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Abstract
This paper partially bridges a gap in the literature on Circumscription in Description Logics
by investigating the tractability of conjunctive query answering in OWL2’s profiles. It turns
out that the data complexity of conjunctive query answering is coNP-hard in circumscribed
EL and DL-lite, while in circumscribed OWL2-RL conjunctive queries retain their classi-
cal semantics. In an attempt to capture nonclassical inferences in OWL2-RL, we consider
conjunctive queries with safe negation. They can detect some of the nonclassical conse-
quences of circumscribed knowledge bases, but data complexity becomes coNP-hard. In
circumscribed EL, answering queries with safe negation is undecidable.

Keywords Low-complexity nonmonotonic description logics · Circumscription ·
Query answering

Mathematics Subject Classification (2010) 68T30 · 68Q17

1 Introduction

There is recurring evidence in the literature that adding nonmonotonic inferences to the
standard ontology language OWL2 and Description Logics (DLs, for short) would greatly
help in modeling biomedical knowledge, policies, and other important application domains
for knowledge representation languages [9, 27, 29]. Many nonmonotonic extensions of DLs
have been proposed to address these needs, for example [5, 6, 9, 11, 14, 16, 18, 19, 25], but in
spite of all this work, OWL2 and its reasoners do not yet support nonmonotonic inferences.
This is due to several semantic and computational issues that are summarized, for example,
in [9]. Here we focus on a desideratum related to complexity: in order to be applicable
to large volumes of data and knowledge, a nonmonotonic semantics should preserve the
tractability of the low-complexity profiles of OWL2, that is, OWL2-EL, OWL2-QL, and
OWL2-RL.1 In particular, the question addressed in this paper is whether Circumscription
satisfies this requirement.

1https://www.w3.org/TR/owl2-profiles/
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Circumscription is one of the major nonmonotonic semantics. It is based on a natural
idea: in order to reason about what normally holds, the extensions of the predicates that rep-
resent abnormal situations (called abnormality predicates) are minimized, so that reasoning
is based on maximally normal models only. If needed, the extension of some predicates
may be fixed while abnormality predicates are minimized; in this way, such fixed predicates
retain their classical semantics. The remaining predicates, called varying predicates, may
be modified in order to make the extension of abnormality predicates smaller. When the
minimization of a predicate is in conflict with the minimization of another predicate, it is
possible to specify priorities that state which predicate should be minimized first. Circum-
scription has been already investigated as a semantics of DLs; the complexity of concept
satisfiability, subsumption checking, and instance checking has been characterized for a set
of DLs that ranges from ALC to relatively expressive DLs such as ALCIO and ALCQO
[11]. There are also decidability results for DL-liteR

bool and ALCFI [8].
This paper contributes to the literature on circumscribed DLs by investigating the

tractability of reasoning in the profiles of OWL2. The focus is on conjunctive query answer-
ing, since this may be regarded as the primary reasoning task for OWL2-QL and OWL2-RL.
To the best of our knowledge, neither OWL2 profiles nor conjunctive query answering
have been investigated in the context of Circumscribed DLs.2 The results of the tractability
analysis can be summarized as follows: either query answering is insensitive to Circum-
scription and preserves its classical semantics, or reasoning becomes intractable, and even
undecidable in some case.

The next section provides the necessary preliminaries on DLs, first-order queries, and
Circumscription. Section 3 first investigates the tractability of conjunctive queries in Cir-
cumscription. Since in many cases the answers to conjunctive queries are the same in
Circumscription and classical logic, we consider also a more expressive language, namely,
conjunctive queries with safe negation. They can detect some of the additional inferences
supported by Circumscription but, unfortunately, tractability is not preserved in any of
the cases considered here. The paper is concluded by a discussion of related work and
interesting topics for further research.

2 Preliminaries

Here we report the basics about the Description Logics (DL) needed for our work and refer
the reader to [4] for a more general treatment. The DL languages of our interest are built
from countably infinite sets of concept names (NC), role names (NR), and individual names
(NI). For brevity, individual names will be called constants, sometimes. Concepts are built
from concept names and from the concept constructors listed in Table 1. Similarly, roles
are built from role names and from the role constructors listed in Table 1. Unless stated
otherwise, we will use metavariables A, B for concept names, P for role names, C,D for
(possibly compound) concepts, R, S for roles, and a, b for individual names.

An interpretation I is a structure I = (�I , ·I) where �I is a nonempty set, and the
interpretation function ·I is such that (i) AI ⊆ �I if A ∈ NC; (ii) P I ⊆ �I × �I if
P ∈ NR; (iii) aI ∈ �I if a ∈ NI.
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Table 1 Syntax and semantics of DL constructs and axioms

Name Syntax Semantics

Concept and role constructors (the latter recognizable by the word “role” in the name)

inverse R− {(y, x) | (x, y) ∈ RI} (R ∈ NR)

role

role ¬R (�I × �I) \ RI

complement

top � �I = �I

bottom ⊥ ⊥I = ∅
intersection C � D (C � D)I = CI ∩ DI

complement ¬C (¬C)I = �I \ CI

existential ∃R.C {d ∈ �I | ∃(d, e) ∈ RI : e ∈ CI}
restriction

universal ∀R.C {d ∈ �I | ∀(d, e) ∈ RI : e ∈ CI}
restriction

number (�� n S.C)
{
x ∈ �I | #{y | (x, y) ∈ SI ∧ y ∈ CI} �� n

}
(��=≤,≥)

restrictions

nominals {a} {a}I = {aI} (a ∈ NI)

Terminological axioms I satisfies the axiom if:

GCI C � D CI ⊆ DI

equivalence C ≡ D CI = DI

role R � S RI ⊆ SI

inclusions

irreflexivity irr(R) ∀x ∈ �I , ¬R(x, x)

transitivity tran(R) ∀x, y, z ∈ �I , R(x, y) ∧ R(x, z) → R(x, z)

Concept and role assertion axioms

conc. assrt. C(a) aI ∈ CI(A ∈ NC, a ∈ NI)

role assrt. R(a, b) (a, b)I ∈ RI (P ∈ NR, a, b ∈ NI)

The third column of Table 1 shows how to extend the valuation ·I of an interpretation
I to compound DL expressions and axioms. GCI stands for “general concept inclusion”.
An interpretation I satisfies an axiom α (equivalently, I is a model of α) if I satisfies the
corresponding semantic condition in Table 1. When I satisfies α we write I |= α.

