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Abstract

In this paper we consider the location of stops along the edges of an already
existing public transportation network. This can be the introduction of bus
stops along given routes, or of railway stations along the tracks in a railway
network. The goal is to achieve a maximal covering of given demand points
with a minimal number of stops. This bicriteria problem is in general NP-hard.
We present a finite dominating set yielding an IP-formulation as a bicriteria set
covering problem. Using this formulation we discuss cases in which the bicriteria
stop location problem can be solved in polynomial time. Extensions for tackling
real-world instances are mentioned.

Keywords: set covering, bicriterial, location, dynamic programming, public trans-
portation



Introduction

When designing or modifying a public transportation network, one has to decide
about the number and the location of the stops (or stations). Unfortunately, the
objective is not clear in this process, since even from a customer-oriented point
of view, the following two conflicting effects of stops apply.

• On the one hand, many stops are advantageous, since they increase the
accessibility for the customers. A customer is covered if the next stop is
within a specified distance, called the covering radius (usually 400m in bus
transportation and 2 km in rail transportation).

• On the other hand, each additional stop increases the transportation time
(e.g., by 2 minutes in rail transportation) for all trains or buses stopping
there.

Consequently, it makes sense to establish as few stops as possible, in such a way
that all customers are covered. For a given finite set of possible new locations,
this has been done in the discrete stop location problem which turns out to be
an unweighted set covering problem (as tackled in Toregas et al (1971)). In
the context of stop location this set covering problem has been solved by Murray
(2001b) using the Lagrangian-based set covering heuristic of Caprara et al (1999),
and applied in bus transportation in Brisbane, Australia, see Murray et al (1998),
Murray (2001a), and Murray (2001b). Recently, another discrete stop location
model has been developed by Laporte et al. (2002a). They investigate which
candidate stops along one given line in Seville should be opened, taking into
account constraints on the inter-station space. The problem is solved by a longest
path algorithm in an acyclic graph.
On the other hand, in the continuous stop location problem, the whole track
system (or the routes of the buses) may be used for locating stations. This
problem was introduced in Hamacher et al (2001) within a project with the
largest German rail company (DB). In this paper, a genetic algorithm was used
to minimize the average door-to-door traveling time of all customers. Minimizing
the number or costs of the new stations while covering all demand points was
discussed in Schöbel et al (2002). A similar covering model has been considered
in Kranakis (2002). An overview about continuous stop location is provided in
Schöbel (2003). Planning not only the stops along the line but also the line itself
occurs in network design problems, and has been investigated among others in
Bruno et al (1998) and Laporte et al (2002b). A more general approach in this
area is suggested in Current et al (1987).

In this paper we extend the continuous stop location problem as defined in Schöbel
et al (2002) to a bicriteria problem. We need the following notation.

Let D ⊆ IR2 be a given finite set of demand points, and PTN = (V, E) be the
current public transportation network, given as a set of already existing stations
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demand point
given tracks

Figure 1: The set of tracks T and a set of demand points D in the plane.

or breakpoints V and their direct connections E. Then the set T of all points
of the linear embedding of the graph PTN represents the given track system (for
railways) or the bus routes (for bus transportation). Given a distance measure
γd (which may depend on the demand point d), a demand point d is covered by a
stop s ∈ T , if γd(d, s) ≤ r. In the following we assume that γd is a norm-distance
for each demand point d. To allow different distance functions for each demand
point is due to the possibly different environments close to the demand points and
allows the distance functions to be modeled more accurately. (Note that it is also
possible to allow γd to be a distance derived from a gauge function. A gauge is
defined similar to a norm, but without requiring symmetry, i.e., γd(x, y) = γd(y, x)
need not be satisfied, see, e.g., Minkowski (1967).

Let r be the specified covering radius. We define the cover of a set of stops S ⊆ T
as

cover(S) = {d ∈ D : there exists s ∈ S such that γd(d, s) ≤ r}.

