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Abstract

We present two heuristic methods for solving the Discrete Ordered Median Prob-
lem (DOMP), for which no such approaches have been developed so far. The DOMP
generalizes classical discrete facility location problems, such as the p-median, p-center
and Uncapacitated Facility Location problems. The first procedure proposed in this
paper is based on a genetic algorithm developed by Moreno Vega [MV96] for p-median
and p-center problems. Additionally, a second heuristic approach based on the
Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen & Mladen-
ović [HM97] for the p-median problem is described. An extensive numerical study is
presented to show the efficiency of both heuristics and compare them.

Keywords: Genetic algorithms, Variable Neighborhood Search, Discrete facility loca-
tion.

1 Introduction

The Discrete Ordered Median Problem (DOMP) is a generalization of classical discrete
facility location problems. Such problems have been widely studied due to their importance
in practical applications, see for example Daskin [Das95], Drezner & Hamacher [DE02],
Mirchandani & Francis [MF90], and references therein. They typically involve a finite set
of sites at which facilities can be located, and a finite set of clients, whose demands have
to be satisfied from the facilities. Whilst numerous alternatives have been considered in
the literature, we focus on problems in which a fixed number of facilities must be located
at sites chosen among a given set of candidate sites, and in which any client can only be
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supplied from a single facility. For each client-site pair, there is a given cost for meeting
the demand of the client from a facility located at the site.

The DOMP was first introduced by Nickel [Nic01] and later investigated in more detail
by Boland et al. [BDMNP03]. The objective function of the DOMP generalizes the most
popular facility location objective functions: median, center, and centdian. For planar and
network location problems the corresponding model was studied by Puerto & Fernández
[PF95] and [PF00], Nickel & Puerto [NP99], Francis et al. [FLT00], Rodŕıguez-Ch́ıa et al.
[RCNPF00] and Kalcsics et al. [KNP03]. Several exact procedures to solve the DOMP
were proposed by Boland et al. [BDMNP03]. However, these exact methods could only
solve instances whose sizes were far from those of real-life problems.

In this paper the first two heuristic approaches to solve the DOMP are proposed. Both
procedures provide, at least, near-optimal solutions for large instances (which are close to
real-life problem sizes) in an acceptable computing time.

The first heuristic method is an Evolution Program (EP) based on genetic algorithms,
which were first introduced by Holland [Hol75] as a powerful tool to solve optimization
problems, see for example Davis [Dav87] and Goldberg [Gol89]. This procedure provides,
following an easy approach, relative good feasible solutions of the DOMP in reasonable
computing time.

The second heuristic method is based on Variable Neighborhood Search (VNS), a meta-
heuristic to solve combinatorial problems first proposed by Mladenović [Mla95] and Mlade-
nović & Hansen [MH97]. VNS is a very well-known technique often used to solve discrete
facility location problems, see e.g. Mladenović et al. [MLH00]. This method usually pro-
vides high quality solutions. Therefore, we adapt it for solving the DOMP. Results are
helpful in determining the efficiency of the first heuristic.

The remainder of the paper is organized as follows. In the next section, we present
a formal definition of the DOMP and an illustrative example. In Sections 3 and 4 we
introduce an Evolution Program (EP) and a Variable Neighborhood Search (VNS) to
solve the DOMP. A description of our random problem generator, the test problem sets,
and the obtained computational results are shown in Section 5. Finally, in Section 6 we
present our conclusions and suggestions for further research.

2 Definition of the DOMP

Let A denote a given set of m sites, and identified with the integers 1, . . . , m, i.e. A =
{1, . . . , m}. Let C = (cij)i,j=1,...,m be a given non-negative m ×m cost matrix, where cij

denotes the cost of satisfying the demand of client i from a facility located at site j. As
is customary in discrete location problems, we assume without loss of generality that the
number of candidate sites is identical to the number of clients. Let p ≤ m be the number
of facilities to be located at the candidate sites. Since we assume no capacity constraint, a
solution to the location problem is given by a set X ⊆ A of p sites, i.e. |X| = p. In such a
solution, each client i will be served by a facility located at the site j of X with the lowest
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cost for satisfying his demand, i.e.

cij = ci(X) := min
k∈X

cik. (1)

What distinguishes the DOMP from a usual single-supplier uncapacitated facility lo-
cation problem is its objective function. In order to calculate this function, the costs for
supplying clients, c1(X), . . . , cm(X), are sorted in non-decreasing order. We define σX to
be a permutation on {1, . . . , m} for which the inequalities

cσX(1)(X) ≤ cσX(2)(X) ≤ · · · ≤ cσX(m)(X)

hold. Then, the objective applies a linear cost factor, with coefficient λi ≥ 0, to the ith
lowest cost of supplying a client, cσX(i)(X), for each i = 1, . . . , m. Let Λ = (λ1, . . . , λm)
with λi ≥ 0, i = 1, . . . , m. The Discrete Ordered Median Problem (DOMP) is defined as

min
X⊆A , |X|=p

m∑

i=1

λi cσX(i)(X) .

For different choices of Λ we obtain different types of objective functions. To see
that the DOMP objective generalizes well-known location objectives, note that taking
Λ = (1, 1, . . . , 1) yields the p-median problem; taking Λ = (0, 0, . . . , 0, 1) gives the p-center
problem; taking Λ = (µ, µ, . . . , µ, 1) for 0 < µ < 1 leads to the µ-centdian problem, with
a convex combination of the median and the center objective functions; finally taking
Λ = (0, . . . , 0, 1, . . . , 1), where the first m − k entries are zero and the last k entries are
one, leads to the k-centra problem of minimizing the average cost of the k most expensive
clients. Other objectives may also be of practical interest. One example is to take Λ =
(0, . . . , 0, 1, . . . , 1, 0, . . . , 0), where the first k1 and last k2 entries are zero, and the middle
m − k1 − k2 entries are one: this leads to a problem in which the k1 lowest costs and the
k2 highest costs are disregarded and the average of the middle part, the so-called k1 + k2-
trimmed mean, which is a robust statistic, is minimized. Another example would be to
take Λ = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1), where the first k1 entries are one, the next m−k1−k2

entries are zero, and the last k2 entries are one: this leads to the problem of minimizing
the sum of the k1 lowest costs and the k2 highest costs; the corresponding DOMP searches
for a set of p facilities minimizing the average cost for the clients which are very close and
very far away. Hence, classical location problems can easily be modelled. Moreover, new
meaningful objective functions are easily derived, as shown above. An example presented
by Nickel [Nic01] shows the sensitivity of the objective function on the optimal location of
the new facilities.

Observe that DOMP belongs to the class of NP-hard problems, since it is a generaliza-
tion of the p-median problem, which is NP-hard, see Kariv & Hakimi [KH79].
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2.1 An Illustrative Example

Consider a DOMP with m = 5, p = 2, and the cost matrix

C =





0 4 5 3 3
5 0 6 2 2
7 2 0 5 6
7 4 3 0 5
1 3 2 4 0




.

Let us show how the objective function value for the case Λ = (0, 0, 1, 1, 0) (i.e. the
2+1 trimmed mean problem) is calculated. The optimal solution is formed by the facilities
(1,4). Therefore, the demand of facilities 1 and 5 is satisfied by facility 1 while the demand
of the remaining facilities is satisfied by facility 4. As a result, the associated cost vector is
(0, 2, 5, 0, 1). Thus, the sorted cost vector is (0, 0, 1, 2, 5) and the optimal objective function
value is equal to 0× 0 + 0× 0 + 1× 1 + 1× 2 + 0× 5 = 3.

In the following section, we describe our evolution program for solving the DOMP.

3 An Evolution Program for the DOMP

The Evolution Program (EP) proposed to solve the DOMP is essentially based on a genetic
algorithm developed by Moreno Vega [MV96] for p-median and p-center problems. First,
it should be noted that both of these problems can be solved as particular cases of the
DOMP. Second, the feasible solutions of these problems and those of the DOMP have a
similar structure. These are the reasons to adapt the procedure of [MV96] to our problem.
In addition, evolution strategies are used to improve the performance of the EP in each
iteration.

In the next section we introduce some general concepts of genetic algorithms which are
necessary to present our EP.

3.1 Genetic Algorithms

Genetic algorithms use a vocabulary taken from natural genetics. We talk about indi-
viduals in a population, in the literature these individuals are also called chromosomes.
A chromosome is divided by units - genes, see Dawkins [Daw89]. These genes contain
information about one or several characters.

The evolution in genetic algorithms can be implemented by two processes which mimic
nature: natural selection and genetic change in the chromosomes or individuals. Natural
selection consists of selecting those individuals that are better adapted to the environment,
i.e. those who survive. Genetic changes (produced by genetic operators) can occur either
when there exists a crossover between two individuals or when an individual undergoes a
kind of mutation. The crossover transformation creates new individuals by combining parts
from several (two or more) individuals. The mutations are unary transformations which
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create new individuals by a small change in a single individual. After some generations
the procedure converges - it is expected that the best individual represents a near-optimal
(reasonable) solution.

In addition, several extensions of genetic algorithms have been developed (evolutionary
algorithms, evolution algorithms and evolutive algorithms). These extensions mainly con-
sist of using new data structures for representing the population members and including
different types of genetic operators and natural selection, see Michalewicz [Mic96].

In the next section we introduce an EP to solve the DOMP.

3.2 Evolution Program

Classical genetic algorithms use a binary codification to define the chromosomes. But
sometimes this representation is very difficult to handle and therefore, some authors decided
not to use it, see Davis [Dav91] and Michalewicz [Mic96]. Genetic algorithms, which use
codifications different from the binary one and genetic operators adapted to these particular
codifications, are called evolution programs (see Michalewicz [Mic96]). In the following we
will use a non-binary representation scheme for the individuals of the population.

An EP is a probabilistic algorithm which maintains a population of H individuals,
P (t) = {xt

1, . . . , x
t
H} in each iteration t. Each individual stands for a potential solution to

the problem at hand, and is represented by some data structure. Some members of the
population undergo transformations (alteration step) by means of genetic operators to form
new solutions. Each solution is evaluated to give some measure of its “fitness”. Then, a new
population (iteration t + 1) is formed by selecting the fittest individuals (selection step).
The program finishes after a fixed number of iterations where the best individual of the
last population is considered as the approximative solution of the problem. We present a
scheme of an EP as follows:

procedure evolution program

t← 0
initialize P (t)
while (not termination-condition) do

modify P (t)
evaluate P (t)
t← t + 1
generate P (t) from P (t− 1)

end while

An EP for a particular problem must have the following six components (see Michalewicz
[Mic96]):

� a genetic representation of potential solutions of the problem,

� a way to create an initial population of potential solutions,
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� an evaluation function that plays the role of the environment, rating solutions in
terms of their “fitness”,

� genetic operators (crossover and mutation) that alter the composition of children,

� a selection criterion that determines the survival of every individual, allowing an
individual to survive or not in the next iteration,

� values for various parameters that the genetic algorithm uses (population size, prob-
abilities of applying genetic operators, number of generations, etc.).

All these components will be described in the following sections. First of all, we intro-
duce a codification in order to have an appropriate representation of the individuals, that
is, of the feasible solutions of the DOMP.

3.2.1 Codification of the Individuals

Taking into account that the set of existing facilities is finite, we can assume that it is
indexed (see Section 2). Thus, the feasible solutions of a discrete facility location problem
can be represented by an m-dimensional binary vector with exactly p entries equal to 1,
see Hosage & Goodchild [HG86] and Jaramillo et al. [JBB02]. An i-th entry with value 1
means that facility i is open, the value 0 means that it is closed. The advantage of this
codification is that the classical genetic operators (see Michalewicz [Mic96]) can be used.
The disadvantages are that these operators do not generate, in general, feasible solutions
and that the m − p positions containing a zero also use memory while not providing any
additional information.

Obviously, the classical binary codification can be used for the DOMP. But the disad-
vantage of the inefficiently used memory is especially clear for examples with p� m. For
this reason, we represent the individuals as p-dimensional vectors containing the indices
of the open facilities, as Moreno Pérez et al. [MPRGMV94] and Moreno Vega [MV96]
proposed for the p-median and p-center problems, respectively. In addition, the entries
of each vector (individual) are sorted in increasing order. The sorting is to assure that
under the same conditions the crossover operator, to be defined in Section 3.2.4, always
yields the same children solutions, see Moreno Vega [MV96]. We illustrate this represen-
tation of the individuals with a small example: if m = 7 and p = 5, the feasible solution
X = (0, 1, 0, 1, 1, 1, 1) is codified as (2, 4, 5, 6, 7).

To start on evolution, an initial population is necessary. The process to generate this
population is described in the following subsection.

3.2.2 Initial Population

Two kinds of initial populations were considered. The first one is completely randomly
generated (denoted by random P (0)). The individuals of the second one (denoted by
greedy P (0)) are all but one randomly generated, while the last one is a greedy solution
of the DOMP. The number of individuals of the population in every generation, denoted
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by H , is constant. In this way, the population random P (0) is made up of H randomly
generated individuals, and the greedy P (0) of H − 1 randomly generated and one solution
of the DOMP constructed with the Greedy Algorithm.

A greedy solution of the DOMP is obtained as follows: the first chosen facility is the one
that minimizes the ordered median objective function assuming that we are interested in
the 1-facility case. After that, at every step we choose the facility with minimal objective
function value, taking into account the facilities already selected. This procedure ends
after exactly p facilities have been chosen.

Each individual of the population has an associated “fitness” value. In the following
subsection the evaluation function that defines the “fitness” measure is described.