A knowledge base KB is a finite set of DL axioms. Its terminological part (or TBox) is
the set of terminological axioms in KB, while its ABox is the set of its assertion axioms
(these axiom categories are specified in Table 1).

An interpretation I is a model of KB (in symbols, I |= KB) if I satisfies all the axioms
in KB. We say that KB entails an axiom α (in symbols, KB |= α) if all the models of KB
satisfy α.

2Apparently, [10] and related conference papers deal with some of the OWL2 profiles, however the defeasible
inclusions adopted there are equivalent to inclusions of the form C �¬Ab � D [10, Remark 3.5] that are not
expressible in any profile of OWL2 unless D = ⊥.
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2.1 The description logics used in this paper

Our results concern different fragments of the constructors and axioms listed in Table 1.
ALC supports �,⊥, �, ¬, ∃, ∀, GCIs, and both types of assertions. ALCIO further sup-
ports inverse roles and nominals, while ALCQO extends ALC with number restrictions
and nominals. Both logics enjoy the finite model property, that is, all consistent knowledge
bases in these logics have a finite model.

The standard ontology language OWL2 has three tractable profiles: OWL2-EL, OWL2-
QL, and OWL2-RL.

OWL2-EL is an extension of EL⊥, that is, the DL that supports only atomic concepts
and roles, �, ⊥, �, and existential restrictions. Supported axioms are GCIs and assertions.
EL is EL⊥ without ⊥. The additional features of OWL2-EL will not be needed in this paper
because query answering is already intractable in EL.

OWL2-QL is an extension the logic DL-lite core (hereafter DL-lite , for short), that sup-
ports only inverse roles, unqualified existential restrictions of the form ∃R (an abbreviation
of ∃R.�), GCIs and assertions. Moreover, complements (¬) are allowed on the right-hand
side of GCIs. The additional features of OWL2-QL will not be needed.

OWL2-RL is equivalent to the logic RL that supports inverse roles and the following
kinds of axioms:3 assertion axioms; role axioms of the form R � R′, R � ¬R′, irr(R),
tran(R); inclusion axioms of the form CL � CR , where CL and CR – called left concepts
and right concepts, respectively4 – are specified by the following grammar, where n ∈
{0, 1}:

CL ::= A | CL � CL | CL � CL | {a} | ∃R.CL | ∃R.�
CR ::= A | CR � CR | ⊥ | ¬CL | ∃R.{a} | ∀R.CR |≤ n R.CL |≤ n R.� .

2.2 Queries

An atom is an expression of the form A(t) or P(t, u), where A ∈ NC, P ∈ NR, and t, u

are either constants in NI or variables, taken from a countably infinite set of variable names
NV. A literal is either an atom or a negated atom (called positive and negative literals,
respectively).

A conjunctive query with safe negation (CQSN for short) is a first-order formula q(x)

of the form ∃y.φ(x, y), where x and y are tuples of mutually distinct variables, φ(x, y) is a
conjunction of literals whose variables occur in x or y, and all the variables that occur in a
negative literal occur also in a positive literal (safety property).

A conjunctive query (CQ for short) is a CQSN with no occurrences of negation. A query
is ∃-free if it contains no occurrences of ∃.

The query output tuple (QOT) problem consists in deciding whether KB |= q(a) holds,
given a query q(x), a knowledge base KB, and a tuple of constants a occurring in KB, of
the same length as x.5 The data complexity of the QOT problem is measured by fixing the
TBox of KB and the query, so that only the ABox is allowed to vary.

3We omit some of the constructs listed in the specification, that can be expressed by means of the other
constructs. For simplicity, we omit also the constructs related to datatypes, that play no role in our results.
4They are called subclass expression and superclass expression in the standard specification.
5If x is empty we write q() and the QOT problem consists in checking whether KB |= ∃y.φ(y).

1158 P.A. Bonatti



2.3 Circumscription

The semantics of a knowledge base in Circumscription is specified by a circumscription
pattern, that is a tuple CP = 〈≺, M, V, F〉, where M, V, and F constitute a partition of
NC ∪ NR, and ≺ is an irreflexive and transitive priority relation on M. The predicates in M,
V, and F are called minimized, variable, and fixed, respectively. Two interpretations I and
J are F-equivalent, in symbols I ∼F J , if

�I = �J

aI = aJ , for all a ∈ NI

P I = PJ , for all P ∈ F .

Each circumscription pattern CP induces a partial order ≤CP on interpretations, such that
I ≤CP J holds iff I ∼F J and for all X ∈ M, if XI �⊆ XJ , then there exists Y ≺ X in M
such that YI ⊂ YJ .

We write I <CP J iff I ≤CP J and J �≤CP I .
Note that if ≺ is empty (i.e. there are no priorities on minimized predicates), then I ≤CP

J holds iff I ∼F J and for all X ∈ M, XI ⊆ XJ .
A model I of KB is ≤CP-minimal if there exists no other model J of KB such that

J <CP I .
If DL is a description logic, a circumscribed DL knowledge base is a pair (CP,KB),

where CP is a circumscription pattern and KB is a knowledge base in DL. A first-order
sentence φ is entailed by a circumscribed knowledge base (CP,KB) iff φ is satisfied by all
the ≤CP-minimal models of KB. In this case we write KB |=CP φ.

If Q is a class of queries, then the QOT problem for Q in circumscribed DL consists
in deciding whether KB |=CP q(a) holds, given a query q(x) ∈ Q, a circumscribed DL
knowledge base (CP,KB), and a tuple a of constants occurring in KB (of the same lenght
as x). The data complexity of this problem is defined as in the classical case. The QOT
problem for Q in circumscribed DL without priorities/variable predicates is the restriction
of the QOT problem for Q in circumscribed DL to knowledge bases whose circumscription
pattern satisfies the specified restriction.

