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DIRECTED LOVÁSZ LOCAL LEMMA AND SHEARER’S

LEMMA∗

LEFTERIS KIROUSIS1,3, JOHN LIVIERATOS1, AND KOSTAS I. PSAROMILIGKOS2,4

Abstract. Moser and Tardos (2010) gave an algorithmic proof of the lopsided
Lovász local lemma (LLL) in the variable framework, where each of the unde-

sirable events is assumed to depend on a subset of a collection of independent
random variables. For the proof, they define a notion of a lopsided dependency
between the events suitable for this framework. In this work, we strengthen
this notion, defining a novel directed notion of dependency and prove the LLL
for the corresponding graph. We show that this graph can be strictly sparser
(thus the sufficient condition for the LLL weaker) compared with graphs that
correspond to other extant lopsided versions of dependency. Thus, in a sense,
we address the problem “find other simple local conditions for the constraints
(in the variable framework) that advantageously translate to some abstract
lopsided condition” posed by Szegedy (2013). We also give an example where
our notion of dependency graph gives better results than the classical Shearer
lemma. Finally, we prove Shearer’s lemma for the dependency graph we de-
fine. For the proofs, we perform a direct probabilistic analysis that yields
an exponentially small upper bound for the probability of the algorithm that
searches for the desired assignment to the variables not to return a correct an-
swer within n steps. In contrast, the method of proof that became known as
the entropic method, gives an estimate of only the expectation of the number
of steps until the algorithm returns a correct answer, unless the probabilities
are tinkered with.

1. Inroduction

The Lovász Local Lemma (LLL) was originally stated and proved in 1975 by
Erdős and Lovász [4]. Its original symmetric form states that given eventsE1, . . . , Em

in a common probability space, if every event depends on at most d others, and if
the probabilities of all are bounded by 1/(4d), then

Pr

[
m∧

j=1

Ēj

]

> 0,

and therefore there exists at least one point in the space where none of the events
occurs (Ē denotes the complement of E).

The asymmetric version entails an undirected dependency graph, i.e. a graph
with vertices j = 1, . . . ,m corresponding to the events E1, . . . , Em so that for all
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j, Ej is mutually independent from the set of events corresponding to vertices not
connected with j. The condition that in this case guarantees that Pr[

∧m
j=1 Ēj ] > 0

(and therefore that there exists at least one point where none of the events occurs)
is:

(Asym) for every Ej there is a χj ∈ (0, 1) such that Pr[Ej ] ≤ χj

∏

i∈Nj

(1− χi),

where Nj is the neighborhood of vertex j in the dependency graph.
Improvements can be obtained by considering, possibly directed, sparser graphs

than the dependency graph, that correspond to stronger notions of dependency.
For a classic example, the lopsided version (LLLL) by Erdős and Spencer [5] entails
a directed graph with vertices corresponding to the events such that for all Ej and
for all I ⊆ {1, . . . ,m} \ (Γj ∪ {j}) we have that

(1) Pr

[

Ej |
⋂

i∈I

Ēi

]

≤ Pr [Ej ] ,

where Γj is the set of vertices connected with j with an edge originating from j.
Such graphs are known as lopsidependency graphs. The sufficient condition in this
case that guarantees that the undesirable events can be avoided reads:

(Lop) for every Ej there is a χj ∈ (0, 1) such that Pr[Ej ] ≤ χj

∏

i∈Γj

(1 − χi).

With respect to ordinary (not lopsided) dependency graphs, a sufficient but also
necessary condition to avoid all events was given by Shearer [19]. It reads:

(Shear) For all I ∈ I(G), qI(G, p̄) :=
∑

J∈I(G):I⊆J

(−1)|J\I|
∏

j∈J

pj > 0,

where I(G) is the set of independent sets of G and p̄ = (p1, . . . , pm) is the vector of
probabilities of the events.

By considering other graphs, and the corresponding to them Condition (Shear),
variants of the Shearer lemma are obtained. These variants are in general only
sufficient, however they apply to sparser dependency graphs. For example, by
proving the sufficiency of Condition (Shear) when applied to the lopsidependency
graph of Erdős and Spencer [5], we get Shearer’s lemma for lopsidependency graphs
(actually, for Shearer’s lemma in this case it is the underlying undirected graph of
the lopsidependency graph that is considered).

Apart from existence, research has been focused also in “efficiently” finding a
point in the probability space such that no undesirable event occurs. After several
partially successful attempts that expand over more than three decades, Moser [16]
in 2009, initially only for the symmetric LLL, gave an extremely simple random-
ized algorithm that if and when it stops, it certainly produces a point where all
events are avoided. Soon after Moser and Tardos [17] expanded this approach to
more general versions including the lopsided one. The algorithms were given in
the variable framework, where the space is assumed to be the product space of
independent random variables X1, . . . , Xl, and each event is assumed to depend
on a subset of them, called its scope. Their algorithm just samples iteratively the
variables of occurring events, until all the events cease to occur. For the analysis,
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they estimate the expectation of the number of times each event will be resampled
in a given execution of the algorithm by counting “tree-like” structures they call
witness trees and by estimating the probability that such a tree occurs in the log
of the algorithm’s execution. This approach became known as the “entropy com-
pression” method (see [21] for a short exposition). For the proof of the lopsided
LLL, Moser and Tardos [17] defined an undirected lopsidependency graph suitable
for the variable framework.

In the variable framework, Harris [9] gave a weaker version for the Lop condition,
entailing the notion of orderability, which takes advantage of the way events are
related based on the different values of the variables they depend on. He works
with the Moser-Tardos notion of lopsidependency graph and he proves that his
weaker sufficient condition can yield stronger results than the classical Shearer’s
lemma. Also, recently He et al. [12] gave a necessary and sufficient condition for
LLL in the variable framework, but for the dependency graph where two events are
connected if their scopes share at least one variable. We focus, on the contrary, in
working with sparser graphs.

There are numerous applications of the algorithmic versions of both LLL and its
lopsided version, even for problems that do not originate from purely combinatorial
issues. For example, for the non-lopsided versions let us mention the problem of
covering arrays, a problem closely related with software and hardware interaction
testing. The objective is to find the minimum number N , expressed as a function
k, t, v, such that there exists an N × k array A, with elements taken from a set Σ
of cardinality v ≥ 2, so that every N × t sub-array of A contains as one of its rows
every element x ∈ Σt. Sarkar and Colbourn [18] improve on known upper bounds
for N , by using LLL. Notably, they also provide an algorithm that constructs an
N×k array with the above properties, by using a variant of the Moser-Tardos algo-
rithm [17]. As for the lopsided version let us mention, e.g., the work of Harris and
Srinivasan [10] who apply it in the setting of permutations, where the undesirable
events are defined over permutations πk of {1, . . . , nk}, k = 1, . . . , N .