3.2.3 Evaluation Function

In order to solve the DOMP using an EP, the “fitness” of an individual is determined by
its corresponding ordered median function value. Therefore, an individual will be better
adapted to the environment than another one if and only if it yields a smaller ordered
median function value. Thus, the best adapted individual of a population will be one that
provides the minimal objective function value of the DOMP among all the individuals of
this population.

3.2.4 Genetic Operators

The genetic operators presented in this section are replicas of the classical crossover and
mutation operators, see Hosage & Goodchild [HG86]. These operators are adapted to the
used codification (see Section 3.2.1) and they always provide feasible solutions, i.e. vectors
of size p in which all entries are different. There are two of them:

� Crossover Operator

In order to present the crossover operator we define the breaking position as the
component where the two parent individuals break to generate two children. The
crossover operator interchanges the indices placed on the right-hand side of the break-
ing position (randomly obtained). When the breaking position has been generated,
the output of this operator depends only on the two parent individuals, i.e. their
crossing always provides the same children. This is possible because of the sorting
in the individual codification, as we mentioned in Section 3.2.1. Moreover, to ensure
the feasibility during the crossing procedure, the indices of the parent individuals
that should be interchanged (i.e. those indices which are common for both parent
individuals) are marked. Observe that feasibility of an individual will be lost if it
contains the same index more than once.

The breaking position is randomly chosen. The indices placed to the right-hand side
of the breaking position are called cross positions. Then the children are obtained as
follows:

7



1. both parents are compared, the indices presented in both vectors are marked;

2. the non-marked indices are sorted (in increasing order) and moved to the left;

3. the indices of the transformed parents that lie on the right-hand side of the
breaking position are interchanged;

4. the marks are eliminated and both children codifications are sorted.

� Mutation Operator

The mutation operator is defined as the classical one derived for the binary codifi-
cation but guaranteeing the feasibility of the solution: interchange one index of the
individual with another not presented in the individual. After the interchange the
indices of the new individual are sorted.

These two operators are illustrated in the following example.

Example 3.1 Assume that there are seven sites and five new facilities should be open, i.e.
m = 7 and p = 5. Let us consider two feasible solutions: (2, 4, 5, 6, 7) and (1, 2, 3, 5, 6).

Assume that the breaking position is 1. Then:

parents marks sorted non-marked interchange children
indices

(2, 4, 5, 6, 7) (2∗, 4, 5∗, 6∗, 7) (4, 7, 2∗, 5∗, 6∗) (4, 3, 2, 5, 6) (2, 3, 4, 5, 6)
(1, 2, 3, 5, 6) (1, 2∗, 3, 5∗, 6∗) (1, 3, 2∗, 5∗, 6∗) (1, 7, 2, 5, 6) (1, 2, 5, 6, 7)

A mutation of the feasible solution (2, 4, 5, 6, 7) can be originated by the interchange
between any index of this individual and an index of the set {1, 3}. Then, the indices of
the new individual are sorted.

A constant probability for all individuals along all iterations is associated to each genetic
operator (crossover and mutation). The determination of this probability is based on
empirical results, as shown in Subsection 3.2.6.

After the generation of the children, a selection criterion is applied to mimic the nat-
ural selection in genetics. This selection depends on the evaluation function (“fitness”)
presented in Subsection 3.2.3. Our selection criterion is described in the following subsec-
tion.

3.2.5 Selection Criterion

Our first idea was to use the same selection criterion as Moreno Vega [MV96]. This criterion
is based on a probability function associated to each individual and depends on its “fitness”.
But empirically we could observe that by simply taking the H best individuals (i.e. those
with minimal objective function value) at each iteration, the results were even better.

In our algorithm we use evolution strategies in order to ensure a kind of convergence
in each generation, i.e. to avoid that the new population be worse than the original one,
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see Bäck et al. [BHS91] and Schwefel [Sch81]. Hence, we include in the original population
all the children generated by crossover and all the mutated individuals. Obviously, the
number of individuals in the population after these transformations is normally larger
than H . Thus, the selection criterion consists of dropping the worst individuals (i.e. those
individuals with the largest objective function values) until the population contains again
exactly H individuals. Clearly, this selection criterion ensures that the population size is
constant at each iteration.

This method of replacing the population is called incremental replacement, since the
child solutions will replace “less fit” members of the population, see Jaramillo et al. [JBB02].
Figure 1 illustrates one of the advantages of this method. After a few generations (100),
we obtain a population containing a set of different good solutions all of them at most a
modest percentage away from the best solution (1.79%). Figure 1 shows the best and the
worst solution found at each generation as well as the optimal solution.
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Figure 1: Evolution of the population

The behaviour of a genetic algorithm depends very much on the choice of a number of
parameter values, as will be shown in the following subsection.

3.2.6 Parameter Values

One of the most difficult tasks in order to obtain an efficient genetic algorithm is the
determination of good parameters. In our case, some of them were chosen a priori such as
the population size, H = 25, and the total number of iterations, 1000.

We now describe the experiments performed in order to set the probabilities of crossover
and mutation operators for the individuals. We distinguish two cases depending on the
selected initial population, i.e. considering or not a greedy solution of the DOMP, see Sec-
tion 3.2.2. To be able to compare the different values of probabilities, we always used the
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same seed for the random number generator. In this way, the solutions of the different
problems depend only on the values of the parameters but not on the random character.

We considered two instances with m = 30 and p = 10 and solved them for eight different
types of Λ (in total 16 examples were tested).

• T1: Λ = (1, . . . , 1), vector corresponding to the p-median problem.

• T2: Λ = (0, . . . , 0, 1), vector corresponding to the p-center problem.

• T3: Λ = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
k

), vector corresponding to the k-centra problem, where

k = �m
3
	 = 10.

• T4: Λ = (0, . . . , 0︸ ︷︷ ︸
k1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
k2

), vector corresponding to the k1 + k2-trimmed

mean problem, where k1 = p + 
m
10
� = 13 and k2 = 
m

10
� = 3.

• T5: Λ = (0, 1, 0, 1, . . . , 0, 1, 0, 1).

• T6: Λ = (1, 0, 1, 0, . . . , 1, 0, 1, 0).

• T7: Λ = (0, 1, 1, 0, 1, 1, . . . , 0, 1, 1, 0, 1, 1).

• T8: Λ = (0, 0, 1, 0, 0, 1, . . . , 0, 0, 1, 0, 0, 1).

Based on preliminary tests, we decided to select different values for the probabilities
of mutation (0.05, 0.075, 0.1, 0.125) and crossover (0.1, 0.3, 0.5). Then we compared the
gap between the optimal solution and that one given by the genetic algorithm, initialized
either by random P (0) or greedy P (0):

gap =
zheu − z∗

z∗
× 100, (2)

with z∗ denoting the optimal objective function value and zheu denoting the objective func-
tion value of the best solution obtained by the evolution program. The optimal solutions
were determined using the exact procedure based on a branch-and-bound (B&B) method
presented in Boland et al. [BDMNP03]. Table 1 summarizes the computational results
obtained for the different probabilities.
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EP random P (0) EP greedy P (0)
probabilities gap(%) gap(%)
mut cross aver min max aver min max
0.05 0.1 5.05 0.00 25.00 4.50 0.00 22.22
0.05 0.3 3.35 0.00 22.00 6.06 0.00 25.00
0.05 0.5 7.98 0.00 66.67 11.63 0.00 100.00
0.075 0.1 1.85 0.00 11.11 3.89 0.00 12.50
0.075 0.3 2.54 0.00 16.89 4.66 0.00 12.50
0.075 0.5 4.27 0.00 25.00 5.14 0.00 22.22
0.1 0.1 1.49 0.00 12.50 3.11 0.00 10.71
0.1 0.3 6.15 0.00 22.22 5.14 0.00 25.00
0.1 0.5 4.28 0.00 22.22 4.36 0.00 12.50

0.125 0.1 1.49 0.00 12.50 2.89 0.00 10.71
0.125 0.3 5.31 0.00 25.00 6.06 0.00 25.00
0.125 0.5 6.32 0.00 25.00 4.33 0.00 12.50

Table 1: Computational results obtained by using different values for the probabilities of
mutation and crossover.

Based on the results presented in Table 1, we decided to fix the probability of mutation
equal to 0.125 and the crossover probability equal to 0.1 for the EP initialized by both
types of populations (random P (0) and greedy P (0)). Note that even though the averaged
performance of random P (0), for the selected probability values, is better than that of
greedy P (0) (see corresponding row in Table 1), there are cases for which greedy P (0)
yields much better results (as Table 2 shows). That is, the behaviour of both procedures
can be seen as complementary.
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EP random P (0) EP greedy P (0)
Problem optimal best gap best gap

Type value found (%) found (%)
T1 81 81 0.00 88 8.64
T2 9 9 0.00 9 0.00
T3 61 61 0.00 61 0.00

example 1 T4 44 44 0.00 47 6.82
T5 43 43 0.00 46 6.98
T6 36 36 0.00 37 2.78
T7 56 56 0.00 62 10.71
T8 29 29 0.00 32 10.34
T1 78 78 0.00 78 0.00
T2 8 9 12.50 8 0.00
T3 54 54 0.00 54 0.00

example 2 T4 46 46 0.00 46 0.00
T5 41 42 2.44 41 0.00
T6 36 36 0.00 36 0.00
T7 55 58 5.45 55 0.00
T8 28 29 3.57 28 0.00

Table 2: Computational results corresponding to the EP initialized either by random P (0)
or greedy P (0).

Therefore, from the computational results given by Table 2, we propose to solve the
DOMP by running the EP twice, once initialized by random P (0) and once more initialized
by greedy P (0), and taking the best solution found. An extensive numerical study is
presented in Section 5.

In the following section a second heuristic algorithm to solve the DOMP is developed.

4 A Variable Neighborhood Search for the DOMP

Our second heuristic procedure to solve the DOMP is based on the Variable Neighborhood
Search (VNS) proposed by Hansen & Mladenović [HM97] for the p-median problem. As
mentioned above p-median is a particular case of DOMP. Moreover, their objective func-
tions are often close, which was the main reason to adapt the approach of [HM97] to our
problem. However, computation of the objective function value is much harder for DOMP
than for p-median. Indeed, a major difficulty is to compute the variation between the
objective function values when an interchange between two facilities is performed. We are
forced to update and sort the whole cost vector after this interchange takes place. For the
p-median problem updating the value of the objective function can be done step by step.
As a consequence, the complexity of our procedure is significantly higher.
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In the following section we present a modified fast interchange algorithm, which is
essential to describe the VNS developed to solve the DOMP.

4.1 An Implementation of the Modified Fast Interchange Heuris-
tic

In this section we present an implementation of the basic move of many heuristics, i.e. an
interchange (or a change of location for one facility). This procedure is based on the fast
interchange heuristic proposed by Whitaker [Whi83] and implemented by, among others,
Hansen & Mladenović [HM97] for the p-median problem. Two ingredients are incorporated
in the interchange heuristic: move evaluation, where a best removal of a facility is found
when the facility to be added is known; and updating the first and the second closest facility
for each client.

Moreover, the variation of the ordered objective function value is computed after each
interchange in move.

Thus using this interchange only from a random initial solution gives a fairly good
heuristic. Results are even better with an initial solution obtained with the Greedy Algo-
rithm.

In the description of the heuristic we use the following notation:

� d1(i): index of the closest facility with respect to client i, for each i = 1, . . . , m;

� d2(i): index of the second closest facility with respect to client i, for each i = 1, . . . , m;

� c(i, j): cost of satisfying the total demand of client i from facility j, for each i, j =
1, . . . , m;

� xcur(i) for each i = 1, . . . , p: current solution (new facilities);

� costcur: current cost vector;

� fcur: current objective function value;

� goin: index of facility to be inserted in the current solution;

� goout: index of facility to be deleted from the current solution;

� g∗: change in the objective function value obtained by the best interchange;

In the following four subsections we describe components of our second heuristic for
DOMP.

4.1.1 Initial Solution

Our heuristic is initialized with a solution constructed with the Greedy Algorithm, as done
for the EP in Section 3.2.2.

The move evaluation is presented in the following section.
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4.1.2 Move Evaluation

In the next procedure called Modified Move, the change in the objective function g∗ is
evaluated when the facility that is added (denoted by goin) to the current solution is
known, while the best one to go out (denoted by goout) is to be found.

Algorithm Modified Move (d1, d2, C, Λ, xcur, costcur, fcur, goin, m, p, g∗, goout∗)
Initialization

Set g∗ ←∞
Best deletion

for goout = xcur(1) to xcur(p) do
Set costnew ← costcur

for each client i (i = 1, . . . , m) do
if d1(i) = goout then

costnew(i)← min{c(i, goin), c(i, d2(i))}
else

if c(i, goin) < c(i, d1(i)) then
costnew(i)← c(i, goin)

end if
end if

end for
Find the corresponding objective function value fnew

g ← fnew − fcur

if g < g∗ then
g∗ ← g and goout∗ ← goout

end if
end for

Using algorithm Modified Move, each potential facility belonging to the current solution
can be removed, i.e. be the facility goout. Furthermore, for each site we have to compute
the objective function value corresponding to the new current solution for which facility
goout is deleted and goin is inserted. Therefore, a new cost vector has to be sorted, as
shown in Section 2, which leads to a complexity of O(m log m) for each of the p values of
goout. Thus, the number of operations needed for this algorithm is O(pm log m).

