definitions in the language of distributive
lattice without the operation of Boolean complement. Third, that the repre-
sentation theory for distributive lattices is quite similar to the corresponding
theory of Boolean algebras and we wanted to see if this can help us in trans-
ferring the topological representation theory of contact algebras to the more
general theory of distributive contact lattices, keeping the topological meaning
of regions as regular closed sets. And finally, one philosophical motivation: the
meaning of the Boolean complementation a∗ is not well motivated: if the region
a represents a physical body, then what kind of body represents a∗? In the
point-based models this is ”the rest out of a” from the ”whole space”, the latter
identified with the sum of all observed regions, the unit region 1. However, if
we extend the area of our observation we will obtain another unit, and then a∗

will be changed. But it is natural to assume that physical bodies should not
depend on the area of observation in which they are included. As a result of
this generalization, one can see that the paper [9] generalizes almost all from
the topological representation theory of contact algebras developed for instance
in [10, 6] and even more; on the distributive case one can see some deep features
which can not be observed in the Boolean case. For instance in the Boolean
case mereological relations have some hidden properties which in the distribu-
tive case are not always fulfilled and have to be postulated explicitly (this is
the so called extensionality property for the underlap and overlap relations).
However, the obtained generalization in [8, 9] has some open problems. The
mereotopological relations of non-tangential part-of and dual contact in con-
tact algebras have definitions by means of the operation of complementation.
However these relations have a meaning in topological representation of contact
algebras which does not depend on the operation of complementation on reg-
ular closed sets. Namely, if a and b are regular closed subsets of a topological
space X , then a ≪ b iff a ⊆ Int(b) and aĈb iff Int(a) ∪ Int(b) 6= X , where Int

is the topological operation of interior of a set. Thus, it will be interesting to
add these relations as primitives to the language of distributive contact lattices
and to axiomatize them by means of a set of universal first-order axioms and
then to extend the topological representation theory from [9]. This is one of
the main open problems in [9] which positive solution is subject of the present
paper. One of the motivations for this extension of the language of distributive
contact lattice is that in this way we obtain a system with full duality: con-
tact C is dual to the dual contact Ĉ and non-tangential part-of ≪ is dual to it
converse ≫ and this symmetry makes possible to obtain proofs by duality. The
obtained new algebraic mereotopological system is named Extended Distributive
Contact Lattice, EDC-lattice for short. We will consider in the paper the topo-
logical representation theory of some axiomatic extensions of EDC-lattices with
new axioms yielding representations in better topological spaces, generalizing in
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this way the existing representation theory for contact algebras. Since all these
investigations form a special subfield of mereotopology based on distributive lat-
tices, we introduce for this subfield a special name - distributive mereotopology,
which is included in the title of the present paper. Having in mind this termi-
nology, then the subarea of mereotopology based on Boolean algebras should
be named Boolean mereotopology. Similar special names for other subfields of
mereotopology depending on the corresponding mereological parts also can be
suggested: for instance the mereotopology considered in [15, 28, 29] is based on
some non-distributive lattices - hence non-distributive mereotopology, and the
mereotopological structures considered, for instance, in [17, 13] are pure rela-
tional and without any algebraic lattice-structure in the set of regions - hence
relational mereotopology.

The paper is divided in two parts. Part I is devoted to the axiomatization
of the three mereotopological relations of contact C, dual contact Ĉ and non-
tangential part-of ≪ taken as primitives on the base of distributive lattice by
means of universal first-order axioms, which remain true in contact algebras.
The main result of this part is the abstract notion of Extended Distributive
Contact Lattice (EDC-lattice) and an embedding theorem of EDC-latices into
contact algebras, showing in this way that the meaning of the contact, dual
contact and non-tangential part-of relations is preserved in the language of
EDC-lattices. The method is based on a certain generalization of the Stone
representation theory of distributive lattices [22, 2]. As a consequence of the
embedding theorem one can consider EDC-lattice also as the universal fragment
of contact algbera based on the signature of distributive lattice and mereotopo-
logical relations of contact C, dual contact Ĉ and non-tangential inclusion ≪.
Relations of EDC-lattices with other mereotopological systems are also consid-
ered: EDC-lattices are relational mereotopological systems in the sense of [17],
and the well known RCC-8 system of mereotopological relations is definable in
the language of EDC-lattices.

Part II of the paper is devoted to the topological representation theory of
EDC-lattices and some of their axiomatic extensions yielding representations
in T1 and T2 spaces. Special attention is given to dual dense and dense rep-
resentations (defined in Section 5.1) in contact algebras of regular closed and
regular open subsets of topological spaces. The method is an extension of the
representation theory of distributive contact lattices [9] and adaptation of some
constructions from the representation theory of contact algebras [6, 7]. In the
concluding Section we discuss some open problems and future plans with appli-
cations in qualitative spatial representation and reasoning.
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PART I: EXTENDED DISTRIBUTIVE CONTACT LATTICES:
AXIOMATIZATION AND EMBEDDING IN CONTACT ALGE-
BRAS

2 Extended distributive contact lattices.

Choosing the right axioms

2.1 Contact algebras, distributive contact lattices and ex-

tended distributive contact lattices

As it was mention in the Introduction, contact algebra is a Boolean algebra
B = (B,≤, 0, 1, ·,+, ∗, C) with an additional binary relation C called contact,
and satisfying the following axioms:

(C1) If aCb, then a 6= 0 and b 6= 0,

(C2) If aCb and a ≤ a′ and b ≤ b′, then a′Cb′,

(C3) If aC(b + c), then aCb or aCc,

(C4) If aCb, then bCa,

(C5) If a.b 6= 0, then aCb.

Let us note that on the base of (C4) we have (C3’) (a + b)Cc implies aCc or
bCc.

Remark 2.1 Observe that the above axioms are universal first-order conditions
on the language of Boolean algebra with the C-relation and not containing the
Boolean complementation ∗. This fact says that the axioms of C will be true in
any distributive sublattice of B. �

The Remark 2.1 was one of the formal motivations for the definition of dis-
tributive contact lattice introduced in [8, 9]: the definition is obtained just
by replacing the underlying Boolean algebra by a bounded distributive lattice
(D,≤, 0, 1,+, ·) and taking for the relation C the same axioms. This makes
possible to consider the main standard models of contact algebras, namely the
algebras of regular closed or regular open sets of a topological space, also as
the main models for distributive contact lattices, just by ignoring the Boolean
complementation ∗ in this models. This was guaranteed by Theorem 7 from
[9] stating that every distributive contact lattice can be isomorphically embed-
ded into a contact algebra, which fact indicates also that the choice of the set
of axioms for distributive contact lattice is sufficient for proving this theorem.
Since our main goal in the present paper is to obtain a definition of distribu-
tive contact lattice extended with relations of dual contact Ĉ and nontangential
part-of ≪, we will follow here the above strategy, namely to choose universal
firs-order statements for the relations C, Ĉ,≪ as additional axioms which are
true in arbitrary contact algebras and which guarantee the embedding into a
contact algebra. The obtained algebraic system will be called extended dis-
tributive contact lattice. The next definition is a result of several preliminary
experiments for fulfilling the above program.
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Definition 2.2 Extended distributive contact lattice. Let D = (D,≤

, 0, 1,+, ·, C, Ĉ,≪) be a bounded distributive lattice with three additional rela-

tions C, Ĉ,≪, called respectively contact, dual contact and nontangential

part-of. The obtained system, denoted shortly by D = (D,C, Ĉ,≪), is called
extended distributive contact lattice ( EDC-lattice, for short) if it satisfies
the axioms listed below.

Notations: if R is one of the relations ≤, C, Ĉ,≪, then its complement is
denoted by R. We denote by ≥ the converse relation of ≤ and similarly ≫
denotes the converse relation of ≪.

Axioms for C alone: The axioms (C1)-(C5) mentioned above.

Axioms for Ĉ alone:

(Ĉ1) If aĈb, then a, b 6= 1,

(Ĉ2) If aĈb and a′ ≤ a and b′ ≤ b, then a′Ĉb′,

(Ĉ3) If aĈ(b · c), then aĈb or aĈc,

(Ĉ4) If aĈb, then bĈa,

(Ĉ5) If a+ b 6= 1, then aĈb.

Axioms for ≪ alone:

(≪ 1) 0 ≪ 0,

(≪ 2) 1 ≪ 1,

(≪ 3) If a ≪ b, then a ≤ b,

(≪ 4) If a′ ≤ a ≪ b ≤ b′, then a′ ≪ b′,

(≪ 5) If a ≪ c and b ≪ c, then (a+ b) ≪ c,

(≪ 6) If c ≪ a and c ≪ b, then c ≪ (a · b),

(≪ 7) If a ≪ b and (b · c) ≪ d and c ≪ (a+ d), then c ≪ d.

Mixed axioms:

(MC1) If aCb and a ≪ c, then aC(b · c),

(MC2) If aC(b · c) and aCb and (a · d)Cb, then dĈc,

(MĈ1) If aĈb and c ≪ a, then aĈ(b+ c),

(MĈ2) If aĈ(b+ c) and aĈb and (a+ d)Ĉb, then dCc,

(M ≪ 1) If aĈb and (a · c) ≪ b, then c ≪ b,

(M ≪ 2) If aCb and b ≪ (a+ c), then b ≪ c.

Observation 2.3 Duality principle. For the language of EDCL we can intro-
duce the following principle of duality: dual pairs (0, 1), (·,+), (≤,≥), (C, Ĉ), (≪
,≫). By means of these pairs for each statement (definition) A of the language

we can define in an obvious way its dual Â. Then by a routine verification one
can see that for each axiom Ax from the list of axioms of EDCL its dual Âx is
also true. On the base of this observation the proofs of dual statements will be
omitted. Note, for instance, that each axiom from the first group (axioms for C
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alone) is dually equivalent to the corresponding axiom from the second group

(axioms for Ĉ alone) and vice versa, the third and fourth groups of axioms (ax-
ioms for ≪ alone and mixed axioms) are closed under duality, for instance the

axiom (MĈ1) is dually equivalent to the axiom (MC1), and (M ≪ 2) is dually
equivalent to (M ≪ 1). �

2.2 Relational models of EDC-lattices

In order to prove that the axioms of EDC-lattices are true in contact algebras
we will introduce a relational models of EDCL which are slight modifications
of the relational models of contact algebras introduced in [7] and called there
discrette contact algebras. The model is defined as follows.

Let (W,R) be a relational system where W is a nonempty set and R is a
reflexive and symmetric relation in W and let a, b be arbitrary subsets of W .
Define a contact relation between a and b as follows

(Def CR) aCRb iff ∃x ∈ a and ∃y ∈ b such that xRy.
Then any Boolean algebra of subsets ofW with thus defined contact is a contact
algebra, and moreover, every contact algebra is isomorphic to a contact algebra
of such a kind [7].

We will modify this model for EDCL as follows: instead of Boolean algebras
of sets we consider only families of subsets containing the empty set ∅ and the
set W and closed under the set-union and set-intersection which are bounded
distributive lattices of sets. Hence we interpret lattice constants and operations
as follows: 0 = ∅, 1 = W , a · b = a ∩ b, a + b = a ∪ b. For the contact
relation we preserve the definition (Def CR). This modification is just a model
of distributive contact lattice studied in [9].

Having in mind the definitions aĈb ↔def a∗Cb∗ and a ≪ b ↔def aCb∗) in

Boolean algebras, we introduce the following definitions for Ĉ and ≪ (for some
convenience we present the definition of the negation of ≪):

(Def ĈR ) aĈRb iff ∃x 6∈ a and ∃y 6∈ b such that xRy, and

(Def 6≪R) a 6≪R b iff ∃x ∈ a and ∃y 6∈ b such that xRy.

Lemma 2.4 Let (W,R) be a relational system with reflexive and symmetric re-
lation R and let D be any collection of subsets of W which is a bounded distribu-
tive set-lattice with relations C, Ĉ and ≪ defined as above. Then (D,CR, ĈR,

≪R) is an EDC-lattice.

Proof. Routine verification that all axioms of EDC-lattice are true. �
EDC-lattice D = (D,CR, ĈR,≪R) over a relational system (W,R) will be

called discrete EDC-lattice. If D is a set of all subsets of W then D is called a
full discrete EDC-lattice.

Corollary 2.5 The axioms of the relations C, Ĉ and ≪ are true in contact
algebras.