2.3.1 Examples

We illustrate Circumscription by means of two examples adapted from [11, Sec. 2.1]. In the
first example, the knowledge to be formalized is: Mammals normally inhabitate land, but
whales – that are mammals – do not live on land. These statements can be encoded with
three inclusions:

Mammal � ¬AbMammal � ∃habitat.Land ,

Whale � Mammal ,

Whale � ¬∃habitat.Land .

Concept AbMammal is an abnormality predicate that represents the class of abnormal mam-
mals. So, the first axiom says that normal mammals live on land (and, equivalently, that
every mammal that does not live on land is an abnormal mammal). Additionally, with two
assertions, we introduce two individuals: a whale and a mammal that is not a whale:

Whale(mobydick) ,

(Mammal � ¬Whale)(pongo) .
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Let KB1 consist of the above five axioms.
The abnormality concept AbMammal shall be minimized. A reasonable circumscription

pattern for this example is

CP1 = 〈∅, {AbMammal}, {habitat, Land}, {Mammal, Whale}〉
(where AbMammal is minimized, habitat and Land can vary as AbMammal is minimized, while
Mammal and Whale retain their classical semantics).

In the following we are going to illustrate why CP1 is appropriate for this example, and
what would happen with different choices of variable and fixed predicates. For this purpose,
we will make use of the following observations. Note that for all the classical models I of
KB1, there exists a classical model J ≤CP1 I of KB1 such that pongoJ �∈ AbMammal

J .
Such J can be obtained from I by modifying habitatI and LandI , if necessary, in order
to insert pongo in ∃habitat.Land (I and J are equal in all other respects).6 Then, in all
CP1-minimal models of KB1, pongo is a normal mammal; equivalently:

KB1 |=CP1 ¬AbMammal(pongo) . (1)

Now consider the following query:

q1(x) = ∃y.habitat(x, y) ∧ Land(y) ,

This query should return the animals that live on land. We expect it to hold for x = pongo,
because it is not a whale, so the default property of living on land should apply. Indeed, (1)
and the first axiom of KB1 imply that pongo lives on land.

This inference is possible only because habitat and Land are variable predicates. For
example, there exists a classical model I of KB1 such that LandI = ∅; so if Land could
not be modified during the minimization of AbMammal, then LandJ would be empty also in
all the ≤CP-minimal models J ≤CP I , consequently pongo would not live on land (and
would belong to AbMammal even in some CP-minimal model). Similarly, if habitat were not
allowed to vary, then there would be CP-minimal models where pongo has no habitat and is
an abnormal mammal, so pongo would not be returned by q1.

The same would happen if habitat and Land were minimized like AbMammal. In this case,
in every minimally abnormal model I , either pongo is a member of AbMammal, or there exists
a pair (pongoI , d) ∈ habitatI such that d ∈ LandI . So there would be CP-minimal models
where pongo is abnormal, which is compensated by smaller extensions for habitat or Land
(or both).

Now consider concept Whale. Since it is fixed, its semantics is classical: we only know
that it contains mobydick but not pongo, and that its instances are abnormal mammals that
do not live on land. Clearly we do not want Whale to be minimized: as a result it would
become a singleton containing only mobydick – which would not model correctly the notion
of whale.

Interestingly, in this example, Whale would be a singleton also if it were a variable predi-
cate. Since all whales are abnormal mammals, the minimization of AbMammal would remove,
as a side effect, all elements from Whale with the exception of mobydick (the only individual
that is forced to be a member of Whale by an axiom).

The second example illustrates the purpose of priorities. Let us modify KB1 by intro-
ducing Willy, a whale that sings opera in theaters, so its habitat is on land7. The important

6Just pick any individual d ∈ �I and let habitatJ = habitatI ∪ {(pongoI , d)} and LandJ = LandI ∪ {d}.
7Willy is the main character of a classical cartoon produced by Walt Disney in 1946.
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feature, in this example, is that there are multiple levels of exceptions: whales are excep-
tional mammals that live in the sea, and Willy is an exceptional whale whose habitat is on
land. The new individual makes it necessary to replace the third axiom of KB1 with a weaker
version that makes it possible to override the property of whales. Accordingly, obtain KB2
from KB1 by replacing the third axiom with

Whale � ¬AbWhale � ¬∃habitat.Land

and by adding the assertions Whale(willy), habitat(willy, theater) and Land(theater). We
expect ∃habitat.Land to contain pongo and willy but not mobydick, according to the principle
of specificity, that is: the default properties of more specific classes should override those
of more generic classes (in this example, the default habitat of whales should override that
of generic mammals). In order to obtain these inferences, let

AbWhale ≺ AbMammal,

and let the circumscription pattern be

CP2 = 〈≺, {AbMammal, AbWhale}, {habitat, Land}, {Mammal, Whale}〉 .

The priority relation is essential for the above expected inferences. To see why, note that by
classical inferences every whale (including mobydick) is either a member of AbMammal or a
member of AbWhale. Without the priority relation, both choices are equally preferred (more
precisely, the resulting models are incomparable in ≤CP1 ). Then, with CP1, Circumscription
would not entail that mobydick does not live on land. On the contrary, due to the priority
relation, in all ≤CP2 -minimal models AbWhale contains only willy (that is an abnormal whale
by classical inferences) while AbMammal contains all whales but willy.

In sufficiently expressive description logics, fixed predicates can be simulated with vari-
able predicates. It suffices to add a fresh predicate X′ for each fixed predicate X (a concept
or a role). The new predicates are axiomatized simply by X′ ≡ ¬X. Then all such X and
X′ are minimized (while the sets of variable predicates in the old and new circumscrip-
tion patterns are the same). For instance, the first example would be transformed into the
circumscribed knowledge base (CP′

1,KB′
1) such that

KB′
1 =KB1 ∪ {Mammal′ ≡ ¬Mammal, Whale′ ≡ ¬Whale} ,

CP′
1 =〈∅, {AbMammal, Mammal, Mammal′, Whale, Whale′}, {habitat, Land}, ∅〉 .