4.1.3 Updating First and Second Closest Facilities

In the Modified Move procedure both the closest (denoted by d1(i)) and the second closest
facility (denoted by d2(i)) for each client i must be known in advance. Among formal
variables in the description of algorithm Modified Update that follows, arrays d1 and d2
are both input and output variables. In this way, for each site i, if either d1(i) or d2(i)
is removed from the current solution, we update their values. Furthermore, the current
cost vector is also updated, being an input and an output variable too. This is what
distinguishes this procedure from the update approach presented in [HM97].
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Algorithm Modified Update (C, goin, goout, m, p, d1, d2, cost)

for each site i (i = 1, . . . , m) do
(* For clients whose closest facility is deleted, find a new one *)
if d1(i) = goout then

if c(i, goin) ≤ c(i, d2(i)) then
d1(i)← goin
cost(i)← c(i, goin)

else
d1(i)← d2(i);
cost(i)← c(i, d2(i));
(* Find second closest facility for client i *)
find l∗ where c(i, l) is minimum (for l = 1, . . . , p, l 
= d1(i));
d2(i)← l∗

end if
else

if c(i, d1(i)) > c(i, goin) then
d2(i)← d1(i) and d1(i)← goin
cost(i)← c(i, goin)

else
if c(i, goin) < c(i, d2(i)) then

d2(i)← goin
else

if d2(i) = goout then
find l∗ where c(i, l) is minimum (for l = 1, . . . , p, l 
= d1(i));
d2(i)← l∗

end if
end if

end if
end if

end for

The worst case complexity of the procedure Modified Update is O(m(p− 1)) = O(mp)
as the index d2(i) of the second closest facility must be recomputed without any additional
information if it changes.

4.1.4 Modified Fast Interchange Heuristic

Our modified fast interchange algorithm, that uses procedures Modified Move and Modified
Update described before, is as follows:
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Initialization

Let xopt be an initial solution;
find the corresponding cost vector costopt and objective function value fopt;
find closest and second closest facilities for each client i = 1, . . . , m, i.e. find
arrays d1 and d2;

Iteration step

Set g∗ ←∞
for goin = xopt(p + 1) to xopt(m) do

(* Add facility goin in the solution and find the best deletion *)
Run procedure

Modified Move (d1, d2, C, Λ, xopt, costopt, fopt, goin, m, p, g, goout);
(* Keep the best pair of facilities to be interchanged *)
if g < g∗ then

g∗ ← g, goin∗ ← goin, goout∗ ← goout
end if

end for

Termination

if g∗ ≥ 0 then
Stop (* If no improvement in the neighborhood, Stop *)

end if

Updating step

(* Update objective function value *)
fopt ← fopt + g∗

Update xopt: interchange position of xopt(goout∗) with xopt(goin∗)
(* Update closest, second closest facilities and cost vector *)
Run procedure Modified Update (C, goin∗, goout∗, m, p, d1, d2, costopt);
Return to Iteration step

The complexity of one iteration of this algorithm is O((m−p)pm log m) = O(pm2 log m).
This follows from the fact that procedure Modified Move is used m−p times, its complexity
is O(pm log m) and the complexity of Modified Update is O(mp).

In the following section we present a heuristic based on VNS that solves the DOMP
using our modified fast interchange algorithm.

4.2 Variable Neighborhood Search

The basic idea of VNS is to implement a systematic change of neighborhood within a local
search algorithm, see Hansen & Mladenović [HM01a], [HM01b] and [HM01c]. Exploration
of these neighborhoods can be done in two ways. The first one consists of systematically
exploring the smallest neighborhoods, i.e. those closest to the current solution, until a better
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solution is found. The second one consists in partially exploring the largest neighborhoods,
i.e. those far from the current solution, by drawing a solution at random from them and
beginning a (variable neighborhood) local search from there. The algorithm remains in
the same solution until a better solution is found and then jumps there. We rank the
neighborhoods to be explored in such a way that they are increasingly far from the current
solution. We may view VNS as a way of escaping local optima, i.e. a ”shaking” process,
where movement to a neighborhood further from the current solution corresponds to a
harder shake. In contrast to random restart, VNS allows a controlled increase in the level
of the shake.

As in Hansen & Mladenović [HM97] let us denote by S = {s : s = set of p potential
locations of the new facilities} a solution space of the problem. We say that the distance
between two potential solutions s1 and s2 (s1, s2 ∈ S) is equal to k, if and only if they
differ in k locations. Since S is a set of sets of equal cardinality, a (symmetric) distance
function ρ can be defined as

ρ(s1, s2) = |s1 \ s2| = |s2 \ s1|, ∀s1, s2 ∈ S. (3)

It can easily be checked that ρ is a metric function in S, thus S is a metric space. As in
[HM97], the neighborhoods structures are induced by metric ρ, i.e. k locations of facilities
(k ≤ p) from the current solution are replaced by k others. We denote by Nk, k =
1, . . . , kmax (kmax ≤ p) the set of such neighborhood structures and by Nk(s) the set of
solutions forming neighborhood Nk of a current solution s. More formally

s1 ∈ Nk(s2)⇔ ρ(s1, s2) = k. (4)

Note that the cardinality of Nk(s) is

|Nk(s)| =
(

p

k

)(
m− p

k

)

since k out of p facilities are dropped and k out of m − p added into the solution. This
number first increases then decreases with k.

Note also that sets Nk(s) are disjoint, and their union, together with s, is S.
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We now present our VNS algorithm for the DOMP as pseudo-code:

Initialization

Find arrays xopt, d1 and d2, costopt and fopt as initialization of Modified Fast
Interchange;
the set of neighborhood structures Nk, k = 1, . . . , kmax is induced by distance
function ρ (see (3) and (4));
copy initial solution into the current one, i.e. copy xopt, d1, d2, costopt and fopt

into xcur, d1cur, d2cur, costcur and fcur, respectively.
Choose stopping condition

Main step

k ← 1;
Until (k = kmax) or (stopping condition is met), repeat the following steps:

Shaking operator

(* Generate a solution at random from the kth neighborhood, Nk *)
for j = 1 to k do

Take facility to be inserted goin at random;
Find facility to be deleted goout by using procedure

Modified Move (d1, d2, C, Λ, xcur, costcur, fcur, goin, m, p, g, goout);
Find d1cur, d2cur and costcur for such interchange, i.e. run subroutine

Modified Update(C, goin∗, goout∗, m, p, d1cur, d2cur, costcur);
Update xcur and fcur accordingly;

end for

Local Search

Apply algorithm Modified Fast Interchange (without Initialization step),
with xcur, fcur, costcur, d1cur and d2cur as input and output values;

Move or not

if fcur < fopt then
(* Save current solution to be incumbent; return to N1 *)
fopt ← fcur; xopt ← xcur; d1 ← d1cur; d2 ← d2cur; costopt ← costcur;
and set k ← 1;

else
(* Current solution is the incumbent; change the neighborhood *)
fcur ← fopt; xcur ← xopt; d1cur ← d1; d2cur ← d2; costcur ← costopt;
and set k ← k + 1;

end if

In Shaking operator step the incumbent solution xopt is perturbed in such a way that
ρ(xcur, xopt) = k. Nevertheless this step does not guarantee that xcur belongs to Nk(xopt)
due to randomize of the choice of goin and possible reinsertion of the same facility after it
has left. Then xcur is used as initial solution for Modified Fast Interchange in Local Search
step. If a better solution than xopt is obtained, we move there and start again with small
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perturbations of this new best solution, i.e. k ← 1. Otherwise, we increase the distance
between xopt and the new randomly generated point, i.e. we set k ← k + 1. If k reaches
kmax (this parameter can be chosen equal to p), we return to Main step, i.e. the main
step can be iterated until some other stopping condition is met (e.g. maximum number of
iterations, maximum CPU time allowed, or maximum number of iterations between two
improvements). Note that the point xcur is generated at random in Shaking operator step
in order to avoid cycling which might occur if any deterministic rule were used.

In the following section computational results are reported which show the efficiency of
these two heuristic approaches.

5 Computational Results

In order to test our heuristic procedures we considered two groups of experiments. The
instances belonging to the first group have been randomly generated with different com-
binations of the number of existing facilities, the number of new facilities, and the Λ-
vectors. The second group of experiments consists of p-median problems (whose optimal
solutions are provided by Beasley [Bea85]) and k1 + k2-trimmed mean problems using
the data publicly available electronically from http://mscmga.ms.ic.ac.uk/info.html, see
Beasley [Bea90]. The first group of experiments allows investigating the behaviour of our
heuristic approaches with different types of Λ. The second one helps in determining their
capability to solve large problems.

In the following sections we describe in an exhaustive way these two groups of exper-
iments and the corresponding computational results. All test problems were solved using
a Pentium III 800 Mhz with 1 GB RAM.

5.1 Numerical experiments with different parameter combina-
tions

The first group of experimental data was designed considering four different values for
the number of sites, m = 15, 18, 25, 30, four values for the number of new facilities, p =

m

4
�, 
m

3
�, 
m

2
�, 
m

2
� + 1, and eight different Λ-vectors, see Section 3.2.6. In total, 1920

problems were solved by both heuristic approaches (4 different values of m × 4 values of p
× 8 values of Λ × 15 instances randomly generated for each combination of m, p and Λ).

As mentioned in Subsection 3.2.6, we ran the evolution program twice (with ran-
dom P (0) and greedy P (0)). The solution of the evolution program is the best obtained
by both procedures. Obviously, computation time increases with size but nevertheless
it is worthwhile due to the difficulty of solving the problem with a B&B method (see
Boland et al. [BDMNP03]) and the quality of the solution obtained.

In order to compare the solutions given by the EP and the VNS with the optimal ones,
the instances known from the literature have been used. These problems are of small size
(m = 15, 18, 25, 30). The gap between the optimal solution and that one obtained by each
heuristic algorithm is computed according to (2) with z∗ denoting the optimal objective
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function value and zheu denoting the objective function value of the best solution provided
by the heuristic procedure.

Tables 3 and 4 show computational results for instances with m = 30, given by the
EP and the VNS, respectively. In each row we present a summary of the outcomes for 15
replications of each combination (Λ, p). Each row reports information about the frequency
that the optimal solution is reached, gap between the optimal solution and that provided
by the corresponding heuristic approach and computing time.

Evolution program B&B
Example #opt. gap (%) CPU(s) CPU(s)
Λ p found aver min max aver min max aver min max
T1 8 11 2.45 0.00 21.78 22.57 22.30 22.88 167.19 40.92 408.73

10 10 1.34 0.00 7.04 25.42 25.09 26.41 303.11 21.75 762.08
15 11 0.87 0.00 5.00 32.25 31.97 32.67 274.74 28.03 562.25
16 14 0.25 0.00 3.70 33.71 33.48 34.25 198.65 41.19 417.09

T2 8 10 7.79 0.00 55.56 22.46 22.03 22.73 13.54 2.14 44.19
10 10 7.08 0.00 42.86 25.19 24.91 25.50 6.39 1.06 16.59
15 12 4.44 0.00 25.00 32.16 31.81 32.45 4.81 0.00 14.84
16 12 6.11 0.00 33.33 33.74 33.38 34.08 5.03 0.09 14.23

T3 8 11 1.09 0.00 7.92 22.35 22.16 22.69 86.44 39.11 197.08
10 12 0.33 0.00 1.85 25.06 24.92 25.16 117.02 25.20 370.39
15 11 0.88 0.00 3.70 31.99 31.72 32.27 125.19 15.36 246.95
16 15 0.00 0.00 0.00 33.43 33.13 33.77 99.51 21.83 217.92

T4 8 12 0.37 0.00 2.47 22.36 22.14 22.72 56.37 5.06 125.25
10 11 0.94 0.00 8.11 25.13 24.91 25.33 154.46 2.31 476.23
15 15 0.00 0.00 0.00 32.04 31.80 32.22 649.56 20.81 1457.81
16 15 0.00 0.00 0.00 33.43 33.22 33.78 498.32 42.88 1460.81

T5 8 11 1.00 0.00 5.88 22.41 22.17 22.73 160.75 45.42 332.02
10 9 1.52 0.00 5.26 25.22 24.84 25.75 242.00 25.72 601.64
15 14 0.83 0.00 12.50 32.20 31.63 32.81 209.68 15.55 502.16
16 12 1.66 0.00 10.00 33.60 33.05 34.33 106.49 18.88 239.69

T6 8 10 1.30 0.00 9.52 22.54 22.25 22.83 131.82 15.64 272.22
10 9 1.36 0.00 5.41 25.40 25.09 25.97 253.11 12.58 561.84
15 14 0.39 0.00 5.88 32.38 31.97 32.91 327.44 26.34 777.64
16 14 0.56 0.00 8.33 33.75 33.36 34.28 311.89 19.88 792.27

T7 8 8 1.66 0.00 4.94 22.53 22.33 22.72 170.57 40.69 368.23
10 13 0.26 0.00 1.96 25.38 25.06 25.70 269.65 15.44 712.63
15 12 1.08 0.00 8.00 32.41 32.02 33.41 179.30 12.47 442.06
16 15 0.00 0.00 0.00 33.89 33.59 34.25 142.95 29.02 313.39

T8 8 10 2.83 0.00 21.05 22.60 22.33 23.30 151.38 38.84 328.09
10 9 1.98 0.00 11.54 25.38 25.03 25.80 188.97 11.33 503.84
15 14 0.44 0.00 6.67 32.39 31.98 32.69 101.19 0.91 436.17
16 14 0.61 0.00 9.09 33.87 33.44 34.19 76.59 18.30 173.09

cont.
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Evolution program B&B
Example #opt. gap (%) CPU(s) CPU(s)
Λ p found aver min max aver min max aver min max

Table 3: Computational results obtained for instances with m = 30 using the EP.

