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Abstract
The ever increasing demand for container transportation has led to the congestion of mar-
itime container terminals in the world. In this work, the two interrelated problems of berth
and quay crane scheduling are considered in an integrated multiobjective mathematical
model. A special character of this model is that the arrival times of vessels and the failure
(working) times of quay cranes are not deterministic and can vary based on some scenarios.
Hence, a robust model is devised for the problem having three objectives of minimising the
deviations from target berthing locations and times as well as departure delays of all vessels.
This robust optimisation seeks to minimise the value of the objectives regarding all the sce-
narios. An exact solution approach based on the ε-constraint method by the Gurobi software
is applied. Moreover, regarding the complexity of the problem, two Simulated Annealing
(SA) based metaheuristics, namely a Multi-Objective Simulated Annealing (MOSA) and a
Pareto Simulated Annealing (PSA) approach are adapted with a novel solution encoding
scheme. The three methods are compared based on some multiobjective metrics and a statis-
tical test. The advantage of the integration of berth and quay crane scheduling is examined
as well.

Keywords Berth and quay crane scheduling · Maritime container terminal ·
Robust optimisation

1 Introduction

Containerisation, which is viewed as a standardised means of transportation, can realise
advantages such as reliability, shorter transit times, multiple modalities and reduction in the
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shipping as well as handling costs [47]. As the United Nations conferences in 2018 and
2017 [2] report, the global container port throughput in the world has raised from about 100
million 20-foot equivalent units (TEUs) in 1990 to over 750 million in 2019. Furthermore,
the increase in the worldwide containerised trade volume was more than 40% in the decade
2007–2016 [11]. Regarding this considerable growth, container terminals have to deal with
larger quantities of throughput and are becoming more congested. Hence, efficient planning
and scheduling of operations at a seaside container terminal are getting more significance.
According to [46] and [45], operations in a container terminal can be grouped based on the
location into: seaside operations, yard operations, and land-side operations. A comprehen-
sive review of Operations Research problems at container terminals is presented by [41] as
well as [36].

At the seaside, firstly, arriving vessels have to be assigned to berths, then the Quay Cranes
(QCs) are scheduled to serve them. Afterwards, in the yard, the vehicles and transportation
equipments are planned to execute the intra-terminal movements of containers, e.g. from
the quay to the storage area and vice versa. In the next step, an appropriate storage plan
for containers in specific locations in the yard area is needed. Finally, at the land-side,
transportation modes from outside such as trucks and trains are scheduled at gates of the
terminal to the hinterland.

The most important operational problem at a seaside area is to schedule the existing
berth length or slots to serve the arriving vessels. This is known as the berth scheduling
problem (BSP) and if it only deals with the assignment of berths to vessels rather than giving
berthing schedules, it is called the berth allocation problem (BAP) [11]. The assignment
and scheduling of the available quay cranes, which work on the vessels, strongly influences
the process time of vessels at the berth. This task is related to another problem known as
the quay crane assignment problem (QCAP). Its more complete version is the quay crane
scheduling problem (QCSP), which determines the start and finish time of each crane on
each vessel.

An important goal is assigning the vessels to berths which are less distant from their
desired berthing locations. The desired or target berthing location for a vessel depends
mainly on the average distance from the storage sites of its inbound and outbound contain-
ers. Therefore, considerable costs and efforts which are related to the container movements
can be saved. Likewise, there are target berthing times for vessels which are based on
their arrival time at the terminal. Hence, berthing of each vessel with the shortest possi-
ble temporal deviation from its target berthing time is another significant objective. If the
cumulative deviation from the target berthing times is reduced, the large costs of delay
are decreased. A major goal is to reduce the process time of vessels at the berth. This
strongly depends on the assignment and scheduling of the available quay cranes, which
work on the vessels. By this achievement, the vessels can be served and leave the termi-
nal sooner, thus more available time can be provided for both the terminal and the vessels.
These three objectives are considered together in our berth and quay crane scheduling
problem.

The significance of the three considered objectives, which may conflict with each other
in practice, for a real case becomes evident as we pay attention to the fact that a container
terminal must provide the best possible service to a large number of vessels and handle a
huge volume of containers within a planning horizon. If it only focuses on the first objective
or minimisation of the total deviations from the desired berthing locations, then the vessels
must wait for their target locations and it results in more deviation from their target berthing
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times and larger delays. This decays the second and third objective. Therefore, a rational
balance between them is vital. It is an important reason that our work presents a multi-
objective optimisation framework of these goals to provide the decision maker with a bunch
of high quality non-dominated solutions to choose from.

The BSP and the QCSP are very interrelated; therefore, they can be integrated as one
problem called the berth and quay crane scheduling problem (BQCSP). The advantage of
this integration is verified in our work by means of some numerical comparisons. A real
aspect in such problems at container terminals is the variability of inputs, which has not
been taken into account enough in the previous works. Therefore, this work focuses on a
version of the BQCSP which includes a number of scenarios for the arrival times of ves-
sels and the availability periods of some quay cranes. The first is because of the fact that
some incidents can change the time that vessels can arrive at the terminal and the second
is related to the breakdown possibility of the cranes, which is a common issue in the real
world.

Our approach to deal with these uncertainties is to develop a robust comprehensive math-
ematical model with the components of both problems. This novel model includes three
objectives of minimising the weighted sum of distances from the desired (target) berthing
locations, the weighted sum of temporal deviations from the target berthing times and the
weighted sum of the departure (completion time) delays of all vessels. A number of sce-
narios are considered for two problem inputs which can easily vary in the reality, namely
arrival times of vessels and availability periods of quay cranes. All of these scenarios are
respected in the constraints of our model, which makes the resulting solutions be robust to
assumed changes in the problem inputs.