Proof. The proof follows by Lemma refRelationEDCL and the fact that
every contact algebra can be isomorphically embedded into a discrete contact
algebra over some relational system (W,R) wit reflexive and symmetric relation
R [7]. �
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3 Embedding EDC-lattices into contact algebras

The main aim of this section is the proof a theorem stating that every EDC-
lattice can be embedded into a full discrete EDC-lattice, which, of course is a
Boolean contact algebra. As a consequence this will show that the axiomatiza-
tion program for EDCL is fulfilled successfully. Since all axioms of EDC-lattice
are universal first-order conditions, the axiomatization can be considered also as
a characterization of the universal fragment of complement-free contact algebras
based on the three relations. We will use in the representation theory a Stone
like technique developed in [22] for the representation theory of distributive
lattices.

3.1 Preliminary facts about filters and ideals in

distributive lattices

We remaind some basic facts about filters and ideals in distributive lattices, for
details see [2, 22].

Let D be a distributive lattice. A subset F of D is called a filter in D if it
satisfies the following conditions: (f1) 1 ∈ F , (f2) if a ∈ F and a ≤ b then b ∈ F ,
(f3) if a, b ∈ F then a.b ∈ F . F is a proper filter if 0 6∈ F , F is a prime filter if
it is a proper filter and a+ b ∈ F implies a ∈ F or b ∈ F .

Dually, a subset I of D is an ideal if (i1) 0 ∈ I, (i2) if a ∈ I and b ≤ a then
b ∈ I, (i3) if a, b ∈ I then a + b ∈ I. I is a proper ideal if 1 6∈ I, I is a prime
ideal if it is a proper ideal and a.b ∈ I implies a ∈ I or b ∈ I.

We will use later on some of the following facts without explicit mentioning.

Facts 3.1 Let D be a bounded distributive lattice and Let F, F1, F2 be filters
and I, I1, I2 be ideals.

1. The complement of a prime filter is a prime ideal and vice-versa.

2. [a) = {x ∈ D : a ≤ x} is the smallest filter containing a;

(a] = {x ∈ D : x ≤ a} is the smallest ideal containing a.

3. F1 ⊕ F2 = {c ∈ D : (∃a ∈ F1, b ∈ F2)(a · b ≤ c)} = {a · b : a ∈ F1, b ∈ F2}
is the smallest filter containing F1 and F2.

[a)⊕ F = {x · y : a ≤ x, y ∈ F}

I1 ⊕ I2 = {c ∈ D : (∃a ∈ I1, b ∈ I2)(c ≤ a+ b)} = {a+ b : a ∈ I1, b ∈ I2}
is the smallest ideal containing I1 and I2.

(a]⊕ I = {x+ y : x ≤ a, y ∈ I}.

In both cases the operation ⊕ is associative and commutative.

4. [a) ∩ I = ∅ iff a 6∈ I

If (F ⊕ [a)) ∩ I 6= ∅ then (∃x ∈ F )(a · x ∈ I),

(a] ∩ F = ∅ iff a 6∈ F

If F ∩ (I ⊕ (a]) 6= ∅ then (∃x ∈ I)(a+ x ∈ F ).

The following three statements are well known in the representation theory
of distributive lattices.
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Lemma 3.2 Let F0 be a filter, I0 be an Ideal and F0 ∩ I0 = ∅. Then:

1. Filter-extension Lemma. There exists a prime filter F such that F0 ⊆
F and F ∩ I0 = ∅.

2. Ideal-extension Lemma. There exists a prime ideal I such that I0 ⊆ I

and F0 ∩ I = ∅.

3. Separation Lemma for filters and ideals. There exist a (prime) filter
F and an (prime) ideal I such that F0 ⊆ F , I0 ⊆ I, F ∩ I = ∅, and
F ∪ I = D.

Remark 3.3 Note that Filter-extension Lemma is dual to the Ideal-extension
Lemma and that each of the three statement easily implies the other two. Nor-
mally they can be proved by application of the Zorn Lemma. The proof, for
instance, of Filter-extension Lemma goes as follows. Apply the Zorn Lemma to
the set M = {G : G is a filter, F0 ⊆ G and G∩ I0 = ∅} and denote by F one of
its maximal elements. Then it can be proved that F is a prime filter, and this
finishes the proof. The sketched proof gives, however, an additional property of
the filter F , namely

(∀x 6∈ F )(∃y ∈ F )(x · y ∈ I0),
which added to the formulation of the lemma makes it stronger. Since we will
need later on this stronger version let us prove this property.

Suppose that x 6∈ F and consider the filter F ⊕ [x). Since F is a maximal
element ofM , then F⊕[x) does not belong to M and consequently F⊕[x)∩I0 6=
∅. By the Fact 3.1, 4, there exists y ∈ F such that x ·y ∈ I0. We formulate this
new statement below as Strong filter-extension Lemma and its dual as Strong
ideal-extension Lemma. We do not know if these two statements for distributive
lattices are new, but we will use them in the representation theorem in the next
section. �

Lemma 3.4 Let F0 be a filter, I0 be an Ideal and F0 ∩ I0 = ∅. Then:

1. Strong filter-extension Lemma. There exists a prime filter F such
that F0 ⊆ F , (∀x ∈ F )(x 6∈ I0) and (∀x 6∈ F )(∃y ∈ F )(x · y ∈ I0).

2. Strong ideal-extension Lemma. There exists a prime ideal I such that
I0 ⊆ I, (∀x ∈ I)(x 6∈ F0) and (∀x 6∈ I)(∃y ∈ I)(x + y ∈ F0).

3.2 Filters and Ideals in EDC-lattices

In the next two lemmas we list some constructions of filters and ideals in EDCL
which will be used in the representation theory of EDC-lattices.

Lemma 3.5 Let D = (D,C, Ĉ,≪) be an EDC-lattice. Then:

1. The set I(xCb) = {x ∈ D : xCb} is an ideal,

2. the set F (xĈb) = {x ∈ D : xĈb} is a filter,

3. the set I(x ≪ b) = {x ∈ D : x ≪ b} is an ideal,

4. the set F (x ≫ b) = {x ∈ D : x ≫ b} is a filter.

10



Proof. 1. By axiom (C1) 0Cb, so 0 ∈ I(xCb). Suppose x ∈ I(xCb) (hence
xCb) and y ≤ x. Then by axiom (C2) yCb). Let x, y ∈ I(xCb), hence xCb

and yCb. Then by axiom (C3) and (C4) we get (x + y)Cb which shows that
x+ y ∈ I(xCb), which ends the proof of this case.

In a similar way one can proof 3. The cases 2. and 4. follow from 1. and 3.
respectively by duality. �

Lemma 3.6 Let D = (D,C, Ĉ,≪) be an EDC-lattice and Let Γ be a prime
filter in D. Then:

1. The set I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)} is an ideal,

2. the set F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)} is a filter,

3. the set I(x ≪ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≪ y)} is an ideal,

4. the set F (x ≫ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≫ y)} is a filter.

Proof. Note that the Lemma remains true if we replace Γ by a filter and Γ
by an ideal.

1. The proof that I(xCΓ) satisfies the conditions (i1) and (i2) from the
definition of ideal is easy. For the condition (i3) suppose x1, x2 ∈ I(xCΓ). Then
∃y1, y2 ∈ Γ such that x1Cy1 and x2Cy2, Since Γ is a filter then y = y1 · y2 ∈ Γ.
Since y ≤ y1 and y ≤ y2, then by axiom (C2) we get x1Cy and x2Cy. Then
applying (C3’) we obtain (x1 + x2)Cy, which shows that x1 + x2 ∈ I(xCΓ).

In a similar way one can prove 3. The proofs of 2 and 4 follow by duality
from 1 and 3, taking into account that Γ is an ideal. �

3.3 Relational representation theorem for EDC-lattices

Throughout this section we assume that D = (D,C, Ĉ,≪) is an EDC-lattice
and let PF (D) and PI(D) denote the set of prime filters of D and the set
of prime ideals of D. Let h(a) = {Γ ∈ PF (D) : a ∈ Γ} be the well known
Stone embedding mapping. We shall construct a canonical relational structure
(W c, Rc) related to D putting W c = PF (D) and defining Rc for Γ,∆ ∈ PF (D)
as follows:

ΓRc∆ ↔def (∀a, b ∈ D)(a ∈ Γ, b ∈ ∆ → aCb)&(a 6∈ Γ, b 6∈ ∆ → aĈb)&(a ∈
Γ, b 6∈ ∆ → a 6≪ b)&(a 6∈ Γ, b ∈ ∆ → b 6≪ a)

For some technical reasons and in order to use duality we introduce also the
dual canonical structure (Ŵ c, R̂c) putting Ŵ c = PI(D) and for Γ,∆ ∈ PI(D),

ΓR̂c∆ ↔def ΓRc∆.
Our aim is to show that the Stone mapping h is an embedding from D into

the EDC-lattice over (W c, Rc) (see Section 2.4). First we need several technical
lemmas.

Lemma 3.7 The canonical relations Rc and R̂c are reflexive and symmetric.

Proof. ( For Rc) Symmetry is obvious by the definition of Rc and axioms

(C4) and (Ĉ4). In order to prove that ΓRcΓ suppose a ∈ Γ and b ∈ Γ. Then
a · b ∈ Γ and since Γ is a prime filter, then a.b 6= 0. Then by axiom (C5) we
obtain aCb, which proves the first conjunct of the definition of Rc. For the
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second conjunct suppose that a 6∈ Γ and b 6∈ Γ, then, since Γ is a prime filter,
a+ b 6∈ Γ and hence a+ b 6= 1. Then by axiom (Ĉ5) we get aĈb. For the third
conjunct suppose a ∈ Γ and b 6∈ Γ, which implies that a 6≤ b. Then by axiom
(≪ 3) we obtain a 6≪ b. The proof of the last conjunct is similar.

(For R̂c) - by duality. �

Lemma 3.8 (i) aCb iff (∃Γ,∆ ∈ PF (D))(a ∈ Γ and b ∈ ∆ and ΓRc∆).
(ii) a 6≪ b iff (∃Γ,∆ ∈ PF (D))(a ∈ Γ and b 6∈ ∆ and ΓRc∆).

Proof. (i) Note that the proof is quite technical, so we will present it with
full details. The reasons for this are twofold: first to help the reader to follow
it more easily, and second, to skip the details in a similar proofs.

(⇐) If a ∈ Γ and b ∈ ∆ then by the definition of Rc we obtain aCb.
(⇒) Suppose aCb.

The proof will go on several steps.
Step 1: construction of Γ. Consider the ideal I(xCb) = {x ∈ D : xCb}
(Lemma 3.5). Since aCb, a 6∈ {x ∈ D : xCb}. Then [a) ∩ {x ∈ D : xCb} = ∅

and [a) is a filter (see Facts 3.1). By the Strong filter-extension lemma (see
Lemma 3.4) there exists a prime filter Γ such that [a) ⊆ Γ and (∀x ∈ Γ)(x 6∈
{x ∈ D : xCb} and (∀x 6∈ Γ)(∃y ∈ Γ)(x · y ∈ {x ∈ D : xCb}. From here we
conclude that Γ satisfies the following two properties:

(#0) a ∈ Γ,

(#1) If x ∈ Γ, then xCb, and

(#2) If x 6∈ Γ, then there exists y ∈ Γ such that (x · y)Cb.

Step 2: construction of ∆. This will be done in two sub-steps.
Step 2.1 Consider the filters and ideals definable by Γ as in Lemma 3.6

I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)}, F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)},
I(x ≪ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≪ y)}, and F (x ≫ Γ) = {x ∈ D : (∃y ∈
Γ)(x ≫ y}. In order to apply the Separation Lemma we will prove the following
condition:

(#3) F (x ≫ Γ)⊕ F (xĈΓ)⊕ [b) ∩ I(xCΓ)⊕ I(x ≪ Γ) = ∅.
Suppose that (#3) is not true, then for some t ∈ D we have

(1) t ∈ F (x ≫ Γ)⊕ F (xĈΓ)⊕ [b) and
(2) t ∈ I(xCΓ)⊕ I(x ≪ Γ).

It follows from (2) that ∃k1, k2 such that
(3) k1 ∈ I(x ≪ Γ) and
(4) k2 ∈ I(xCΓ) and
(5) t = k1 + k2.