From Table 3 we can observe that the average gap over all instances is 1.61%. Moreover,
in many cases, the optimal objective function value is reached, even for problems of type
T2 (for which at least 60% of the 15 instances for each parameter combination were solved
optimally). In average, the optimal solution is reached in 79.17% of the instances with
m = 30. In addition, the required computing time is, in general (except for problems
of type T2), shorter than that needed by the exact procedure. Observe that the average
computing time required by the EP is 28.41 seconds, much shorter than 180.75 seconds
given by the specific B&B method for the same instances.

Var. Neigh. Search B&B
Example #opt. gap (%) CPU(s) CPU(s)
Λ p found aver min max aver min max aver min max
T1 8 10 2.13 0.00 11.86 0.31 0.20 0.47 167.19 40.92 408.73

10 14 0.08 0.00 1.20 0.44 0.31 0.69 303.11 21.75 762.08
15 13 0.39 0.00 3.13 0.71 0.52 0.86 274.74 28.03 562.25
16 15 0.00 0.00 0.00 0.79 0.64 1.36 198.65 41.19 417.09

T2 8 5 14.74 0.00 55.56 0.30 0.11 0.50 13.54 2.14 44.19
10 10 8.89 0.00 71.43 0.43 0.20 1.00 6.39 1.06 16.59
15 12 5.78 0.00 50.00 0.60 0.38 1.05 4.81 0.00 14.84
16 11 9.44 0.00 50.00 0.56 0.39 0.91 5.03 0.09 14.23

T3 8 9 2.61 0.00 11.29 0.27 0.22 0.41 86.44 39.11 197.08
10 10 1.62 0.00 9.80 0.44 0.31 0.67 117.02 25.20 370.39
15 14 0.19 0.00 2.78 0.76 0.52 1.06 125.19 15.36 246.95
16 15 0.00 0.00 0.00 0.76 0.63 1.11 99.51 21.83 217.92

T4 8 13 0.28 0.00 2.47 0.27 0.19 0.38 56.37 5.06 125.25
10 13 1.07 0.00 8.11 0.40 0.25 0.61 154.46 2.31 476.23
15 15 0.00 0.00 0.00 0.60 0.42 0.78 649.56 20.81 1457.81
16 15 0.00 0.00 0.00 0.62 0.45 0.78 498.32 42.88 1460.81

T5 8 8 2.61 0.00 8.00 0.29 0.20 0.47 160.75 45.42 332.02
10 13 0.50 0.00 5.26 0.46 0.33 0.80 242.00 25.72 601.64
15 15 0.00 0.00 0.00 0.64 0.48 0.73 209.68 15.55 502.16
16 15 0.00 0.00 0.00 0.75 0.64 0.89 106.49 18.88 239.69

cont.

21



Var. Neigh. Search B&B
Example #opt. gap (%) CPU(s) CPU(s)
Λ p found aver min max aver min max aver min max
T6 8 13 0.60 0.00 6.67 0.32 0.19 0.56 131.82 15.64 272.22

10 13 0.56 0.00 5.26 0.41 0.31 0.69 253.11 12.58 561.84
15 15 0.00 0.00 0.00 0.70 0.47 1.17 327.44 26.34 777.64
16 14 0.56 0.00 8.33 0.70 0.48 1.20 311.89 19.88 792.27

T7 8 9 1.50 0.00 7.46 0.26 0.20 0.41 170.57 40.69 368.23
10 14 0.11 0.00 1.67 0.41 0.31 0.58 269.65 15.44 712.63
15 14 0.32 0.00 4.76 0.73 0.50 1.11 179.30 12.47 442.06
16 15 0.00 0.00 0.00 0.75 0.53 1.14 142.95 29.02 313.39

T8 8 10 1.46 0.00 7.69 0.28 0.19 0.41 151.38 38.84 328.09
10 11 1.27 0.00 7.69 0.44 0.31 0.72 188.97 11.33 503.84
15 15 0.00 0.00 0.00 0.73 0.45 1.06 101.19 0.91 436.17
16 13 1.96 0.00 22.22 0.65 0.44 0.89 76.59 18.30 173.09

Table 4: Computational results obtained for instances with m = 30 using the VNS.

From Table 4 we can notice that the average gap provided by the VNS, 1.83%, over all
instances is slightly higher than that given by the EP, 1.61%. Nevertheless, the optimal
objective function is reached in 83.54% of the instances. In addition, the average computing
time, 0.52 seconds, is much shorter than that required by the EP (28.41 seconds), and
therefore, shorter than that given by the B&B algorithm (180.75 seconds).

It should be mentioned that the performance of both procedures on problems of type
T2 (i.e. p-center problems) is rather poor, since the gap obtained is relatively large. How-
ever, the quality of the solution given by the EP for problems of type T2 is superior
than that provided by the VNS. We point out that the new formulation proposed by
Elloumi et al. [ELP01] specifically developed for the p-center problem yields results con-
siderably better than EP.

To compare both heuristic procedures on examples close to real-life problems, instances
of larger size (m = 100) have been generated and solved. The structure of these examples
is similar to that presented for instances with m = 30, i.e. with four different values of
p, eight of Λ, and 15 replications for each combination (p, Λ). The optimal solutions of
these instances are not available, therefore, we can only compare the results given by both
heuristic approaches. To this aim, we compute the relation between the solution given by
the EP and that provided by the VNS, as follows

ratio =
zEP

zVNS

, (5)

with zEP denoting the objective function value of the best solution obtained by the evolution
program and zVNS denoting the objective function value of the solution obtained by the
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variable neighborhood search. Therefore,

ratio






> 1 if VNS provides a solution better than that given by EP
= 1 if VNS and EP provide the same solution
< 1 if VNS provides a solution worse than that given by EP

(6)

Figure 2 shows a summary of the results obtained among the 480 test problems.
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Figure 2: Comparison between the solutions given by EP and VNS for problems with
m = 100.

From Figure 2 we can conclude that the quality of the solution provided by the VNS
is usually superior to that given by the EP. Furthermore, the computing time required by
VNS (63.22 seconds, in average) is also shorter than that required by EP (105.45 seconds,
in average).

In the following section we investigate the behaviour of both heuristic approaches for
solving large p-median and k1 + k2-trimmed mean problems.

5.2 Additional Tests for Large Problems

The exact procedures presented in the literature (Nickel [Nic01], Boland et al. [BDMNP03])
are not appropriate for solving large instances of the DOMP. Therefore, we call upon the
existing data often used in the literature for p-median, see Beasley [Bea90]. In addition,
these data have been used to solve the k1 + k2-trimmed mean problem. To this aim we
have set k1 = p + 
m

10
� and k2 = 
m

10
�.

The second group of experiments consists in solving p-median and k1 + k2-trimmed
mean problems for 40 large instances. We denote these instances by pmed1,..., pmed40.
The data are available from http://mscmga.ms.ic.ac.uk/info.html. Exhaustive information
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about how these problems were generated can be found in Beasley [Bea85]. The number
of existing facilities, m, in these instances varies from 100 to 900 in steps of 100, and the
number of new facilities, p, takes values equal to 5, 10, m

10
, m

5
and m

3
or, depending on the

case, rounded to the nearest integer.
The optimal solutions of the p-median problems are given by Beasley [Bea85], but those

according to the k1 + k2-trimmed mean problems are not available.
Therefore, using the first type of problems (p-median problems) we estimate the effi-

ciency of our heuristic approaches comparing their results with the optimal solutions. The
second type of problems allow pointing out the capability of these approaches to provide
solutions for large instances of new facility location problems (such as the k1 +k2-trimmed
mean problem) in a reasonable computing time.

5.2.1 Large p-Median Problems

For solving large p-median problems, as before, the EP is run twice (once initialized with
random P (0) and once more with greedy P (0)) and the best solution obtained by both
procedures is taken.

Due to the large increase in computing time required by VNS, a stopping condition was
necessary. After some preliminary tests, the maximum number of iterations allowed was
fixed to 50.

Figure 3 shows the behaviour of the VNS against the required computing time (in
seconds) on instance pmed9 when the p-median problem is solved.
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Figure 3: Behaviour of the VNS heuristic when solving the pmed9 instance of the p-median
problem.

From Figure 3 we conclude that convergence of the VNS is very fast. After 18 seconds
(in the first iteration) the solution is much improved (from 2838 to 2754, i.e. reducing the
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gap from 3.80% to 0.73%). Nevertheless, the VNS stops after 48 iterations, with a solution
equal to 2747 (and a gap equal to 0.48%) but requiring almost 615 seconds.

We observed similar behaviour for other instances, which require much more time (some
of them have been solved after fifty iterations requiring more than eight hours). For this
reason, the maximum number of iterations for solving large p-median problems was fixed
to 5 instead of 50.

Computational results for large p-median problems are shown in Table 5.

Evolution Program Var. Neigh. Search
Problem optimal best gap CPU best gap CPU
Name m p value found (%) (s) found (%) (s)
pmed1 100 5 5819 5819 0.00 25.42 5819 0.00 1.19
pmed2 10 4093 4093 0.00 37.55 4093 0.00 2.97
pmed3 10 4250 4250 0.00 37.88 4250 0.00 3.00
pmed4 20 3034 3046 0.40 61.48 3046 0.40 5.98
pmed5 33 1355 1361 0.44 93.22 1358 0.22 6.81
pmed6 200 5 7824 7824 0.00 36.25 7824 0.00 7.95
pmed7 10 5631 5645 0.25 55.39 5639 0.14 12.72
pmed8 20 4445 4465 0.45 91.81 4457 0.27 21.05
pmed9 40 2734 2762 1.02 170.25 2753 0.69 41.98
pmed10 67 1255 1277 1.75 290.53 1259 0.32 72.22
pmed11 300 5 7696 7696 0.00 47.98 7696 0.00 12.52
pmed12 10 6634 6634 0.00 75.63 6634 0.00 26.02
pmed13 30 4374 4432 1.33 193.22 4374 0.00 87.92
pmed14 60 2968 2997 0.98 359.58 2969 0.03 241.95
pmed15 100 1729 1749 1.16 580.98 1739 0.58 363.39
pmed16 400 5 8162 8183 0.26 56.89 8162 0.00 24.36
pmed17 10 6999 6999 0.00 95.08 6999 0.00 47.30
pmed18 40 4809 4880 1.48 320.38 4811 0.04 275.69
pmed19 80 2845 2891 1.62 604.36 2864 0.67 469.30
pmed20 133 1789 1832 2.40 963.44 1790 0.06 915.17
pmed21 500 5 9138 9138 0.00 70.14 9138 0.00 27.39
pmed22 10 8579 8669 1.05 116.59 8669 1.05 64.25
pmed23 50 4619 4651 0.69 486.08 4619 0.00 443.23
pmed24 100 2961 3009 1.62 924.66 2967 0.20 1382.84
pmed25 167 1828 1890 3.39 1484.13 1841 0.71 2297.25
pmed26 600 5 9917 9919 0.02 84.34 9917 0.00 48.45
pmed27 10 8307 8330 0.28 136.53 8310 0.04 127.63
pmed28 60 4498 4573 1.67 673.30 4508 0.22 965.48
pmed29 120 3033 3099 2.18 1268.89 3036 0.10 2758.56
pmed30 200 1989 2036 2.36 2043.33 2009 1.01 3002.34

cont.
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Evolution Program Var. Neigh. Search
Problem optimal best gap CPU best gap CPU
Name m p value found (%) (s) found (%) (s)

pmed31 700 5 10086 10086 0.00 92.67 10086 0.00 56.02
pmed32 10 9297 9319 0.24 156.50 9301 0.04 165.27
pmed33 70 4700 4781 1.72 894.19 4705 0.11 2311.03
pmed34 140 3013 3100 2.89 1762.69 3024 0.37 5384.19
pmed35 800 5 10400 10400 0.00 109.86 10400 0.00 88.50
pmed36 10 9934 9947 0.13 182.06 9934 0.00 200.97
pmed37 80 5057 5126 1.36 1190.25 5066 0.18 2830.30
pmed38 900 5 11060 11060 0.00 120.14 11060 0.00 150.53
pmed39 10 9423 9423 0.00 207.75 9423 0.00 200.73
pmed40 90 5128 5188 1.17 1492.59 5141 0.25 4774.38

Table 5: Computational results for large p-median problems (Beasley [Bea85]).

By analysing this table we conclude that the average gap does not reach 1% for both
heuristic procedures, being 0.86% for the EP and only 0.19% for the VNS. Moreover, the
optimal objective function value is obtained 12 and 17 times, among the 40 test problems,
for the EP and the VNS, respectively. Therefore, both approaches perform well on large
p-median problems, the quality of the VNS being better. However, for both methods there
is a tradeoff between quality of the solution and computing time required to obtain this
solution: the average time is equal to 442.35 seconds for the EP and 747.97 seconds for
the VNS. Notice that the maximal computing time required by the EP does not exceed 35
minutes, and that required by the VNS reaches almost 90 minutes.

Observe that the quality of the solutions provided by our VNS (0.19%, in average) is
comparable with the one (0.18%, in average) given by the method specifically developed for
p-median by Hansen et al. [HMPB01]. Nevertheless, as expected, computing time required
by our VNS developed for the DOMP is larger than that provided in [HMPB01].

5.2.2 Large k1 + k2-Trimmed Mean Problems

As above, to solve large k1 + k2-trimmed mean problems, the best solution obtained after
running twice the EP (once initialized with random P (0) and once more with greedy P (0))
is taken.

Furthermore, as before, a stopping condition based on fixing a maximum number of
iterations was considered. Again we could observe that the VNS converged very fast
when solving k1 + k2-trimmed mean problems and again, computing time required for 50
iterations was too long. Therefore, the maximum number of iterations for solving large
k1 + k2-trimmed mean problems was fixed to 5 instead to 50.