The resulting circumscribed knowledge base is equivalent to the original (there is a one-
to-one correspondence between their minimally abnormal models). The reason is simple:
due to the definition of the predicates X′, every attempt at reducing the extension of X′
increases the extension of X and viceversa, so that eventually every extension of X is equally
preferred, as if X were fixed.

The profiles of OWL2 investigated in the following sections cannot express the equiv-
alences X′ ≡ ¬X (that are not Horn). Therefore we will not be able to exploit the above
method for fixed predicate elimination.

Before leaving this section, let us go back to the first example and illustrate a mild
limitation of Circumscription. Extend KB1 with Mammal � Land � ⊥. Since no axioms
state that Land should be nonempty, there exists a model I of this knowledge base where
MammalI = �I and – consequently – Land is empty (by the new axiom); in turn this
implies (by the first axiom of KB1) that all individuals are in AbMammal. The same holds
for all the models J of the knowledge base such that J ≤CP1 I (because �J = �I and
MammalJ = MammalI). It follows that I and all such J are CP1-minimal, despite their
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abnormality, because AbMammal has the same extension in all of them. Due to such interpre-
tations, for no mammal (including pongo) it can be derived that it lives on land. Informally
speaking, this example shows that Circumscription is not able to create new individuals (in
this case a land) in order to make other individuals more normal. This limitation could be
removed by making interpretations with different domains comparable; however such inter-
pretation orderings have too many infinite descending chains, that make most knowledge
bases inconsistent (CP1-minimal models almost never exist). Fortunately, the above limita-
tion of Circumscription can be handled easily, without changing semantics. If KB1 were not
a toy example, then Land would probably be axiomatized in a way that makes it nonempty
(e.g. by introducing geographic areas that are the natural habitat of specific species), and
the above problem would not arise. Anyway, if needed, Land can be made nonempty sim-
ply through a class assertion, or by means of an inclusion � � ∃R.Land, where R is a fresh
auxiliary role.

2.3.2 Similar formalisms

A recent work, related to circumscribed knowledge bases, studies query answering in
description logics with closed predicates. Similarly to database relations, closed predi-
cates contain only the instances specified in the ABox [1]. Closed predicates are akin
but not equivalent to minimized predicates. Consider a knowledge base KB with ABox
{A(a), B(a)} and TBox {A � ∃P .(A � ¬B)}. If A is closed, then this knowledge base
is inconsistent, because the extension of A contains only a, by definition. In Circumscrip-
tion, instead, if A is minimized then A contains two individuals in every minimal model
of the knowledge base. This example is an instance of a more general result, namely, if
KB has a finite (classical) model, then its circumscribed versions are consistent, too, for all
circumscription patterns:

Proposition 1 Let (CP,KB) be a circumscribed knowledge base. If KB has a finite model,
then there exists a ≤CP-minimal model of KB.

Proof Let I be a finite model of KB. Since I is finite, there are no infinite descending
≤CP-chains. The proposition immediately follows.

Corollary 2 If KB has a finite model, then for all circumscribed knowledge bases
(CP,KB),

KB |=CP � � ⊥ iff KB |= � � ⊥ .

Clearly, this is not true of knowledge bases with closed predicates. The above example
shows a knowledge base that is classically consistent, while the version with closed pred-
icates is not. It follows immediately that, in general, closed predicates cannot be defined
by means of circumscription patterns, and in particular this holds in the description logics
considered in the following section, that enjoy the finite model property.

Note that the differences between the two semantics are not confined to inconsistent
knowledge bases only. Consider a slight variation of the above example:

KB′ = {
A � ∃P .(A � ¬B), A(a), A(b), B(b)

}
.

If A and B are closed, then KB′ entails P(a, a) and P(b, a), because a is the only member
of A � ¬B. On the contrary, with Circumscription, if A and B are minimized, then none of
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the above facts is entailed, because there exists a ≤CP-minimal model I such that aI = bI ,
BI = {aI}, AI = {aI , d}, and P I = {(aI , d)}, where d is an anonymous individual. Such
I is ≤CP-minimal no matter how P is dealt with in CP (it might be mimimized, variable, or
fixed).

An approach similar to closed predicates is grounded circumscription [15, 23], that
restricts the extension of minimized predicates to denotable individuals only. The reader
may easily verify that, in the above KB, the minimization of A under grounded circum-
scription yields the same result as making A a closed predicate (i.e. the knowledge base is
inconsistent), because the extension of A may only contain a, while the TBox implies that it
should contain at least a second individual. Consequently, circumscription patterns are not
able to define grounded circumscription, either.

3 Results

In classical logic, CQ answering is tractable in OWL2-EL and OWL2-QL [13, 26]. Circum-
scription raises the complexity of CQ answering at least at the first level of the polynomial
hierarchy. We prove two versions of this claim: first we consider circumscription patterns
with variable predicates and no priorities, then circumscription patterns with priorities and
no variable predicates.

Theorem 3 The data complexity of the QOT problem for CQ in circumscribed EL and
DL-lite without priorities is coNP-hard.

Proof We prove this theorem by reducing 3-coloring (an NP-complete problem) to the com-
plement of CQ answering. The instances of 3-coloring consist of a graph G = (V ,E). A
coloring is a function c : V → {1, 2, 3} such that for all edges (i, j) ∈ E, c(i) �= c(j). The
answer to a 3-coloring instance is yes iff there exists a coloring.

We start with the reduction to CQ answering in EL. The graph is encoded with the
following ABox, where each ai represents node i ∈ V , cj represents a color (j = 1, 2, 3),
N encodes the set of nodes, P encodes the set of edges, and C the set of colors.

N(ai) (i ∈ V )

P (ai, aj ) ((i, j) ∈ E)

C(ck) (k ∈ {1, 2, 3}) .