It follows from (1) that ∃k4, k5, k6 ∈ D such that
(6) k4 ∈ F (x ≫ Γ) and

(7) k5 ∈ F (xĈΓ) and
(8) k6 ∈ [b) and
(9) t = k4 · k5 · k6.

From (5) and (9) we get
(10) k1 + k2 = k4 · k5 · k6.

It follows from (3), (4), (6) and (7) that
(11) ∃x1 ∈ Γ such that k1 ≪ x1,
(12) ∃x2 ∈ Γ such that k2Cx2,
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(13) ∃x3 ∈ Γ such that x3 ≪ k4,

(14) ∃x4 ∈ Γ such that k5Ĉx4.
Let x = x1 + x4. Since Γ is an ideal, we obtain by (11) and (14) that

(15) x ∈ Γ and x 6∈ Γ. Then by (#2) we get
(16) ∃y ∈ Γ such that (x · y)Cb.

Let z = x2 · x3 · y. Then by (12), (13) and (16) we obtain that
(17) z ∈ Γ
and by (#1) that
(18)zCb.

From x1 ≤ x and (11) by axiom (≪ 4) we get
(19) k1 ≪ x.

From x4 ≤ x and (14) by axiom (Ĉ2) we obtain

(20) k5Ĉx.
From z ≤ x2 and (12) by axiom (C2) we get

(21) k2Cz.
From z ≤ x3 and (13) by axiom (≪ 4) we obtain

(22) z ≪ k4.
We shall show that the following holds

(23) zC(b · k1).
Suppose for the sake of contradiction that zC(b · k1). From b · k1 ≤ k1 and

(19) by axiom (≪ 4) we get (b ·k1) ≪ x. From this fact and zC(b ·k1) by axiom
(MC1) we obtain (b · k1)C(z · x). But we also have b · k1 ≤ b, z · x ≤ y · x, so
by axiom (C2) we get bC(y · x) - a contradiction with (16).

The following condition holds
(24) zC(b · k2).

To prove this suppose for the sake of contradiction that zC(b · k2). We also
have b · k2 ≤ k2, so by axiom (C2) we get zCk2 - a contradiction with (21).

Suppose that zC(b ·(k1+k2)). By axiom (C3) we have zC(b ·k1) or zC(b ·k2)
- a contradiction with (23) and (24). Consequently zC(b · (k1+k2)) and by (10)
we obtain zC(b · k4 · k5 · k6). But b ≤ k6 (from (8)), so b · k4 · k5 · k6 = b · k4 · k5.
Consequently
(25) zC(b · k4 · k5).

From (18) and (22) by axiom (MC1) we get
(26) zC(b · k4).

We shall show that the following condition holds
(27) (z · x)C(b · k4)

For to prove this suppose the contrary (z ·x)C(b·k4). We also have z ·x ≤ y·x,
b · k4 ≤ b, so by axiom (C2) we get (y · x)Cb - a contradiction with (16).

From (25), (26) and (27) by axiom (MC2) we obtain xĈk5 - a contradiction
with (20). Consequently (#3) is true.

Step 2.2: the construction of ∆. Applying the Filter extension Lemma
to (#3) we obtain a prime filter ∆ (and this is just the required ∆) such that:

1. F (x ≫ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≫ y} ⊆ ∆,

2. F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)} ⊆ ∆,

3. b ∈ ∆,

4. I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)} ∩∆ = ∅,
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5. I(x ≪ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≪ y)} ∩∆ = ∅.

Step 3: proof of ΓRc∆. We will verify the four cases of the definition of Rc.

• Case 1: y ∈ Γ and x ∈ ∆. We have to show yCx. Suppose yCx. Then
xCy and by y ∈ Γ we get x ∈ I(xCΓ). Then by 4. x 6∈ ∆ - a contradiction,
hence yCx.

• Case 2: y ∈ Γ and x 6∈ ∆. Suppose y ≪ x. Then x ≫ y and y ∈ Γ
implies x ∈ F (x ≫ Γ). By (1) x ∈ ∆ - a contradiction, hence y 6≪ x.

• Case 3: y 6∈ Γ and x ∈ ∆. Suppose x ≪ y. Then x ∈ I(x ≪ Γ) and by
5. x 6∈ ∆ - a contradiction. Hence x 6≪ y.

• Case 4: y 6∈ Γ and x 6∈ ∆. Suppose yĈx. Then xĈy and by 2. we
obtain x ∈ ∆ - a contradiction. Hence yĈx.

Thus we have constructed prime filters Γ and ∆ such that: a ∈ Γ, b ∈ ∆
(item 3 from Step 2.2) and ΓRc∆ (Step 3).

Proof of (ii). (⇐) If a ∈ Γ and b 6∈ ∆ then by the definition of Rc we obtain
a 6≪ b.

(⇒) Suppose a 6≪ b. The proof, as in (i), will go on several steps.
Step 1: construction of Γ. Consider the ideal I(x ≪ b) = {x ∈ D : x ≪ b}
(Lemma 3.5).

Since a 6≪ b, a 6∈ {x ∈ D : x ≪ b}. Then [a) ∩ {x ∈ D : x ≪ b} = ∅ and [a)
is a filter (see FACTS 3.1). By the Strong filter-extension lemma (Lemma 3.4)
there exists a prime filter Γ such that [a) ⊆ Γ and (∀x ∈ Γ)(x 6∈ {x ∈ D : x ≪ b})
and (∀x 6∈ Γ)(∃y ∈ Γ)(x · y ∈ {x ∈ D : x ≪ b}). From here we conclude that Γ
satisfies the following properties:

(#0) a ∈ Γ,

(#1) If x ∈ Γ, then x 6≪ b, and

(#2) If x 6∈ Γ, then there exists y ∈ Γ such that (x · y) ≪ b.
Step 2: construction of ∆. This will be done in two sub-steps.

Step 2.1 Consider the filters and ideals definable by Γ as in Lemma 3.6

I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)}, F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)},
I(x ≪ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≪ y)}, and F (x ≫ Γ) = {x ∈ D : (∃y ∈
Γ)(x ≫ y}. In order to apply the Filter-extension Lemma (Lemma 3.2) we will
prove the following condition:

(#3) F (x ≫ Γ)⊕ F (xĈΓ) ∩ I(x ≪ Γ)⊕ I(xCΓ)⊕ (b] = ∅

Suppose that (#3) is not true. Consequently ∃t such that
(1) t = k1 · k2 = k4 + k5 + k6 for some k1, k2, k4, k5, k6 ∈ D and
(2) ∃x1 ∈ Γ such that x1 ≪ k1,

(3) ∃x2 ∈ Γ such that k2Ĉx2,
(4) ∃x3 ∈ Γ such that k4 ≪ x3,
(5) ∃x4 ∈ Γ such that k5Cx4,
(6) k6 ≤ b.

Let z = x2 + x3. Then by (3) and (4) we obtain z ∈ Γ. By axiom (Ĉ2) we
get

(7) k2Ĉz.
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By (4) and axiom (≪ 4) we get
(8) k4 ≪ z.

By z 6∈ Γ and (#2) we have
(9) ∃y ∈ Γ such that (z · y) ≪ b.

Let x = x1 ·x4 ·y ·a. Then by (#0), (2), (5) and (9) we get x ∈ Γ. By axiom
(≪ 4) we get
(10) x ≪ k1.

By (5), x ≤ x4 and axiom (C2) we get
(11) k5Cx.

From x ∈ Γ by (#1) we obtain
(12) x 6≪ b.

From (10) by axiom (≪ 4) we get
(13) x ≪ (b+ k1)

From (7) by axiom (Ĉ2) we obtain

(14) zĈ(b+ k2).
From (9) by axiom (≪ 4) we get

(15) (z · y) ≪ (b+ k2).
From (14) and (15) by axiom (M ≪ 1) we obtain y ≪ (b + k2). We also

have x ≤ y and by axiom (≪ 4) we get
(16) x ≪ (b+ k2).

From (13) and (16) by axiom (≪ 6) we get x ≪ (b+ k1) · (b+ k2). We have
(b + k1) · (b + k2) = b + k1 · k2 = b + k4 + k5 + k6 = b + k4 + k5 (since k6 ≤ b

from (6)). Thus:
(17) x ≪ (b+ k4 + k5).

Suppose (in order to obtain a contradiction) that x ≪ (b + k4). From (9)
and x · z ≤ z · y (which follows from the definitions of x and z) by axiom (≪ 4)
we obtain (x · z) ≪ b. Using this fact, (8), x ≪ (b + k4) and axiom (≪ 7) we
get x ≪ b - a contradiction with (12). Consequently
(18) x 6≪ (b+ k4).

From (11) and (17) by axiom (M ≪ 2) we obtain x ≪ (b + k4) - a contra-
diction with (18). Consequently (#3) is true.

Step 2.2: the construction of ∆. Applying the Filter-extension Lemma
to (#3) we obtain a prime filter ∆ (and this is just the required ∆) such that:

1. F (x ≫ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≫ y} ⊆ ∆,

2. F (xĈΓ) = {x ∈ D : (∃y ∈ Γ)(xĈy)} ⊆ ∆,

3. b 6∈ ∆,

4. I(xCΓ) = {x ∈ D : (∃y ∈ Γ)(xCy)} ∩∆ = ∅,

5. I(x ≪ Γ) = {x ∈ D : (∃y ∈ Γ)(x ≪ y)} ∩∆ = ∅.

Step 3: proof of ΓRc∆. The proof is the same as in the corresponding step
in (i).

To conclude: we have constructed prime filters Γ,∆ such that ΓRc∆, a ∈ Γ
and b 6∈ ∆, which finishes the proof of the lemma.�
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Lemma 3.9 (i) aĈb iff (∃Γ,∆ ∈ PI(D))(a ∈ Γ and b ∈ ∆ and ΓR̂c∆).

(ii) aĈb iff (∃Γ,∆ ∈ PF (D))(a 6∈ Γ and b 6∈ ∆ and ΓRc∆).

(iii) a 6≫ b iff (∃Γ,∆ ∈ PI(D))(a ∈ Γ and b 6∈ ∆ and ΓR̂c∆).
(iv) a 6≫ b iff (∃Γ,∆ ∈ PF (D))(a 6∈ Γ and b ∈ ∆ and ΓRc∆).

Proof. (i) by duality from Lemma 3.8. Note that in this case Strong ideal-
extension Lemma is used. The proof can follow in a ”dual way” the steps of the
proof of Lemma 3.8 (i).

(ii) is a corollary from (i).
(iii) by duality from Lemma 3.8 (ii) with the same remark as above.
(iv) is a corollary from (iii).�

Lemma 3.10 Let (W c, Rc) be the canonical structure of D = (D,C, Ĉ,≪) and
h(a) = {U ∈ PF (D) : a ∈ U} be the Stone mapping from D into the distributive
lattice of all subsets of W c. Then h is an embedding of D into the EDC-lattice
over (W c, Rc).

Proof. It is a well known fact that h is an embedding of distributive lattice
into the distributive lattice of all subsets of the set of prime filters PF (D)
(see, [22, 2]). The only thing which have to be done is to show the following
equivalences for all a, b ∈ D:

(i) aCb iff h(a)CRch(b),

(ii) aĈb iff h(a)ĈRch(b)
(iii) a ≪ b iff h(a) ≪Rc h(b).
Note that these equivalences are another equivalent reformulation of Lemma

3.8 (i) and (ii) and Lemma 3.9 (ii) and (iv). �

Theorem 3.11 Relational representation Theorem of EDC-latices. Let
D = (D,C, Ĉ,≪) be an EDC-lattice. Then there is a relational system W =
(W,R) with reflexive and symmetric R and an embedding h into the EDC-lattice
of all subsets of W .

Proof. The theorem is a corollary of Lemma 3.10.�

Corollary 3.12 Every EDC-lattice can be isomorphically embedded into a con-
tact algebra.

Proof. Since the lattice of all subsets of a given set is a Boolean algebra,
then this is a corollary of Theorem 3.11. �

The following theorem states that the axiom system of EDC-lattice can be
considered as an axiomatization of the universal fragment of contact algebras
in the language of EDC-lattices.

Theorem 3.13 Let A be an universal first-order formula in the language of
EDC-lattices. Then A is a consequence from the axioms of EDC-lattice iff A is
true in all contact algebras.