The lopsided LLL was generalized to the framework of arbitrary probability
spaces by Harvey and Vondrák [11], by means of a machinery that they called
“resampling oracles”. They introduced, in the framework of arbitrary probabil-
ity spaces, directed lopsidependency graphs they called lopsided association graphs.
They proved that a graph is a lopsided association graph if and only if it is a graph
along the edges of which resampling oracles can be applied. In the generalized
framework and based on their lopsided association condition, they algorithmically
proved LLLL. In the same framework, they also proved Shearer’s lemma (in this
respect, see also the work of Kolipaka and Szegedy [15]). Finally, Achlioptas and
Iliopoulos [2] have introduced a powerful abstraction for algorithmic LLL, which is
inherently directed and they prove the lopsided LLL in this framework.

Let us mention here that Szegedy [20] gives a comprehensive survey of the LLL,
that contains many of the algorithmic results.
Our results. We work exclusively in the variable framework. First, we define a novel
relation of directed dependency that we call d-dependency, which is stronger than
that of Moser and Tardos [17]. We also show that this relation may generate a
strictly sparser dependency graph than other extant ones (and so it leads to weaker
sufficient conditions for LLL).
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We then algorithmically prove that the Lop condition suffices to avoid all events
when applied to the graph defined by our notion of d-dependency. Thus, in a sense
we address the problem “find other simple local conditions for the constraints (in
the variable framework) that advantageously translate to some abstract lopsided
condition” posed by Szegedy [20].

Our approach is based onMoser’s original algorithm [16], which, upon resampling
an event, checks its neighborhood for other occurring events. Like in Giotis et
al. [6], we use a witness structure (forest) to depict the execution of our algorithms
that, in contrast with those of the “Moser-Tardos-like” proofs, grows “forward in
time”, meaning that it is constructed as an execution moves on. Taking advantage
of this structure, we express the probability that the algorithm executes for at
least n rounds by a recurrence relation. We subsequently solve this recurrence by
specialized analytical means, and prove that it diminishes exponentially fast in n.
Specifically, we employ the result of Bender and Richmond [3] on the multivariable
Lagrange inversion formula. A positive aspect of this approach is that it provides
an exponentially small bound for the probability of the algorithm to last for at
least n steps (including to run intermittently) before it returns the desired result, in
contrast to the entropic method that estimates the expected time of the algorithm to
return a correct answer. We also note that, in contrast to Harvey and Vondrák [11],
our proof for the directed LLL is independent of the one for Shearer’s lemma.

Finally, although we show that our notion of dependency can give stronger re-
sults than the classical Shearer’s lemma, we use our forward approach to prove this
lemma for the d-dependency graph. An algorithmic proof for Shearer’s lemma for
the ordinary dependency graph was first provided by Kolipaka and Szegedy [15],
who actually gave a proof for the general case of arbitrary probability spaces. The
latter result was strengthened by Harvey and Vondrák [11] for their notion of asso-
ciation graphs, again for general probability spaces. Our result is for the variable
framework, but for the possibly sparser graph of d-dependency. Also, we give again
a direct computation of an exponentially small upper bound to the probability of
the algorithm to last for at least n steps. To carry out the computations in our
forward approach, we employ Gelfand’s formula for the spectral radius of a matrix
(see [13]).

Note that, as is the case with all extant algorithmic approaches to the LLL, both
the number of events m and the number of random variables l are assumed to be
constants. Complexity considerations are made with respect to the number of steps
the algorithms last.

2. d-Dependency and a weak version of first result

For everything that follows, we assume that Pr[Ej ] < 1, j = 1, ...,m, lest there
is no way to avoid all the events.

We begin by defining the following asymmetric relation between two events.

Definition 1. Given events Ei, Ej, we say that Ei is d-dependent on Ej if:

(1) there exists an assignment α to the random variables under which Ej occurs
and Ei does not, and

(2) the values of the variables in sc(Ej), the scope of Ej, can be changed so
that Ei occurs and Ej ceases occurring.
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Intuitively, Ei is d-dependent on Ej if it is possible that some successful attempt
to avoid the occurrence of Ej may end up with Ei occurring, although initially it
did not.

The binary relation of d-dependency defines a simple (no loops or multiple edges)
directed graph G = (V,E), the d-dependency graph of events E1, ..., Em, where
V = {1, ...,m} and E = {(j, i) | Ei is d-dependent on Ej}. Trivially, this graph is
sparser than the usual dependency graph in the variable framework, where there is
an edge between events with intersecting scopes.

For i = 1, ...,m, let Γj be the outwards neighborhood of the event Ej in the
d-dependency graph, i.e. Γj = {i | Ei is d-dependent on Ej}. The notion of d-
dependency was inspired by the following symmetric relation of Moser and Tardos
[17], which will sometimes be referred to as MT-dependency:

Definition 2 (Moser and Tardos [17]). Let Ei, Ej be events, i, j ∈ {1, ...,m}. We
say that Ei, Ej are lopsidependent if there exist two assignments α, β, that differ
only on variables in sc(Ei) ∩ sc(Ej), such that:

(1) α makes Ei occur and β makes Ej occur and
(2) either Ēi occurs under β or Ēj occurs under α.

Moser and Tardos [17] gave an algorithmic proof that if the condition (Asym)
holds for an (undirected) dependency graph with respect to the notion of Definition
2, then the undesirable events can be avoided.

The following claim is straightforward:

Claim 1. If Ei is d-dependent on Ej , in the sense of Definition 1, then Ei and Ej

are MT-dependent, in the sense of Definition 2.

Proof. Suppose that under α = (a1, . . . , al), Ēi and Ej occur and that we can
change the values of the variables in sc(Ej) to get and assignment β = (b1, . . . , bl)
under which Ei and Ēj occur. Let now γ = (c1, . . . , cl) be such that:

(2) ci =

{

bi, if Xi ∈ sc(Ei) ∩ sc(Ej)

ai, else,

for i = 1, . . . , l.
Since Ei is not affected by changes in sc(Ej) \ sc(Ei), Ei occurs under γ and

thus Ei, Ej are lopsidependent. �

A weak version of our result (given for comparison with other extant ones) reads:

Theorem 1 (Directed Lovász local lemma). Suppose that there exist numbers
χ1, χ2, . . . , χm ∈ (0, 1), such that

(DirLop) Pr(Ej) ≤ χj

∏

i∈Γj

(1 − χi),

for all j ∈ {1, . . . ,m}, where Γj denotes the neighborhood of Ej in the d-dependency
graph. Then,

Pr

[
m∧

j=1

Ēj

]

> 0.