For the optimisation, a classical method called ε-constraint is applied to the problem in
the first step. The solution process is supported by the Gurobi solver [1]. Regarding the very
long computation time or shortcomings of the exact approach as the problem size grows,
two multi-objective metaheuristics which work based on the Simulated Annealing (SA) are
applied. They are the Multi-Objective Simulated Annelaing (MOSA) and the Pareto Simu-
lated Annealing (PSA). For their application some novel solution encoding and operators are
defined.

The organisation of this paper is as follows: Section 2 provides a review of a number
of related works. The model is covered in Section 3. Section 4 focuses on the solution
methodologies. The computational experiments and the related results are presented and
compared in Section 5. Finally, Section 6 gives the conclusions of our research and some
directions for the future research.

2 Related works

A literature review of the two fields of berth allocation and quay crane assignment is pro-
vided by [6]. In that survey, the BAP is classified based on some spatial and temporal
distinctions which are whether the berth space is discrete or continuous, whether the arrival
times of vessels are deterministic or stochastic, and whether the handling times of vessels
are deterministic or stochastic.

A Particle Swarm Optimisation (PSO) algorithm is presented in [46] to solve the discrete
and dynamic BAP of a realistic size within a reasonable time. Xu et al. [52] considers the
limitation by water depth and tidal conditions in the BAP. They model the problem as a
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parallel-machine scheduling with processing set restrictions and divide the time horizon into
two periods, in which the processing sets are different. Both the static and dynamic cases of
the problem have been taken into account and efficient heuristics are developed for them.

Zhen and Chang [53] studies the development of a robust schedule for berth alloca-
tion with a degree of uncertainty in vessels’ arrival and operation time. A bi-objective
optimisation model is presented that minimises the cost and maximises the robust-
ness of schedules, which is calculated with regard to the buffer times. A heuristic is
developed to solve the large-scale cases. Karafa et al. [20] formulates the problem as
a two-objective problem considering stochastic vessel handling times. An evolutionary
heuristic and a simulation-based Pareto front pruning algorithm are proposed to deal
with it.

Lalla-Ruiz and Voß [27] presents two Partial Optimisation Metaheuristic Under Spe-
cial Intensification Conditions (POPMUSIC) approaches to solve the BAP. These methods
work based on the interoperation between metaheuristics and mathematical programming
techniques. It is proved that the approaches are able to provide promising results for this
problem. The methods proposed in [25] provide excellent results at that time and the pre-
sented modelling improvements allow to stretch the limits of problem sizes to be solved
efficiently. The work of [20] investigates the berth allocation problem with stochastic vessel
handling times as a bi-objective problem. To solve the resulting problem, an evolution-
ary algorithm-based heuristic and a simulation-based Pareto front pruning algorithm is
proposed.

Legato et al. [28] develops a mathematical programming model at the tactical level and
a simulation model at the operational level. Their framework uses a beam search heuristic
to obtain a weekly plan at the tactical level, and then a simulated annealing based search
process is proposed to adjust allocation decisions at the operational level. At this level,
randomness in discharge/loading operations is taken into account and modelled by an event-
based Monte Carlo simulator. The authors perform extensive numerical tests and compare
all models from a computational perspective.

Buhrkal et al. [8] reviews and describes three main models for the discrete BAP and
enhances the performance of one. A mixed integer linear programming formulation and
a heuristic are presented for the BAP in [12]. Tavakkoli-Moghaddam et al. [43] models
the quay crane scheduling and assignment problem as mixed-integer programming and
proposes a genetic algorithm to cope with some real-sized instances.

The multi-quays berth allocation and crane assignment problem under availability
restrictions which may arise due to weather conditions or planned maintenance, is inves-
tigated in [26]. They apply a mixed-integer programming model and a set of heuristics
based on general variable neighborhood search to solve their problem. The research is
inspired by a real case of a bulk port in Morocco. Hu [18] considers vessel’s fuel con-
sumption and emissions in the Berth Allocation and Quay Crane Assignment Problem
(BAQCAP). They apply a non-linear multi-objective mixed-integer programming model
which is, afterwards, converted to a second-order mixed-integer cone programming model
to deal with the problem’s computational intractability. Additionally, the impact of the num-
ber of allocated QCs on port operational cost, vessel’s fuel consumption and emission are
analysed.

Elwany et al. [15] proposes an integrated heuristics-based solution methodology that
tackles a continuous BAQCAP. The proposed approach is claimed to produce high quality
solutions to such a problem in a relatively short time suggesting its suitability for a practical
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use. [38] applies a GRASP-based metaheuristic to the BAQCAP aiming at minimisation of
the total waiting time elapsed to serve all vessels. They prove that this metaheuristic reduces
the waiting time and increases both the berth utilisation and the throughput of QCs.

Türkoğulları et al. [48] formulates the problem as a binary integer linear program that
is later extended by incorporating the quay crane scheduling problem as well. Zheng [54]
proposes an online model considering a hybrid berth which consists of three adjacent small
berths together with five quay cranes. The objective is to minimise the makespan or the max-
imum completion time of the vessels. They consider two sizes for vessels in their problem.
[19] applies mixed integer linear programming including multiple objectives. Small-sized
test problems have been solved by the LINGO solver to validate the integrated model. [33]
considers the problem with the objective of minimising a weighted sum of the waiting time,
deviation from desired location and departing delay, for all the vessels.

The berth allocation problem with the consideration of uncertainty factors, including
the arrival and operation times of the calling vessels, is focused in [51]. They formulate
a bi-objective robust berth allocation model. The solution methodology is a swarm-based
metaheuristic to tackle the robustness of the berth allocation policy and solve the proposed
model. Idris and Zainuddin [9] surveys a BAQCAP in general seaport container termi-
nals and proposes a model predictive allocation algorithm and preconditioning methods for
solving it.