The TBox contains only N � ∃col.C , where the role col represents the coloring. The
circumscription pattern is CP = 〈∅, M, V,∅〉 where M = {N,C} and V = {P, col}.8 The
conjunctive query below checks whether the coloring encoded by col violates the constraint
that adjacent nodes must be colored differently.

q() = ∃y1.∃y2.∃y3.N(y1) ∧ N(y2) ∧ P(y1, y2) ∧ col(y1, y3) ∧ col(y2, y3) .

Clearly this reduction can be computed in polynomial time. Note that only the ABox
depends on the problem instance, as required for data complexity. Now we have to prove
that the graph has a coloring iff KB �|=CP q(), where KB is the above knowledge base.

8P can be alternatively placed in M. However, minimized roles usually increase complexity [11].
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(Only if part) Assume that the graph has a coloring c. Construct an interpretation I as
follows:

�I = {ai | i ∈ V } ∪ {c1, c2, c3}
aI = a for all a ∈ �I

NI = {ai | i ∈ V }
CI = {c1, c2, c3}
P I = {(ai, aj ) | (i, j) ∈ E}

colI = {(ai, ck) | c(i) = k} .

We have both I |= KB and I �|= q() by construction. Thus, in order to prove that KB �|=CP

q(), we are left to prove that I is ≤CP-minimal. To this end, let J be any other model of
KB comparable with I (i.e. with the same domain and the same interpretation of individual
names). In order to satisfy the above ABox, J must satisfy AJ ⊇ AI for all A ∈ M. It
follows immediately that I ≤CP J , therefore I is ≤CP-minimal.

(If part) Assume that KB �|=CP q(). We are going to construct a coloring starting from a
witness of this assumption, that is, a ≤CP-minimal model I of KB such that I �|= q().

Claim 1: CI = {cI1 , cI2 , cI3 }.
To prove this claim, note that if CI contained any elements besides cI1 , cI2 , cI3 , then we

could find a model J <CP I of KB by removing each additional element x from CI , and
replacing all pairs (y, x) ∈ colI with (y, cI1 ).9 This contradicts the assumption that I is
≤CP-minimal, so Claim 1 is proved.

By Claim 1, the inclusion N � ∃col.C in the TBox makes sure that for all individual
names ai there exists a ck such that (aI

i , cIk ) ∈ colI (1 ≤ k ≤ 3). Choose any of such ck

and define c(i) = k. If two adjacent nodes i and j had the same color k, then the query
q() would be satisfied by I , with the variable assignment y1 = aI

i , y2 = aI
j , and y3 = cIk

(a contradiction). Therefore c is a coloring. This completes the hardness proof for EL. The
proof for DL-lite is similar. It suffices to replace the above TBox with {N � ∃col, ∃col− �
C} .10

Theorem 4 The data complexity of the QOT problem for CQ in circumscribed EL and
DL-lite without variable predicates is coNP-hard.

Proof It suffices to replace pattern CP = 〈∅, M, V,∅〉 in the proof of Theorem 3 with
CP′ = 〈≺, M′,∅, ∅〉, where M′ = M ∪ V and ≺ is M × V. Since C ≺ col, the extension of
col can be changed to minimize C, so the proof of Claim 1 is still valid.

The next theorem shows that variable predicates and priorities are essential to achieve
the above hardness results; however, without such features, Circumscription is significantly
less interesting, because in a wide range of cases it collapses to classical logic. We will need
the following relation between interpretations: Given two F-equivalent interpretations I and
J , we write I ⊆ J if

P I ⊆ PJ , for all P ∈ NC ∪ NR .

9Note that here it is essential that col be a variable predicate.
10Incidentally, the same reduction works for DL with closed predicates, see Lemma 4.1 of [17]. In general,
however, minimized and closed predicates behave differently, as shown in Section 2.3.2.
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Theorem 5 Let q(x) be an ∃-free CQ and KB be a knowledge base in ALCIO or
ALCQO. If ≺ and V are empty then, for all tuples of individual names a, KB |= q(a) iff
KB |=CP q(a) .

Proof By definition, the consequences of KB under Circumscription are valid in a subset
of the classical models of KB, so KB |= q(a) clearly implies KB |=CP q(a) . We are left
to prove the opposite implication, namely:

KB �|= q(a) implies KB �|=CP q(a) .

To this end, suppose that KB �|= q(a), and let J be a model of KB such that

J �|= q(a) . (2)

We may assume without loss of generality that J is finite.11 Then the set of J ′ ≤CP J is
finite, too, so there exists a ≤CP-minimal model I of KB such that I ≤CP J . Note that
when ≺ and V are empty, it holds that I ≤CP J implies I ⊆ J . Then, since q is positive
(hence monotonic in the interpretation), fact (2) and I ⊆ J imply I �|= q(a). Therefore I
witnesses that KB �|=CP q(a).

The significance of ∃-free queries can be appreciated by noting that SPARQL queries
are ∃-free. In OWL2-RL the above result can be extended to all conjunctive queries and
circumscription patterns.

Theorem 6 Let q(x) be a CQ and (CP,KB) be a knowledge base in RL. Then, for all
tuples of individual names a of the appropriate length, KB |= q(a) iff KB |=CP q(a) .

In order to prove this theorem we need some auxiliary notation and a lemma. Given a
nonempty set of F-equivalent interpretations S , the interpretation

⋂S is defined as follows:

�I = �J , for all J ∈ S .

aI = aJ , for all J ∈ S .

P I = ⋂
J∈S PJ , for all P ∈ NC ∪ NR .

Clearly
⋂S is F-equivalent to all the members of S by definition. Now we can for-

mulate and prove a lemma that extends a well-known property of logic programs and
Herbrand models to RL and non-Herbrand domains. Roughly speaking, the models of RL
knowledge bases are closed under intersection.

Lemma 7 Let KB be a knowledge base in RL, and let S be a nonempty set of mutually
F-equivalent (classical) models of KB. Then

⋂S |= KB.