Actually, we prove below an algorithmic version (Theorem 1a) of the existential
Theorem 1, where we give exponentially small estimates of the probability of the
algorithm not producing the desired results within n steps.
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In the following example, we show that the d-dependency graph can be strictly
sparser than other dependency graphs that have been used in the literature.

Example 1. Suppose we have n ≥ 3 independent Bernoulli trials X1, X2, . . . , Xn,
where Xi = 1 denotes the event that the i-th such trial is successful, i = 1, . . . , n.
Consider also the n “undesirable events”:

Ej = {Xj = 1 ∨Xj+1 = 1},

where Xn+1 = X1 and assume also that each of the Bernoulli trials succeeds with
probability p ∈ [0, 1). Thus:

Pr[Ej ] = p+ (1− p)p = 2p− p2.

We begin by showing that for any two distinct Ei, Ej, neither one of them is d-
dependent on the other. Without loss of generality, let i = 1 and j = 2.

Since sc(E1) ∪ sc(E2) = {X1, X2, X3}, both E1 and E2 are affected only by
the first three coordinates of an assignment of values. We will thus restrict the
assignmets to those coordinates.

Suppose E1 and Ē2 occur under an assignment α. Then, α = (1, 0, 0) and there
is no way to change the first two coordinates in order for Ē1 and E2 to occur.
Thus E2 is not d-dependent on E1. Furthermore, for Ē1 and E2 to occur under an
assignment β, β = (0, 0, 1) and there is no way to change the last two coordinates
of β in order for E1 and Ē2 to occur. Thus E1 is not d-dependent on E2.

We can analogously prove the same things for all pairs of Ej , Ej+1, j = 1, . . . , n,
where En+1 := E1. Furthermore, it is easy to see that for any i, j ∈ {1, . . . , n}:
i < j and j 6= i + 1, neither Ej is d-dependent on Ei nor vice versa, since Ei, Ej

have no common variables they depend on. Thus, the d-dependency graph of the
events has no edges and it is trivial to observe that we can avoid all the events if
and only if p < 1.

On the other hand, consider assignments γ = (1, 0, 0) and δ = (1, 1, 0). Under γ,
E1, Ē2 occur, under δ E2 occurs and the assignments differ only on X2 ∈ sc(E1) ∩
sc(E2). By Definition 2, E1 and E2 are lopsidependent.

Given the above, it is not difficult to see that the underlying undirected graph of
the lopsidependency graph defined by the dependency relation of Definition 2, is the
cycle Cn on n vertices.

Interestingly, by interpreting Harvey and Vondrák’s [11] definition of resampling
oracles in the variable setting as the resampling of the variables in the scope of an
event, we get a directed graph, whose underlying graph is again Cn. The same
is true for the directed “potential causality graph” of Achliptas and Illiopoulos [2],
where the flaws correspond to events and where we interpret an arc f → g between
flaws f, g, again in the variable framework, as being able to obtain flaw g by resam-
pling the variables in the scope of flaw f .

In the sequel, we assume n = 3 in order to simplify the example. The corre-
sponding graphs are given in Figures 1–3.
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3

1 2

Figure 1. d-dependency graph, Definition 1

3

1 2

Figure 2. MT-dependency graph, Definition 2

3

1 2

Figure 3. Lopsided association [11], and potential causality
graph [1], when interpreted in the variable framework in the natu-
ral way.

Now, it is not difficult to see that the (Asym) condition applied to the graph
corresponding to the dependency of Definition 2 requires for χ1, χ2, χ3 ∈ (0, 1) such
that:

Pr[E1] ≤χ1(1− χ2)(1 − χ3),

P r[E2] ≤χ2(1− χ1)(1 − χ3),

P r[E3] ≤χ3(1− χ1)(1 − χ2).

Thus, for the Moser and Tardos lopsided LLL to apply, it must hold that:

2p− p2 ≤ χ(1 − χ)2,

where χ = min{χ1, χ2, χ3}. This is maximized for

χ =
22

33
=

4

27
,

thus p must be at most 0.077 (recall that our notion only requires for p to be strictly
less than one).

Finally, taking the dependency graph of E1, E2 and E3, where two vertices are
connected if their corresponding events’ scopes intersect, we get as dependency graph
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the cycle C3 and henceforth by simple calculations, classical Shearer’s lemma re-
quires that:

1− 3(2p− p2) > 0 ⇔ p < 0.184,

a stronger requirement than the one that suffices to show that the undesirable events
can be avoided through our d-dependency notion. However, our version of Shearer’s
lemma (see Section 4) gives p < 1.

Let us note that if we consider the classical definition of a lopsidependency graph
by Erdős and Spencer [5], namely a directed one satisfying inequality (1), then the
graph turns out to be empty as well, since no event has a negative effect on any
other, neither the union of any two does on the third. ⋄

We now show that the d-dependency graph is an Erdős-Spencer lopsidependency
graph.

Lemma 1. For any event Ej, j = 1, ...,m, let I be a set of indices of events not
in Γj ∪ {j}. Then, it holds that:

Pr
[

Ej |
⋂

i∈I

Ei

]

≤ Pr[Ej ].

Proof. Let E =
⋂

i∈I Ei. Note that E is not necessarily some of the Ejs (in fact if
it is, then there is no assignment that avoids all the undesirable events). Now, in
order to obtain a contradiction, suppose that:

Pr[Ej | E] > Pr[Ej ]

or, equivalently, that:

Pr[Ej ∩ E] > Pr[Ej ] · Pr[E].

Then, it holds that:

(3) Pr[Ēj ∩ E] = Pr[E]− Pr[Ej ∩ E] < Pr[E]− Pr[Ej ] · Pr[E] =

Pr[E](1− Pr[Ej ]) = Pr[Ēj ] · Pr[E].

Since i /∈ Γj , for all i ∈ I, it holds that for any assignment α that makes Ej and
E hold, there is no assignment β that differs from α only in sc(Ej) that makes Ē
hold.

To obtain a contradiction, it suffices to show that:

Pr[Ej | E] ≤ Pr[Ej ] ⇔ Pr[Ej ∩ E] ≤ Pr[Ej ] · Pr[E].

Suppose now α = (a1, ..., al), β = (b1, ..., bl) are two assignments obtained by inde-
pendently sampling the random variables twice, once to get α and once to get β.
It holds that:

Pr[(α, β) : under α, Ej ∩E occurs and under β, Ējoccurs
︸ ︷︷ ︸

event S

] = Pr[Ej ∩ E] · Pr[Ēj ].