The paper [17] develops a model of fully fuzzy linear programming (FFLP) for the con-
tinuous and dynamic BAQCAP which are solved in a separate way. The arrival time of
vessels is assumed to be imprecise, so that vessels can be late or early as much as a threshold
allows. A case study consisting of ten vessels has been implemented in a mixed integer pro-
gramming (MIP) solver. A new mathematical formulation for the BQCSP is introduced in
[22] which encompasses all associated operations and constraints. A significant assumption
in their problem is the existence of preemption in QC tasks.

Nourmohammadzadeh and Voß [34] is a basis for this current research, which provides
a similar model for the BQCSP but uses stochastic optimisation to deal with the uncer-
tain arrival times of vessels. The solution approaches in that work are the ε-constraints and
the PSA, too. Li et al. [29] presents an integrated berth allocation and quay crane assign-
ment model considering preventive quay crane maintenance activities. The two objectives
are minimising the total turnaround time of vessels and the total penalty cost of quay crane
maintenance earliness and tardiness. An ε-constraint based two-phase iterative heuristic is
used to solve the problem. An integrated BAQCP under uncertainties is focused in [42]. A
stochastic optimisation approach is applied. Wang et al. [49] considers a BAQCAP regard-
ing carbon emission taxation by giving a bi-objective integer programming model. Their
objective is to minimise the total completion delay of all tasks and the total operating costs
for all QCs.

An integrated model consisting of waterway scheduling, berth allocation, and quay
crane assignment is proposed in [16]. Nguyen [32] develops a new priority-based sched-
ule construction procedure to generate quay crane schedules. For this goal, two new hybrid
evolutionary computation methods based on a genetic algorithm (GA) and genetic program-
ming (GP) are devised. [30] investigates the unidirectional quay crane scheduling problem
for a stochastic processing time, which requires that all the quay cranes move in the same
direction either from bow to stern, or vice versa, throughout the planning horizon. The paper
[50] selects algorithms for the BAP under algorithm runtime limits.

A summary of some related works in the field of berth and quay crane assignment are
presented in Table 1.

835



A. Nourmohammadzadeh, S. Voß

Table 1 A summary of some related works

Survey BAP QCAP Model(s) Method(s)

Buhrkal et al. (2011) [8] � MIL CPLEX

Correcher et al. (2019) [12] � MIL Heuristic

Elwany et al. (2013) [15] � � I, MIL CPLEX

Fatemi Anaraki et al. (2020) [16] � � MIL, I Metaheuristics

Hu et al. (2014) [18] � � MINL, MO CPLEX

Karam and Eltawil (2016) [21] � � MIL FIS, CPLEX

Karafa et al. (2012) [20] � MIL, MO, S EV-heursitc

Krimi et al. (2020) [26] � MIL CPLEX,

GVNS heuristic

Lalla-Ruiz and Voß (2014) [27] � MIL POPMUSIC

Legato et al. (2014) [28] � MIL Beam Search,

SA

Li et al. (2020) [29] � � MIL, I, MO ε-constraint,

CPLEX

Ma et al. (2020) [30] � MIL, SO SA

Nguyen et al. (2020) [32] � MIL Metaheuristics

Nourmohammadzadeh and Hartmann (2015) [33] � � MIL, I Baron, SA

Nourmohammadzadeh and Voß (2020) [34] � � MINL, I, MO SO, ε-constraint,

PSA

Tan et al. (2020) [42] � � MIL, I NS

Tavakkoli-Moghaddam [43] � MIL LINGO, GA

Ting et al. (2013) [46] � MIL PSO

Rodriguez-Molins et al. (2013) [38] � � − Metaheuristic

Wang et al. (2020) [49] � � MIL, I, MO CPLEX, Heuristic

Wawrzyniak et al. (2020) [50] � MIL CPLEX

Xu et al. (2012) [52] � MIL Heuristics

Xi et al. (2017) [51] � MIL, R CPLEX, Heuristic

Zhen and Chang (2012) [53] � MIL, MO, R Heuristic

MIL: Mixed Integer Linear, MINL: Mixed Integer Non-Linear, FIS: Functional Integration of Separate mod-
els , R: Robust, MO: Multi-Objecitve, NS: Not Specified, S: Stochastic, EV-heuristic: Evolutionary Heuristic,
GVNS: General Variable Neighbourhood Search, I: Integrated, SO: Stochastic Optimisation.

There have been several works with regard to the application of simulated annealing
(SA)-based metaheuristics for multiobjective optimisation. A review of the state of the art
of multiobjective SA algorithms is presented by [3]. Tekinalp and Karsli [44] develops a
multiobjective SA for continuous optimisation problems. This algorithm has an adaptive
cooling schedule and uses a population of fitness (objective) functions to accurately gen-
erate the Pareto front. Saha and Bandyopadhyay [39] presents a multiobjective clustering
technique to optimise two objectives, which uses an optimiation method based on the SA as
the underlying optimisation criterion.

An SA algorithm for noisy multiobjective optimisation with continuous decision vari-
ables is presented in [31]. A remarkable characteristic of this method is determining the
performance of a candidate solution by the estimation of the probabilities that the candidate
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is dominated by the current non-dominated solutions. Cunha and Marques [13] proposes
a multiobjective SA with a new generation scheme and reannealing procedures. This is
a trajectory-based algorithm, in which diversified generation strategies are used to define
candidate solutions at different stages of the search procedure.

3 Mathematical model

Our mathematical model is a robust version of the one given in [34] with some modifica-
tions. This model is presented in the following three subsections explaining its assumptions,
notations and formulations, respectively.