Proof. The proof is a consequence from Corollary 3.12 and the fact that all
axioms of EDC-lattice are universal first-order conditions and that A is also an
universal first-order condition.�

16



4 Relations to other mereotopologies

In this section we will compare EDC-lattices with other two mereotopologies:
the relational mereotopology and RCC-8.

4.1 Relational mereotopology

Relational mereotopology is based on mereotopological structures introduced in
[17]. These are relational structures in the form (W,≤, O, Ô,≪, C, Ĉ) axiom-
atizing the basic mereological relations part-of ≤, overlap O and dual overlap
(underlap) Ô, and the basic mereotopological relations non-tangential part-of

≪, contact C and dual contact Ĉ. These relations satisfy the following list of
universal first-order axioms:

(≤ 0) a ≤ b and b ≤ a → a = b (≤ 1) a ≤ a,

(≤ 2) a ≤ b and b ≤ c → a ≤ c

(O1) aOb → bOa (Ô1) aÔb → bÔa

(O2) aOb → aOa (Ô2) aÔb → aÔa

(O ≤) aOa → a ≤ b (Ô ≤) bÔb → a ≤ b

(O ≤) aOb and b ≤ c → aOc (Ô ≤) c ≤ a and aÔb → cÔb

(OÔ) aOa or aÔa (≤ OÔ) cOa and cÔb → a ≤ b

(C) aCb → bCa (Ĉ) aĈb → bĈa

(CO1) aOb → aCb (ĈÔ1) aÔb → aĈb

(CO2) aCb → aOa (ĈÔ2) aĈb → aÔa

(C ≤) aCb and b ≤ c → aCc (Ĉ ≤) aĈb and c ≤ b → aĈc

(≪≤ 1) a ≪ b → a ≤ b

(≪≤ 2) a ≤ b and b ≪ c → a ≪ c (≪≤ 3) a ≪ b and b ≤ c → a ≪ c

(≪ O) aOa → a ≪ b (≪ Ô) bÔb → a ≪ b

(≪ CO) aCb and b ≪ c → aOc (≪ ĈÔ) c ≪ a and aĈb → cÔb

(≪ CÔ) cCa and cÔb → a ≪ b (≪ ĈO) cOa and cĈb → a ≪ b.

Note that all axioms of mereotopological structures are universal first-order
conditions which are true in contact algebras under the standard definitions of
the three basic mereological relations.

It is proved in [17] that each mereotopological structure is embeddable into
a contact algebra (Theorem 26).

The following theorem relates EDC-lattices to mereotopological structures.

Theorem 4.1 Every EDC-lattice is a mereotopological structure under the stan-
dard definitions of the basic mereological relations.

Proof. Since all axioms of mereotopological structures are universal first-
order sentences true in all contact algebras, then the statement follows from
Theorem 3.13.
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4.2 RCC-8 spatial relations

One of the most popular systems of topological relations in the community of
QSRR is RCC-8. The system RCC-8 was introduced for the first time in [11].
It consists of 8 relations between non-empty regular closed subsets of arbitrary
topological space. Having in mind the topological representation of contact
algebras, it was given in [24] an equivalent definition of RCC-8 in the language
of contact algebras:

Definition 4.2 The system RCC-8.

• disconnected – DC(a, b): aCb,

• external contact – EC(a, b): aCb and aOb,

• partial overlap – PO(a, b): aOb and a 6≤ b and b 6≤ a,

• tangential proper part – TPP(a, b): a ≤ b and a 6≪ b and b 6≤ a,

• tangential proper part−1 – TPP−1(a, b): b ≤ a and b 6≪ a and a 6≤ b,

• nontangential proper part NTPP(a, b): a ≪ b and a 6= b,

• nontangential proper part−1 – NTPP−1(a, b): b ≪ a and a 6= b,

• equal – EQ(a, b): a = b.

RCC-8 relations

Looking at this definition it can be easily seen that the RCC-8 relations are
expressible in the language of EDC-lattices. Let us note that RCC-8 relations
are not expressible in the language of distributive contact algebras from [9].

5 Additional axioms

In this Section we will formulate several additional axioms for EDC-lattices
which are adaptations for the language of EDC-lattices of some known axioms
considered in the context of contact algebras. First we will formulate some
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new lattice axioms for EDC-lattices - the so called extensionality axioms for the
definable predicates of overlap - aOb ↔def a · b 6= 0 and underlap - aÔb ↔def

a+ b 6= 1.
(Ext O) a 6≤ b → (∃c)(a · c 6= 0 and b · c = 0) - extensionality of overlap,

(Ext Ô) a 6≤ b → (∃c)(a+ c = 1 and b+ c 6= 1) - extensionality of underlap.

We say that a lattice is O-extensional if it satisfies (Ext O) and U-extensional

if it satisfies (Ext Ô). Note that the conditions (Ext O) and (Ext Ô) are true
in Boolean algebras but not always are true in distributive lattices (see [9] for
some examples, references and additional information about these axioms).

We will study also the following extensionality axioms.

(Ext C) a 6= 1 → (∃b 6= 0)(aCb) -C-extensionality,

(Ext Ĉ) a 6= 0 → (∃b 6= 1)(aĈb) -Ĉ-extensionality.

In contact algebras these two axioms are equivalent. It is proved in [9]

that (Ext Ô) implies that (Ext C) is equivalent to the following extensionality
principle considered by Whitehead [30]

(EXT C) a 6≤ b → (∃c)(aCc and bCc).

Just in a dual way one can show that (Ext O) implies that (Ext Ĉ) is
equivalent to the following condition

(EXT Ĉ) a 6≤ b → (∃c)(bĈc and aĈc).

Let us note that (EXT C) and (EXT Ĉ ) are equivalent in contact algebras.

(Con C) a 6= 0, b 6= 0 and a+ b = 1 → aCb - C-connectedness axiom and

(Con Ĉ) a 6= 1, b 6= 1 and a · b = 0 → aĈb - Ĉ-connectedness axiom .

In contact algebras these axioms are equivalent and guarantee topological
representation in connected topological spaces.

(Nor 1) aCb → (∃c, d)(c+ d = 1, aCc and bCd),

(Nor 2) aĈb → (∃c, d)(c · b = 0, aĈc and bĈd),

(Nor 3) a ≪ b → (∃c)(a ≪ c ≪ b).

Let us note that the above three axioms are equivalent in contact algebras
and are known by different names. For instance (Nor 1) comes from the prox-
imity theory [23] as Efremovich axiom, (Nor 3) sometimes is called interpolation
axiom. We adopt the name normality axioms for (Nor 1), (Nor 2) and (Nor 3)
because in topological representations they imply some normality conditions in
the corresponding topological spaces. It is proved in [7] that (Nor 1) is true in
the relational models (W,R) (see Section 2.2) if and only if the relation R is
transitive and that (Nor 1) implies representation theorem in transitive models.
In the next lemma we shall prove similar result using all normality axioms.

Lemma 5.1 Transitivity lemma. Let D = (D,C, Ĉ,≪) be a EDC-lattice
satisfying the axioms (Nor1), (Nor 2) and (Nor 3) and let (W c, Rc) be the
canonical structure of D (see Section 3.3) Then:

(i) Rc is a transitive relation.
(ii) D is representable in EDC-lattice over some system (W,R) with an equiv-

alence relation R.
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Proof. (i) Let Γ,∆ and Θ be prime filters in D such that
(1) ΓRc∆ and
(2) ∆RcΘ
and suppose for the sake of contradiction that
(3) ΓR

c
Θ. By the definition of Rc we have to consider four cases.

Case 1: ∃a ∈ Γ, b ∈ Θ such that aCb.

Then by (Nor 1) there exists c, d such that c+ d = 1, aCc and bCd.
Since c+d = 1 then either c ∈ ∆ or d ∈ ∆. The case c ∈ ∆ together
with a ∈ Γ imply by (1) aCc - a contradiction. The case d ∈ ∆
together with b ∈ Θ imply by (2) bCd - again a contradiction.

Case 2: ∃a ∈ Γ, b 6∈ Θ such that a ≪ b.

Then by (Nor 3) ∃c such that a ≪ c and c ≪ b. Consider the case
c 6∈ ∆. Then a ∈ Γ and (1) imply a 6≪ c a contradiction. Consider
now c ∈ ∆. Then b 6∈ Θ imply c 6≪ b - again a contradiction.

In a similar way one can obtain a contradiction in the remaining two cases:
Case 3: ∃a 6∈ Γ, b ∈ Θ such that b ≪ a and

Case 4: ∃a 6∈ Γ, b 6∈ Θ such that bĈa.
(ii) The proof follows from (i) analogous to the proof of Theorem 3.11.�

Another kind of axioms which will be used in the topological representation
theory in PART II are the so called rich axioms.

(U-rich ≪) a ≪ b → (∃c)(b + c = 1 and aCc),

(U-rich Ĉ) aĈb → (∃c, d)(a + c = 1, b+ d = 1 and cCd).

(O-rich ≪) a ≪ b → (∃c)(a · c = 0 and cĈb),

(O-rich C) aCb → (∃c, d)(a · c = 0, b · d = 0 and cĈd).

Let us note that U-rich axioms will be used always with the U-extensionality
axiom and that O-rich axioms will be used always with O-extensionality axiom.

The following lemma is obvious.

Lemma 5.2 The axioms (U-rich ≪), (U-rich Ĉ), (O-rich ≪) and (O-rich C)
are true in all contact algebras.

5.1 Some good embedding properties

Let (D1, C1, Ĉ1,≪1) and (D2, C2, Ĉ2,≪2) be two EDC-lattices. We will write
D1 � D2 if D1 is a substructure of D2, i.e., D1 is a sublattice of D2, and the
relations C1, Ĉ1,≪1 are restrictions of the relations C2, Ĉ2,≪2 on D1. Since we
want to prove embedding theorems, it is valuable to know under what conditions
we have equivalences of the form:

D1 satisfies some additional axiom iff D2 satisfies the same axiom.

Definition 5.3 Dense and dual dense sublattice. Let D1 be a distributive
sublattice of D2. D1 is called a dense sublattice of D2 if the following condition
is satisfied:

(Dense) (∀a2 ∈ D2)(a2 6= 0 ⇒ (∃a1 ∈ D1)(a1 ≤ a2 and a1 6= 0)).
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If h is an embedding of the lattice D1 into the lattice D2 then we say that h
is a dense embedding if the sublattice h(D1) is a dense sublattice of D2.

Dually, D1 is called a dual dense sublattice of D2 if the following condition
is satisfied:

(Dual dense) (∀a2 ∈ D2)(a2 6= 1 ⇒ (∃a1 ∈ D1)(a2 ≤ a1 and a1 6= 1)).

If h is an embedding of the lattice D1 into the lattice D2 then we say that h
is a Dual dense embedding if the sublattice h(D1) is a dually dense sublattice of
D2.

Note that in Boolean algebras, dense and dually dense conditions are equiv-
alent; in distributive lattices this equivalence does not hold (see [9] for some
known characterizations of density and dual density in distributive lattices).

For the case of contact algebras [24] and distributive contact lattices [9] we
introduced the notion of C-separability as follows. Let D1 � D2; we say that
D1 is a C-separable sublattice of D2 if the following condition is satisfied:

(C-separable) (∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 ≤ b1, a1Cb1)).
For the case of EDC-lattices we modified this notion adding two additional

clauses corresponding to the relations Ĉ and ≪ just having in mind the defini-
tions of these relations in contact algebras. Namely

Definition 5.4 C-separability. Let D1 � D2; we say that D1 is a C-separable
EDC-sublattice of D2 if the following conditions are satisfied:

(C-separability for C) -
(∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 ≤ b1, a1Cb1)).

(C-separability for Ĉ) -

(∀a2, b2 ∈ D2)(a2Ĉb2 ⇒ (∃a1, b1 ∈ D1)(a2 + a1 = 1, b2 + b1 = 1, a1Cb1)).

(C-separability for ≪) -
(∀a2, b2 ∈ D2)(a2 ≪ b2 ⇒ (∃a1, b1 ∈ D1)(a2 ≤ a1, b2 + b1 = 1, a1Cb1)).

If h is an embedding of the lattice D1 into the lattice D2 then we say that
h is a C-separable embedding if the sublattice h(D1) is a C-separable sublattice
of D2.

The notion of a C-separable embedding h is defined similarly. The following
lemma is analogous to a similar result from [24] (Theorem 2.2.2) and from [9]
(Lemma 5).