The goal of the (unweighted) continuous stop location problem (CSL) as defined
in Schöbel et al (2002) is to find a set of (new) stops S ⊆ T with minimal
cardinality, covering all demand points. This problem has been shown to be
NP-complete.

Theorem 1 (Schöbel et al (2002)) (CSL) is NP-complete.

However, in a practical setting, one might not want to cover all demand points D
but only a given percentage of the population. Hence let us assume that for each
demand point d, we have given a weight wd representing the number of customers
who would like to use public transportation, if the next station was closer than
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r. Then the function
fcover(S) =

∑

d∈cover(S)

wd

gives the number of (potential) customers which live closer than r to some stop
in S.
Certainly, it is preferable to cover as many customers as possible, i.e, to maximize
fcover(S). On the other hand, establishing many new stops is costly and increases
the travel time for the customers in the trains (or buses), because each stop needs
an additional time of, e.g., two minutes. Since this causes dissatisfaction for the
customers we use

fcost(S) = |S|

as a second objective function. The bicriteria stop location problem (BSL) can
now be stated.

(BSL)

Given G = (V, E) with its set of points of its planar embedding T =
⋃

e∈E e ⊆ IR2,
as well as a finite set of points D ⊆ IR2 with weights wd and norms (or gauges)
γd for all d ∈ D, find a set S ⊆ T such that both

fcost(S) = |S| and

−fcover(S) = −
∑

d∈cover(S)

wd

are minimized.

The remainder of the paper is organized as follows. In the next section we intro-
duce the two e-constraint subproblems needed for a bicriteria analysis of (BSL)
and transfer the finite candidate set of Schöbel et al (2002) for the single ob-
jective problem to these problems in Section 2. In Section 3 we analyze the
situation along a polygonal line and present a dynamic programming approach
which finds all efficient solutions in this case in Section 4. Further research topics
are mentioned in Section 5.

1 e-Constraint problems

What we mean by “minimizing both” objective functions is to find Pareto solu-
tions of the problem with respect to fcost and fcover. Recall (e.g., from textbooks
as Steuer (1989) or Ehrgott (2000)) that if S1, S2 ⊆ T denote two feasible sets of
stops, S1 dominates S2 if

fcost(S1) ≤ fcost(S2) and

fcover(S1) ≥ fcover(S2),
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where at least one of the inequalities is strict. Then a Pareto solution S∗ is a
feasible set of stops which is not dominated by any other feasible set of stops. If
S∗ is a Pareto solution, then the point

(fcost(S
∗), fcover(S

∗))

is called an efficient point.
To find Pareto solutions we can utilize the following two one-criteria problems.

(BSL-cost(Q)) Given D, G = (V, E) with its set of points T , weights wd,
and norms (or gauges) γd for all d ∈ D, find a set S∗ ⊆ T such that
fcover(S

∗) ≥ Q and fcost(S
∗) is minimal.

(BSL-cover(k)) Given D, G = (V, E) with its set of points T , weights wd and
norms (or gauges) γd for all d ∈ D, find a set S∗ ⊆ T such that fcost(S

∗) ≤ k

and fcover(S
∗) is maximal.

These problems are called the e-constraint problems resulting from (BSL). Note
that (BSL-cost) resembles the location set covering problem introduced by Toregas
(1971) and Toregas et al (1971), while (BSL-cover) is related to the Maximal
Covering Location Problem, see Church and ReVelle (1974) or White and Case
(1974).

To utilize the e-constraint problems in our analysis we need the following result
of Haimes and Chankong (1983).

Lemma 1 Let Q, k ∈ IN.

1. Let S be a unique optimal solution of (BSL-cost(Q)). Then S is a Pareto
solution. If more than one optimal solution of (BSL-cost(Q)) exists, the
solutions that additionally maximize fcover are Pareto solutions.

2. Let S be a unique optimal solution of (BSL-cover(k)). Then S is a Pareto
solution. If more than one optimal solution of (BSL-cover(k)) exists, the
solutions that additionally minimize fcost are Pareto solutions.