3.1 Assumptions

The assumptions used in our robust modelling of the problem consisting of the berth capac-
ity scheduling integrated with the scheduling of available quay cranes to serve vessels,
abbreviated as the BQCSP, are explained in this part. Two goals are followed in building our
model. One is adaptation with the reality and the other is simplification. The berth, where
vessels moor at, is assumed to be continuous and of a determined length. Each vessel has
a desirable (target) time which is its arrival time and a desirable (target) berthing location
according to the storage locations of its unloading and loading containers. The vessels are
of three sizes (small, medium and large). Since the vessels can be of a different importance
in the planning, we assign each an importance coefficient which is for simplification only
based on its size. To conform with the fact that the arrival time of vessels can be unfixed,
ten different scenarios are considered for the target berthing times of vessels. They are
according to the strategy that ten values are distributed in equal distances within the inter-
val [0.75E(T Ti), 1.25E(T Ti)], where E(T Ti) is a given average value for the arrival time.
The set of possible arrival times of vessel i are shown as ST Ti = {stti1, .., st ti10}.

We randomly choose 25% of the quay cranes as those which are unavailable during
some periods. For each chosen quay crane, ten different failure times are determined in
equal distance within the whole planning horizon. Each crane can have only one break-
down during the planning horizon. An average is considered for the failure duration of
crane k as E(FDk) and three different values are scattered in equal distance within
[0.75E(FDk), 1.25E(FDk)]. That is, we have 30 scenarios for each crane which is vulner-
able to failure in our robust optimisation. The set of scenarios for the availability of crane k

is SQk = {sqk1, ..., sqk30}.
Regarding the scenarios, our robust optimisation model is defined as follows:

minfi(x, ξ) i = 1, 2, ..., n
s.t . F(x, ξ) ≤ 0
ξ ∈ S

where n is the number of objectives and S is the set of all scenarios. In other words, the
objective function is sought to be minimised while the constraints must be satisfied with
respect to all scenarios. So, even the worst scenario is considered in the optimisation and the
solutions will be robust with regard to all scenarios. This is in accordance with the definition
of robustness presented in [4] as “a robust feasible (r-feasible for short) solution to the robust
counterpart of (P ) should satisfy all realisations of the constraint from the uncertainty set
U , and a robust optimal (r-optimal for short) solution to (PU ) is an r-feasible solution with
the best possible value of the objective”.
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3.2 Notations

Our robust mathematical model contains the following notations:

Sets
V The set of arriving vessels i, j ∈ V

QC The set of quay cranes available at time t k, l, m ∈ QC

Parameters
T The set of times in the planning horizon, |T | = H

BL The length of the berth
T Ti The target berthing time (arrival time) of vessel i

E(T Ti) The average of the target berthing time of vessel i

ST Ti The possible arrival times of vessel i according to the considered scenarios
SQk The set of failure scenarios of crane i

T Bi Target berthing location of vessel i

RTi The required quay crane hours to serve vessel i

Li The length of vessel i

Ci The importance coefficient of vessel i

FDk The failure duration of crane k
E(FDk) The average failure duration of crane k

Qmaxi The maximum number of cranes which can work on vessel i at the same time
uscn

k (t, t ′) The failure duration of quay crane k between the times t and t ′
based on scenario n

Decision Variables
bi The berthing location of vessel i

svi The berthing time of vessel i

f vi The time that vessel i leaves the berth
scki The time that quay crane k begins its work on vessel i

f cki The time that quay crane k finishes its work on vessel i

qki Binary variable=1, if crane k works on vessel i

qqkit Binary variable=1, if crane k is working on vessel i at time t

yij Binary variable=1, if vessel j docks physically after vessel i along the berth
zij Binary variable=1, if vessel j docks chronologically (in terms of time) after vessel i

ukli Binary variable=1, if cranes k and l work on vessel i at the same time
wkli Binary varaible=1, if crane l begins its work on vessel i after the start time of crane k

mkij Binary variable=1, if crane k works on vessel i before j

ΔBi The deviation from the target berthing location of vessel i

ΔT Si The deviation from the target berthing time of vessel i

ΔT Fi The departure delay from an early departure time calculated according to the case
that vessel i is served with the maximum number of cranes (Qmaxi)
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3.3 Formulations

Objectives
Min Z1 =

∑

i∈V

CiΔBi (1)

Min Z2 =
∑

i∈V

CiΔT Si (2)

Min Z3 =
∑

i∈V

CiΔT Fi (3)

Constraints
∑

k∈QC

qki[(f cki − scki) − max
n∈SQk

(uscn
k (scki , f cki))] ≥ RTi i ∈ V (4)

qk,i(f cki − scki) =
f cki∑

t=scki

qqkit i ∈ V, k ∈ QC (5)

∑

k

qqkit ≤ Qmaxi i ∈ V, t ∈ T (6)

ΔBi ≥ T Bi − bi i ∈ V (7)

ΔBi ≥ bi − T Bi i ∈ V (8)

ΔT Si ≥ T Ti − svi i ∈ V ; T Ti ∈ ST Ti (9)

ΔT Si ≥ svi − T Ti i ∈ V ; T Ti ∈ ST Ti (10)

f vi ≥ qkif cki i ∈ V, k ∈ QC (11)

ΔT Fi ≥ f vi − (svi + RTi

Qmaxi

) i ∈ V (12)

bj + BL(1 − yij ) ≥ bi + li i, j ∈ V (13)

svj + (1 − zij )H ≥ f vi i, j ∈ V (14)

yij + yji + zij + zji ≥ 1 i, j ∈ V (15)

(kqik − lqjl)(bi − bj ) ≥ 0 i, j ∈ V ; k, l ∈ QC (16)

sckj + (1 − mkij )H ≥ f cki i, j ∈ V ; k ∈ QC (17)

mkij + mkji ≤ 1 i, j ∈ V ; k ∈ QC (18)

mkij + mkji ≤ qki i, j ∈ V ; k ∈ QC (19)

mkij + mkji ≤ qkj i, j ∈ V ; k ∈ QC (20)

Three objectives are considered for our BQCSP. Equations (1) and (2) formulate the sum
of weighted deviations of all vessels from the target berthing locations and times, respec-
tively. The third objective, (3), is the sum of weighted delays of all vessels from their
ideal departure times. The elements used in the objective formulations, i.e. ΔBi , ΔT Si and
ΔT Fi , are calculated in the related constraints according to the consideration of the whole
possible occurrences existing in the set of scenarios.