Computational results obtained for such problems are shown in Table 6. Since the op-
timal solutions are not available, this table reports information about the relation between
both heuristic approaches (see (5)).
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Evolution Program Var. Neigh. Search Ratio
Problem best CPU best CPU EP/
Name m p found (s) found (s) VNS
pmed1 100 5 4523 25.20 4523 1.27 1.000
pmed2 10 2993 36.98 2987 3.80 1.002
pmed3 10 3067 36.91 3074 2.80 0.998
pmed4 20 2153 60.80 2142 6.98 1.005
pmed5 33 829 92.08 818 8.22 1.013
pmed6 200 5 6064 35.52 6079 7.88 0.998
pmed7 10 4225 54.17 4206 13.41 1.005
pmed8 20 3248 91.95 3182 28.30 1.021
pmed9 40 1831 167.61 1816 66.39 1.008
pmed10 67 849 274.09 829 75.91 1.024
pmed11 300 5 5979 47.75 5979 13.30 1.000
pmed12 10 5021 73.83 5021 25.86 1.000
pmed13 30 3175 183.25 3133 97.80 1.013
pmed14 60 2027 346.42 1957 303.64 1.036
pmed15 100 1181 549.67 1133 415.80 1.042
pmed16 400 5 6341 56.06 6341 24.13 1.000
pmed17 10 5440 89.30 5413 43.83 1.005
pmed18 40 3463 309.50 3443 261.86 1.006
pmed19 80 1973 618.88 1933 779.77 1.021
pmed20 133 1191 1000.41 1152 1108.48 1.034
pmed21 500 5 7245 71.69 7245 24.22 1.000
pmed22 10 6749 117.88 6722 58.58 1.004
pmed23 50 3379 461.50 3306 639.95 1.022
pmed24 100 2068 888.27 2005 1455.81 1.031
pmed25 167 1198 1524.86 1151 2552.02 1.041
pmed26 600 5 7789 87.30 7787 48.11 1.000
pmed27 10 6481 141.97 6444 141.70 1.006
pmed28 60 3304 687.42 3210 1113.89 1.029
pmed29 120 2087 1249.78 2006 3178.69 1.040
pmed30 200 1359 1976.77 1308 4942.75 1.039
pmed31 700 5 8047 90.81 8046 66.16 1.000
pmed32 10 7318 148.77 7280 162.97 1.005
pmed33 70 3463 857.47 3413 2377.72 1.015
pmed34 140 2083 1624.61 2023 5657.56 1.030
pmed35 800 5 8191 102.58 8191 72.58 1.000
pmed36 10 7840 170.38 7820 201.64 1.003
pmed37 80 3684 1086.13 3604 3170.70 1.022
pmed38 900 5 8768 111.61 8720 140.84 1.006
pmed39 10 7398 189.19 7360 313.03 1.005
pmed40 90 3768 1372.98 3718 5422.73 1.013

cont.
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Evolution Program Var. Neigh. Search Ratio
Problem best CPU best CPU EP/
Name m p found (s) found (s) VNS

Table 6: Computational results for large k1 + k2-trimmed mean problems
(Beasley [Bea85]).

From Table 6 we can observe that after a reasonable computing time the EP and the
VNS solve large k1 +k2-trimmed mean problems. The computing time required by the EP
(427.81 seconds, in average) is much shorter than that needed by the VNS (875.78 seconds,
in average). Nevertheless, in all but two cases the VNS provides a better solution than EP.

6 Conclusions and Further Research

This paper presents the first heuristic techniques, based on genetic algorithms and variable
neighborhood search, to solve the DOMP. For problems with a relatively small size, the
proposed heuristic approaches perform very well with respect to both computing time
and solution quality. For large p-median problems the solution quality is good but the
computing time highly increases. However, the results of both procedures are poor for
p-center problems, already for small instances and the same may be expected for larger
ones.

It should be stressed that our procedures are not intended to compete against ap-
proaches specifically developed for p-median and p-center problems. Obviously, such meth-
ods take advantage of the structure of these particular problems. Rather, we reach a good
performance on more general types of problems.

The presented evolution program performed very well on the majority of the test prob-
lems. However, some parameter values such as the size of the population and the number
of generations should be adjusted for large problems. Note that Alander [Ala92] suggests
that a value between p and 2p should be used as population size, therefore a population of
25 individuals can be too small for large examples. Moreover, the incremental replacement
method produces excessive copies of a solution, especially for large instances. Therefore, we
should not allow too many duplicate solutions at each generation, since it limits the ability
of the approach to generate new solutions, see Jaramillo et al. [JBB02]. Nevertheless, we
could obtain good results at least when solving large p-median problems.

The computing time required by the variable neighborhood search for problems with
large size increases considerably. Therefore, we propose to find new stopping conditions
(e.g. maximum CPU time allowed, or maximum number of iterations between two im-
provements) in order to reduce the very large computing time without compromising too
much the quality of the solution. Furthermore, different methods to determine the best
interchange for a current solution without enumerating all the possibilities could be very
interesting for further research.
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Finally, it should be remarked that the DOMP generalizes classical facility location
problems. Therefore, these heuristic approaches are able to provide solutions for problems
not yet investigated in the literature (for example for k1 + k2-trimmed mean problems).
We plan to investigate specialized heuristic procedures for some of these models as future
research.
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[MLH00] N. Mladenović, M. Labbé, and P. Hansen. Solving the p-center problem
by tabu search and variable neighborhood search. A preliminary version is
available at http://smg.ulb.ac.be/Preprints/Labbe00 20.html. To appear
in Networks, 2000.
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1.  D. Hietel, K. Steiner, J. Struckmeier

A Finite - Volume Particle Method for 
Compressible Flows

We derive a new class of particle methods for con-
 ser va tion laws, which are based on numerical fl ux 
functions to model the in ter ac tions between moving 
particles. The der i va tion is similar to that of classical 
Finite-Volume meth ods; except that the fi xed grid 
structure in the Fi nite-Volume method is sub sti tut ed 
by so-called mass pack ets of par ti cles. We give some 
numerical results on a shock wave solution for Burgers 
equation as well as the well-known one-dimensional 
shock tube problem.
(19 pages, 1998)

2.  M. Feldmann, S. Seibold

Damage Diagnosis of Rotors: Application 
of  Hilbert Transform and Multi-Hypothe-
sis Testing

In this paper, a combined approach to damage diag-
nosis of rotors is proposed. The intention is to employ 
signal-based as well as model-based procedures for an 
im proved detection of size and location of the damage. 
In a fi rst step, Hilbert transform signal processing tech-
 niques allow for a computation of the signal envelope 
and the in stan ta neous frequency, so that various types 
of non-linearities due to a damage may be identifi ed 
and clas si fi ed based on measured response data. In a 
second step, a multi-hypothesis bank of Kalman Filters 
is employed for the detection of the size and location 
of the damage based on the information of the type 
of damage pro vid ed by the results of the Hilbert trans-
form. 
Keywords: Hilbert transform, damage diagnosis, Kal-
man fi ltering, non-linear dynamics
(23 pages, 1998)

3.  Y. Ben-Haim, S. Seibold

Robust Reliability of Diagnostic Multi-
Hypothesis Algorithms: Application to 
Rotating Machinery

Damage diagnosis based on a bank of Kalman fi l-
ters, each one conditioned on a specifi c hypothesized 
system condition, is a well recognized and powerful 
diagnostic tool. This multi-hypothesis approach can 
be applied to a wide range of damage conditions. In 
this paper, we will focus on the diagnosis of cracks in 
rotating machinery. The question we address is: how to 
optimize the multi-hypothesis algorithm with respect 
to the uncertainty of the spatial form and location of 
cracks and their re sult ing dynamic effects. First, we 
formulate a measure of the re li abil i ty of the diagnos-
tic algorithm, and then we dis cuss modifi cations of 
the diagnostic algorithm for the max i mi za tion of the 
reliability. The reliability of a di ag nos tic al go rithm is 
measured by the amount of un cer tain ty con sis tent with 
no-failure of the diagnosis. Un cer tain ty is quan ti ta tive ly 
represented with convex models. 
Keywords: Robust reliability, convex models, Kalman 
fi l ter ing, multi-hypothesis diagnosis, rotating machinery, 
crack di ag no sis
(24 pages, 1998)

4.  F.-Th. Lentes, N. Siedow

Three-dimensional Radiative Heat Transfer 
in Glass Cooling Processes

For the numerical simulation of 3D radiative heat trans-
 fer in glasses and glass melts, practically applicable 
math e mat i cal methods are needed to handle such 
prob lems optimal using workstation class computers. 
Since the ex act solution would require super-computer 
ca pa bil i ties we concentrate on approximate solu-
tions with a high degree of accuracy. The following 
approaches are stud ied: 3D diffusion approximations 
and 3D ray-tracing meth ods. 
(23 pages, 1998)

5.  A. Klar, R. Wegener

A hierarchy of models for multilane 
vehicular traffi c 
Part I: Modeling

In the present paper multilane models for vehicular 
traffi c are considered. A mi cro scop ic multilane model 
based on reaction thresholds is developed. Based on 
this mod el an Enskog like kinetic model is developed. 
In particular, care is taken to incorporate the correla-
tions between the ve hi cles. From the kinetic model a 
fl uid dynamic model is de rived. The macroscopic coef-
fi cients are de duced from the underlying kinetic model. 
Numerical simulations are presented for all three levels 
of description in [10]. More over, a comparison of the 
results is given there.
(23 pages, 1998)

Part II: Numerical and stochastic 
investigations

In this paper the work presented in [6] is continued. 
The present paper contains detailed numerical inves-
tigations of the models developed there. A numerical 
method to treat the kinetic equations obtained in [6] 
are presented and results of the simulations are shown. 
Moreover, the stochastic correlation model used in [6] 
is described and investigated in more detail.
(17 pages, 1998)

6.  A. Klar, N. Siedow

Boundary Layers and Domain De com po s-
i tion for Radiative Heat Transfer and Dif fu -
sion Equa tions: Applications to Glass Man u -
fac tur ing Processes

In this paper domain decomposition methods for 
ra di a tive transfer problems including conductive heat 
transfer are treated. The paper focuses on semi-trans-
parent ma te ri als, like glass, and the associated condi-
tions at the interface between the materials. Using 
asymptotic anal y sis we derive conditions for the cou-
pling of the radiative transfer equations and a diffusion 
approximation. Several test cases are treated and a 
problem appearing in glass manufacturing processes is 
computed. The results clearly show the advantages of a 
domain decomposition ap proach. Accuracy equivalent 
to the solution of the global radiative transfer solu-
tion is achieved, whereas com pu ta tion time is strongly 
reduced.
(24 pages, 1998)

7.  I. Choquet

Heterogeneous catalysis modelling and 
numerical simulation in rarifi ed gas fl ows
Part I: Coverage locally at equilibrium 

A new approach is proposed to model and simulate 
nu mer i cal ly heterogeneous catalysis in rarefi ed gas 
fl ows. It is developed to satisfy all together the follow-
ing points: 
1) describe the gas phase at the microscopic scale, as 
required in rarefi ed fl ows, 
2) describe the wall at the macroscopic scale, to avoid 
prohibitive computational costs and consider not only 
crystalline but also amorphous surfaces, 
3) reproduce on average macroscopic laws correlated 
with experimental results and 
4) derive analytic models in a systematic and exact 
way. The problem is stated in the general framework 
of a non static fl ow in the vicinity of a catalytic and 
non porous surface (without aging). It is shown that 
the exact and systematic resolution method based 
on the Laplace trans form, introduced previously by 
the author to model col li sions in the gas phase, can 
be extended to the present problem. The proposed 
approach is applied to the mod el ling of the Eley Rideal 
and Langmuir Hinshel wood re com bi na tions, assuming 
that the coverage is locally at equilibrium. The models 
are developed con sid er ing one atomic species and 
extended to the general case of sev er al atomic species. 
Numerical calculations show that the models derived in 
this way reproduce with accuracy be hav iors observed 
experimentally.
(24 pages, 1998)

8.  J. Ohser, B. Steinbach, C. Lang

Effi cient Texture Analysis of Binary Images

A new method of determining some characteristics 
of binary images is proposed based on a special linear 
fi l ter ing. This technique enables the estimation of the 
area fraction, the specifi c line length, and the specifi c 
integral of curvature. Furthermore, the specifi c length 
of the total projection is obtained, which gives detailed 
information about the texture of the image. The 
in fl u ence of lateral and directional resolution depend-
ing on the size of the applied fi lter mask is discussed in 
detail. The technique includes a method of increasing 
di rec tion al resolution for texture analysis while keeping 
lateral resolution as high as possible.
(17 pages, 1998)

9.  J. Orlik

Homogenization for viscoelasticity of the 
integral type with aging and shrinkage