Let now α′ = (a′1, ..., a
′
l), β

′ = (b′1, ..., b
′
l) be two assignments obtained by α, β

by swapping values in variables in sc(Ej):

• a′i = bi, for all i such that Xi ∈ sc(Ej), a
′
i = ai for the rest,

• b′i = ai, for all i such that Xi ∈ sc(Ej) and b′i = bi for the rest.
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Obviously α′, β′ are two independent samplings of all variables, since all indi-
vidual variables were originally sampled independently, and we only changed the
positioning of the individual variables. Also, under α′, Ēj occurs. Since none of
the Ei’s is d-dependent on Ej , E occurs under α′. Also, under b′, Ej occurs. Thus,
it holds that:

Pr[under α′, Ēj ∩ E occurs and under β′, Ej occurs
︸ ︷︷ ︸

event T

] = Pr[Ēj ∩ E] · Pr[Ej ] <

Pr[Ēj ] · Pr[E] · Pr[Ej ],

where the last inequality holds by (3). Now, by the hypothesis and the construction
of α′, β′, it also holds that S implies T . Thus:

Pr[S] ≤ Pr[T ] ⇔Pr[Ej ∩ E] · Pr[Ēj ] ≤ Pr[Ēj ] · Pr[E] · Pr[Ej ]

⇔Pr[Ej ∩ E] ≤ Pr[Ej ] · Pr[E].

The last inequality provides the contradiction and the proof is complete. � �

As is the case with all (lopsi-)dependency graphs defined based on notions in the
variable framework, the dependency graph defined based on mutual independence
of the events can be sparser than the d-dependency graph. Consequently, the same
holds with the Erdős-Spencer lopsidependency graph too. We end this section with
a simple example that attests to that.

Example 2. Let X1 and X2 be two independent random variables taking values,
uniformly at random, in {0, 1}. Let also E1 = {X1 6= X2} and E2 = {X2 = 0}.

First, observe that E1 is d-dependent on E2. Indeed, let α = (0, 0). Under α,
E1 does not occur and E2 does. By changing the value of X2 ∈ sc(E2), we obtain
the assignment β = (0, 1), under which E1 occurs and E2 doesn’t. That E2 is
d-dependent on E1 follows by taking the assignment β and changing the value of
X2 ∈ sc(E1) to obtain α.

On the other hand, notice that:

Pr[E1] =
1

2
= Pr[E1 | Ē2]

and that:

Pr[E2] =
1

2
= Pr[E2 | Ē1].

Thus E1 and E2 are independent. ⋄

3. The lopsidependent case

Both approaches by Moser [16] and by Moser and Tardos [17] search for an assign-
ment that avoids the undesirable events by consecutively resampling the variables
in the scopes of currently occurring events. In the approach of Moser [16], when
choosing the next event whose variables will be resampled, priority is given to the
occurring events that belong to the extended neighborhood in the dependency graph
of the last resampled event (the extended neighborhood of an event E is by defini-
tion the set of events sharing a variable with E, with the event E itself included).
Thus the failure of the algorithm to return a correct answer within n steps is de-
picted by a structure, called the witness forest of the algorithm’s execution (will be
formally defined below). So, in some sense, this approach guarantees that failure to
produce results, will create, step after random step, a structure out of randomness,
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something that cannot last for long, lest the second principle of thermodynamics is
violated. This is, very roughly, the intuition behind the entropic method. However,
as we stressed, we analyze the algorithm by direct computations instead of referring
to entropy. One key idea throughout this work is to give absolute priority, when
searching for the next event to be resampled, to the event itself, if it still occurs, in
order to be able to utilize the d-dependency graph of the events.

To be specific, see the pseudocode of M-Algorithm, which successively pro-
duces random assignments, by resampling the variables in the scopes of occurring
events, until it finds one under which no undesirable event occurs. When the vari-
ables in the scope of an occurring event Ej are resampled, the algorithm checks if
Ej still occurs (lines 2 and 3 of the Resample routine) and, only in case it does
not, looks for occurring events in Ej ’s neighborhood. Finally, if and when all events
in Ej ’s neighborhood cease occurring, the algorithm looks for still occurring events
elsewhere.

Algorithm 1 M-Algorithm.

1: Sample the variables Xi, i = 1, ..., l and let α be the resulting assignment.
2: while there exists an event that occurs under the current assignment, let Ej

be the least indexed such event and do

3: Resample(Ej)
4: end while

5: Output current assignment α.

Resample(Ej)

1: Resample the variables in sc(Ej).
2: if Ej occurs then
3: Resample(Ej)
4: else

5: while some event whose index is in Γj occurs under the current assignment,
let Ek be the least indexed such event and do

6: Resample(Ek)
7: end while

8: end if

Obviously, if and when M-Algorithm stops, it produces an assignment to the
variables for which none of the events occurs. Our aim now is to bound the probabil-
ity that this algorithm lasts for at least n steps. We count as a step an execution of
the variable resampling command Resample in line 1 of the subroutine Resample.

Everywhere below the asymptotics are with respect to n, the number of steps,
whereas the number l of variables and the number m of events are taken to be
constants.

We first give some terminology, and then we start with a lemma that essentially
guarantees that M-Algorithm makes progress.

A round is the duration of any Resample call during an execution of M-

Algorithm. Rounds are nested. The number of nested rounds completed coincides
with the number of steps the algorithm takes. A Resample call made from line 3
of the main algorithm is a root call, while one made from within another call is a
recursive call.
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Lemma 2. Consider an arbitrary call of Resample(Ej). Let Xj be the set of
events that do not occur at the start of this call. Then, if and when this call termi-
nates, all events in Xj ∪ {Ej} do not occur.

Proof. Without loss of generality, say that Resample(Ej) is the root call of Re-

sample, suppose it terminates and that α is the produced assignment of values.
Furthermore, suppose that Ek ∈ Xj ∪ {Ej} and that Ek occurs under α.

Let Ek ∈ Xj . Then, under the assignment at the beginning of the main call,
Ek did not occur. Thus, it must be the case that at some point during this call, a
resampling of some variables caused Ek to occur. Let Resample(Es) be the last
time Ek became occurring, and thus remained occurring until the end of the main
call.

Since Ek did not occur at the beginning of Resample(Es), there is an as-
signment of values α such that Es, Ēk occur. Furthermore, for the main call to
have terminated, Resample(Es) must have terminated too. For this to happen
Resample(Es) must have exited lines 2 and 3 of its execution. During this time,
only variables in sc(Es) were resampled and at the end, Es did not occur anymore.
Thus, Ek is in the neighborhood of Es. But then, by line 5 of the Resample

routine, Resample(Es) couldn’t have terminated and thus, neither could the main
call. Contradiction.

Thus Ek = Ej . Since under the assignment at the beginning of the main call,
Ej occurred, by lines 2 and 3 of the Resample routine, it must be the case that
during some resampling of the variables in sc(Ej), Ej became non-occurring. The
main call could not have ended after this resampling, since Ej occurs under the
assignment β produced at the end of this call. Then, there exists some r ∈ Γj

such that Resample(Er) is the subsequent Resample call. Thus Ej ∈ Xr and we
obtain a contradiction as in the case where Ek ∈ Xj above. �

An immediate corollary of Lemma 2, is that the events of the root calls of
Resample are pairwise distinct, therefore there can be at most m such root calls
in any execution of M-Algorithm.