Constraint (4) implies satisfying the required crane-hours of each vessel. The maximum
failure duration of each crane between the starting and finish times regarding all the possible
scenarios are deducted from the total time. Constraint (5) sets qqk,i,t = 1 for all t values
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between scki and f cki if the corresponding assignment and schedule are decided. Constraint
(6) is responsible for respecting the maximum number of QCs which are allowed to work
on a vessel at the same time.

The deviation from the target berthing location is calculated by relations (7) and (8).
Likewise, (9) and (10) calculate the deviation from the target berthing times. Equation (11)
states that the departure time of each vessel is equal to the latest finish time of all quay cranes
which work on it. Constraint (12) calculates the departure delay according to a desirable
process time which is based on the assignment of the maximum possible number of cranes
to the vessel (Qmaxi). Constraint (13) is for respecting the vessel’s length at the berth and
assures that no more than one vessel can moor in each point at the same time. Constraint
(14) ensures that if vessel j chronologically berths after i (zij =1), its berthing time is after
the departure time of i. Regarding any pair of vessels i and j , they must not collide with
each other. It means that they berth at different locations by respecting their lengths or they
berth at different times considering the process time of the former. This is guaranteed by
(15). Constraint (16) prevents cranes from crossing each other. Each crane cannot serve
more than one vessel at a time which is enforced by (17)–(20).

This is a model which considers a set of defined scenarios or possibilities for some
inputs of the problem while trying to find compromises for the values of its three objectives.
Therefore, the resulting solutions are robust even against the worst scenario.

4 Solutionmethodologies

Regarding the fact that in multiobjective optimisation each solution corresponds to more
than one objective value, solutions can not be easily sorted based on the objective function
value. Therefore, a trade-off between the objectives should be considered and there is a con-
cept called dominance. It is said that in the presence of n objectives, a solution x dominates
another solution y, x ≺d y, if the following conditions hold:

1) zi(x) ≤ zi(y),∀i ∈ 1, 2, ..., n
2) ∃j ∈ 1, ..., n : zj (x) < zj (y)

In multiobjective optimisation, we aim at finding a set of globally non-dominated solutions
as the best ones instead of only one optimal solution. These solutions are known as Pareto
optimal and the set is called Pareto front.

There are various solution methodologies for multiobjective problems. Some of them
are classical methods, whereas some are evolutionary or metaheuristic algorithms. Due to
the drawbacks of classical methods such as long computational times or the necessity of
numerous runs to obtain a set of non-dominated solutions, metaheuristic multi-objective
methods are used as alternative approaches for large-sized instances.

In this research, a practical metaheuristic algorithm called Pareto Simulated Annealing
is adapted to be applicable to our BQCSP with regard to the high computational complexity
of this problem. The performance of this approach is tested by comparing its results with
those of an ε-constraint method which uses an exact solver.

4.1 ε-Constraint

A promising classical multi-objective optimisation approach is the ε-constraint method,
which is proposed by [10]. Unlike some other classical methods, it does not have any prob-
lem in finding solutions on non-convex parts of the Pareto curve. It is important because
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some remarkable solutions may be located on these parts and our final decision can be
within them. In this method, one objective is chosen out of all (n) objectives to be min-
imised. The other objectives are constrained to be less than or equal to some given values.
Mathematically expressed, if fi(x) is chosen for minimisation, we have the following
problem P(εi):
min fi(x)

fj (x) ≤ εj , ∀j ∈ {1, ..., n}\i.

Each time that the problem is solved by different values of εi , one Pareto optimal
solution may be found. Therefore, we need multiple solving attempts to search for a
set of non-dominated Pareto solutions. In the case of our BQCSP, each of the three
objectives can be selected to be minimised and the other two are restricted by two
values.

4.2 Multiobjective simulated annealing

In the basic single objective SA, we start with an initial solution (s0) and temperature (T0).
Then in each iteration a specific number of neighbourhood searches are done. Each time,
the fitness of a neighbouring solution is compared with the fitness of the current solution. In
case that the neighbouring solution has a better fitness, the current solution is replaced with
it, otherwise this happens according to a probability, which is calculated based on the fitness
difference and the current temperature. The formula for the calculation of this probability

is P = e
−(Znew−Z)

T , where Znew and Z are the objective function values of the new and the
current solution; T is the current temperature. The smaller the difference and the higher the
temperature is, the bigger is the replacement probability. If a specific number of neighbours
(NS) have been investigated, the SA starts a new iteration by reducing the temperature
based on a plan, for example, dividing the current temperature by a constant value CT . By
going forward iteration by iteration, the chance of moving to a new solution reduces. Finally,
after meeting a termination criterion, the algorithm stops. This criterion can be reaching a
maximum number of iterations or passing a number of consecutive iterations (MQ) without
any (or with a very low) improvement in the fitness or exceeding an execution time limit
(MET ).

Multiobjective Simulated Annealing (MOSA) is originally presented in [40]. This
method uses a probabilistic acceptance rule to increase the probability of accepting non-
dominated solutions. For a problem with n objectives, a random weight is assigned to each
objective considering

∑n
i=1 λi = 1. The acceptance probability of a neighbouring solution

s′ of solution s is calculated as follows:

P(s, s′, λ, T ) = min(1, exp(− max
i=1,...,n

λi[(zi(s
′) − zi(s)]
T

)) (21)

where T is the current temperature.
Unlike classical SA approaches, which work with a single solution, the MOSA used

in this research is population-based. So, neighbourhood searches are done for each solu-
tion of the population. The algorithm terminates whenever one of the two conditions,
namely passing a number (MQ) of consecutive iterations without finding any new non-
dominated solution called unsuccessful iterations or reaching a time limit (MET ), arise.
The pseudocode of the MOSA is given in Algorithm 1.
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Algorithm 1: The applied Multi-Objective Simulated Annealing (MOSA).