Using Lemma 1 to find Pareto solutions is known as the e-constraint method;
see, e.g., Ehrgott (2000). Unfortunately, both e-constraint problems are hard to
solve.

Corollary 1 (BSL) and the two e-constraint problems (BSL-cost) and (BSL-
cover) are NP-hard, even if all weights wd are equal to 1.
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Proof: From Theorem 1 we know that finding a minimum cardinality set of
stations covering all demand points is NP-hard. The decision version of both
e-constraint problems (BSL-cost(Q)) and (BSL-cover(k)) is the following:

Given D, G = (V, E) with its planar embedding T , weights wd, norms (or gauges)
γd, does there exist a set S∗ ⊆ T such that fcost(S

∗) ≤ Q and fcover(S
∗) ≥ k?

Defining Q =
∑

d∈D wd shows that the decision version of (CSL) is a special case
of the decision version of both (BSL-cost(Q)) and (BSL-cover(k)) and thus both
e-constraint problems are NP-hard.

2

We now discuss the two lexicographic optimal solutions, which we know are
Pareto solutions.

• Maximizing fcover as first objective means that we have to cover all demand
points that can be covered, i.e., all demand points d ∈ cover(T ). This yields
(CSL), if we define

D′ = D ∩ cover(T )

as the set of demand points to be covered, and hence this problem is NP-
hard (see Theorem 1).

• On the other hand, minimizing fcost leads to a trivial problem since it can
be solved easily by not installing any stop at all.

Note that (BSL-cover(k)) was investigated in Kranakis et al (2002) for the case
of one single straight-line track and a special case with two parallel straight-line
tracks. For both cases, polynomial time algorithms using dynamic programming
were developed with a time complexity of O(k|D|2) for the single track case.
Moreover, it is shown that along one straight line track, (BSL-cover(k)) is equiv-
alent to the one-dimensional (uncapacitated) k-facility location problem. Due to
Hassin and Tamir (1991), (BSL-cover(k)) can hence be solved in O(|D|2) time.

2 Integer programming formulations

To derive integer programming formulations we proceed as follows. For an edge
e ∈ E with endpoints ve

1, v
e
2 we define

T e(d) = {s ∈ e : γd(d, s) ≤ r}

as the set of all points on the edge e ⊆ T that can be used to cover demand point
d, and

T (d) = {s ∈ T : γd(d, s) ≤ r}.

Note that s ∈ T (d) if and only if d ∈ cover(s). The following simple observation
will become important later.
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Lemma 2 For each demand point d ∈ IR2 the set T e(d) is either empty or an
interval contained in edge e.

Proof: Note that T e(d) = e ∩ {x ∈ IR2 : γd(d, x) ≤ r} is the intersection of
two convex sets, namely, of the line segment e and the unit ball of the norm (or
gauge) γd about d. Consequently, T e(d) itself is a convex set contained in a line
segment and hence either empty or a line segment itself.

2

Let f e
d , led denote the endpoints of the interval T e(d) (which may coincide with

the endpoints ve
1, v

e
2 of the edge e). We write

[f e
d , led] = T e(d).

Along the lines of Schöbel et al (2002) we can now derive a finite dominating set
S ⊆ T as follows. For each edge let

Se =
⋃

d∈D

{f e
d , led} ∪ {ve

1, v
e
2}

be the set of all endpoints of intervals T e(d). This set can be ordered along the
edge e (e.g., by starting in ve

1 and moving to ve
2), resulting in a set

Se = {s0, s1, . . . , sNe
},

and we write ve
1 = s0 < s1 < . . . < sNe

= ve
2 to indicate the order of the points

with respect to ve
1 < ve

2. In the following we show that

S =
⋃

e∈E

Se

is a finite dominating set for the bicriteria stop location problem. For an illus-
tration of S we refer to Figure 2.
The next lemma states that we can always improve the cover of a stop by moving
the stop to an appropriate point in S.

Lemma 3 (Schöbel et al (2002)) Let e be an edge of E, and let s ∈]sj, sj+1[e
for some j ∈ {0, 1, . . . , Ne − 1}. Then

cover(s) ⊆ cover(sj) ∩ cover(sj+1).