Lemma 5.5 Let D1, D2 be EDC-lattices and D1 be a C-separable EDC-sublattice
of D2. Then:

(i) If D1 is a dually dense EDC-sublattice of D2, then D1 satisfies the axiom
(Ext C) iff D2 satisfies the axiom (Ext C),

(ii) D1 satisfies the axiom (Con C) iff D2 satisfies the axiom (Con C),
(iii) D1 satisfies the axiom (Nor 1) iff D2 satisfies the axiom (Nor 1),
(iv) D1 satisfies the axiom (U-rich ≪) iff D2 satisfies the axiom (U-rich

≪),

(v) D1 satisfies the axiom (U-rich Ĉ) iff D2 satisfies the axiom (U-rich Ĉ).
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Proof. Conditions (i), (ii) and (iii) have the same proof as in Theorem 2.2.2
from [24].

(iv) (⇒) Suppose that D1 satisfies the axiom (U-rich ≪), a2, b2 ∈ D2 and
let a2 ≪ b2. Then by (C-separability for ≪) we obtain: (∃a1, b1 ∈ D1)(a2 ≤
a1, b2 + b1 = 1, a1Cb1). Since D1 is a sublattice of D2 then a1, b1 ∈ D2. From
a2 ≤ a1 and a1Cb1 we get a2Cb1. Thus we have just proved: (a2 ≪ b2 → (∃b1 ∈
D2)(b2 + b1 = 1 and a2Cb1) which shows that D2 satisfies (U-rich ≪).

(⇐) Suppose that D2 satisfies the axiom (U-rich ≪), a1, b1 ∈ D1 (hence
a1, b1 ∈ D2) and let a1 ≪ b1. Then by (U-rich ≪) for D2 we get: (∃c2 ∈
D2)(b1 + c2 = 1, a1Cc2). Since a1, c2 ∈ D2 and a1Cc2, then by (C-separability
for C) we get: (∃a′1, b

′

1 ∈ D1)(a1 ≤ a′1, c2 ≤ b′1, a
′

1Cb′1). Combining the above
results we get: 1 = b1 + c2 ≤ b1 + b′

1
and a1Cb′

1
. We have just proved the

following: a1 ≪ b1 → (∃b′1 ∈ D1)(b1 + b′1 = 1, a1Cb′1) which shows that D1

satisfies (U-rich ≪).
(v) The proof is similar to that of (iv). �.

The notion of Ĉ-separable sublattice can be defined in a dual way as follows:

Definition 5.6 Suppose that D1 � D2; we say that D1 is a Ĉ-separable EDC-
sublattice of D2 if the following condition is satisfied:

(Ĉ-separability for C) -

(∀a2, b2 ∈ D2)(a2Cb2 ⇒ (∃a1, b1 ∈ D1)(a1 + a2 = 1, b1 + b2 = 1, a1Ĉb1)),

(Ĉ-separability for Ĉ) -

(∀a2, b2 ∈ D2)(a2Ĉb2 ⇒ (∃a1, b1 ∈ D1)(a1 ≤ a2, b1 ≤ b2, a1Ĉb1)),

(Ĉ-separability for ≪) -

(∀a2, b2 ∈ D2)(a2 ≪ b2 ⇒ (∃a1, b1 ∈ D1)(a1 + a2 = 1, b1 ≤ b2, a1Ĉb1)).

The notion of a Ĉ-separable embedding h is defined as in definition 5.4.

The following lemma is dual to Lemma 5.5 and can be proved in a dual way.

Lemma 5.7 Let D1, D2 be EDC-lattices and D1 be a Ĉ-separable EDC-sublattice
of D2; then:

(i) If D1 is a dense EDC-sublattice of D2, then D1 satisfies the axiom (Ext

Ĉ) iff D2 satisfies the axiom (Ext Ĉ),

(ii) D1 satisfies the axiom (Con Ĉ) iff D2 satisfies the axiom (Con Ĉ),
(iii) D1 satisfies the axiom (Nor 2) iff D2 satisfies the axiom (Nor 2).
(iv) D1 satisfies the axiom (O-rich ≪) iff D2 satisfies the axiom (O-rich

≪).

(v) D1 satisfies the axiom (O-rich Ĉ) iff D2 satisfies the axiom (O-rich Ĉ).

Corollary 5.8 Let D = (D,C, Ĉ,≪) be an EDC-lattice and B = (B,C) be a
contact algebra. Then:

(i) If h is a C-separable embedding of D into B then D must satisfy the

axioms (U-rich ≪) and (U-rich Ĉ).

(ii) If h is a Ĉ-separable embedding of D into B then D must satisfy the

axioms (O-rich ≪) and (O-rich Ĉ).
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Proof. (i) Note that by Lemma 5.2 B satisfies the axioms (U-rich ≪) and

(U-rich Ĉ). Then by Lemma 5.5 (iv) and (v) D satisfies the axioms (U-rich ≪)

and (U-rich Ĉ).
(ii) Similarly to (i) the proof follows from Lemma 5.2 and Lemma 5.7. �

PART II: TOPOLOGICAL REPRESENTATIONS OF EXTENDED
DISTRIBUTIVE CONTACT LATTICES

The aim of this second part of the paper is to investigate several kinds
of topological representations of EDC-lattices. We concentrate our attention
mainly on topological representations with some ”good properties” in the sense
of Section 5.1: dual density and C-separability, and their dual versions - density
and Ĉ-separability.

6 Topological models of EDC-lattices

We assume some familiarity of the reader with the basic theory of topological
spaces:(see [12]). First we recall some notions from topology. By a topological
space we mean a set X provided with a family C(X) of subsets, called closed
sets, which contains the empty set ∅, the whole set X , and is closed with
respect to finite unions and arbitrary intersections. Fixing C(X) we say that
X is endowed with a topology. A subset a ⊆ X is called open if it is the
complement of a closed set. A family of closed sets CB(X) is called a closed
basis of the topology if every closed set can be represented as an intersection of
sets from CB(X). In a similar way the topology of X can be characterized by
the family O(X) of open sets: it contains the empty set, X and is closed under
finite intersections and arbitrary unions. A family OB(X) of open sets is called
an open basis of the topology if every open set can be represented as an union
of sets from OB(X). X is called semiregular space if it has a closed base of
regular closed sets or an open base of regular open sets.

We remaind the definitions of two important topological operations on sets
- closure operation Cl, and interior operation Int. Namely Cl(a) is the in-
tersection of all closed sets of X containing a and Int(a) is the union of all
open sets included in a. Note that the operations Cl and Int are interdefin-
able: Cl(a) = −Int(−a) and Int(a) = −Cl(−a). Using the bases CB(X)
and OB(X) the definitions of closure and interior operations have the following
useful expressions:

x ∈ Cl(a) iff (∀b ∈ CB(X))(a ⊆ b → x ∈ b),

x ∈ Int(a) iff (∃b ∈ OB(X))(b ⊆ a and x ∈ b).

We say that a is a regular closed set if a = Cl(Int(a)) and a is a regular
open set if a = Int(Cl(a)). It is a well known fact that the set RC(X) of all
regular closed subsets of X is a Boolean algebra with respect to the relations,
operations and constants defined as follows: a ≤ b iff a ⊆ b, 0 = ∅, 1 = X ,
a+ b = a∪ b, a · b = Cl(Int(a∩ b), a∗ = Cl(−a) where −a = Xr a. If we define
a contact C by aCb iff a∩ b 6= ∅ then we obtain the standard topological model
of contact algebra.
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Another topological model of contact algebra is by the set RO(X) of regular
open subsets of X . The relevant definitions are as follows: a ≤ b iff a ⊆ b,
0 = ∅, 1 = X , a · b = a ∩ b, a+ b = Int(Cl(a ∪ b), a∗ = Int− a. The contact
relation is aCb iff Cl(a) ∩ Cl(b) 6= ∅.

Note that these two models are isomorphic.
Topological model of EDC-lattice by regular-closed sets. Consider

the contact algebra RC(X) of regular closed subsets of X . Let us remove the

operation a∗ and define the relations Ĉ and ≪ topologically according to their
definitions in contact algebra as follows:

aĈb iff Cl(−a) ∩ Cl(−b) 6= ∅ iff (equivalently) Int(a) ∪ Int(b) 6= X .

a ≪ b iff a ∩ Cl(−b) = ∅ iff (equivalently) a ⊆ Int(b).

Obviously the obtained structure is a model of EDC-lattice. Also any dis-
tributive sublattice of RC(X) with the same definitions of the relations C, Ĉ
and ≪ is a model of EDC-lattice. These models are considered as standard
topological models of EDC-lattice by regular closed sets.

Topological model of EDC-lattice by regular-open sets. Consider
the contact algebra RO(X) of regular open subsets of X . Let us remove the

operation a∗ from the contact algebra RO(X) and define the relations Ĉ and
≪ topologically according to their definitions in the contact algebra as follows:

aĈb iff Cl(Int(−a) ∩ Cl(Int(−b)) 6= ∅ iff (equivalently) a ∪ b 6= X ,

a ≪ b iff Cl(a) ∩Cl(Int(−b)) = ∅ iff (equivalently) Cl(a) ⊆ b.
Obviously the obtained structure is another standard topological model of

EDC-lattice and any distributive sublattice of RO(X) with the same relations

C, Ĉ and ≪ is also a model of EDC-lattice.
The main aim of PART II of the paper is the topological representation

theory of EDC-lattices related to the above two standard models. The first
simple result is the following representation theorem.

Theorem 6.1 Topological representation theorem for EDC-lattices.
Let D = (D,C, Ĉ,≪) be an EDC-lattice. Then:

(i) There exists a topological space X and an embedding of D into the contact
algebra RC(X) of regular closed subsets of X.

(ii) There exists a topological space Y and an embedding of D into the contact
algebra RO(Y ) of regular open subsets of Y .

Proof. It is shown in [6] that every contact algebra is isomorphic to a
subalgebra of the contact algebra RC(X) of regular closed subsets of some
topological space X , and dually, that it is also isomorphic to a subalgebra of
the contact algebra RO(Y ) of the regular open subsets of some topological space
Y . Then the proof follows directly from this result and the Corollary 3.12.�

The above theorem is not the best one, because it can not be extended
straightforwardly to EDC-lattices satisfying some of the additional axioms men-
tioned in Section 5. That is why we will study in the next sections representation
theorems based on embeddings satisfying some of the good conditions described
in Section 5.1. Before going on let us remaind some other topological facts,
which will be used later on.

A topological space X is called:
• normal if every pair of closed disjoint sets can be separated by a pair of

open sets;
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• κ-normal [19] if every pair of regular closed disjoint sets can be separated
by a pair of open sets;

• weakly regular [10] if it is semiregular and for each nonempty open set a

there exits a nonempty open set b such that Cl(a) ⊆ b;
• connected if it can not be represented by a sum of two disjoint nonempty

open sets;
• T0 if for every pair of distinct points there is an open set containing one

of them and not containing the other; X is called T1 if every one-point set is a
closed set, and X is called Hausdorff (or T2) if each pair of distinct points can
be separated by a pair of disjoint open sets.

• compact if it satisfies the following condition: let {Ai : i ∈ I} be a non-
empty family of closed sets of X such that for every finite subset J ⊆ I the
intersection

⋂
{Ai : i ∈ J} 6= ∅, then

⋂
{Ai : i ∈ I} 6= ∅.

The following lemma relates topological properties to the properties of the
relations C, Ĉ and ≪ and shows the importance of the additional axioms for
EDC-lattices.

Lemma 6.2 (i) If X is semiregular, then X is weakly regular iff RC(X) satis-

fies any of the axioms (Ext C), (Ext Ĉ).
(ii) X is κ-normal iff RC(X) satisfies any of the axioms (Nor 1), (Nor 2)

and (Nor 3).
(iii) X is connected iff RC(X) satisfies any of the axioms (Con C), (Con

Ĉ).

(iv) If X is compact and Hausdorff, then RC(X) satisfies (Ext C), (Ext Ĉ)
and (Nor 1), (Nor 2) and (Nor 3) .

Proof. A variant of the above lemma concerning only axioms (Ext C),
(Nor 1) and (Con C) was proved, for instance, in [10]. Having in mind the
equivalence of some of the mentioned axioms in RC(X), it is obvious that the
present formulation is equivalent to the cited result from [10].