A multi phase composite with periodic distributed 
in clu sions with a smooth boundary is considered in this 
con tri bu tion. The composite component materials are 
sup posed to be linear viscoelastic and aging (of the 
non convolution integral type, for which the Laplace 
trans form with respect to time is not effectively ap pli -
ca ble) and are subjected to isotropic shrinkage. The 
free shrinkage deformation can be considered as a fi cti-
tious temperature deformation in the behavior law. The 
pro ce dure presented in this paper proposes a way to 
de ter mine average (effective homogenized) viscoelastic 
and shrinkage (temperature) composite properties and 
the homogenized stress fi eld from known properties 
of the components. This is done by the extension of 
the as ymp tot ic homogenization technique known for 
pure elastic non homogeneous bodies to the non homo-
geneous thermo viscoelasticity of the integral non con-



volution type. Up to now, the homogenization theory 
has not covered viscoelasticity of the integral type.
Sanchez Palencia (1980), Francfort & Suquet (1987) (see 
[2], [9]) have considered homogenization for vis coelas -
tic i ty of the differential form and only up to the fi rst 
de riv a tive order. The integral modeled viscoelasticity 
is more general then the differential one and includes 
almost all known differential models. The homogeni-
zation pro ce dure is based on the construction of an 
asymptotic so lu tion with respect to a period of the 
composite struc ture. This reduces the original problem 
to some auxiliary bound ary value problems of elastic-
ity and viscoelasticity on the unit periodic cell, of the 
same type as the original non-homogeneous problem. 
The existence and unique ness results for such problems 
were obtained for kernels satisfying some constrain 
conditions. This is done by the extension of the Volterra 
integral operator theory to the Volterra operators with 
respect to the time, whose 1 ker nels are space linear 
operators for any fi xed time vari ables. Some ideas of 
such approach were proposed in [11] and [12], where 
the Volterra operators with kernels depending addi-
tionally on parameter were considered. This manuscript 
delivers results of the same nature for the case of the 
space operator kernels.
(20 pages, 1998)

10.  J. Mohring

Helmholtz Resonators with Large Aperture

The lowest resonant frequency of a cavity resona-
tor is usually approximated by the clas si cal Helmholtz 
formula. However, if the opening is rather large and 
the front wall is narrow this formula is no longer valid. 
Here we present a correction which is of third or der 
in the ratio of the di am e ters of aperture and cavity. In 
addition to the high accuracy it allows to estimate the 
damping due to ra di a tion. The result is found by apply-
ing the method of matched asymptotic expansions. The 
correction contains form factors de scrib ing the shapes 
of opening and cavity. They are computed for a num-
ber of standard ge om e tries. Results are compared with 
nu mer i cal computations.
(21 pages, 1998)

11.  H. W. Hamacher, A. Schöbel

On Center Cycles in Grid Graphs

Finding “good” cycles in graphs is a problem of great 
in ter est in graph theory as well as in locational analy-
sis. We show that the center and median problems are 
NP hard in general graphs. This result holds both for 
the vari able cardinality case (i.e. all cycles of the graph 
are con sid ered) and the fi xed cardinality case (i.e. only 
cycles with a given cardinality p are feasible). Hence 
it is of in ter est to investigate special cases where the 
problem is solvable in polynomial time. In grid graphs, 
the variable cardinality case is, for in stance, trivially 
solvable if the shape of the cycle can be chosen freely. 
If the shape is fi xed to be a rectangle one can ana-
lyze rectangles in grid graphs with, in sequence, fi xed 
di men sion, fi xed car di nal i ty, and vari able cardinality. 
In all cases a complete char ac ter iza tion of the optimal 
cycles and closed form ex pres sions of the optimal 
ob jec tive values are given, yielding polynomial time 
algorithms for all cas es of center rect an gle prob lems. 
Finally, it is shown that center cycles can be chosen as 
rectangles for small car di nal i ties such that the center 
cy cle problem in grid graphs is in these cases com-
 plete ly solved.
(15 pages, 1998)

12.  H. W. Hamacher, K.-H. Küfer

Inverse radiation therapy planning - 
a multiple objective optimisation ap proach

For some decades radiation therapy has been proved 
successful in cancer treatment. It is the major task of 
clin i cal radiation treatment planning to realize on the 
one hand a high level dose of radiation in the cancer 
tissue in order to obtain maximum tumor control. On 
the other hand it is obvious that it is absolutely neces-
sary to keep in the tissue outside the tumor, particularly 
in organs at risk, the unavoidable radiation as low as 
possible. 
No doubt, these two objectives of treatment planning 

- high level dose in the tumor, low radiation outside the 
tumor - have a basically contradictory nature. Therefore, 
it is no surprise that inverse mathematical models with 
dose dis tri bu tion bounds tend to be infeasible in most 
cases. Thus, there is need for approximations com-
 pro mis ing between overdosing the organs at risk and 
un der dos ing the target volume. 
Differing from the currently used time consuming 
it er a tive approach, which measures de vi a tion from an 
ideal (non-achievable) treatment plan us ing re cur sive ly 
trial-and-error weights for the organs of in ter est, we 
go a new way trying to avoid a priori weight choic es 
and con sid er the treatment planning problem as a mul-
tiple ob jec tive linear programming problem: with each 
organ of interest, target tissue as well as organs at risk, 
we as so ci ate an objective function measuring the maxi-
mal de vi a tion from the prescribed doses. 
We build up a data base of relatively few effi cient 
so lu tions rep re sent ing and ap prox i mat ing the variety 
of Pare to solutions of the mul ti ple objective linear 
programming problem. This data base can be easily 
scanned by phy si cians look ing for an ad e quate treat-
ment plan with the aid of an appropriate on line tool.
(14 pages, 1999)

13.  C. Lang, J. Ohser, R. Hilfer

On the Analysis of Spatial Binary Images

This paper deals with the characterization of mi cro -
scop i cal ly heterogeneous, but macroscopically homo-
geneous spatial structures. A new method is presented 
which is strictly based on integral-geometric formulae 
such as Crofton’s intersection formulae and Hadwiger’s 
recursive defi nition of the Euler number. The corre-
sponding al go rithms have clear advantages over other 
techniques. As an example of application we consider 
the analysis of spatial digital images produced by 
means of Computer Assisted Tomography.
(20 pages, 1999)

14.  M. Junk

On the Construction of Discrete Equilibrium 
Distributions for Kinetic Schemes

A general approach to the construction of discrete 
equi lib ri um distributions is presented. Such distribution 
func tions can be used to set up Kinetic Schemes as 
well as Lattice Boltzmann methods. The general prin-
ciples are also applied to the construction of Chapman 
Enskog dis tri bu tions which are used in Kinetic Schemes 
for com press ible Navier-Stokes equations.
(24 pages, 1999)

15.  M. Junk, S. V. Raghurame Rao

A new discrete velocity method for Navier-
Stokes equations

The relation between the Lattice Boltzmann Method, 
which has recently become popular, and the Kinetic 
Schemes, which are routinely used in Computational 
Flu id Dynamics, is explored. A new discrete veloc-
ity model for the numerical solution of Navier-Stokes 
equa tions for incompressible fl uid fl ow is presented by 
com bin ing both the approaches. The new scheme can 
be interpreted as a pseudo-compressibility method and, 
for a particular choice of parameters, this interpretation 
carries over to the Lattice Boltzmann Method.
(20 pages, 1999)

16.  H. Neunzert

Mathematics as a Key to Key Technologies

The main part of this paper will consist of examples, 
how mathematics really helps to solve industrial prob-
 lems; these examples are taken from our Institute for 
Industrial Mathematics, from research in the Tech no-
math e mat ics group at my university, but also from 
ECMI groups and a company called TecMath, which 
orig i nat ed 10 years ago from my university group and 
has already a very suc cess ful history.
(39 pages (4 PDF-Files), 1999)

17.  J. Ohser, K. Sandau

Considerations about the Estimation of the 
Size Distribution in Wicksell’s Corpuscle 
Prob lem

Wicksell’s corpuscle problem deals with the estima-
tion of the size distribution of a population of particles, 
all hav ing the same shape, using a lower dimensional 
sampling probe. This problem was originary formulated 
for particle systems occurring in life sciences but its 
solution is of actual and increasing interest in materials 
science. From a mathematical point of view, Wicksell’s 
problem is an in verse problem where the interest-
ing size distribution is the unknown part of a Volterra 
equation. The problem is often regarded ill-posed, 
because the structure of the integrand implies unstable 
numerical solutions. The ac cu ra cy of the numerical 
solutions is considered here using the condition num-
ber, which allows to compare different numerical meth-
ods with different (equidistant) class sizes and which 
indicates, as one result, that a fi nite section thickness 
of the probe reduces the numerical problems. Fur-
thermore, the rel a tive error of estimation is computed 
which can be split into two parts. One part consists 
of the relative dis cret i za tion error that increases for 
in creas ing class size, and the second part is related 
to the rel a tive statistical error which increases with 
decreasing class size. For both parts, upper bounds 
can be given and the sum of them indicates an optimal 
class width depending on some specifi c constants.
(18 pages, 1999)

18.  E. Carrizosa, H. W. Hamacher, R. Klein, 
S. Nickel

Solving nonconvex planar location prob-
lems by fi nite dominating sets

It is well-known that some of the classical location 
prob lems with polyhedral gauges can be solved in 
poly no mi al time by fi nding a fi nite dominating set, i. e. 
a fi nite set of candidates guaranteed to contain at least 
one op ti mal location. 
In this paper it is fi rst established that this result holds 



for a much larger class of problems than currently con-
 sid ered in the literature. The model for which this result 
can be prov en includes, for instance, location prob lems 
with at trac tion and repulsion, and location-al lo ca tion 
prob lems. 
Next, it is shown that the ap prox i ma tion of general 
gaug es by polyhedral ones in the objective function of 
our gen er al model can be analyzed with re gard to the 
sub se quent error in the optimal ob jec tive value. For 
the ap prox i ma tion problem two different ap proach es 
are described, the sand wich procedure and the greedy 
al go rithm. Both of these approaches lead - for fi xed 
epsilon - to polyno mial ap prox i ma tion algorithms with 
accuracy epsilon for solving the general model con-
 sid ered in this paper.
Keywords: Continuous Location, Polyhedral Gauges, 
Finite Dom i nat ing Sets, Approximation, Sandwich Al go -
rithm, Greedy Algorithm
(19 pages, 2000)

19. A. Becker

A Review on Image Distortion Measures

Within this paper we review image distortion measures. 
A distortion measure is a criterion that assigns a “qual-
ity number” to an image. We distinguish between 
math e mat i cal distortion measures and those distortion 
mea sures in-cooperating a priori knowledge about 
the im ag ing devices ( e. g. satellite images), image pro-
cessing al go rithms or the human physiology. We will 
consider rep re sen ta tive examples of different kinds of 
distortion mea sures and are going to discuss them.
Keywords: Distortion measure, human visual system
(26 pages, 2000)

20. H. W. Hamacher, M. Labbé, S. Nickel, 
T. Sonneborn

Polyhedral Properties of the Uncapacitated 
Multiple Allocation Hub Location Problem 

We examine the feasibility polyhedron of the un ca -
pac i tat ed hub location problem (UHL) with multiple 
al lo ca tion, which has applications in the fi elds of air 
passenger and cargo transportation, telecommuni-
cation and postal delivery services. In particular we 
determine the di men sion and derive some classes of 
facets of this polyhedron. We develop some general 
rules about lifting facets from the uncapacitated facility 
location (UFL) for UHL and pro ject ing facets from UHL 
to UFL. By applying these rules we get a new class of 
facets for UHL which dom i nates the inequalities in the 
original formulation. Thus we get a new formulation of 
UHL whose constraints are all facet–defi ning. We show 
its superior computational per for mance by benchmark-
ing it on a well known data set.
Keywords: integer programming, hub location, facility 
location, valid inequalities, facets, branch and cut
(21 pages, 2000)

21. H. W. Hamacher, A. Schöbel

Design of Zone Tariff Systems in Public 
Trans por ta tion

Given a public transportation system represented by its 
stops and direct connections between stops, we con-
sider two problems dealing with the prices for the cus-
tomers: The fare problem in which subsets of stops are 
already aggregated to zones and “good” tariffs have 
to be found in the existing zone system. Closed form 
solutions for the fare problem are presented for three 
objective functions. In the zone problem the design 
of the zones is part of the problem. This problem is NP 

hard and we there fore propose three heuristics which 
prove to be very successful in the redesign of one of 
Germany’s trans por ta tion systems.
(30 pages, 2001)

22. D. Hietel, M. Junk, R. Keck, D. Teleaga:

The Finite-Volume-Particle Method for 
Conservation Laws

In the Finite-Volume-Particle Method (FVPM), the weak 
formulation of a hyperbolic conservation law is dis cretized 
by restricting it to a discrete set of test functions. In 
con trast to the usual Finite-Volume approach, the test 
func tions are not taken as characteristic functions of the 
con trol volumes in a spatial grid, but are chosen from a 
par ti tion of unity with smooth and overlapping partition 
func tions (the particles), which can even move along 
pre - scribed velocity fi elds. The information exchange 
be tween particles is based on standard numerical fl ux 
func tions. Geometrical information, similar to the sur-
face area of the cell faces in the Finite-Volume Method 
and the cor re spond ing normal directions are given as 
integral quan ti ties of the partition functions. After a 
brief der i va tion of the Finite-Volume-Particle Meth od, 
this work fo cus es on the role of the geometric coeffi -
cients in the scheme.
(16 pages, 2001)