Theorem 2 S is a finite dominating set for (BSL-cost(Q)), (BSL-cover(k)),
and (BSL). More precisely,

• If (BSL-cost(Q)) is feasible there exists an optimal solution S∗ ⊆ S.
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v1=s0
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v2=s5
d2

d3

d1

Figure 2: The set of candidates along one linear piece e ∈ E.

• If (BSL-cover(k)) is feasible there exists an optimal solution S∗ ⊆ S.

• Let (k, Q) be an efficient solution of (BSL). Then there exists a Pareto
solution S ∈ S with fcost(S) = k and fcover(S) = Q.

Proof: Given some Pareto set S∗, we iteratively construct a set S ′ ⊆ S by moving
stops of the given set S∗ into points of S without changing the objective function
values as follows. Let s ∈ S∗\S be a point in the optimal solution and let e be the
edge of s. Then determine two consecutive points sj, sj+1 ∈ Se such that s lies
between sj and sj+1. According to Lemma 3 we know that cover(s) ⊆ cover(sj),
hence

S ′ = S∗ \ {s} ∪ {sj}

satisfies

fcover(S
∗) ≤ fcover(S

′) and

fcost(S
∗) ≥ fcost(S

′),

i.e., S ′ is at least as good as S∗ with respect to both criteria. Proceeding like this
for all points in S∗ \ S proves the result.

2

Using Theorem 2, (BSL) and its two e-constraint problems can be formulated as
integer programs. As decision variable we define
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xs =

{

1 if candidate s is chosen as a new stop
0 otherwise

.

To keep track of the population covered by the new stops, we also have to know
which demand points are covered and which are not. We therefore define another
set of binary variables

yd =

{

1 if demand point d is covered
0 otherwise

,

and let w = (wd1
, wd2

, . . . , wd|D|
) and 1 ∈ IR|S| be the vector with a 1 in each

component.
Furthermore, we can store the covering information in the following covering
matrix Acov = (ads) with

ads =

{

1 if d ∈ cover(s) (or, equivalently, if s ∈ T (d))
0 otherwise

,

The IP model of (BSL) can now be formulated as

min

(

1x
−wy

)

s.t. Acovx ≥ y

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.

The IP model for (BSL-cost(Q)) is

min 1x
s.t. Acovx − y ≥ 0

wy ≥ Q

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|,

and (BSL-cover(k)) is given by

max wy

s.t. Acovx − y ≥ 0
1x ≤ k

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.
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Figure 3: An instance of (BSL) on a polygonal line where T (d1) is not connected, and without

consecutive ones property.

3 Bicriteria stop location along a polygonal line

We now analyze the situation along a polygonal line T .

Lemma 4 If T is a polygonal line and T (d) is connected for each demand point
d, then Acov has the consecutive ones property, i.e., in each row of Acov the ones
appear consecutively.

Proof: Let ads1
= ads2

= 1 for s1 < s2. We then have to show that ads = 1
for all s with s1 < s < s2. Take a candidate s on the polygonal line between s1

and s2. From ads1
= ads2

= 1 we know that s1, s2 ∈ T (d). Hence, since T (d) is
connected, also s ∈ T (d) and hence ads = 1.

2

Note that the assumption of Lemma 4 is always satisfied if T consists of one
single edge only, an observation which was first noted in Schöbel et al (2002).
Generalizations and decomposition results that can be used to apply this fact to
more complex networks are given in Schöbel (2003).
To illustrate the condition of Lemma 4 we consider Figures 3 and 4. In Figure 3
an example of a polygonal line not satisfying the condition of Lemma 4 and with
a coefficient matrix without consecutive ones property is given.
In this example, T is a polygonal line consisting of three nodes. Numbering the
candidates from left to right, Acov

Fig3 is given by

Acov
Fig3 =







1 1 1 0 0 0 1 1 0
0 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 0





 ,
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Figure 4: An instance of (BSL) on a polygonal line satisfying that all sets T (d) are connected,

and hence having the consecutive ones property.

which cannot be reordered to satisfy the consecutive ones property.