Consider now rooted forests, i.e. forests of trees such that each tree has a special
node designated as its root, whose vertices are labeled by events Ej , j ∈ {1, . . . ,m}.
We will use such forests to depict the executions of M-Algorithm.

Definition 3. A labeled rooted forest F is called feasible if:

(1) the labels of its roots are pairwise distinct,
(2) the labels of any two siblings (i.e. vertices with a common parent) are

distinct and
(3) an internal vertex labeled by Ej has at most |Γj | + 1 children, with labels

whose indices are in Γj ∪ {j}.

The number of nodes of a feasible forest F is denoted by |F|.
The nodes of such a labeled forest are ordered as follows: children of the same

node are ordered as their labels are; nodes in the same tree are ordered by preorder
(the ordering induced by running the depth-first search algorithm on input such a
tree), respecting the ordering between siblings; finally if the label on the root of a
tree T1 precedes the label of the root of T2, all nodes of T1 precede all nodes of T2.

Given an execution of M-Algorithm that lasts for at least n rounds, we con-
struct, in a unique way, a feasible forest with n nodes. First, we create one node
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for each Resample call and label it with its argument. Root calls correspond
to the roots of the trees and a recursive call made from line 3 or 6 of a Resam-

ple(Ej) call gives rise to a child of the corresponding node of this Resample(Ej)
call. We say that a feasible forest F constructed this way is the n-witness forest
of M-Algorithm’s execution and we define WF to be the event M-Algorithm

executes producing F as an n-witness forest.
Define Pn to be the probability that M-Algorithm lasts for at least n rounds.

Obviously:

(4) Pn = Pr

[
⋃

F :|F|=n

WF

]

=
∑

F :|F|=n

Pr
[

WF

]

,

where the last equality holds because the events WF are disjoint.
Unfortunately, M-Algorithm introduces various dependencies that render the

probabilistic calculations essentially impossible. For example, suppose that the i-th
node of a witness forest F is labeled by Ej and its children have labels with indices
in Γj . Then, under the assignment produced at the end of the i-th round of this
execution, Ej does not occur.

To avoid such dependencies, we introduce a validation algorithm, ValAlg. In-
terestingly, ValAlg produces no progress towards locating the sought after assign-
ment. However, as we will see, it has two useful properties: (i) From round to
round, the distribution of the variables does not change, a fact that makes possible
a direct probabilistic analysis and (ii) the probability that it lasts for at least n
steps bounds from above the respective probability of M-Algorithm (see Lemma
4).

Algorithm 2 ValAlg.

Input: Feasible forest F with labels Ej1 , . . . , Ejn .

1: Sample the variables Xi, i = 1, ..., l.
2: for s=1,. . . ,n do

3: if Ejs does not occur under the current assignment then
4: return failure and exit.
5: else

6: Resample the variables in sc(Ejs)
7: end if

8: end for

9: return success.

A round of ValAlg is the duration of any for loop executed at lines 2-8. If the
algorithm manages to go through its input without coming upon a non-occurring
event at any given round, it returns success. Thus, the success of ValAlg has no
consequence with respect to the occurrence, at the end, of the undesirable events.

The following result concerns the distribution of the random assignments at any
round of ValAlg.

Lemma 3 (Randomness lemma). At the beginning of any given round of ValAlg,
the distribution of the current assignment of values to the variables Xi, i = 1, ..., l,
given that ValAlg has not failed, is as if all variables have been sampled anew.
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Proof. This follows from the fact that at each round, the variables for which their
values have been exposed, are immediately resampled. �

Now, given a feasible forest F with n nodes, we say that F is validated by
ValAlg if the latter returns success on input F . The event of this happening is
denoted by VF . We also set:

(5) P̂n =
∑

F : |F|=n

Pr[VF ].

Lemma 4. For any feasible forest F , the event WF implies the event VF , therefore

Pn ≤ P̂n.

Proof. Indeed, if the random choices made by an execution of M-Algorithm that
produces as witness forest F are made by ValAlg on input F , then clearly
ValAlg will return success. �

From now on, we will use the following notation: n = {n1, . . . ,m}, where
n1, . . . , nm ≥ 0 are such that

∑m
i=1 ni = n and n− (1)j := (n1, . . . , nj − 1, . . . , nm).

We now state and prove our first result:

Theorem 1a (Algorithmic directed LLL). Suppose that there exist χ1, χ2, . . . , χm ∈
(0, 1), such that

Pr(Ej) ≤ χj

∏

i∈Γj

(1 − χi),

for all j ∈ {1, . . . ,m}, where Γj denotes the outwards neighborhood of Ej in the d-
dependency graph. Then, the probability that M-Algorithm executes for at least
n rounds is inverse exponential in n.

Proof. We may assume, without loss of generality, that Pr[Ej ] < χj

∏

i∈Γj
(1 − χi)

for all j ∈ {1, . . . ,m}, i.e. that the hypothesis is given in terms of a strict inequality.
Indeed, otherwise consider an event B, such that B and E1, . . . , Em, are mutually
independent, where Pr[B] = 1 − δ, for arbitrary small δ > 0. We can now perturb
the events a little, by considering e.g. Ej ∩B, j = 1, . . . ,m. As a consequence, we
can also assume without loss of generality that for some other small enough ǫ > 0,
we have that Pr[Ej ] ≤ (1− ǫ)χj

∏

i∈Γj
(1− χi).

By Lemma 4, it suffices to prove that P̂n is inverse exponential in n. Specifically,
we show that P̂n ≤ (1− ǫ)n. Let Qn,j be the probability that ValAlg is successful
when started on a tree whose root is labeled with Ej and has

∑m
i=1 ni = n nodes

labeled with E1, . . . , Em. Observe that to obtain a bound for P̂n we need to add
over all possible forests with n nodes in total. Thus, it holds that:

P̂n ≤
∑

n

∑

n1+...+nm=n

(

Qn1,1 · · ·Qnm,m

)

.

Our aim is to show that Qn,j is exponentially small to n, for any given sequence
of n and any j ∈ {1, . . . ,m}. Thus, by ignoring polynomial in n factors, the same

will hold for P̂n (recall that the number of variables and the number of events are
considered constants, asymptotics are in terms of the number of steps n only).