23. T. Bender, H. Hennes, J. Kalcsics, 
M. T. Melo, S. Nickel

Location Software and Interface with GIS 
and Supply Chain Management

The objective of this paper is to bridge the gap 
between location theory and practice. To meet this 
objective focus is given to the development of soft-
ware capable of ad dress ing the different needs of a 
wide group of users. There is a very active commu-
nity on location theory en com pass ing many research 
fi elds such as operations re search, computer science, 
mathematics, engineering, geography, economics and 
marketing. As a result, people working on facility loca-
tion problems have a very diverse background and also 
different needs regarding the soft ware to solve these 
problems. For those interested in non-commercial 
applications (e. g. students and re search ers), the library 
of location algorithms (LoLA can be of considerable 
assistance. LoLA contains a collection of effi cient algo-
rithms for solving planar, network and dis crete facility 
location problems. In this paper, a de tailed description 
of the func tion al ity of LoLA is pre sent ed. In the fi elds 
of geography and marketing, for in stance, solv ing facil-
ity location prob lems requires using large amounts of 
demographic data. Hence, members of these groups 
(e. g. urban planners and sales man ag ers) often work 
with geo graph i cal information too s. To address the 
specifi c needs of these users, LoLA was inked to a 
geo graph i cal information system (GIS) and the details 
of the com bined functionality are de scribed in the 
paper. Fi nal ly, there is a wide group of prac ti tio ners 
who need to solve large problems and require special 
purpose soft ware with a good data in ter face. Many of 
such users can be found, for example, in the area of 
supply chain management (SCM). Lo gis tics activities 
involved in stra te gic SCM in clude, among others, facil-
ity lo ca tion plan ning. In this paper, the development of 
a com mer cial location soft ware tool is also described. 
The too is em bed ded in the Ad vanced Planner and 
Op ti miz er SCM software de vel oped by SAP AG, Wall-
dorf, Germany. The paper ends with some conclusions 
and an outlook to future ac tiv i ties.
Keywords: facility location, software development, 

geo graph i cal information systems, supply chain man-
 age ment.
(48 pages, 2001)

24. H. W. Hamacher, S. A. Tjandra

Mathematical Mod el ling of Evacuation 
Problems: A State of Art

This paper details models and algorithms which can 
be applied to evacuation problems. While it con cen -
trates on building evac u a tion many of the results are 
ap pli ca ble also to regional evacuation. All models 
consider the time as main parameter, where the travel 
time between com po nents of the building is part of the 
input and the over all evacuation time is the output. The 
paper dis tin guish es between macroscopic and micro-
scopic evac u a tion mod els both of which are able to 
capture the evac u ees’ move ment over time. 
Macroscopic models are mainly used to produce good 
lower bounds for the evacuation time and do not con-
 sid er any individual behavior during the emergency 
sit u a tion. These bounds can be used to analyze exist-
ing build ings or help in the design phase of planning a 
build ing. Mac ro scop ic approaches which are based on 
dynamic network fl ow models (min i mum cost dynamic 
fl ow, max i mum dynamic fl ow, universal maximum 
fl ow, quickest path and quickest fl ow) are described. A 
special feature of the presented approach is the fact, 
that travel times of evacuees are not restricted to be 
constant, but may be density dependent. Using mul ti -
cri te ria op ti mi za tion pri or i ty regions and blockage due 
to fi re or smoke may be considered. It is shown how 
the modelling can be done using time parameter either 
as discrete or con tin u ous parameter. 
Microscopic models are able to model the individual 
evac u ee’s char ac ter is tics and the interaction among 
evac u ees which infl uence their move ment. Due to the 
cor re spond ing huge amount of data one uses sim u -
la tion ap proach es. Some probabilistic laws for indi-
vidual evac u ee’s move ment are presented. Moreover 
ideas to mod el the evacuee’s movement using cellular 
automata (CA) and resulting software are presented. 
In this paper we will focus on macroscopic models and 
only summarize some of the results of the microscopic 
approach. While most of the results are applicable to 
general evacuation situations, we concentrate on build-
 ing evacuation. 
(44 pages, 2001)

25. J. Kuhnert, S. Tiwari

Grid free method for solving the Poisson 
equa tion

A Grid free method for solving the Poisson equation 
is presented. This is an it er a tive method. The method 
is based on the weight ed least squares approximation 
in which the Poisson equation is enforced to be satis-
fi ed in every iterations. The boundary conditions can 
also be enforced in the it er a tion process. This is a local 
ap prox i ma tion procedure. The Dirichlet, Neumann and 
mixed boundary value problems on a unit square are 
pre sent ed and the analytical so lu tions are compared 
with the exact so lu tions. Both solutions matched per-
fectly.
Keywords: Poisson equation, Least squares method, 
Grid free method
(19 pages, 2001)



26.  T. Götz, H. Rave, D. Rei nel-Bitzer, 
K. Steiner, H. Tiemeier

Simulation of the fi ber spinning process

To simulate the infl uence of pro cess parameters to the 
melt spinning process a fi ber model is used and coupled 
with CFD calculations of the quench air fl ow. In the fi ber 
model energy, momentum and mass balance are solved 
for the polymer mass fl ow. To calculate the quench air 
the Lattice Bolt z mann method is used. Sim u la tions and 
ex per i ments for dif fer ent process parameters and hole 
con fi g u ra tions are com pared and show a good agree-
 ment.
Keywords: Melt spinning, fi ber mod el, Lattice 
Bolt z mann, CFD
(19 pages, 2001)

27. A. Zemitis 

On interaction of a liquid fi lm with an 
obstacle 

In this paper mathematical models for liquid fi lms 
gen er at ed by impinging jets are discussed. Attention 
is stressed to the interaction of the liquid fi lm with 
some obstacle. S. G. Taylor [Proc. R. Soc. London Ser. 
A 253, 313 (1959)] found that the liquid fi lm gener-
ated by impinging jets is very sensitive to properties 
of the wire which was used as an obstacle. The aim of 
this presentation is to propose a modifi cation of the 
Taylor’s model, which allows to sim u late the fi lm shape 
in cases, when the angle between jets is different from 
180°. Numerical results obtained by dis cussed models 
give two different shapes of the liquid fi lm similar as 
in Taylors experiments. These two shapes depend on 
the regime: either droplets are produced close to the 
obstacle or not. The difference between two re gimes 
becomes larger if the angle between jets de creas es. 
Existence of such two regimes can be very essential for 
some applications of impinging jets, if the generated 
liquid fi lm can have a contact with obstacles.
Keywords: impinging jets, liquid fi lm, models, numeri-
cal solution, shape
(22 pages, 2001)

28.  I. Ginzburg, K. Steiner

Free surface lattice-Boltzmann method to 
model the fi ll ing of expanding cavities by 
Bingham Fluids

The fi lling process of viscoplastic metal alloys and plas-
tics in expanding cavities is modelled using the lattice 
Bolt z mann method in two and three dimensions. These 
mod els combine the regularized Bingham model for 
vis co plas tic with a free-interface algorithm. The latter 
is based on a modifi ed immiscible lattice Boltzmann 
model in which one species is the fl uid and the other 
one is con sid ered as vacuum. The boundary conditions 
at the curved liquid-vac u um interface are met without 
any geo met ri cal front re con struc tion from a fi rst-order 
Chapman-Enskog expansion. The numerical results 
obtained with these models are found in good agree-
ment with avail able theoretical and numerical analysis. 
Keywords: Generalized LBE, free-surface phenomena, 
interface bound ary conditions, fi lling processes, Bing-
 ham vis co plas tic model, regularized models
(22 pages, 2001)

29. H. Neunzert

»Denn nichts ist für den Menschen als Men-
 schen etwas wert, was er nicht mit Leiden-
 schaft tun kann«

Vortrag anlässlich der Verleihung des Akademie-
preises des Landes Rheinland-Pfalz am 21.11.2001

Was macht einen guten Hochschullehrer aus? Auf 
diese Frage gibt es sicher viele verschiedene, fach-
bezogene Antworten, aber auch ein paar allgemeine 
Ge sichts punk te: es bedarf der »Leidenschaft« für 
die Forschung (Max Weber), aus der dann auch die 
Begeiste rung für die Leh re erwächst. Forschung und 
Lehre gehören zusammen, um die Wissenschaft als 
lebendiges Tun vermitteln zu kön nen. Der Vortrag gibt 
Beispiele dafür, wie in an ge wand ter Mathematik Forsc-
hungsaufgaben aus prak ti schen Alltagsproblemstellun-
gen erwachsen, die in die Lehre auf verschiedenen 
Stufen (Gymnasium bis Gra du ier ten kol leg) einfl ießen; 
er leitet damit auch zu einem aktuellen Forschungs-
gebiet, der Mehrskalenanalyse mit ihren vielfälti-
gen Anwendungen in Bildverarbeitung, Material ent-
wicklung und Strömungsmechanik über, was aber nur 
kurz gestreift wird. Mathematik erscheint hier als eine 
moderne Schlüssel technologie, die aber auch enge 
Beziehungen zu den Geistes- und So zi al wis sen schaf ten 
hat.
Keywords: Lehre, Forschung, angewandte Mathematik, 
Mehr ska len ana ly se, Strömungsmechanik
(18 pages, 2001)

30. J. Kuhnert, S. Tiwari

Finite pointset method based on the pro jec -
tion method for simulations of the in com -
press ible Navier-Stokes equations

A Lagrangian particle scheme is applied to the pro-
jection method for the incompressible Navier-Stokes 
equations. The approximation of spatial derivatives is 
obtained by the weighted least squares method. The 
pressure Poisson equation is solved by a local iterative 
procedure with the help of the least squares method. 
Numerical tests are performed for two dimensional 
cases. The Couette fl ow, Poiseuelle fl ow, decaying 
shear fl ow and the driven cavity fl ow are presented. 
The numerical solutions are ob tained for stationary as 
well as instationary cases and are com pared with the 
analytical solutions for channel fl ows. Finally, the driven 
cavity in a unit square is con sid ered and the stationary 
solution obtained from this scheme is compared with 
that from the fi nite element method.
Keywords: Incompressible Navier-Stokes equations, 
Mesh free method, Projection method, Particle scheme, 
Least squares approximation 
AMS subject classifi cation: 76D05, 76M28
(25 pages, 2001)

31.  R. Korn, M. Krekel

Optimal Portfolios with Fixed Consumption 
or Income Streams

We consider some portfolio op ti mi s a tion problems 
where either the in ves tor has a desire for an a priori 
spec i fi ed consumption stream or/and follows a de ter -
min is tic pay in scheme while also trying to max i mize 
expected utility from fi nal wealth. We derive explicit 
closed form so lu tions for continuous and discrete mon-
 e tary streams. The math e mat i cal method used is clas-
 si cal stochastic control theory. 
Keywords: Portfolio optimisation, stochastic con trol, 
HJB equation, discretisation of control problems.
(23 pages, 2002)

32.  M. Krekel

Optimal portfolios with a loan dependent 
credit spread

If an investor borrows money he generally has to pay 
high er interest rates than he would have received, if he 
had put his funds on a savings account. The classical 
mod el of continuous time portfolio op ti mi s a tion ignores 
this effect. Since there is ob vi ous ly a connection between 
the default prob a bil i ty and the total percentage of wealth, 
which the investor is in debt, we study portfolio optimisa-
tion with a control dependent in ter est rate. As sum ing a 
logarithmic and a power utility func tion, re spec tive ly, we 
prove ex plic it formulae of the optimal con trol. 
Keywords: Portfolio op ti mi s a tion, sto chas tic control, 
HJB equation, credit spread, log utility, power utility, 
non-linear wealth dynamics
(25 pages, 2002)

33.  J. Ohser, W. Nagel, K. Schladitz

The Euler number of discretized sets - on 
the choice of adjacency in homogeneous 
lattices 

Two approaches for determining the Euler-Poincaré 
char ac ter is tic of a set observed on lattice points are 
con sid ered in the context of image analysis { the inte-
gral geo met ric and the polyhedral approach. Informa-
tion about the set is assumed to be available on lattice 
points only. In order to retain properties of the Euler 
number and to provide a good approximation of the 
true Euler number of the original set in the Euclidean 
space, the ap pro pri ate choice of adjacency in the lat-
tice for the set and its back ground is crucial. Adjacen-
cies are defi ned using tes sel la tions of the whole space 
into polyhedrons. In R 3 , two new 14 adjacencies 
are introduced additionally to the well known 6 and 
26 adjacencies. For the Euler num ber of a set and its 
complement, a consistency re la tion holds. Each of the 
pairs of ad ja cen cies (14:1; 14:1), (14:2; 14:2), (6; 26), 
and (26; 6) is shown to be a pair of com ple men ta ry 
adjacencies with respect to this relation. That is, the 
approximations of the Euler numbers are consistent if 
the set and its background (complement) are equipped 
with this pair of adjacencies. Furthermore, suffi cient 
con di tions for the correctness of the ap prox i ma tions 
of the Euler number are given. The analysis of selected 
mi cro struc tures and a simulation study illustrate how 
the es ti mat ed Euler number depends on the cho sen 
adjacency. It also shows that there is not a unique ly 
best pair of ad ja cen cies with respect to the estimation 
of the Euler num ber of a set in Euclidean space.
Keywords: image analysis, Euler number, neighborhod 
relationships, cuboidal lattice
(32 pages, 2002)

34.  I. Ginzburg, K. Steiner 

Lattice Boltzmann Model for Free-Surface 
fl ow and Its Application to Filling Process in 
Casting 

A generalized lattice Boltzmann model to simulate free-
surface is constructed in both two and three di men -
sions. The proposed model satisfi es the interfacial 
bound ary conditions accurately. A distinctive feature 
of the model is that the collision processes is carried 
out only on the points occupied partially or fully by the 
fl uid. To maintain a sharp interfacial front, the method 
in cludes an anti-diffusion algorithm. The unknown 
dis tri bu tion functions at the interfacial region are con-
structed according to the fi rst order Chapman-Enskog 
analysis. The interfacial bound ary conditions are satis-



fi ed exactly by the co ef fi  cients in the Chapman-Enskog 
expansion. The dis tri bu tion functions are naturally 
expressed in the local in ter fa cial coordinates. The mac-
roscopic quantities at the in ter face are extracted from 
the least-square so lu tions of a locally linearized system 
obtained from the known dis tri bu tion functions. The 
proposed method does not require any geometric front 
construction and is robust for any interfacial topology. 
Simulation results of realistic fi lling process are pre-
sented: rectangular cavity in two di men sions and Ham-
mer box, Campbell box, Shef fi eld box, and Motorblock 
in three dimensions. To enhance the stability at high 
Reynolds numbers, various upwind-type schemes are 
developed. Free-slip and no-slip boundary conditions 
are also discussed. 
Keywords: Lattice Bolt z mann models; free-surface 
phe nom e na; interface bound ary conditions; fi lling 
processes; injection molding; vol ume of fl uid method; 
interface bound ary conditions; ad vec tion-schemes; 
upwind-schemes
(54 pages, 2002)