On the other hand, Figure 4 shows an example for a polygonal line together
with a set of demand points D, in which all sets T (d) are connected. Hence, the
covering matrix Acov

Fig4 of this example satisfies the consecutive ones property.

The importance of Lemma 4 is due to the fact that matrices having the consecu-
tive ones property are totally unimodular such that in this case the stop location
problem (CSL) can be solved efficiently by linear programming methods. Unfor-
tunately, even if Acov has the consecutive ones property and wd = 1 for all d ∈ D,
this property need not hold for the constraint versions of our problem (BSL) as
the following example demonstrates.
Consider Figure 5 and note that the coefficient matrix in this small example is

Acov
Fig5 =

(

1 1 1
0 1 1

)

,

which has the consecutive ones property.

(BSL-cost(Q)): Although Acov
Fig5 has the consecutive ones property this does not

yield a totally unimodular coefficient matrix for (BSL-cost(Q)). Namely,
the coefficient matrix of (BSL-cost) in the example shown in Figure 5 is
given as







1 1 1 −1 0
0 1 1 0 −1
0 0 0 1 1





 ,
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a=s1

   s2

b=s3

d2

d1

Figure 5: The coefficient matrix of (BSL-cost) is not totally unimodular.

which is not totally unimodular.

(BSL-cover(k)): On the other hand, using again the example depicted in Figure
5, the coefficient matrix of (BSL-cover(k)) is given by







1 1 1 −1 0
0 1 1 0 −1

−1 −1 −1 0 0





 ,

which does not have the consecutive ones property, but still is a totally
unimodular matrix.

This observation holds in general.

Lemma 5 Let Acov have the consecutive ones property and assume that wd = 1
for all d ∈ D. Then (BSL-cover(k)) can be solved by linear programming.

Proof: Note that

(

Acov

1 1 . . . 1

)

has the consecutive ones property and hence is

totally unimodular. Thus, also

(

Acov

−1 − 1 . . . − 1

)

is totally unimodular and

hence the coefficient matrix
(

Acov −I

−1 − 1 . . . − 1 0 0 . . . 0

)

of the IP-formulation of (BSL-cover(k)) also satisfies this property. Consequently,
the result follows from integer programming theory, see, e.g., Nemhauser and
Wolsey (1988).
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2

Based on this observation (although not true for arbitrary weights wd) we suggest
to solve a family of e-constraint problems of type (BSL-cover) to find all efficient
solutions of (BSL) in the case that Acov has the consecutive ones property. In the
next section we show how this can be done efficiently by dynamic programming.

4 Dynamic programming approach

To develop a dynamic programming approach for (BSL) we first investigate
cover(S) in more detail. Again, consider a polygonal line T satisfying the as-
sumption of Lemma 4 and let S be the set of candidates. We assume that the
candidates have been ordered along T , e.g., from left to right.

Lemma 6 Let T be a polygonal line satisfying that T (d) is connected for all
d ∈ D. Let S = {s1, . . . , sp} ⊆ T be any set of points with s1 < . . . < sp. Then
for all i = 1, . . . , p − 1 we have

cover(si+1) \ cover{s1, . . . , si} = cover(si+1) \ cover(si).

Proof: Since “⊆” is trivial, we only need to verify “⊇”.
To this end, let d ∈ cover(si+1) \ cover(si). We show that d 6∈ cover(sj) for
all j ≤ i. Assume to the contrary that d ∈ cover(sj) for some j < i but that
d ∈ cover(si+1). This means that sj ∈ T (d) and si+1 ∈ T (d), and, since T (d) is
connected due to our assumption also si ∈ T (d), a contradiction to d 6∈ cover(si).

2

As an example, consider Figure 2 and note that, e.g.,

cover(s6) \ cover(s4) = cover(s6) − cover({s2, s3, s4}) = {d3},

while in Figure 3, T (d1) is not connected, and

cover(s7) \ cover(s6) 6= cover(s7) \ cover({s1, . . . , s7}.