6.1 Looking for good topological representations of

EDC-lattices

The following topological theorem proved in [9] (Theorem 4) gives necessary
and sufficient conditions for a closed base of a topology to be semiregular.

Theorem 6.3 First characterization theorem for semiregularity.
Let X be a topological space and let CB(X) be a closed basis for X. Suppose that
”·” is a binary operation defined on the set CB(X) such that (CB(X),∅, X,∪, ·)
is a lattice. Then:

1. The following conditions are equivalent:

(a) CB(X) is U -extensional.

(b) CB(X) ⊆ RC(X).

(c) For all a, b ∈ CB(X), a · b = Cl(Int(a ∩ b)).

(d) (CB(X),∅, X,∪, ·) is a dually dense sublattice of the Boolean algebra
RC(X).
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2. If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:

(a) (CB(X),∅, X,∪, ·) is a U -extensional distributive lattice.

(b) X is a semiregular space.

The following is a corollary of the above theorem.

Corollary 6.4 [9] Let X be a topological space, let L = (L, 0, 1,+, ·) be a lattice
and let h be an embedding of the upper semi-lattice (L, 0, 1,+) into the lattice
C(X) of closed sets of X. Suppose that the set CB(X) = {h(a) : a ∈ L} forms
a closed basis for the topology of X. Then:

1. The following conditions are equivalent:

(a) L is U -extensional.

(b) CB(X) ⊆ RC(X).

(c) For all a, b ∈ L, h(a · b) = Cl(Int(h(a) ∩ h(b))).

(d) h is a dually dense embedding of L into the Boolean algebra RC(X).

2. If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:

(a) L is a U -extensional distributive lattice.

(b) X is a semiregular space.

A dual version of Theorem 6.3 is the following one.

Theorem 6.5 Second characterization theorem for semiregularity.
Let X be a topological space and let OB(X) be an open basis for X. Suppose that
+ is a binary operation defined on the set OB(X) such that (OB(X),∅, X,∩,+)
is a lattice. Then:

1. The following conditions are equivalent:

(a) OB(X) is O-extensional.

(b) OB(X) ⊆ RO(X).

(c) For all a, b ∈ OB(X), a+ b = Int(Cl(a ∪ b)).

(d) (OB(X),∅, X,∩,+) is a dually dense sublattice of the Boolean alge-
bra RO(X).

2. If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:

(a) (OB(X),∅, X,∩,+) is an O-extensional distributive lattice.

(b) X is a semiregular space.

The following is a corollary of the above theorem.

Corollary 6.6 Let X be a topological space, let L = (L, 0, 1,+, ·) be a lattice
and let h be an embedding of the lower semi-lattice (L, 0, 1, ·) into the lattice
O(X) of open sets of X. Suppose that the set OB(X) = {h(a) : a ∈ L} forms
an open basis for the topology of X. Then:

1. The following conditions are equivalent:
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(a) L is O-extensional.

(b) OB(X) ⊆ RO(X).

(c) For all a, b ∈ L, h(a+ b) = Int(Cl(h(a) ∪ h(b))).

(d) h is a dense embedding of L into the Boolean algebra RO(X).

2. If any of the (equivalent) conditions (a),(b),(c) or (d) of 1. is fulfilled then:

(a) L is a O-extensional distributive lattice.

(b) X is a semiregular space.

Remark 6.7 (i) Let D = (D,C, Ĉ,≪) be an EDC-lattice. Corollary 6.4 shows
that if we want to represent D by a dually dense embedding h into the contact
algebra RC(X) of some topological space X such that the topology of X to be
determined by the set CB(X) = {h(a) : a ∈ D} considered as a closed base
for X we must require that the lattice D is U-extensional, i.e. to satisfy the
axiom (Ext Ô) (extensionality of underlap). If in addition we want to apply the
good properties of Lemma 5.5 then we must assume that h is also a C-separable
embedding into RC(X). But then Corollary 5.8 implies that D must satisfy

also the axioms (U-rich ≪) and (U-rich Ĉ).
(ii) Similar to the above conclusion is the following. Corollary 6.6 shows

that if we want to represent D by a dense embedding h into the contact al-
gebra RO(X) of some topological space X such that the topology of X to be
determined by the set OB(X) = {h(a) : a ∈ D} considered as an open base
for X we must require that the lattice D is O-extensional, i.e. to satisfy the
axiom (Ext O) (extensionality of overlap). If in addition we want to apply the

good properties of Lemma 5.7 then we must assume that h is also a Ĉ-separable
embedding into RO(X). But then Corollary 5.8 implies that D must satisfy

also the axioms (O-rich ≪) and (O-rich Ĉ). �

Definition 6.8 U-rich and O-rich EDC-lattices. Let D = (D,C, Ĉ,≪) be
an EDC-lattice. Then:

(i) D is called U-rich EDC-lattice if it satisfies the axioms (Ext Ô), (U-rich

≪) and (U-rich Ĉ).
(ii) D is called O-rich EDC-lattice if it satisfies the axioms (Ext O), (O-rich

≪) and (O-rich Ĉ).

The aim of the next sections is to develop the topological representation
theory of U-rich and O-rich EDC-lattices.

7 Topological representation theory of U-rich

EDC-lattices

The aim of this section is to develop a topological representation theory for
U-rich EDC-latices. According to Theorem 6.3 we will look for a representa-
tion with regular closed sets. To realize this we will follow the representation
theory of contact algebras by regular closed sets developed in [6, 24], updating
the results of Section 4 from [9] to the case of U-rich EDC-lattices. We will
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consider also extensions of U-rich EDC-lattices with some of the additional ax-
ioms mentioned in Section 5. The scheme of the representation procedure is the
following: for each U-rich EDC-lattice D from a given class, determined by the
additional axioms, we will do the following:

• Define a set X(D) of ”abstract points” of D,

• define a topology inX(D) by the setCB(X(D)) = {h(a) : a ∈ D}, consid-
ered as a closed base of the topology, where h is the intended embedding of
Stone type: h(a) = {Γ : Γ is ”abstract point” and a ∈ Γ}. X(D) is called
the canonical topological space of D and h is called canonical embedding,

• establish that h is a dual dense embedding of the latticeD into the Boolean
algebra RC(X(D)) of regular closed sets of the space X(D).

We will consider separately the cases of representations in T0, T1 and T2

spaces which requires introducing different ”abstract points”.

7.1 Representations in T0 spaces

Troughout this section we consider that D = (D,C, Ĉ,≪) is a U-rich EDC-
lattice.

Abstract points of D.

As in [9], we consider the abstract points of D to be clans (see [6] for the
origin of this notion). The definition is the following. A subset Γ ⊆ D is a clan
if it satisfies the following conditions:

(Clan 1) 1 ∈ Γ, 0 6∈ Γ,
(Clan 2) If a ∈ Γ and a ≤ b, then b ∈ Γ,
(Clan 3) If a+ b ∈ Γ, then a ∈ Γ or b ∈ Γ,
(Clan 4) If a, b ∈ Γ then aCb.
Γ is a maximal clan if it is maximal with respect to the set-inclusion. We

denote by CLAN(D) (MaxCLAN(D) ) the set of all (maximal) clans of D.
The notion of clan is an abstraction from the following natural example. Let

X be a topological space and RC(X) be the contact algebra of regular-closed
subsets of X and let x ∈ X . Then the set Γx = {a ∈ RC(X) : x ∈ a} is a clan.

Now we will present a construction of clans which is similar to the con-
structions of clans in contact algebras. First we will introduce a new canonical
relation between prime filters.

Definition 7.1 Let U, V be prime filters. Define a new canonical relation RC

(RC -canonical relation) between prime filters as follows:
URCV ↔def (∀a ∈ U)(∀b ∈ V )(aCb).

Let us note that the relation RC depends only on C and can be defined also for
filters. It is different from the canonical relation between prime filters defined
in Section 3.3, but the presence of U-rich axioms makes it equivalent to Rc as
it can be seen from the following lemma.

Lemma 7.2 (i) RC is reflexive and symmetric relation.

(ii) If D satisfies the axioms (U-rich ≪) and (U-rich Ĉ) then RC = Rc.
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Proof. (i) follows from the axioms (C4) and (C5).
(ii) The inclusion Rc ⊆ RC follows directly by the definition of Rc. For the

converse inclusion suppose URCV . To show URcV we have to inspect the four
cases of the definition of Rc.

Claim 1: a ∈ U and b ∈ V implies aCb. This is just by the definition of RC .

Claim 2: a ∈ U and b 6∈ V implies a 6≪ b. For the sake of contradiction suppose
a ∈ U and b 6∈ V but a ≪ b. Then by axiom (U-rich ≪) ( a ≪ b → (∃c)(b+c = 1
and aCc), we obtain b+ c = 1 and aCc. Conditions b+ c = 1 and b 6∈ V imply
c ∈ V . But a ∈ U , so aCc - a contradiction.

Claim 3: a 6∈ U and b ∈ V implies b 6≪ a. The proof is similar to the proof of
Claim 2.

Claim 4: a 6∈ U and b 6∈ V implies aĈb. The proof is similar to the proof of
Claim 2 by the use of axiom

(U-rich Ĉ) aĈb → (∃c, d)(a+ c = 1, b+ c = 1 and cCd). �
The following statement lists some facts about the relation RC .

Facts 7.3 [7, 6, 9].

1. Let F,G be filters and FRCG then there are prime filters U, V such that
F ⊆ U , G ⊆ V and URCV .

2. For all a, b ∈ D: aCb iff there exist prime filters U, V such that URCV ,
a ∈ U and b ∈ V .

In the following lemma we list some facts about clans (see, for instance,
[6, 9]).

Facts 7.4 1. Every prime filter is a clan.

2. The complement of every clan is an ideal.

3. If Γ is a clan and F is a filter such that F ⊆ Γ, then there is a prime filter
U such that F ⊆ U ⊆ Γ. In particular, if a ∈ Γ, then there exists a prime
filter U such that a ∈ U ⊆ Γ.

4. Every clan Γ is the union of all prime filters contained in Γ.

5. Every clan is contained in a maximal clan.

6. Let Σ be a nonempty set of prime filters such that for every U, V ∈ Σ we
have URCV and let Γ be the union of the elements of Σ. Then Γ is a clan
and every clan can be obtained in this way.

7. Let U, V be prime filters, Γ be a clan and U, V ⊆ Γ,. Then URCV and
URcV .

Lemma 7.5 Let Γ be a clan and a ∈ D. Then the following two conditions are
equivalent:

(i) (∀c ∈ D)(a+ c = 1 → c ∈ Γ),
(ii) There exists a prime filter U ⊆ Γ such that a 6∈ U .
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Proof. (i)→ (ii). Suppose that (i) holds. It is easy to see that the set
F = {c : a + c = 1} is a filter. The complement Γ of Γ is an ideal (Facts 7.4)
and hence Γ ⊕ (a] is an ideal. We will show that F ∩ Γ ⊕ (a] = ∅. Suppose
the contrary. Then there is a c such that a + c = 1 (and hence by (i) c ∈ Γ)
and c ∈ Γ ⊕ (a]. Then there is x ∈ Γ such that c ≤ x + a. From here we get:
1 = a + c ≤ a + x + a = x + a, hence x + a = 1 and by (i) - x ∈ Γ, contrary
to x ∈ Γ. Now we can apply Filter-extension Lemma and obtain a prime filter
U extending F such that U ∩ Γ ⊕ (a] = ∅. It follows from here that a 6∈ U ,
U ∩ Γ = ∅ which implies U ⊆ Γ.

(ii)→(i). Suppose (ii) holds: U ⊆ Γ and a 6∈ U . Suppose a + c = 1. Then
c ∈ U ⊆ Γ, so c ∈ Γ - (i) is fulfilled. �

Defining the canonical topological space X(D) of D and the canon-
ical embedding h.

Define the Stone like embedding: h(a) = {Γ ∈ CLAN(D) : a ∈ Γ} and
consider the set CB(X) = {h(a) : a ∈ D} as a closed base of the topology in
X(D) = CLAN(D).

Lemma 7.6 The space X(D) is semiregular and h is a dually dense embedding
of D into the contact Boolean algebra RC(X(D)).