35. M. Günther, A. Klar, T. Materne, 
R. We ge ner 

Multivalued fundamental diagrams and 
stop and go waves for continuum traffi c 
equa tions 

In the present paper a kinetic model for vehicular traf-
fi c leading to multivalued fundamental diagrams is 
de vel oped and investigated in detail. For this model 
phase transitions can appear depending on the local 
density and velocity of the fl ow. A derivation of asso-
ciated mac ro scop ic traffi c equations from the kinetic 
equation is given. Moreover, numerical experiments 
show the ap pear ance of stop and go waves for high-
way traffi c with a bottleneck. 
Keywords: traffi c fl ow, macroscopic equa tions, kinetic 
derivation, multivalued fundamental di a gram, stop and 
go waves, phase transitions
(25 pages, 2002)

36. S. Feldmann, P. Lang, D. Prätzel-Wolters 

Parameter infl uence on the zeros of net-
work  determinants

To a network N(q) with determinant D(s;q) depend-
ing on a parameter vector q Î Rr via identifi cation of 
some of its vertices, a network N^ (q) is assigned. The 
paper deals with procedures to fi nd N^ (q), such that 
its determinant D^  (s;q) admits a factorization in the 
determinants of appropriate subnetworks, and with 
the estimation of the deviation of the zeros of D^   from 
the zeros of D. To solve the estimation problem state 
space methods are applied. 
Keywords: Networks, Equicofactor matrix polynomials, 
Realization theory, Matrix perturbation theory
(30 pages, 2002)

37. K. Koch, J. Ohser, K. Schladitz 

Spectral theory for random closed sets and 
estimating the covariance via frequency 
space

A spectral theory for stationary random closed sets 
is developed and provided with a sound mathemati-
cal ba sis. Defi nition and proof of existence of the 
Bartlett spec trum of a stationary random closed set as 
well as the proof of a Wiener-Khintchine theorem for 
the power spectrum are used to two ends: First, well 
known sec ond order characteristics like the covariance 

can be es ti mat ed faster than usual via frequency space. 
Second, the Bartlett spectrum and the power spectrum 
can be used as second order characteristics in fre-
quency space. Examples show, that in some cases infor-
mation about the random closed set is easier to obtain 
from these char ac ter is tics in frequency space than from 
their real world counterparts.
Keywords: Random set, Bartlett spectrum, fast Fourier 
transform, power spectrum
(28 pages, 2002)

38. D. d’Humières, I. Ginzburg

Multi-refl ection boundary conditions for 
lattice Boltzmann models

We present a unifi ed approach of several boundary 
con di tions for lattice Boltzmann models. Its general 
frame work is a generalization of previously introduced 
schemes such as the bounce-back rule, linear or qua-
 drat ic interpolations, etc. The objectives are two fold: 
fi rst to give theoretical tools to study the existing 
bound ary conditions and their corresponding accu-
racy; sec ond ly to design formally third- order accurate 
boundary conditions for general fl ows. Using these 
boundary con di tions, Couette and Poiseuille fl ows are 
exact solution of the lattice Boltzmann models for a 
Reynolds number Re = 0 (Stokes limit). 
Numerical comparisons are given for Stokes fl ows in 
pe ri od ic arrays of spheres and cylinders, linear peri-
odic array of cylinders between moving plates and for 
Navier-Stokes fl ows in periodic arrays of cylinders for 
Re < 200. These results show a signifi cant improve-
ment of the over all accuracy when using the linear 
interpolations instead of the bounce-back refl ection 
(up to an order of mag ni tude on the hydrodynam-
ics fi elds). Further im prove ment is achieved with the 
new multi-refl ection bound ary con di tions, reaching a 
level of accuracy close to the qua si-analytical reference 
solutions, even for rath er mod est grid res o lu tions and 
few points in the nar row est chan nels. More important, 
the pressure and velocity fi elds in the vicinity of the 
ob sta cles are much smoother with multi-refl ection 
than with the other boundary con di tions. 
Finally the good stability of these schemes is high-
 light ed by some sim u la tions of moving obstacles: a cyl-
 in der be tween fl at walls and a sphere in a cylinder.
Keywords: lattice Boltzmann equation, boudary condis-
 tions, bounce-back rule, Navier-Stokes equation
(72 pages, 2002)

39. R. Korn

Elementare Finanzmathematik

Im Rahmen dieser Arbeit soll eine elementar gehaltene 
Einführung in die Aufgabenstellungen und Prinzipien 
der modernen Finanzmathematik gegeben werden. 
Ins be son dere werden die Grundlagen der Modellierung 
von Aktienkursen, der Bewertung von Optionen und 
der Portfolio-Optimierung vorgestellt. Natürlich können 
die verwendeten Methoden und die entwickelte Theo-
rie nicht in voller Allgemeinheit für den Schuluntericht 
ver wen det werden, doch sollen einzelne Prinzipien so 
her aus gearbeitet werden, dass sie auch an einfachen 
Beispielen verstanden werden können.
Keywords: Finanzmathematik, Aktien, Optionen, Port-
folio-Optimierung, Börse, Lehrerweiterbildung, Math e -
ma tikun ter richt
(98 pages, 2002)

40. J. Kallrath, M. C. Müller, S. Nickel

Batch Presorting Problems:
Models and Complexity Results

In this paper we consider short term storage sys-
tems. We analyze presorting strategies to improve the 
effi ency of these storage systems. The presorting task 
is called Batch PreSorting Problem (BPSP). The BPSP is a 
variation of an assigment problem, i. e., it has an assig-
ment problem kernel and some additional constraints.
We present different types of these presorting prob-
lems, introduce mathematical programming formula-
tions and prove the NP-completeness for one type 
of the BPSP. Experiments are carried out in order to 
compare the different model formulations and to inves-
tigate the behavior of these models.
Keywords: Complexity theory, Integer programming, 
Assigment, Logistics
(19 pages, 2002)

41. J. Linn

On the frame-invariant description of the 
phase space of the Folgar-Tucker equation 

The Folgar-Tucker equation is used in fl ow simula-
tions of fi ber suspensions to predict fi ber orientation 
depending on the local fl ow. In this paper, a complete, 
frame-invariant description of the phase space of this 
differential equation is presented for the fi rst time. 
Key words: fi ber orientation, Folgar-Tucker equation, 
injection molding
(5 pages, 2003)

42. T. Hanne, S. Nickel 

A Multi-Objective Evolutionary Algorithm 
for Scheduling and Inspection Planning in 
Software Development Projects 

In this article, we consider the problem of planning 
inspections and other tasks within a software develop-
ment (SD) project with respect to the objectives quality 
(no. of defects), project duration, and costs. Based on a 
discrete-event simulation model of SD processes com-
prising the phases coding, inspection, test, and rework, 
we present a simplifi ed formulation of the problem as 
a multiobjective optimization problem. For solving the 
problem (i. e. fi nding an approximation of the effi cient 
set) we develop a multiobjective evolutionary algo-
rithm. Details of the algorithm are discussed as well as 
results of its application to sample problems. 
Key words: multiple objective programming, project 
management and scheduling, software development, 
evolutionary algorithms, effi cient set
(29 pages, 2003)

43. T. Bortfeld , K.-H. Küfer, M. Monz, 
A. Scherrer, C. Thieke, H. Trinkaus

Intensity-Modulated Radiotherapy - A 
Large Scale Multi-Criteria Programming 
Problem -

Radiation therapy planning is always a tight rope walk 
between dangerous insuffi cient dose in the target 
volume and life threatening overdosing of organs at 
risk. Finding ideal balances between these inherently 
contradictory goals challenges dosimetrists and physi-
cians in their daily practice. Today’s planning systems 
are typically based on a single evaluation function that 
measures the quality of a radiation treatment plan. 
Unfortunately, such a one dimensional approach can-



not satisfactorily map the different backgrounds of 
physicians and the patient dependent necessities. So, 
too often a time consuming iteration process between 
evaluation of dose distribution and redefi nition of the 
evaluation function is needed. 
In this paper we propose a generic multi-criteria 
approach based on Pareto’s solution concept. For 
each entity of interest - target volume or organ at risk 
a structure dependent evaluation function is defi ned 
measuring deviations from ideal doses that are calcu-
lated from statistical functions. A reasonable bunch of 
clinically meaningful Pareto optimal solutions are stored 
in a data base, which can be interactively searched by 
physicians. The system guarantees dynamical planning 
as well as the discussion of tradeoffs between different 
entities. 
Mathematically, we model the upcoming inverse prob-
lem as a multi-criteria linear programming problem. 
Because of the large scale nature of the problem it is 
not possible to solve the problem in a 3D-setting with-
out adaptive reduction by appropriate approximation 
schemes. 
Our approach is twofold: First, the discretization of the 
continuous problem is based on an adaptive hierarchi-
cal clustering process which is used for a local refi ne-
ment of constraints during the optimization procedure. 
Second, the set of Pareto optimal solutions is approxi-
mated by an adaptive grid of representatives that are 
found by a hybrid process of calculating extreme com-
promises and interpolation methods. 
Keywords: multiple criteria optimization, representa-
tive systems of Pareto solutions, adaptive triangulation, 
clustering and disaggregation techniques, visualization 
of Pareto solutions, medical physics, external beam 
radiotherapy planning, intensity modulated radio-
therapy
(31 pages, 2003)

44. T. Halfmann, T. Wichmann

Overview of Symbolic Methods in Industrial 
Analog Circuit Design 

Industrial analog circuits are usually designed using 
numerical simulation tools. To obtain a deeper circuit 
understanding, symbolic analysis techniques can addi-
tionally be applied. Approximation methods which 
reduce the complexity of symbolic expressions are 
needed in order to handle industrial-sized problems. 
This paper will give an overview to the fi eld of symbolic 
analog circuit analysis. Starting with a motivation, the 
state-of-the-art simplifi cation algorithms for linear as 
well as for nonlinear circuits are presented. The basic 
ideas behind the different techniques are described, 
whereas the technical details can be found in the cited 
references. Finally, the application of linear and non-
linear symbolic analysis will be shown on two example 
circuits. 
Keywords: CAD, automated analog circuit design, sym-
bolic analysis, computer algebra, behavioral modeling, 
system simulation, circuit sizing, macro modeling, dif-
ferential-algebraic equations, index
(17 pages, 2003)

45. S. E. Mikhailov, J. Orlik

Asymptotic Homogenisation in Strength 
and Fatigue Durability Analysis of 
Composites

Asymptotic homogenisation technique and two-scale 
convergence is used for analysis of macro-strength 
and fatigue durability of composites with a periodic 
structure under cyclic loading. The linear damage 

accumulation rule is employed in the phenomenologi-
cal micro-durability conditions (for each component 
of the composite) under varying cyclic loading. Both 
local and non-local strength and durability conditions 
are analysed. The strong convergence of the strength 
and fatigue damage measure as the structure period 
tends to zero is proved and their limiting values are 
estimated. 
Keywords: multiscale structures, asymptotic homogeni-
zation, strength, fatigue, singularity, non-local condi-
tions
(14 pages, 2003)

46. P. Domínguez-Marín, P. Hansen, 
N. Mladenovi ́c , S. Nickel

Heuristic Procedures for Solving the 
Discrete Ordered Median Problem

We present two heuristic methods for solving the 
Discrete Ordered Median Problem (DOMP), for which 
no such approaches have been developed so far. The 
DOMP generalizes classical discrete facility location 
problems, such as the p-median, p-center and Unca-
pacitated Facility Location problems. The fi rst proce-
dure proposed in this paper is based on a genetic algo-
rithm developed by Moreno Vega [MV96] for p-median 
and p-center problems. Additionally, a second heuristic 
approach based on the Variable Neighborhood Search 
metaheuristic (VNS) proposed by Hansen & Mladenovic 
[HM97] for the p-median problem is described. An 
extensive numerical study is presented to show the effi -
ciency of both heuristics and compare them.
Keywords: genetic algorithms, variable neighborhood 
search, discrete facility location
(31 pages, 2003)

47. N. Boland, P. Domínguez-Marín, S. Nickel, 
J. Puerto

Exact Procedures for Solving the Discrete 
Ordered Median Problem

The Discrete Ordered Median Problem (DOMP) gener-
alizes classical discrete location problems, such as the 
N-median, N-center and Uncapacitated Facility Loca-
tion problems. It was introduced by Nickel [16], who 
formulated it as both a nonlinear and a linear integer 
program. We propose an alternative integer linear 
programming formulation for the DOMP, discuss rela-
tionships between both integer linear programming 
formulations, and show how properties of optimal 
solutions can be used to strengthen these formulations. 
Moreover, we present a specifi c branch and bound 
procedure to solve the DOMP more effi ciently. We test 
the integer linear programming formulations and this 
branch and bound method computationally on ran-
domly generated test problems.
Keywords: discrete location, Integer programming
(41 pages, 2003)
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