Lemma 6 suggests a standard dynamic programming approach to solve (BSL-
cover(k)). This approach has been derived by transferring the Bellman-Ford
algorithm (see Bellman (1958), Ford and Fulkerson (1962)) for k-cardinality con-
strained shortest paths to set covering problems along the lines of Section 4.3 in
Schöbel (2003). Note that the resulting approach for solving single-criteria prob-
lems of type (BSL-cover) along a straight line has also been developed directly
in the context of stop location by Kranakis (2002) and an improved version of
this approach has been suggested in Hassin and Tamir (1991) for the k-facility
location problem along a line.
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In this paper we embed such an approach for solving BSL-cover(k) in our algo-
rithm for finding all efficient solutions. In step 4 of our approach we are looking
for a set of stops, all of them smaller than (i.e. on the left hand side of) a given
stop sj which itself should be contained in S, i.e., we solve subproblems of type

(P(k, sj)) max{fcover(S) : S ⊆ {s1, . . . , sj}, sj ∈ S, and |S| ≤ k}.

Note that we start with the optimal solution {sj} of P(1, sj) in step 3. To obtain
the solution of P(k, sj) within step 4 we can use the previously calculated solutions
for k − 1. To this end, we set (in step 2)

wij =
∑

d∈cover(sj)\cover(si)

wd for i < j and

W = fcover(S).

W denotes the maximum weight that we can cover, if we choose all candidates
as new stops, while wij gives the gain if we add sj to a set of stops containing
si as its rightmost stop. Denoting the optimal solution of P(k, sj) by hk(sj) we
iteratively calculate

hk(sj) = max
i:si<sj

wij + hk−1(si).

in each sub iteration of step 4. For the sake of simplicity we use the standard
dynamic programming approach in step 4 but remark that since the weights wij

satisfy the concavity property, the implementation of Galil and Park (1990) and
Hassin and Tamir (1991) leads to a better time complexity of our algorithm.
Finally, the optimal solution of (BSL-cover(k)) can be obtained as the best so-
lution over all optimal solutions of P(k, sj) over j = 1, . . . , N (step 5). In step
6, we use Lemma 1 to obtain all efficient solutions. We first state the algorithm
and then show the correctness of the above statements.

Algorithm : Finding all efficient solutions of (BSL)

Input: D, a polygonal line T with connected sets T (d), weights wd for all

d ∈ D.

Output: All efficient solutions of (BSL), and a Pareto solution for each

of them.

Step 1. Derive the set of candidates S = {s1, s2, . . . , sN} as in Theorem 2 and

order them along T .

Step 2. Let W = fcover(S) and wij =
∑

d∈cover(sj)\cover(si) wd for all i < j with

i, j ∈ {1, . . . , N}

Step 3. Let for all j = 1, . . . , N: h1(sj) = cover(sj), S1(sj) = {sj}, k = 2.
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Step 4. For all j = 1, . . . , N:

hk(sj) = max
i:si<sj

wij + hk−1(si)

If hk(sj) = wi∗j + hk−1(si∗) let Sk(sj) = Sk−1(si∗) ∪ {sj}.

Step 5. Let hk = maxj=1,...,N hk(sj) =: hk(s∗) and let Sk = Sk(s∗).

• If hk = W then set K∗ = k and stop.

• Otherwise k = k + 1 and goto step 4.

Step 6. Output: Eff = {(hk, k) : k = 1, . . . ,K∗} with corresponding Pareto

solutions Sk, k = 1, . . . ,K∗.

To show the correctness of the algorithm we need the following lemmas.

Lemma 7 Sk(sj) is an optimal solution of (P(k, sj)) with objective value hk(sj).

Proof: We use induction over k. For k = 1 the optimal solution of (P(1, sj)) is
S1(sj) = {sj}. Now assume that Sk−1(sj) is the optimal solution of (P(k − 1, sj))
for any fixed sj. For the induction step we first note that (P(k, sj)) is equivalent
to

max{fcover(S
′ ∪ {sj}) : S ′ ⊆ {s1, . . . , sj−1}, and |S ′| ≤ k − 1}.