Proof Let I = ⋂S . Clearly I ⊆ J for all J ∈ S . Moreover, I ⊆ J implies that for all
left concepts C, CI ⊆ CJ (this can be proved by a simple structural induction; the details
are left to the reader). It follows that:

Claim 1: for all J ∈ S , and for all left concepts C, CI ⊆ CJ .
Using Claim 1, it is easy to prove:

11Here we leverage the finite model property: Every counterexample to KB �|= q(a), where KB is in
ALCIO or ALCQO, can be transformed into such a J by standard filtration techniques. It is essential that
q be ∃-free, otherwise all counterexamples might be infinite.
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Claim 2: for all right concepts D and all x ∈ �I , if x �∈ DI , then there exists J ∈ S
such that x �∈ DJ .

Also this claim can be proved with a straightforward structural induction, omitted here.
Now we have to show that I |= KB. Let α be any axiom in KB. The possible cases are:

a) α is an assertion A(a). By definition of I , and since all J ∈ S satisfy α by hypothesis,
aI = aJ ∈ AJ for all such J , hence aI ∈ ⋂

J∈S AJ = AI , that is, I |= α.
b) α is an assertion P(a, b). Similarly to case a), we have I |= α.
c) α is a role inclusion R1 � R2. Let (x, y) be any member of RI

1 . By definition of I ,
and since all J ∈ S satisfy α by hypothesis, (x, y) ∈ RI

1 ⊆ RJ
1 ⊆ RJ

2 for all such J .
Then (x, y) ∈ ⋂

J∈S RJ
2 = RI

2 , which proves that I |= α.
d) α is a role inclusion R1 � ¬R2. By analogy with case c), for all J ∈ S we have:

(x, y) ∈ RI
1 ⊆ RJ

1 ⊆ �J \ RJ
2 .

Then (x, y) �∈ ⋂
J∈S RJ

2 = RI
2 , that is, (x, y) ∈ (¬R2)

I , which proves that I |= α.
e) α is of the form irr(R) or tran(R). In this case, since all J ∈ S must satisfy α by hypoth-

esis, we have that RJ is irreflexive or transitive, respectively, for all such J . Recall
that RI = ⋂

J∈S RJ and that the intersection of irreflexive or transitive relations is
irreflexive or transitive, respectively. It follows immediately that I |= α.

f) α is of the form C � D where C is a left concept and D is a right concept. Assume
that I �|= α; we shall derive a contradiction. By assumption, there exists x ∈ �I such
that: (i) x ∈ CI , and (ii) x �∈ DI . By (i) and Claim 1, x ∈ CJ for all J ∈ S . By
(ii) and Claim 2, for some J0 ∈ S , x �∈ DJ0 . But then J0 �|= α, which contradicts the
hypothesis that all members of S are models of KB.

Since I satisfies α in all cases, the Lemma is proved.

We are finally ready to prove the theorem.

Proof of Theorem 6 The left-to-right implication follows as in Theorem 5. Now we have to
prove the opposite implication, namely:

KB �|= q(a) implies KB �|=CP q(a) .

To this end, suppose that KB �|= q(a). Then there exists a model J0 of KB such that

J0 �|= q(a) . (3)

Let S be the set of all models of KB that are F-equivalent to J0, and let I = ⋂S . Since q

is positive (hence monotonic in the interpretation) and I ⊆ J0, fact (3) implies I �|= q(a).
Therefore, in order to prove that KB �|=CP q(a), it suffices to show that I is a model of
the circumscription of KB. By Lemma 7, I is a classical model of KB. So we are only
left to prove that I is ≤CP-minimal. For this purpose, let J be any model of KB such that
J ≤CP I; we shall prove that I ≤CP J . Since J is comparable to I by assumption, J
must be F-equivalent to I . Then J ∈ S . It follows, by definition of I , that I ⊆ J . This
fact, together with F-equivalence, easily implies that I ≤CP J .

When query answering in circumscribed knowledge bases collapses to classical query
answering, as in the above two results, it is interesting to consider queries with negation.
The rationale for this choice is that predicate minimization introduces nonclassical negative
consequences, and negative queries may capture such additional inferences. Unfortunately,
the increased expressiveness of CQSN leads to intractability in most cases. Rosati [28]
proved that answering CQSN in classical DL-lite is coNP-hard by using a knowledge base
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that belongs to RL, too. This knowledge base contains negation (¬) and inverse roles. In
Circumscription, the same lower complexity bound can be obtained without inverse roles,
and in the absence of ¬ and ⊥ in the knowledge base. To see this, let RL0 be the fragment
of RL where axioms are restricted to role assertions and inclusions of the form

A1 � A2 � A3 and A1 � ∃P .A2 � A3

(where Ai ∈ NC and P ∈ NR).

Theorem 8 The data complexity of the QOT problem for CQSN in circumscribed RL0
without priorities is coNP-hard.

Proof We prove the theorem by reducing 3-coloring to the complement of CQSN answer-
ing. The instances of 3-coloring (that are graphs G = (V ,E), cf. Theorem 3) are encoded as
a knowledge base KB as follows. Each node i ∈ V is encoded by a distinguished individual
ai . The ABox represents the edges with a role e, by means of the assertions:

e(ai, aj ) such that (i, j) ∈ E .

The concept names Ck (k = 1, 2, 3) represent the classes of nodes whose color is k. The
TBox makes the concepts Ck disjoint, and enforces the constraint on colorings (no adjacent
nodes should have the same color):

Ci � Cj � Empty (1 ≤ i < j ≤ 3)

Ck � ∃e.Ck � Empty (1 ≤ k ≤ 3) .

The following query checks whether the coloring uses more than three colors:

q() = ∃y.¬C1(y) ∧ ¬C2(y) ∧ ¬C3(y) .

Finally, CP = 〈∅, M, V,∅〉, where M = {Empty} and V = {e} ∪ {Ci | 1 ≤ i ≤ 3}. Note
that only the ABox depends on the instance of 3-coloring, as required for data complexity.
Clearly the above reduction can be computed in polynomial time. We are left to prove its
correctness, that is:

G has a coloring iff KB �|=CP q() .
First suppose that G has a coloring c. Define I as follows:

�I = {ai | i ∈ V }
aI
i = ai for all i ∈ V

eI = {(ai, aj ) | (i, j) ∈ E}
CI

k = {ai | c(i) = k} (1 ≤ i ≤ 3)

EmptyI = ∅ .