Let Γ+
j := Γj ∪ {j}, and assume that, for each j ∈ {1, . . . ,m}, |Γ+

j | = kj .
Observe now that Qn,j is bounded from above by a function, denoted again by
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Qn,j (to avoid overloading the notation), which follows the recurrence:

(6) Qn,j = Pr[Ej ] ·
∑

n1+···+n
kj=n−(1)j

(

Qn1,j1 + · · ·Q
n

kj ,jkj

)

,

with initial conditions Qn,j = 0 when nj = 0 and there exists an i 6= j such that
ni ≥ 1; and with Q0,j = 1, where 0 is a sequence of m zeroes.

To solve the above recurrence, we introduce, for j = 1, . . . ,m, the multivariate
generating functions :

(7) Qj(t) =
∑

n:nj≥1

Qn,jt
n,

where t = (t1, . . . , tm), tn := tn1

1 · · · tnm
m .

By multiplying both sides of (6) by tn and adding all over suitable n, we get the
system of equations Q:

(8) Qj(t) = tjfj(Q),

where, for x = (x1, . . . , xm) and j = 1 . . . ,m:

(9) fj(x) = (1− ǫ) · χj ·

(
∏

i∈Γj

(1− χi)

)

·

(
∏

i∈Γ+

j

(xi + 1)

)

.

To solve the system, we will directly use the result of Bender and Richmond in [3]
(Theorem 2). Let g be any m-ary projection function on some of the m coordinates.
In the sequel we take g := prms , the (m)-ary projection on the s-th coordinate. Let
also B be the set of trees B = (V (B), E(B)) whose vertex set is {0, 1, . . . ,m} and
with edges directed towards 0. By [3], we get:

(10) [tn]g((Q,R)(t)) =
1

∏m
j=1 nj

∑

B∈B

[xn−1]
∂(g, fn1

1 , . . . , fnm
m )

∂B
,

where the term for a tree B ∈ B is defined as:

(11) [xn−1]
∏

r∈V (B)

{(
∏

(i,r)∈E(B)

∂

∂xi

)

fnr

r (x)

}

,

where r ∈ {0, . . . ,m} and fn0

0 := g.
We consider a tree B ∈ B such that (11) is not equal to 0. Thus, (i, 0) 6= E(B),

for all i 6= s. On the other hand, (s, 0) ∈ E(B), lest vertex 0 is isolated, and
each vertex has out-degree exactly one, lest a cycle is formed or connectivity is

broken. From vertex 0, we get
∂prms (x)

∂xs
= 1. Since our aim is to prove that P̂n

is exponentially small in n, we are are interested only in factors of (11) that are
exponential in n, and we can thus ignore the derivatives (except the one for vertex
0), as they introduce only polynomial (in n) factors to the product. Thus, we have
that (11) is equal to the coefficient of xn−1 in:

(12)

m∏

j=1

{

(1− ǫ)nj · χ
nj

j ·

(
∏

i∈Γj

(1 − χi)
nj

)

·

(
∏

i∈Γ+

j

(xi + 1)nj

)}

.

We now group the factors of (12) according to the i’s. We have already argued each
vertex i has out-degree 1. Thus, the exponent of the term xi +1 is ni +

∑

j:i∈Γj
nj
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and the product of (12) is equal to:

(13)
m∏

i=1

{

(1− ǫ)ni · χni

i · (1− χi)
∑

j:i∈Γj
nj · (xi + 1)

ni+
∑

j:i∈Γj
nj

}

.

Using the binomial theorem and by ignoring polynomial factors, we get that the
coefficient of xn−1 in (13) is:

(14)
m∏

i=1

{

(1− ǫ)ni · χni

i · (1− χi)
∑

j:i∈Γj
nj ·

(
ni +

∑

j:i∈Γj
nj

ni

)}

.

By expanding (χi + 1− χi)
ni+

∑
j:i∈Γj

nj , we get that (14) is at most:

(15)
m∏

i=1

(1 − ǫ)ni = (1− ǫ)
∑n

i=1
ni = (1− ǫ)n.

Thus, P̂n is inverse exponential in n. �

From Theorem 1a, the existential Theorem 1 immediately follows.

4. Shearer’s lemma

We now turn our attention to Shearer’s lemma. The first algorithmic proof for
general probability spaces was given by Kolipaka and Szegedy [15]. Harvey and
Vondrák [11] proved a version of the lemma for their lopsided association graphs
(again in the generalized framework).

Here, we apply it to the underlying undirected graph of the d-dependency graph
we introduced in Section 2. Our work is situated in the variable framework and we
give a forward argument that directly leads to an exponentially small bound of the
probability of the algorithm lasting for at least n steps.

Let E1, . . . , Em be events, whose vector of probabilities is p̄ = (p1, . . . , pm), that
is Pr[Ej ] = pj ∈ (0, 1), j = 1, . . . ,m. Let also G = 〈{1, . . . ,m}, E〉 be a graph on
m vertices, where we associate each event Ej with vertex j, j = 1, . . . ,m and where

E = {{i, j} | either Ej is d-dependent on Ei or Ei is d-dependent on Ej}.

For each vertex j, we denote its neighborhood in G by Γj , j = 1, . . . ,m.
A subset I ⊆ {1, . . . ,m} of the graph’s vertices is an independent set if there

are no edges between its vertices. Abusing the notation, we will sometimes say
that an independent set I contains events (instead of indices of events). Let I(G)
denote the set of independent sets of G. For any I ∈ I(G), let Γ (I) :=

⋃

j∈I Γj be

the set of neighbors of the vertices of I. Following [15], we say that I covers J if
J ⊆ I ∪ Γ (I).

A multiset is usually represented as a couple (A, f), where A is a set, called the
underlying set, and f : A 7→ N≥1 is a function, with f(x) denoting the multiplicity
of x, for all x ∈ A. In our case, the underlying sets of multisets are always subsets
of {1, . . . ,m}. Thus, to make notation easier to follow, we use couples (I, z̄), where
I ⊆ {1, . . . ,m} and z̄ = (z1, . . . , zm) is an m-ary vector, with zj ∈ N denoting the
multiplicity of Ej in I. Note that zj = 0 if and only if j /∈ I, j = 1, . . . ,m.

Consider our second main theorem below, which is a variation of Shearer’s
Lemma for d-dependency graphs.
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Theorem 2 (Shearer’s lemma for d-dependency graphs). If for all I ∈ I(G):

(Shear) qI(G, p̄) =
∑

J∈I(G): I⊆J

(−1)|J\I|
∏

j∈J

pj > 0,

then

Pr

[
m∧

j=1

Ēj

]

> 0.

Actually, we prove below an algorithmic version (Theorem 2a) of the existential
Theorem 2, where we give exponentially small estimates of the probability of the
algorithm not producing the desired results.

The algorithm we use is a variation of the Maximal Set Resample algorithm,
designed by Harvey and Vondrák in [11], which is a slowed down version of the
algorithm in [15]. The algorithm constructs multisets whose underlying sets are
independent sets of G, by selecting occurring events that it resamples until they do
not occur anymore.