Now calculate for any S ′ = {si1 , si2, . . . , sip} with si1 < si2 < . . . sip < sj

fcover(S
′ ∪ {sj}) =

∑

d∈cover(S′∪{sj})

wd

= fcover(S
′) +

∑

d∈cover(sj)\cover(S′)

wd

= fcover(S
′) +

∑

d∈cover(sj)\cover(sip )

wd

due to Lemma 6

= fcover(S
′) + wipj

Hence, (P(k, sj)) can further be rewritten as

max{fcover(S
′) + wipj : ip ∈ {s1, . . . , sj−1}, S

′ ⊆ {s1, . . . , sip},

ip ∈ S ′, and |S ′| ≤ k − 1}

and it becomes clear that the set S ′ in this formulation is an optimal solution of
(P(k − 1, sip)). Using the induction hypothesis we finally obtain that (P(k, sj))
is equivalent to

max{fcover(S
k−1(ip)) + wipj : ip ∈ {s1, . . . , sj−1}}

which shows the result.
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2

Corollary 2 Sk is an optimal solution of (BSL-cover(k)) and its objective value
is hk.

Proof: This consequence follows from Lemma 7 and the definition of Sk in step
5 of the algorithm.

2

Finally, to apply Lemma 1 we need the following result.

Lemma 8 For k ≤ K∗ any optimal solution S∗ of (BSL-cover(k)) satisfies
|S∗| = k.

Proof: Let S be an optimal solution of (BSL-cover(k)) for some k < K∗. This
means that fcover(S) = fcover(S

k) < W due to Corollary 2 and step 6 of the
algorithm. Hence there exists s 6∈ S such that

∑

d∈cover(s)\cover(S)

wd > 0

and hence fcover(S ∪ {s}) > fcover(S). If |S| ≤ k − 1 this yields that S ∪ {s} does
not contain more than k stops and hence is feasible for (BSL-cover(k)), which is
a contradiction to the optimality of S.

2

Theorem 3 The algorithm finds all efficient solutions of (BSL).

Proof: For each k ≤ K∗ we know from Corollary 2 that Sk is an optimal solution
of (BSL-cover(k)) . Furthermore, Lemma 8 shows that all optimal solutions of
(BSL-cover(k)) consist of the same number k of stops. Hence (hk, k) is an efficient
solution according to Lemma 1.
On the other hand, no solution S with |S| > K∗ is Pareto, since such a solution
S is always dominated by SK∗

, because

|S| > K∗ = |SK∗

| and

fcover(S) ≤ W = fcover(S
K∗

).

2

Since the number of candidates |S| is at most twice the number of demand points
for a polygonal line satisfying the assumptions of the algorithm, the worst-case
complexity of the algorithm (finding all efficient solutions of the bicriteria stop
location problem) is given by O(K∗|D|2) where K∗ is the minimum number of
stops needed to cover all demand points in cover(T ). Using the concavity prop-
erty of the weights and the resulting better implementation of step 4 due to Galil
and Park (1990) and Hassin and Tamir (1991), one can reduce the overall time
complexity to O(|D|2) to find all efficient solutions of (BDM).
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5 Conclusion

In this paper we developed a model for the bicriteria stop location problem and
proposed an efficient solution approach for determining a Pareto solution for each
efficient solution in the special case that the set of tracks is given by a polygonal
line with connected intervals T (d) for each demand point d. Investigating the
real-world data of German rail (DB) all over Germany, it turns out that this
assumption is almost satisfied in practice. Dealing with a few demand points not
satisfying the connectedness of T (d) (or, more specific, with a few rows of the
covering matrix not satisfying the consecutive ones property) has been treated in
Ruf and Schöbel (2003).
Moreover, the extension of the results to demand regions instead of demand
points is investigated. For some first results in this area we refer to Schöbel and
Schröder (2003).
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