Clearly, by construction, I satisfies KB and I �|= q(), which proves that KB �|= q().
Moreover, I is ≤CP-minimal, since EmptyI = ∅. Consequently, KB �|=CP q() .

Conversely, suppose that KB �|=CP q(). Then there exists a ≤CP-minimal model I of
KB such that I |= ¬q().

Claim: Empty I = ∅.
The Claim follows by noting that the interpretation J obtained from I by setting

Empty J = ∅ and CJ
i = ∅ for i = 1, 2, 3, is trivially a model of KB. Therefore,

if Empty I �= ∅, then J <CP I (that is a contradiction, since I is assumed to be
≤CP-minimal). This proves the claim.
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Since ¬q() is satisfied, all the members of �I (including all aI
i ) belong to CI

1 ∪CI
2 ∪CI

3 .
Then, for all i ∈ V , we can define:

c(i) = k if aI
i ∈ CI

k (1 ≤ k ≤ 3) .

Note that c is well-defined since the concepts Ck are mutually disjoint, by the first TBox
axiom and the Claim. The second TBox axiom, the Claim, and the ABox make sure that for
all (i, j) ∈ E, c(i) �= c(j). Then c is a coloring.

Remark 9 In this case, we cannot prove a similar result without variable predicates by sim-
ulating them with priorities, as in Theorem 4. If we applied the same transformation in
Theorem 8, then the minimization of the concepts Ci would make them empty in all minimal
models of the knowledge base, so the query would always be entailed.

The last two theorems of this paper prove that negation in the queries makes query
answering undecidable in circumscribed EL and EL⊥. Only the result for EL needs
priorities. Note that answering CQSN in classical EL⊥ is known to be coNP-hard [22].

Theorem 10 The QOT problem for CQSN in circumscribed EL⊥ without priorities is
undecidable.

Proof We prove this theorem by reducing the domino problem [7] to CQSN answering.
Domino problems are structures 〈T , H, V 〉 where T is a finite set of tile types, H ⊆ T ×
T , and V ⊆ T × T . A tiling is a function τ : N

2 → T such that for all (i, j) ∈ N
2,

(τ (i, j), τ (i +1, j)) ∈ H and (τ (i, j), τ (i, j +1)) ∈ V . Deciding whether a given instance
of the domino problem has a tiling is undecidable (co-re), even if we assume that for each tile
u ∈ T there exist w and z such that (u,w) ∈ H and (u, z) ∈ V . The domino problems that
satisfy this property can be reduced to query answering in circumscribed EL⊥ as follows.
Informally speaking, we use a role t to encode the tiling, and roles h and v to connect
adjacent elements of N2 (horizontally and vertically, respectively). The set N2 is represented
by concept name N . Of course EL⊥ cannot force h and v to form a grid isomorphic to N

2;
when they fail to do so, the following SCQ is satisfied

q() = ∃y1∃y2∃y3∃y4.N(y1) ∧ N(y2) ∧ N(y3) ∧ N(y4)

∧ h(y1, y2) ∧ v(y2, y3) ∧ v(y1, y4) ∧ ¬h(y4, y3) .

Additionally, the knowledge base KB makes use of a concept name Ti for each tile type
i ∈ T , and a concept T̂ that subsumes all Ti . The ABox of KB uses individuals ai, bi , for
all i ∈ T , and contains the axioms

Ti(ai) (i ∈ T ) , (4)

in order to prevent predicate minimization from emptying Ti . The ABox contains also the
assertions

t (bi, ai) (i ∈ T ) , (5)
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in order to have at least one individual bi labeled with Ti , for each i ∈ T .12 Finally, the
ABox contains the assertion N(c), where c is a fresh individual that represents (1, 1). The
TBox of KB contains the following inclusions:

Ti � T̂ for i ∈ T (6)

N � ∃t .T̂ (every grid node is labelled with a tile) (7)

N � ∃h.N (every node has neighbors) (8)

N � ∃v.N (9)

∃t .Ti � ∃t .Tj � ⊥ for i �= j (the tiling must be well-defined) (10)

∃t .Ti � ∃h.∃t .Tj � ⊥ for (i, j) �∈ H (constraints should be satisfied) (11)

∃t .Ti � ∃v.∃t .Tj � ⊥ for (i, j) �∈ V . (12)

The circumscription pattern is CP = 〈∅, M, V,∅〉, where M contains T̂ and all Ti (i ∈ T ),
and V contains all role names and N . We have to prove that

the domino instance has a tiling iff KB �|=CP q().
First suppose that a tiling τ exists. Define an interpretation I as follows:

�I = N
2 ∪ {ai | i ∈ T } ∪ {bi | i ∈ T }

aI = a for all individuals a �= c

cI = (1, 1)

NI = N
2

T I
i = {ai}

T̂ I = ⋃
i∈T T I

i

hI = {((i, j), (i + 1, j)) | (i, j) ∈ N
2}

vI = {((i, j), (i, j + 1)) | (i, j) ∈ N
2}

tI = {((i, j), ak) | τ(i, j) = k} ∪ {(bi, ai) | i ∈ T } .

Clearly, by construction, I |= KB and I �|= q(). We are left to prove that I is ≤CP-minimal.
It suffices to note that each T I

i is the least set needed to satisfy (4), and T̂ I is the least set
needed to satisfy (6). This completes the “only if” part of the equivalence.

Conversely, suppose that KB �|=CP q(). Then there exists a ≤CP-minimal I such that
I |= KB and I �|= q().

Claim 1 T I = ⋃
i∈T T I

i .
Clearly T I ⊇ ⋃

i∈T T I
i holds by (6). Suppose the opposite inclusion does not hold.

Then the ≤CP-minimality of I is contradicted, because from I we can construct a model of
KB J <CP I as follows:

a) let NJ = {bIi | i ∈ T } and tJ = {(bIi , aI
i ) | i ∈ T };

b) let T J
i = {aI

i }, and T J = {aI
i | i ∈ T } ;

c) choose, for each tile type i ∈ T , a tile type ji such that (i, ji) ∈ H , and let

hI = {(bIi , bIji
) | i ∈ T }.