Data: Problems’ inputs and PSA parameters (T0, CT , NS, MQ, and MET )
Result: A set of high quality non-dominated solutions

1 - Generate initial solutions S.
2 - T = T0
3 - Set of non-dominated solution ρ = ∅
4 - q = 0. q is the current number of consecutive unsuccessful iterations.
5 while q < MQ and t ime ≤ MET do
6 for s ∈ S do
7 - n = 1
8 while n ≤ NS do
9 - Randomly generated λi for the objectives.

10 - Construct s′ as a neighbouring solution of s.
11 - If s does not dominate s′, update the set of non-dominated solutions ρ

with s′.
12 - Replace s with s′ according to (21).
13 - n = n + 1
14 end
15 end
16 - If no new non-dominated solution has been found during the whole iteration, set

q = q + 1; otherwise set q = 0
17 - Decrease the temperature and calculate T = T

CT
.

18 end
19 - Output the set ρ

4.3 Pareto simulated annealing

This multiple criteria metaheuristic algorithm uses the general concept of the classical single
objective Simulated Annealing (SA), proposed by [23], and several specific concepts related
to its multiobjective nature.

In the PSA algorithm some new ideas related to the multiobjective aspect are added or
replace some concepts of the single objective SA. The specific concepts used in PSA are as
follows:

– Generating solutions or agents:
Initially, a set G of generating solutions with a fixed cardinality |G| = φ is randomly
produced to provide a sufficiently large search space for PSA. With each of the gen-
erating solutions, a separate weight vector λs = (λs

1, ..., λs
n) is associated such that

λs
i ∈ [0, 1] and

∑n
i=1 λs

i = 1. Manipulating these weights provides a good dispersion
of the resulting Pareto front and makes the solutions of PSA more representative. The
generating solutions are treated as “spy agents” which can work almost independently
while exchanging information about their position.

– Aggregation function-based acceptance probabilities:
In the PSA, when we move from solution s to its neighbour s′ due to having multiple
objectives to be taken into account and considering the concept of domination, one of
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these mutually exclusive cases can happen: 1) s′ dominates or is equivalent to s 2) s′
is dominated by s 3) s′ is non-dominated with respect to s. In the first case, the new
solution is not worse than the current one; therefore, it should be accepted with the
probability one. In the second case, the new solution is worse than the current one (s
is considered as potentially Pareto-optimal) and should be accepted with a probability
less than one in order to avoid getting trapped in local optima. In the third case, s and s′
are incomparable (and initially non-dominated). The probability of accepting the new
solution s′ for a problem with n objectives is (21).

– Management of generating solutions or repulsion:
A degree of repulsion α is determined as a very small positive value close to zero.
The weight vector λs associated with a given agent s is modified in order to increase
the probability of moving it away from its closest neighbour agent s̃ which is non-
dominated with respect to s. This is achieved by increasing the weights of the objectives
for which s is better than s̃ and decreasing the weights of those objectives for which s

is worse than s̃. This can be stated as follows:

λs
i =

{
λs

i + α, zi(s) ≤ zi(s̃)

λs
i − α, otherwise.

(22)

In the space of normalised objectives, the metric distance between solutions which
is used to determine the closest neighbour s̃ from s is:

n∑

i=1

(zi(s) − zi(s̃))
2 (23)

Moreover, we need to normalise λs
i in each iteration to satisfy:

∑n
i=1 λs

i = 1
– Updating the set of potentially Pareto optimal solutions:

The set of potentially Pareto optimal solutions ρ is empty in the beginning of the
algorithm. It is updated each time after a new non-dominated solution is generated.
Updating the set of potentially Pareto optimal solutions with solution s requires: (1)
adding s to ρ if no solution in ρ dominates s and (2) removing all solutions dominated
by s from ρ.

The pseudocode of the PSA used in this work is given as Algorithm 2.

4.4 Application to the BQCSP

4.4.1 Solution encoding

For encoding a solution of our BQCSP, a matrix is defined including |V | (number of vessels)
columns each containing the data of one vessel. The number of rows is 2 + 2|QC|. The
first two rows are for berthing locations and berthing times, where the values are encoded
in the interval [0,1]. The next |QC| rows are for the starting time and the last |QC| rows
are for the finish time of QCs on vessels of the corresponding rows. The contents of these
two sections are generated in the interval [-2,1]. If a cell has a negative value, it means that
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Algorithm 2: The applied Pareto Simulated Annealing (PSA).

Data: Problems’ inputs and PSA parameters (φ, T0, CT , NS, α, MQ, and MET )
Result: A set of high quality non-dominated solutions

1 - Generate a set G of agents at random, |G| = φ

2 - Generate λs for s ∈ G

3 - Set of non-dominated solution ρ = ∅
4 - T = T0
5 - q = 0. q is the current number of consecutive unsuccessful iterations.
6 while q < MQ and t ime ≤ MET do
7 - For each agent find its closest non-dominated agent according to the distance

calculated by (23).
8 - Update λs based on (22).
9 for s ∈ G do

10 - n = 1
11 while n ≤ NS do
12 - Construct s′ as a neighbouring solution of s.
13 - If s does not dominate s′, update the set of non-dominated solutions ρ

with s′.
14 - Replace s with s′ according to (21).
15 - n = n + 1
16 end
17 end
18 - If no new non-dominated solution has been found during the whole iteration, set

q = q + 1; otherwise set q = 0
19 - Decrease the temperature and calculate T = T

CT
.

20 end
21 - Output the set ρ

the corresponding QC is not assigned to the corresponding vessel and values from 0 to 1 are
decoded to times in the planning horizon. This encoding structure is depicted in Fig. 1.

4.4.2 Neighbourhood

We define a neighbour solution (s′) of a solution (s) as the one, which is in nbn cells
different from s. Therefore, nbn cells are randomly chosen and their values are changed to
other allowable random values.