Proof. Using the properties of clans, one can easily check that h(0) = ∅,
h(1) = X , and that h(a+b) = h(a)∪h(b). This shows that the set CB(X(D)) =
{h(a) : a ∈ D} is closed under finite unions and, in fact, it is a closed basis for
the topology of X . Also we have the implication: a ≤ b then h(a) ⊆ h(b).

To show that h is an embedding we use the fact that prime filters are clans
and prove that a 6≤ b implies h(a) 6⊆ h(b). Indeed, from a 6≤ b it follows by
the theory of distributive lattices (see [2]) that there exists a prime filter U
(which is also a clan) such that a ∈ U (so U ∈ h(a)) and b 6∈ U (so, U 6∈ h(b)),
which proves that h(a) 6⊆ h(b). Consequently, h is an embedding of the upper
semi-lattice (D, 0, 1,+) into the lattice of closed sets of the space X(D). By
Corollary 6.4, X(D) is a semiregular space and h is a dually dense embedding
of D into the Boolean algebra RC(X). It remains to show that h preserves the

relations C, Ĉ and ≪. This follows from the following claim.

Claim 7.7 (i) Let Γ be a clan and a ∈ D. Then following equivalence holds:
Γ ∈ h(a) iff there exists a prime filter U such that a ∈ U ⊆ Γ.
(ii) Let Γ be a clan and a ∈ D. Then following conditions are equivalent:

(I) (∀c ∈ D)(a+ c = 1 → c ∈ Γ),

(II) Γ ∈ Cl(−h(a)),

(III) There exists a prime filter U such that a 6∈ U ⊆ Γ.

(iii) aCb iff h(a) ∩ h(b) 6= ∅,
(iv) a 6≪ b iff h(a) ∩ Cl(−h(b)) 6= ∅.

(v) aĈb iff Cl(−h(a)) ∩ Cl(−h(b)) 6= ∅,

Proof of the claim. (i) follows easily from Facts 7.4 (3.).
(ii) The proof of (I) ↔ (II) follows by the following sequence of equivalences:
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(∀c ∈ D)(a+ c = 1 → c ∈ Γ) iff

(∀c ∈ D)(h(a) ∪ h(c) = X(D) → Γ ∈ h(c)) iff

(∀c ∈ D)(−h(a) ⊆ h(c) → Γ ∈ h(c)) iff

Γ ∈ Cl(−h(a))

The first equivalence holds because h is an embedding of the upper semi-
lattice (D, 0, 1,+) into the lattice of closed sets of the space X(D), the third
equivalence uses the fact that the set {h(c) : c ∈ D} is a closed base of the
topology of X(D).

The equivalence (I) ↔ (III) is just the Lemma 7.5.

(iii) (⇒ ) Suppose aCb, then by Lemma 3.8 (i) there exist prime filters U ,
and V such that URcV , a ∈ U and b ∈ V . Let Γ = U ∪ V . By Facts 7.4 Γ is a
clan, obviously containing a and b, which implies h(a) ∩ h(b) 6= ∅.

(⇐) Suppose h(a) ∩ h(b) 6= ∅. Then there exists a clan Γ containing a and
b, hence aCb.

(iv) (⇒ ) Suppose a 6≪ b. Then by Lemma 3.8 (ii) there exist prime filters
U, V such that URcV , a ∈ U and b 6∈ V . Let Γ = U ∪ V , then Γ is a clan
containing U and V . So, a ∈ Γ and hence Γ ∈ h(a). From the condition
b 6∈ V ⊆ Γ we obtain by (ii) that Γ ∈ Cl(−h(b)) and hence h(a)∩Cl(−h(b)) 6= ∅.

(⇐) Suppose h(a) ∩ Cl(−h(b)) 6= ∅. Then there exists a clan Γ ∈ h(a) and
Γ ∈ Cl(−h(b)). It follows by (i) that there exists a prime filter U such that
a ∈ U ⊆ Γ and by (ii) we obtain that there exists a prime filter V such that
b 6∈ V ⊆ Γ. Condition U, V ⊆ Γ implies by Facts 7.4 (7.) that URcV . Using
the properties of the relation Rc and a ∈ U and b 6∈ V we get a 6≪ b.

(v) The proof of (v) is similar to the proof of (iv) with the use of Lemma
3.9. This finishes the proof of Lemma 7.6 �

Lemma 7.8 The following conditions are true for the canonical space X(D):
(i) X(D) is T0.
(ii) X(D) is compact.

Proof. The proof is the same as the proof of Lemma 19 from [9].�

Lemma 7.9 The mapping h is a C-separable embedding of D into RC(X(D)).

Proof. This lemma was proved in [9] by a special construction. Since
the definition of C-separability for EDC-lattices uses an extended definition for
which the special construction from [9] does not hold, in this paper we give a
new proof deducing the statement from the compactness of the space X(D).

We have to proof the following three statements, corresponding to the three
clauses of the condition of C-separability (see Definition 5.4).

(C-separability for C) (∀α, β ∈ RC(X(D)))(α ∩ β = ∅ → (∃a, b ∈ D)(α ⊆
h(a), β ⊆ h(b), h(a) ∩ h(b)) = ∅.

(C-separability for Ĉ) (∀α, β ∈ RC(X(D))(Cl(−α) ∩ Cl(−β) = ∅ → (∃a, b ∈
D)(α ∪ h(a) = X(D), β ∪ h(b) = X(D), h(a) ∩ h(b) = ∅).

(C-separability for ≪) (∀α, β ∈ RC(X(D))(α∩Cl(−β) = ∅ → (∃a, b ∈ D)(α ⊆
h(a), β ∪ h(b) = X(D), h(a) ∩ h(b) = ∅).

As an example we shall prove the condition (C-separability for C). The proofs
for the other two conditions are similar.
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Proof of (C-separability for C). Let α, β ∈ RC(X(D)) and α ∩ β = ∅.
Since α and β are closed sets they can be represented as intersections from the
elements of the basis CB(X(D)) = {h(c) : c ∈ D} of X(D). So there are
subsets A,B ⊆ CB(X(D)) such that α =

⋂
{h(c) : h(c) ∈ A} and β =

⋂
{h(c) :

h(c) ∈ B}. Then α ∩ β =
⋂
{h(c) : h(c) ∈ A} ∩

⋂
{h(c) : h(c) ∈ B} = ∅. By

the compactness of X(D) (Lemma 7.8 (ii)), there are finite subsets A0 ⊆ A and
B0 ⊆ B such that α ∩ β =

⋂
{h(c) : h(c) ∈ A0} ∩

⋂
{h(c) : h(c) ∈ B0} = ∅.

Let A0 = {h(c1), ..., h(cn)} and B0 = {h(d1), ..., h(dm)} and let a = c1 · ... · cn
and b = d1 · ... · dm. Then h(a) ⊆ h(ci), i = 1...n and from here we get
h(a) ⊆ h(c1)∩ ...∩h(cn). Analogously we obtain that h(b) ⊆ h(d1)∩ ...∩h(dm).
Consequently h(a) ∩ h(b) ⊆ (h(c1) ∩ ... ∩ h(cn) ∩ (h(d1) ∩ ... ∩ h(dm)) = ∅, so
h(a) ∩ h(b) = ∅. Also we have α ⊆ h(c) for all h(c) ∈ A and consequently for
all h(c) ∈ A0. Hence α ⊆ h(c1) · ... · h(cn) = h(c1 · ... · cn) = h(a), so α ⊆ h(a).
Analogously we get β ⊆ h(b). �

The following theorem is the main result of this section.

Theorem 7.10 Topological representation theorem for U-rich EDC-
lattices
Let D = (D,C, Ĉ,≪) be an U -rich EDC-lattice. Then there exists a compact
semiregular T0-space X and a dually dense and C-separable embedding h of
D into the Boolean contact algebra RC(X) of the regular closed sets of X.
Moreover:

(i) D satisfies (Ext C) iff RC(X) satisfies (Ext C); in this case X is weakly
regular.

(ii) D satisfies (Con C) iff RC(X) satisfies (Con C); in this case X is
connected.

(iii) D satisfies (Nor 1) iff RC(X) satisfies (Nor 1); in this case X is κ-
normal.

Proof. Let X be the canonical space X(D) of D and h be the canonical
embedding of D. Then, the theorem is a corollary of Lemma 7.6, Lemma 7.8,
Lemma 7.9 and Lemma 6.2.�

Note that Theorem 7.10 generalizes several results from [6, 10] to the dis-
tributive case.

7.2 Representations in T1 spaces

The aim of this section is to obtain representations of some U-rich EDC-lattices
in T1-spaces extending the corresponding results from [9]. The constructions
will be slight modifications of the corresponding constructions from the previous
section, so we will be sketchy.

Let D = (D,C, Ĉ,≪) be an U -rich EDC-lattice. In the previous section
the abstract points were clans and this guarantees that the representation space
is T0. To obtain representations in T1 spaces we assume abstract points to be
maximal clans, so for the canonical space of D we put X(D) = MaxCLAN(D)
and define the canonical embedding h to be h(a) = {Γ ∈ MaxCLAN(D) : a ∈
Γ}. The topology in X(D) is defined considering the set CB(X(D)) = {h(a) :
a ∈ D} to be the closed base for the space. Note that in general, without
additional axioms we can not prove in this case that h is an embedding. In
order to guarantee this we will assume that D satisfies additionally the axiom
of C-extensionality
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(Ext C) a 6= 1 → (∃b 6= 0)(aCb).

Note that in this case, due to U-extensionality (see Section 5), the lattice D

satisfies also the axiom

(EXT C) a 6≤ b → (∃c)(aCc and bCc),

which is essential in the proof that h is an embedding.

Lemma 7.11 The space X(D) is a semiregular and h is a dually dense embed-
ding of D into the contact Boolean algebra RC(X(D)).

Proof. The proof is similar to the proof of Lemma 7.6, so we will indicate
only the differences. First we show that h is an embedding of the upper semi-
lattice (D, 0, 1,+) into the lattice of closed sets of the space X(D). The only
new thing which we have to show is: If a 6≤ b then h(a) 6⊆ h(b). To do this
suppose a 6≤ b. Then by axiom (EXT C) there exists c ∈ D such that aCc but
bCc. Condition aCc implies that there exist prime filters U, V such that URcV ,
a ∈ U and c ∈ V . Let Γ0 = U ∪ V . Γ0 is a clan and by Facts 7.4 it is contained
in a maximal clan Γ. Obviously a, c ∈ Γ, so Γ ∈ h(a). But bCc implies that
b 6∈ Γ (otherwise we will get bCc). Conditions Γ ∈ h(a) and Γ 6∈ h(b) show that
h(a) 6⊆ h(b). Thus, by Corollary 6.4 h is a dually dense embedding of D into the
Boolean algebra RC(X(D)). It remains to show that h preserves the relations

C, Ĉ and ≪. The proof is almost the same as in the corresponding proof of
Lemma 7.6. The only new thing is when we construct a certain clan from prime
filters satisfying the relation URcV in the form U ∪ V , then we extend it into a
maximal clan. Note also that Claim 7.7 remains true. We demonstrate this by
considering only the preservation of ≪. We have to show:

a 6≪ b iff h(a) ∩ Cl(−h(b) 6= ∅

(⇒) Suppose a 6≪ b. Then by Lemma 3.8 (∃U, V ∈ PF (D))(a ∈ U and
b 6∈ V and URcV ). Define Γ0 = U ∪ V . Γ0 is a clan containing U and V .
Extend Γ0 into a maximal clan Γ. Then Γ contains a, so Γ ∈ h(a). We have
also that b 6∈ V ⊆ Γ, so by the Claim 7.7 Γ ∈ Cl(−h(b)).

(⇐) The proof is identical to the corresponding proof from Lemma 7.6. �

Lemma 7.12 The space X(D) satisfies the following conditions:
(i) X(D) is T1,
(ii) X(D) is compact,
(iii) h is C-separable embedding.

Proof. (i) Let Γ be an arbitrary maximal clan. The space X(D) is T1 iff the
singleton set {Γ} is closed, i.e. Cl({Γ}) = {Γ}. This follows by the maximality
of Γ as follows. Let ∆ be a maximal clan. Then:
∆ ∈ Cl({Γ}) iff (∀c ∈ D)({Γ} ⊆ h(c) → ∆ ∈ h(c)) iff (∀c ∈ D)(Γ ∈ h(c) → ∆ ∈
h(c)) iff (∀c ∈ D)(c ∈ Γ → c ∈ ∆ iff Γ ⊆ ∆) iff Γ = ∆ iff ∆ ∈ {Γ}.