12 The individuals bi are not necessarily grid nodes. They guarantee that the TBox (6)–(12) can always be
satisfied with a suitable choice of extensions for h and v, no matter how grid nodes are labelled (of course h

and v do not necessarily form a grid). This property will be needed in the proof of Claim 1 below, see points
c) and d).
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d) choose, for each tile type i ∈ T , a tile type ki such that (i, ki) ∈ V , and let

vI = {(bIi , bIki
) | i ∈ T }.

It is easy to verify that J |= KB and J <CP I; the details are left to the reader.

Claim 2 There is a mapping μ : N2 → NI such that:

i) μ(1, 1) = cI ;
ii) (μ(i, j), μ(i + 1, j)) ∈ hI ;

iii) (μ(i, j), μ(i, j + 1)) ∈ vI .

Such a mapping must exist because the query q() is false in I , so it is possible to pick
elements from NI in such a way that hI and vI commute. It can be proved with two nested
inductions on i and j . The details are long but straightforward, and are omitted here.

We are finally ready to define a tiling from I . Let

τ(i, j) = k if μ(i, j) ∈ (∃t .Tk)
I .

This function is total, by (7) and Claim 1. It is well-defined, too, since I satisfies (10).
Moreover, since I satisfies (11) and (12), it holds that for all (i, j) ∈ N

2,
(τ (i, j), τ (i + 1, j)) ∈ H and (τ (i, j), τ (i, j + 1)) ∈ V .
Then τ is a tiling.

Theorem 11 The QOT problem for CQSN in circumscribed EL without variable predicates
is undecidable.

Proof Similar to the proof of Theorem 10; it suffices to:

i) replace ⊥ with a new top-priority, minimized concept name Empty ;
ii) simulate variable predicates with priorities, as in Theorem 4.

More precisely, pattern CP = 〈∅, M, V,∅〉 is replaced with CP′ = 〈≺, M′,∅, ∅〉, where
M′ = {Empty} ∪ M ∪ V and ≺ is ({Empty} × (M ∪ V)) ∪ (M × V).

Note that Empty ≺ X for all other predicates X in M′. In each ≤CP-minimal model I
of the resulting KB, Empty behaves exactly like ⊥, i.e. EmptyI = ∅. To see this, obtain an
interpretation J from I by setting Empty J = ∅, and specifying the extension of the other
predicates as in points a)–d) of the proof of Theorem 10. By construction, J is a model
of KB. Clearly, if Empty I �= ∅, then Empty J ⊂ Empty I , hence J <CP I . This would
contradict the minimality of I . Since Empty is equivalent to ⊥, and the predicates in V can
be modified in order to minimize those in M (by definition of ≺), the rest of the proof can
proceed exactly as in Theorem 10.

4 Conclusions and related work

Table 2 collects our results and some of the known lower bounds for classical descrip-
tion logics. Unfortunately, we have to conclude that, in general, query answering in the
circumscribed profiles of OWL2 is either intractable or uninteresting (because it collapses
to classical query answering). In this paper we focussed on lower complexity bounds
only, since the research question being investigated is whether Circumscription preserves
tractability in some profile. Tight complexity characterizations are an interesting topic for
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Table 2 Summary of old and new lower complexity bounds(∗)

EL DL-lite core RL (OWL2-RL)

Circumscription patterns with variable predicates or priorities

CQ coNP-hard coNP-hard classical

CQSN undecidable coNP-hard(1) coNP-hard(1)(2)(3)

Circumscription patterns without variable predicates and priorities

CQ classical for ∃-free queries up to classical

ALCIO and ALCQO(4)

CQSN coNP-hard in EL⊥(1) coNP-hard(1) coNP-hard(1)(2)

(*)All results hold even in the absence of fixed predicates
(1)This lower bound holds in classical logic, too [22, 28]
(2)It follows from the proof for classical DL-lite R [28], that uses a KB in RL
(3)This lower bound holds also for circumscribed RL0 without priorities
(4)SPARQL queries are ∃-free

future work. Besides that, a few interesting questions are still open. It is not known whether
CQSN answering is tractable in circumscribed EL without priorities and variable predi-
cates; currently there is only a coNP-hardness result for classical EL⊥ [22]. Moreover, it
is not yet known whether restricted classes of queries (e.g. tree-shaped, or guarded), that
have better computational properties in classical logic, are tractable in Circumscription, too.
Therefore, query answering might be tractable for some restricted classes of circumscription
patterns and queries. Another open question is whether conjunctive queries with negation
are decidable in DL-lite core.

Recall that description logics with closed predicates are akin to circumscribed knowl-
edge bases, but closed predicates, in general, cannot be defined by means of circumscription
patterns (cf. Section 2.3.2). An interesting subject for future work is the characterization of
the cases under which closed predicates can be simulated with Circumscription, in order to
extend the results of [1] to classes of circumscribed knowledge bases. Analogous consider-
ations apply to grounded circumscription (see Section 2.3.2). Conjunctive queries have not
yet been investigated in this formalism, so reductions of circumscription to grounded cir-
cumscription may extend our lower complexity bounds to the latter formalism, in particular
cases.

Another relevant line of research concerns Datalog±, that is, Datalog extended with exis-
tentially quantified variables in rule heads. Datalog± is closely related to Horn description
logics, such as the profiles of OWL2. Several works study queries and Datalog± programs
with negation, where ¬ is interpreted as negation as failure; see for example [2, 3, 12, 20,
21]. Conjunctive queries with negation over negation-free programs are particularly simi-
lar to the setting based on Circumscription investigated here. The semantics of Datalog± is
based on the Herbrand models of the program’s skolemization, with the exception of [2, 20,
24]. The available tractability results might depend precisely on the restriction to Herbrand
domains; if this conjecture were true, then it would help in understanding the complexity
sources of Circumscription (where interpretation domains are not restricted). This topic will
be the subject of future work.

Funding Open access funding provided by Università degli Studi di Napoli Federico II within the CRUI-
CARE Agreement.
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