4.4.3 Constraint-handling

The method for handling the constraints of this problem is to respect them during the solu-
tion generation. By this way, firstly, a feasible solution is found among a population of
randomly generated solutions. We begin alphabetically from the first variable, consider its
value to be unknown and find a feasible interval for it according to the given values of the
other variables. Then the corresponding value coming from the encoded structure (matrix)
explained above is decoded to a real amount within the found interval. This process is
repeated for the next variables until all variables are reassigned with new feasible values.
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Fig. 1 The devised solution
encoding structure for our
BCQSP

The method is applied to a subset of the variables to construct a feasible neighbouring
solution in the MOSA and the PSA.

4.4.4 Normalisation of the objectives

In order to better compare the goal achievement in the three objectives, we should make
them of the same scale. Hence, an objective value zj is normalised to znormj as:

znormj = zj − Zminj

Zmaxj − Zminj

Zminj = 0; j = 1, 2, 3 (24)

where Zmaxj and Zminj are the maximum and minimum value of objective j . Zmaxj

for the three objectives are calculated as follows:

Zmax1 =
∑

i∈V

Ci[γi(BL − T Bi) + (1 − γi)T Bi] γi =
{

1, T Bi ≤ BL
2

0, T Bi > BL
2 .

(25)

Zmax2 =
∑

i∈V

Ci[βi(H − E(T Ti)) + (1 − βi)E(T Ti)] βi =
{

1, E(T Ti) ≤ H
2

0, E(T Ti) > H
2 .

(26)

Zmax3 =
∑

i∈V

Ci[H − (E(T Ti) + RTi

Qmaxi

)] (27)

So all the objectives are between 0 and 1.

5 Computational experiments

In this section, firstly, the generation of the test instances is explained. Then, the metrics
used to evaluate our multiobjective methods are introduced, parameter tuning of our PSA is
described, and finally, the results and comparisons are presented. A Core(TM) i7 computer
with 3.10GHz CPU and 16GB of RAM is used for the experiments of this work. PYTHON
is used for programming the models and algorithms. In addition, we apply Gurobi [1] for
the exact solution processes required in the ε-constraint.
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Table 2 Technical specifications and cost rates

Class Proportion of frequency li RTi Qmaxi Ci

Small 0.5 15 10 2 1

Medium 0.3 25 20 3 2

Large 0.2 35 30 4 3

5.1 Generating test instances

The patterns used for the random generation of the required test instances are as follows:
BL = 100; |QC| = 10; H = 6|V |; E(T Ti) = U [0, H − RTi

Qmaxi
]; E(FDk) = U [1, 3],

T Bi = U [0, BL − li]
The data of the vessels are based on their size. They are shown in Table 2.

5.2 Evaluationmetrics

In a set of non-dominated solutions, their quality and diversity are two important factors for
the evaluation. Different metrics can be used to evaluate the performance of multiobjective
optimisation approaches. We use the quality metric (QM) and Hypervolume (HV ) [55] to
evaluate and compare our multiobjective methods.

To calculate the QM , the final non-dominated sets obtained by all the methods are
merged together. Subsequently, the solutions which are not dominated by any other solution
existing in this pool are put in a set called T NS. For each method:
QM = The number of the method’s solutions in T NS

The number of solutions in T NS
.

HV is used the most in the multiobjective literature [37]. A very significant advan-
tage of this metric is that it indicates both the accuracy and diversity. It is a unary metric
that measures the size of the objective space covered by the set of non-dominated solu-
tions found by the method under evaluation based on a reference point. Regarding the
normalised objectives, [1,1,1] is considered as our reference point for the calculation
of HV Table 3.

Table 3 Parameter setting of MOSA by RSM

Nr. of vessels NS MQ T0 CT nbn

Interval [5,50] [5,30] [102, 106] [1,10] [0.1 × as, 0.3 × as]

integer integer only multiples integer integer

of 10

10 11 15 103 5 25

20 13 18 104 5 60

50 15 20 104 4 162

100 23 25 105 4 284

200 34 27 106 2 546

500 42 32 106 2 862

1000 53 35 106 2 1351
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Table 4 Parameter setting of PSA by RSM

Nr. of vessels φ NS α MQ T0 CT nbn

Interval [102, 2 × 103] [5,50] [0.25,0.75] [5,30] [102, 106] [1,10] [0.1 × as, 0.3 × as]

integer integer integer only multiples integer integer

of 10

10 214 9 0.42 12 103 5 28

20 335 12 0.46 16 104 5 63

50 473 16 0.47 17 104 5 151

100 622 21 0.52 21 104 4 271

200 975 31 0.55 23 105 2 535

500 1407 38 0.56 25 106 2 843

1000 1961 47 0.58 26 106 2 1308

5.3 Parameter tuning

The values of initial parameters have a major effect on the performance of metaheuristics.
Setting the parameters at their best values is one of the main challenges in the application of
any metaheuristic. The parameters of our MOSA and PSA are set by the response surface
method (RSM) [7], which is a design of experiments approach. The instances that we solve
include 10 to 1000 vessels. The tuning is done for each problem size (number of vessels)
separately based on a half design due to so many factors. The response factor is HV . An
interval is given for each parameter value in the beginning, which is determined according
to the experience. These intervals and the parameters’ values set by the RSM for the two
metaheuristics are shown in Table 3 and Table 4, respectively. The parameter as used in the
last column is the number of cells or elements in the solution matrix. Independent from the
RSM, the solution time limit (MET) is set to 30 min or 1800s to limit the computational
effort.

5.4 Results

Using the explained patterns, ten random test instances for each size including 10, 20, 50,
100, 200, 500 and 1000 vessels are built. To implement the ε-constraint method, the third
objective (z3) is considered for minimisation, and z1 and z2 are constrained. The combina-
tion of eleven ε1 and ε2 values which are scattered in equal distances within [0,1], which
means (0, 0.1, 0.2, 0.3,..., 1), are used to constrain z1 and z2. These necessitate altogether
11 × 11 = 121 runs for the ε-constraint to find distinct non-dominated solutions. A time
limit of 10 minutes is considered for each run.