Algorithm 3 MaxSetRes.

1: Sample the variables Xi, i = 1, ..., l and let α be the resulting assignment.
2: t := 1, It := ∅, z̄t := (0, . . . , 0).
3: repeat

4: while there exists an event Ej /∈ It ∪ Γ (It) that occurs under the current
assignment,

let Ej be the least indexed such event and do

5: It := It ∪ {j}, c := 0, ztj := 1.
6: while Ej occurs do

7: Resample the variables in sc(Ej).
8: c := c+ 1.
9: end while.

10: if there exists an occurring event that is not in It ∪ Γ (It) then
11: ztj := c+ 1.
12: else if there exists an occurring event not in Γj then

13: t := t+ 1, It := ∅.
14: ztj := c.
15: else

16: for s = 1, . . . , c do

17: It+s := {Ej}.
18: end for

19: t := t+ c+ 1, It := ∅.
20: end if

21: end while

22: until It = ∅.
23: Output current assignment α.

A step of MaxSetRes is a single resampling of the variables of an event in
line 7, whereas a phase is an iteration of repeat at lines 3–22, except from the last
iteration that starts and ends with It = ∅. Phases are not nested. During each
phase, there are at mostm repetitions of the while–loop of lines 6–9, wherem is the
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number of events (recall that the number of variables l, and the number of events
m are considered to be constants). During each phase, a multiset (It, z

t) is created,
where the underlying set It is an independent set of G. There are two scenarios
that can happen at the end of a phase. The first is by line 13, where MaxSetRes

creates a new independent set, containing c copies of the last event it resampled
at lines 6–9. The second is by lines 16–19, where MaxSetRes proceeds c phases
at once, creating c singleton sets, containing only the event it lastly resampled at
lines 6–9. Lines 10–20 exist for technical reasons that will become apparent later.

Note that, by lines 4 and 22, if and when MaxSetRes terminates, it produces
an assignment of values under which none of the events occurs.

We now proceed with the first lemma concerning the execution of MaxSetRes.
Note that it refers to the underlying independent sets of the multisets created at
each phase.

Lemma 5. It covers It+1, for all t ∈ {1, . . . , n− 1}.

Proof. Let Ej be an event in It+1. Then, at some point during phase t+1, Ej was
occurring. We will prove below that Ej occurs also at the beginning of phase t+1.
This will conclude the proof, since if Ej 6∈ Γ (It) ∪ It, then at the moment when
phase It+1 was to start, the algorithm instead of starting It+1 would opt to add Ej

to It, a contradiction.
Assume that It+1 6= {Ej}, lest we have nothing to prove. To prove that Ej

occurs at the beginning of phase t+1, assume towards a contradiction that it does
not. Then it must have become occurring during the repeated resamplings of an
event Er introduced into It+1.

Therefore, under the assignment when Er was selected, Er occurred and Ej did
not. Furthermore, during the repeated resamplings of Er , only variables in sc(Er)
had their values changed, and under the assignment at the end of these resamplings,
Er ceases occurring and Ej occurs. By Definition 1, Ej is d-dependent on Er and
thus Ej ∈ Γ (It+1). By lines 4, 10 and 12, Ej could not have been selected at any
point during round t+ 1. This concludes the proof. �

Consider the following definition:

Definition 4 (Kolipaka and Szegedy [15]). A stable sequence of events is a sequence
of non-empty independent sets I = I1, . . . , In such that It covers It+1, for all t ∈
{1, . . . , n− 1}.

Stable sequences play the role of witness structures in the present framework. By
Lemma 5, the underlying sets of the sequence of multisets MaxSetRes produces
in an execution that lasts for at least n phases, is a stable sequence of length n.

We now prove:

Theorem 2a (Algorithmic Shearer’s lemma for d-dependency graph). If for
all I ∈ I(G):

qI(G, p̄) =
∑

J∈I(G): I⊆J

(−1)|J\I|
∏

j∈J

pj > 0,

then the probability Pn that MaxSetRes lasts for at least n phases is exponentially
small, i.e. for some constant c < 1, Pn is at most cn, ignoring polynomial factors.

Again, Theorem 2 follows immediately from Theorem 2a.
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Proof. Let z = (z̄1, . . . , z̄n) be an n-ary vector, whose elements z̄t = (zt1, . . . , z
t
m)

are m-ary vectors of non-negative integers, t = 1, . . . , n. Let also

(I, z) = (I1, z̄
1), . . . , (In, z̄

n)

be a sequence of multisets, whose underlying sequence I is a stable sequence. We
denote by |(I, z)| its length, i.e. the number of pairs (It, z̄t) it contains. If P(I, z)
is the probability that an execution of MaxSetRes produced (I, z) (which can be
zero), it is easy to see that:

(16) Pn =
∑

(I,z):|(I,z)|=n

P(I, z),

where the sum is over all possible pairs of stable sequences I of length n and vectors
z.

To bound the rhs of (16), consider the validation algorithm MaxSetVal below.
MaxSetVal, on input a stable sequence I = I1, . . . , In, proceeds to check each
event contained in each independent set. If this event does not occur, it fails;
else it resamples the variables in its scope. Note that the success or failure of this
algorithm has nothing to do with finding an assignment such that none of the events
occur.

Algorithm 4 MaxSetVal.

Input: Stable sequence I = I1, . . . , In.

1: Sample the variables Xi, i = 1, ..., l.
2: for t=1,. . . ,n do

3: for each event Ej of It do

4: if Ej does not occur under the current assignment then
5: return failure and exit.
6: else

7: Resample the variables in sc(Ej)
8: end if

9: end for

10: end for

11: return success.

A phase of MaxSetVal is any repetition of lines 2–10. Let P̂(I) be the proba-
bility that MaxSetVal is successful on input I and:

(17) P̂n :=
∑

I:|I|=n

P̂(I).

To obtain our result, we now proceed to show: (i) that Pn ≤ P̂n and (ii) that

P̂n is inverse exponential to n. For the former, consider the validation algorithm
MultiSetVal, algorithm 5, below.

MultiSetVal takes as input a sequence (I, z) of multisets whose underlying
sequence is stable. It then proceeds, for each multiset, to check if its events occur
under the current assignment it produces. If not it fails, else it proceeds. When
the last copy of an event inside a multiset, apart from the last event, is resampled,
it checks if that event still occurs (line 11). If it does, the algorithm fails. If it
manages to go through the whole sequence without failing, it succeeds. Note again



DIRECTED LOVÁSZ LOCAL LEMMA AND SHEARER’S LEMMA 19

Algorithm 5 MultiSetVal.

Input: (I, z) = (I1, z
1), . . . , (In, z

n), It = {Et1 , . . . , Etkt
}, t = 1, . . . , n.