This chain shows that indeed Cl({Γ}) = {Γ}.
(ii) The proof is similar to the proof of Lemma 7.8 (ii)
(iii) follows from (ii) as in the proof of Lemma 7.9. �

Theorem 7.13 Topological representation theorem for C-extensional
U-rich EDC-lattices Let D = (D,C, Ĉ,≪) be a C-extensional U -rich EDC-
lattice. Then there exists a compact weakly regular T1-space X and a du-
ally dense and C-separable embedding h of D into the Boolean contact algebra
RC(X) of the regular closed sets of X. Moreover:
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(i) D satisfies (Con C) iff RC(X) satisfies (Con C); in this case X is con-
nected.

(ii) D satisfies (Nor 1) iff RC(X) satisfies (Nor 1); in this case X is κ-
normal.

Proof. The proof follows from Lemma 7.11, Lemma 7.12 and Lemma 6.2.

7.3 Representations in T2 spaces

In the previous section we proved representability in T1 spaces of U-rich EDC-
lattices satisfying the axiom of C-extensionality (Ext C). The T1 property of the
topological space was guaranteed by the fact that abstract points are maximal
clans. In this section we will show that adding the axiom (Nor 1) we can obtain
representability in compact T2-spaces. The reason for this is that the axiom (Nor
1) makes possible to use new abstract points - the so called clusters, which are
maximal clans satisfying some additional properties yielding T2 separability of
the topological space. Clusters have been used in the compactification theory of
proximity spaces (see more about their origin in [23]). They have been adapted
in algebraic form in the representation theory of contact algebras in [6, 26]. In
[9] their definition and some constructions are modified for the distributive case.
We remaind below the corresponding definition.

Definition 7.14 Let D = (D,C, Ĉ,≪) be an EDC-lattice. A clan Γ in D is
called a cluster if it satisfies the following condition:

(Cluster) If for all b ∈ Γ we have aCb, then a ∈ Γ.
We denote the set of clusters in D by CLUSTER(D).

Let us note that not in all EDC-lattices there are clusters. The following
lemma shows that the axiom (Nor 1) guarantees existence of clusters and some
important properties needed for the representation theorem.

Lemma 7.15 [9] Let D = (D,C, Ĉ,≪) be an EDC-lattice. Then:
(i) Every cluster is a maximal clan.
(ii) If D satisfies (Nor 1) then every maximal clan is a cluster.
(iii) If Γ and ∆ are clusters such that Γ 6= ∆, then there are a 6∈ Γ and

b 6∈ ∆ such that a+ b = 1.

To build the canonical space X(D) we assume in this section that D =

(D,C, Ĉ,≪) is an U-rich EDC-lattice satisfying the axioms (Ext C) and (Nor
1). We define X(D) = CLUSTER(D), h(a) = {Γ ∈ CLUSTER(D) : a ∈ Γ}
and define the topology in X(D) considering the set CB(X) = {h(a) : a ∈ D}
as a basis for closed sets in X(D). Since the points of X(D) are maximal clans,
just as in Section 7.2 we can prove the following lemma.

Lemma 7.16 The space X(D) is a semiregular and h is a dually dense embed-
ding of D into the contact Boolean algebra RC(X(D)).

Lemma 7.17 (i) X(D) is T2,
(ii) X(D) is compact,
(iii) h is C-separable embedding.
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Proof. (i) To show that the space X(D) is T2 suppose that Γ,∆ are two
different clusters. We have to find two disjoint open sets A,B such that Γ ∈ A

and ∆ ∈ B. By Lemma 7.15 (iii) there are a, b ∈ D such that a 6∈ Γ and b 6∈ ∆
such that a + b = 1. Then by Lemma 7.16 we get Γ 6∈ h(a), ∆ 6∈ h(b) and
h(a) ∪ h(b) = X(D), hence −h(a)∩−h(b) = ∅. Define A = −h(a), B = −h(b).
Since h(a) and h(b) are closed sets, then A and B are open sets which separate
the abstract points Γ and ∆.

The proof of (ii) and (iii) is the same as the proof of (ii) and (iii) in Lemma
7.12. �

Theorem 7.18 Topological representation theorem for U-rich EDC-
lattices satisfying (Ext C) and (Nor 1). Let D = (D,C, Ĉ,≪) be an U -rich
EDC-lattice satisfying (Ext C) and (Nor 1). Then there exists a compact T2-
space X and a dually dense and C-separable embedding h of D into the Boolean
contact algebra RC(X) of the regular closed sets of X. Moreover D satisfies
(Con C) iff RC(X) satisfies (Con C) and in this case X is connected.

Proof. The proof follows from Lemma 7.16, Lemma 7.17 and 6.2. �
Let us note that this theorem generalizes several theorems from [6, 24, 27, 26]

8 Topological representation theory of O-rich

EDC-lattices

This section is devoted to the theory of dense representations for O-rich EDC-
latices (see Definition 6.8). According to Theorem 6.5 we will look for dense
representations with regular open sets. This case is completely dual to the
corresponding theory developed in Section 7. For this reason we will only sketch
the main representation scheme and the definitions of abstract points for the
T0, T1 and T2 representations.

The representation scheme is dual to the scheme presented in Section 7:

• Define a set X(D) of ”abstract points” of D,

• define a topology inX(D) by the setOB(X(D)) = {h(a) : a ∈ D}, consid-
ered as an open base of the topology, where h is the intended embedding of
Stone type: h(a) = {Γ : Γ is ”abstract point” and a ∈ Γ}. X(D) is called
the canonical topological space of D and h is called canonical embedding,

• establish that h is a dense embedding of the lattice D into the Boolean
algebra RO(X(D)) of regular open sets of the space X(D).

For the case of T0 dense representation we consider a notion of abstract point
which is dual to the notion of clan. This is the so called E-filter (Efremovich
filter). E-filters were used in the theory of proximity spaces (see [23]). In the
context of contact algebras they were introduced for the first time in [6]. The
definition adapted for the language of EDC-lattices is the following.

Definition 8.1 Let D = (D,C, Ĉ,≪) be an EDC-lattice. A subset Γ ⊆ D is
called an E-filter if it satisfies the following properties:

(E-fil 1) Γ is a proper filter in D, i.e. 0 6∈ Γ,
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(E-fil 2) If a 6∈ Γ and b 6∈ Γ, then aĈb.
Γ is a minimal E-filter if it is minimal in the set of all E-filters of D with

respect to set inclusion.

This definition comes as an abstraction from the following natural example.
Let X be a topological space, x ∈ X and RO(X) be the set of all regular-open
sets of X . Then the set Γx = {a ∈ RO(X) : x ∈ a} is an E-filter in the contact
algebra RO(X). Note that the definition of E-filter is based not on the relation

of contact C, but on the dual contact Ĉ.
A general construction of E-filters can be obtain dualizing the construction

of clans from Section 7.1. Just to show how this dual construction goes on and
how the O-rich axioms works, we will repeat some steps omitting the proofs.

First we will introduce a new canonical relation between prime filters.

Definition 8.2 Let U, V be prime ideals. Define a new canonical relation R̂
Ĉ

( R̂
Ĉ
-canonical relation) between prime ideals as follows:

UR̂
Ĉ
V ↔def (∀a ∈ U)(∀b ∈ V )(aĈb).

If U, V are prime filters then we define UR
Ĉ
V ↔def UR̂

Ĉ
V .

Let us note that the relation R̂
Ĉ
depend only on Ĉ and can be defined also

for ideals. It is different from the canonical relation R̂c between prime ideals
defined in Section 3.3, but the presence of O-rich axioms makes it equivalent to
R̂c as it is stated in the following lemma.

Lemma 8.3 (i) R̂
Ĉ

is a reflexive and symmetric relation.

(ii) If D satisfies the axioms (O-rich ≪) and (O-rich Ĉ), then R̂
Ĉ
= R̂c.

The following statement lists some facts about the relation RC .

Facts 8.4 1. Let F,G be ideals and FR̂
Ĉ
G then there are prime ideals U, V

such that F ⊆ U , G ⊆ V and UR̂
Ĉ
V .

2. For all a, b ∈ D: aĈb iff there exist prime ideals U, V such that UR̂
Ĉ
V ,

a ∈ U and b ∈ V .

3. For all a, b ∈ D: aĈb iff there exist prime filters U, V such that UR
Ĉ
V ,

a 6∈ U and b 6∈ V .

In the following lemma we list some facts about E-filters.

Facts 8.5 1. Every prime filter is an E-filter.

2. If Γ is an E-filter and a 6∈ Γ, then there exists a prime filter U such that
Γ ⊆ U and a 6∈ U .

3. Every E-filter Γ is the intersection of all prime filters containing Γ.

4. Every E-filter contains a minimal E-filter.

5. Let Σ be a nonempty set of prime filters such that for every U, V ∈ Σ we
have UR

Ĉ
V and let Γ be the intersection of the elements of Σ. Then Γ is

an E-filter and every E-filter can be obtained in this way.
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6. Let U, V be prime filters, Γ be an E-filter, Γ ⊆ U and Γ ⊆ V . Then UR
Ĉ
V

and URcV .

Using the above facts one can prove the following representation theorem.

Theorem 8.6 Let D = (D,C, Ĉ,≪) be an O-rich EDC-lattice. Then there

exists a compact semi-regular space X and a dense and Ĉ-separable embedding
h from D into the contact algebra RO(X) of regular-open sets of X. Moreover:

(i) If D satisfies (Ext Ĉ), then X is weakly regular,

(ii) If D satisfies (Con Ĉ), then X is a connected space,
(iii) If D satisfies (Nor 2), then X is κ-normal.

Abstract points for dense representations in T1 spaces are minimal E-filters
and abstract points for dense representations in T2 spaces are duals of clusters
introduced in [6] under the name co-clusters. We adapt this notion for the
language of EDC-lattices as follows:

Definition 8.7 An E-filter Γ is called co-cluster if it satisfies the following
condition:

(Co-cluster) If (∀b 6∈ Γ)(aĈb), then a 6∈ Γ. (or, equivalently, if a ∈ Γ, then

(∃b 6∈ Γ)(aĈb)).

Let us show, for instance, the following statement for co-clusters, which is
dual to the corresponding property for clusters as maximal clans:

Lemma 8.8 Every co-cluster is a minimal E-filter.

Proof. Suppose that Γ is a co-cluster which is not a minimal E-filter. Then
there exists an E-filter ∆ such that ∆ ⊂ Γ, so a ∈ Γ and a 6∈ ∆ for some a.

Then there exists b 6∈ Γ such that aĈb. From here we get b ∈ ∆. Consequently
b ∈ Γ - a contradiction.�

We left to the reader to formulate and proof the dual analog of Theorem
7.13 and Theorem 7.18.

9 Concluding remarks

In this paper we generalized the notion of contact algebra by weakening the
algebraic part to distributive lattice. One solution of this problem was given in
[9] including in the definition only the contact relation. However, the obtained
axiomatization in [9] is in a sense ”incomplete”, because it does not contain

the definable in the Boolean case mereotopological relations of dual contact Ĉ
and non-tangential inclusion ≪ and its dual ≫ and in this sense the system
is not closed under duality. We succeed in this paper to axiomatize all these
relations considered as primitives on the base of distributive lattices by means
of universal first-order axioms. The resulting system is called ”extended dis-
tributive contact lattice” (EDC-lattice). In this way we obtain, among others,
the following two results. First, EDC-lattice is closed under duality, and second,
it can be considered as an axiomatization of the universal fragment of contact
algebras in the language of distributive lattices with the relations C, Ĉ and
≪. We developed topological representation theory of EDC-lattices by means
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of regular closed and regular open sets generalizing in a quite non-trivial way
the corresponding representation theory for contact algebras. Considering this
representation theory on a weaker lattice base provided a deeper insight into
the interaction of some notions taking place in the representation, which cannot
be seen in the Boolean case. For instance we show the role of extensionality of
underlap and overlap relations in case of dual dense and dense embeddings.

Our future plans include building of new logics for qualitative spatial rep-
resentation and reasoning based on EDC-lattices, studying the standard logical
problems related to them: axiomatizability, decidability or undecidability, com-
plexity. A good source for possible generalizations and extensions is the paper
[3] containing many examples of spatial logics based on contact and precontact
algebras.
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