The explained ε-constraint, MOSA and PSA are applied to all of the instances of any
size. Figure 2 depicts the number of non-dominated solutions obtained by the methods.
As it is evident, the number of non-dominated solutions that the ε-constraint method can
find reduces by increasing the number of involved vessels. The reason is that the problem
becomes more complicated for the exact solver and the optimal solution cannot be found
within the time limit that we set for each run. So the number of runs without any new non-
dominated solution increases. On the other hand, the ability of the metaheuristics to locate
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Fig. 2 The number of non-dominated solutions found by the methods

more non-dominated solutions increases as it deals with larger instances. In comparison of
the metaheuristic methods, it is observed that the PSA can provide more non-dominated
solutions.

In the following, we aim at comparing the methods based on the multiobjective metrics
introduced in Section 5.2. As already mentioned, one alternative approach can be solving
the berth scheduling and quay crane scheduling part of the problem separately and adding
the results together. For this sake, the PSA is applied to each part and each non-dominated
solution of one part in added to all the non-dominated solutions of the other part. Finally,
the solutions are accumulated and their non-dominated solutions are found as the results
of this approach. Figures 3 and 4 provide a comparative view of the results given by the

Fig. 3 Quality Metric (QM) of the methods
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Fig. 4 Hypervolume (HV) metric of the methods

ε-constraint, the MOSA, and the PSA with the separated models based on the two metrics
of QM and HV . It is observed except for the smallest size including 10 vessels, where ε-
constraint is better, the PSA method is superior to the other approaches and it has the largest
number of representatives in the set of overall non-dominated solutions. It is worth noting
that the methods can have some common solutions in this pool. By analysing the HV values,
again with the exception of the smallest cases, the PSA is significantly better in terms of
this metric as well. It is interesting that from the instance with 50 vessels, the results of the
separated models provide higher HV values in comparison with the ε-constraint. It is again
due to the ability of the PSA, which is used in this approach.

Figure 5 illustrates the average execution time of only the PSA and the separated models
by PSA because except for the smallest case with 10 vessels, the exact solver cannot find

Fig. 5 Execution time of the methods
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Table 5 The p-values of the pairwise statistical comparisons of the methods

Comparison HV QM Time

MOSA vs. ε-constraint 6.82e-7 4.21e-19 –

MOSA vs. Separated Models PSA 1.92e-2 7.40e-7 3.26e

MOSA vs. PSA 7.43e-4 5.00e-3 6.25e-1

ε-constraint vs. PSA 8.06e-9 2.81e-21 –

PSA vs. Separated Models PSA 3.71e-9 5.92e-18 1.80e-20

ε-constraint vs. Separated Models PSA 4.02e-10 9.15e-21 –

any optimal solution in any of the ε-constraint runs for larger instances. The time of the
separated models by the PSA consists of the times required for each part added together.
The total execution time of all the ε-constraint runs for the smallest instance is over 21500s,
while the average elapsed time of the MOSA, the PSA and the separated models are under
468s, 462s and 536s, respectively, even for the largest instance including 1000 vessels. It is
observed that the difference between the integrated and the separated optimisation approach
in terms of the execution time increases as the problem size grows. It can be seen that the
average execution time of the MOSA and PSA are similar.

In the last part, it is aimed at comparing the three methods by a non-parametric method
called the Friedman test with the Bergmann-Hommel post hoc procedure [5]. The choice of
this method is because of its non-parameteric nature which does not require the normality
of results within the groups. Moreover, it is according to [14] one of the best approaches
for multiple comparisons. The multiobjective metrics HV , QM and the execution time
are statistically compared based on the whole samples of any size to have a more accurate
test. These tests are implemented in R [35]. The p-values of the comparisons are shown in
Table 5. As the ε-constraint method reaches its time limit for instances including 20 vessels
and more and enough samples cannot be provided, the corresponding tests are not executed
and we do not have the related p-values.

As the near zero p-values show, except for the time comparison of MOSA vs. PSA, there
are significant differences in the performance of any pair of the methods in terms of the two
evaluation metrics and the execution time.

At the end of this part, we can summarise the obtained results as follows: The applica-
tion of the PSA for the integrated BQCSP results in clearly better solutions in shorter times
compared to using it for the separated BSP and QCSP. In addition, regarding the two multi-
objective metrics used, the PSA outperforms the MOSA, while the required execution times
of them are similar.

6 Conclusions

In this research, we presented a robust model for the berth and quay crane scheduling prob-
lem taking some possible scenarios for the arrival times of the vessels and the availability
periods of quay cranes into account. Solution approaches including an MOSA and a PSA
with some novel schemes were proposed and examined and their superiority over a classical
method with the ε-constraint with an exact solver is verified. Besides, it is observed that the
PSA outperforms the MOSA in terms of two important multiobjective metrics. Moreover,
the advantage of the integration of the berth and quay crane scheduling is shown.
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For future research, the extension of the model by the inclusion of some new real ele-
ments and circumstances can be a direction. One idea in this respect is the investigation
in delay management and whether and to which extent vessels and trucks have to wait for
each other in case of delays; see, e.g., [24] for the case of public transportation. Other
metaheuristic solution methodologies can be tested, too. The uncertainties in other inputs
of the problem as well as application of methods such as fuzzy optimisation can also be
investigated.
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crane assignment in container terminals. Eur. J. Oper. Res. 235(1), 88–101 (2014)

49. Wang, T., Du, Y., Fang, D., Li, Z.-C.: Berth allocation and quay crane assignment for the trade-off
between service efficiency and operating cost considering carbon emission taxation. Transp. Sci. 54(5),
1307–1331 (2020)
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