1: Sample the variables Xi, i = 1, ..., l.
2: for t = 1, . . . , n do

3: for s = 1, . . . , kt − 1 do

4: for r = 1, . . . , ztts do

5: if Ets does not occur under the current assignment then
6: return failure and exit.
7: else

8: Resample the variables in sc(Ets)
9: end if

10: end for

11: if Ets occurs under the current assignment then
12: return failure and exit.
13: end if

14: end for

15: if Etkt
does not occur under the current assignment then

16: return failure and exit.
17: else

18: Resample the variables in sc(Etkt
)

19: end if

20: end for

21: return success.

that the success or failure of MultiSetVal has nothing to do with obtaining an
assignment such that none of the events holds.

We call a phase of MultiSetVal each repetition of lines 2–20. Let also P̃(I, z)
be the probability that MultiSetVal succeeds on input (I, z). We prove two
lemmas concerning MultiSetVal.

Lemma 6. For each sequence (I, z), P(I, z) ≤ P̃(I, z). Thus:

(18) Pn ≤
∑

(I,z):|(I,z)|=n

P̃(I, z)

Proof. It suffices to prove the first inequality, as the result is then derived by (16).
Note that the last event in every multiset that MaxSetRes produces always has
multiplicity 1 and that, furthermore, it is not required to be non-occurring af-
ter resamping it, in contrast with all the other events in the multiset. It is now
straightforward to notice that if MultiSetVal makes the same random choices as
MaxSetRes did when it created any sequence (I, z), MultiSetVal will succeed
on input (I, z). �

Lemma 7. For any (I, z), it holds that:

(19)
∑

(I,z):|(I,z)|=n

P̃(I, z) =
∑

I:|I|=n

P̂(I).
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Proof. We will rearrange the sum in the lhs of (19). Assume that the stable se-
quences of length n in G are arbitrarily ordered as I1, . . . , Is. Then, it holds that:

(20)
∑

(I,z):|(I,z)|=n

P̃(I, z) =
∑

z=(z̄1,...,z̄n)

P̃(I1, z) + · · ·+
∑

z=(z̄1,...,z̄n)

P̃(Is, z).

Let I = (I1, . . . , In) be a stable sequence and consider the term
∑

z=(z̄1,...,z̄n)

P̃(I, z)

of (20) corresponding to I. It suffices to show that is is equal to P̂(I).
Assume again that It = {Et1 , . . . , Etkt

} and that z̄t = (zt1, . . . , z
t
m), where ztj ≥ 0,

j = 1, . . . ,m, t = 1, . . . , n. Finally, set:

P̃(It, z̄
t) := Pr[Et1 ]

zt
1 Pr[Ēt1 ∩ Et2 ] Pr[E2]

zt
2−1 · · ·Pr[Etkt−1]

zt
kt−1 Pr[Ētkt−1 ∩Etkt

].

Then, it holds that:

(21)
∑

z=(z̄1,...,z̄n)

P̃(I, z) =
∑

z=(z1,...,zn)

n∏

t=1

P̃(It, z
t).

By Lemma 1, it holds that all the factors Pr[Ē ∩E′] that appear in (21) are less
or equal than Pr[Ē] · Pr[E′]. Now, by factoring out:

P̂(I) =
n∏

t=1

(

Pr[Et1 ] · · ·Pr[Etkt
]

)

from the rhs of (21) and by rearranging the terms according to the sets It, we get:

(22)
∑

z=(z̄1,...,z̄n)

P̃(I, z) = P̂(I) ·
n∏

t=1

(
∑

zt=(zt
1
,...,zt

kt
)

Pr[Et1 ]
zt
1−1(1− Pr[Et1 ]) · · ·

Pr[Etkt−1]
zt
kt−1−1(1− Pr[Etkt−1

])

)

.

The proof is now complete, by noticing that all the factors, except from P̂(I) in
the rhs of (22) are equal to 1. �

Thus, by (18), (19) and (17), we get:

(23) Pn ≤ P̂n.

Thus, what remains is to show that P̂n is inverse exponential to n. Towards this,
for n ≥ 1 let

(24) P̂n,I =
∑

I:|I|=n

I1=I

P̂(I),

where I1 is its first term of I.
Observe now that, for any independent set I, P̂1,I =

∏

j∈I pj . Thus we obtain
the following recursion:

(25) P̂n+1,I =

{∏

j∈I pj

(
∑

J:I covers J P̂n,J

)

if n ≥ 1,
∏

j∈I pj if n = 0.
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If the class of all non-empty independent sets is {I1, . . . , Is}, following again the
terminology of [15], we define the stable set matrix M , as an s × s matrix, whose
element in the i-th row and j-th column is

∏

j∈I pj if I covers J and 0 otherwise.

Furthermore, let qn = (P̂n,I1 , . . . , P̂n,Is). Easily, (25) is equivalent to:

qn = Mqn−1,

thus

(26) qn = Mn−1q1.

Let ‖ · ‖1 be the 1-norm defined on R
s. It is known that any vector norm, and

thus 1-norm too, yields a norm for square matrices called the induced norm [13] as
follows:

(27) ‖M‖1 := sup
x 6=0

‖Mx‖1
‖x‖1

≥
‖Mq1‖1
‖q1‖1

.

By (26) and (27), we have that:

(28) ‖qn‖1 = ‖Mn−1q1‖1 ≤ ‖Mn−1‖1 · ‖q1‖1.

Note now that:

(29) P̂n ≤
s∑

i=1

P̂n,Ii = ‖qn‖1 = ‖Mn−1‖1‖q1‖1.

Since ‖q1‖1 is a constant, it suffices to show that ‖Mn−1‖1 is exponentially small
in n. Let ρ(M) be the spectral radius of M [13], that is:

ρ(A) := max{|λ| | λ is an eigenvalue of A}.

By Gelfand’s formula (see again [13]) used for the induced matrix norm ‖ · ‖1, we
have that:

(30) ρ(M) = lim
n→∞

‖Mn‖
1/n
1 .

Furthermore, in [15] (Theorem 14), it is proved that the following are equivalent :

(1) For all I ∈ I(G) : qI(G, p̄) > 0.
(2) ρ(M) < 1.

Using (1 ⇒ 2) we can select an ǫ > 0 such that ρ(M)+ǫ < 1. Then, by (30), we have
that there exists a n0 (depending only on ǫ,M) such that, for n ≥ n0: ‖Mn−1‖1 ≤

(ρ(M) + ǫ)n−1, which, together with (29), gives us that P̂n is exponentially small
in n.

Thus, by the analysis above, we get that there is a constant c < 1 (depending
on ‖q1‖, p and ρ(M)+ ǫ) such that Pn ≤ cn, for n ≥ n0 and by ignoring polynomial
factors. This concludes the proof.

�
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