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Abstract In this paper we analyze cooperative games whose characteristic function takes
values in a partially ordered linear space. Thus, the classical solution concepts in coopera-
tive game theory have to be revisited and redefined: the core concept, Shapley—Bondareva
theorem and the Shapley value are extended for this class of games. The classes of standard,
vector-valued and stochastic cooperative games among others are particular cases of this
general theory.
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1 Introduction

Game theorists have tried over years to keep connected the development of Game The-
ory to actual applications. This orientation is very important from an economic point of
view and also from the practitioners point of view. Nevertheless, nowadays game theory is
not only an economic tool but also an interesting mathematical discipline. In this regard,
games themselves are mathematical objects worth to be investigated. One may argue that in
mathematical-economics the stress is put in the applicability however there are many aspects
within the Theory of Games that remain open and beg for further analysis.
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One of these situations can be identified in the allocation of divisible entities among the
agents operating in an optimization problem. One of the branches of the theory of games,
namely TU-cooperative game theory, has covered partially this field. Indeed, all this theory
is founded in that either worth or cost will be allocated to the players. This means that any
object to be allocated is given a value through a “utility” and only this virtual utility can be
decomposed and finally allocated. One can think of situations, as for instance the following
story, that fits bad to the paradigm above. Three guys are in the middle of the desert and
have in common one orange, one grapefruit and one watermelon. Each one of them must go
in a different direction and needs the fruits as future refreshment. It is clearly not optimal to
cut the fruits in pieces since conservation would be impossible. Moreover, here the monetary
value is of no interest. This is of course, also, the case of heritages of goods having familiar
or subjective interest.

It is clear to us that considering the problem of how to allocate mathematical objects as
a whole requires a titanic effort (as considered as a single project). Therefore, one can try
to proceed by stages. In a first stage we restrict ourselves to the problem of how to allocate
elements of a partially ordered linear space.

The standard analysis of cooperative TU-games assumes that the payoff of any coali-
tion is valued by a real number. Here we replace this assumption allowing the payoffs to
be elements of any partially ordered linear space. Different extensions of cooperative games
have being the games with a continuous of player by Aumann and Shapley (1974) or the
fuzzy coalition theory by Aubin (1987). In recent years another productive line of research
has been to impose different structures on the set of coalitions for the players in the games.
This analysis gives rise to the so called cooperative games on combinatorial structures (see
Bilbao 2000). Our analysis is completely different instead of imposing conditions on the
argument of the characteristic function we extend the nature of the payoffs. Particular in-
stances of this model have been already considered in (Fernandez et al. 2002a; Granot 1977,
Nishizaki and Sakawa 2001; Suijs 2000; Suijs et al. 1998, 1999; Timmer 2001).

Our goal is to extend the solution concepts of the classical cooperative game theory to
this new class of games. Specifically, we study the two most widely used solution concepts
within the theory of cooperative games: (1) the core set (set solution), and; (2) the Shap-
ley value. The partially ordered cooperative game theory includes as a particular instance
the standard TU-games, as well as some other classes of games such as vector-valued and
stochastic games.

The results in this paper are summarized in the following: (1) introduction of a new class
of cooperative games whose characteristic function ranges on any linear space, (2) definition
of different core concepts according to the domination relationship defined on the space, (3)
characterization of non-emptiness of the core; and, (4) extension of the Shapley value to this
class of games and its characterization by potentials and axiomatically.

The paper is organized as follows. In Sect. 2 we present the basic concepts and definitions
concerning partially ordered cooperative games. Section 3 contains the results concerning
the core. We present the notion of core set and its characterization in terms of coalitional
dominance. We also prove an analogous to Bondareva—Shapley Theorem that holds for par-
tially ordered cooperative games using a general form of duality by Jahn (1983). Section 4
introduces the extended Shapley value. It also characterizes this value using extended po-
tentials and a set of axioms. The paper ends with the references cited in the text.
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2 Basic concepts

Let X be a linear space over the real field. A partially ordered cooperative game (N, v) is
aset N={1,2,...,n} of players and a map v : 2V U {J} — ¥ on the set 2" of all subsets
of N such that v(fJ) = ©x (Ox is the null vector in the space X). The elements of the set N
are called players and the function v is the characteristic function of the game. The function
v(S) is the worth of the coalition S. We denote by P O"(R) the family of all the partially
ordered cooperative games defined on the space R.

We assume that there exists a partial order > (reflexivity and transitivity) defined on the
set R (see Roubens and Vincke 1985). We represent by > the corresponding strict partial
order and by ~ the indifference relationship. Associated with > there is another binary
reflexive relation = defined by:

XY iff not(Y =X), VX#Y,

that is important to be considered in our analysis. We require to this partial order a natural
densedness condition:

forany X #Y e®, X~2Y = 3IZeN, XzZZ>Y. 1)

It is worth noting that the well-known scalar, vector-valued (Ferndndez et al. 2002a) and
stochastic cooperative games (Ferndndez et al. 2002b; Suijs et al. 1999) are particular cases
of this formulation, just considering ® = R with the > order over the reals, R” with the
component-wise order and L!(R) with the stochastic dominance order, respectively. The
cases above are examples that can be found in the literature of game theory although one
can think of many other interesting structures where this approach can be applied.

If players agree on cooperation then an interesting question which arises is how the worth
v(N) should be allocated among the various players. The natural extension of the idea of
allocation (or preimputation) used in scalar games to the partially ordered cooperative games
consists of using an allocation

X=X, .... X

where X; e R,i =1, ..., n, stands for the payoff of the i-th player. We assume that the worth
of v(N) must be allocated to the players in N. This is the well-known efficiency principle.
Therefore, in the rest of the paper we will consider only allocations that satisfy

i:X,- ~ U(N)
i=1

The set of allocations of a partially ordered cooperative game (N, v) is denoted by
I*(N, v). Formally,

I*(N,v) = {(Xl,...,X,,)eN”:ZX,«Nv(N) )

i=1

Among all the allocations of the game (N, v) € P O"(R) we are interested in those which
cannot be dominated by the worth given to the coalitions. Thus, some kind of ordering
concept is necessary to perform these comparisons.
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3 Core solutions

The minimum requirement imposed on allocations so that players do not refuse them is the
following: each individual player i gets a payoff X; being not worse than the worth v (i)
given by the characteristic function of the game.

The set of all the allocations that fulfill this property, I (N, v), is called imputation set of
the game.

I(N,v)={XeI"(N,v):X; Zv(i) Vi}.

Keeping tracks of the development followed in the standard theory the next step is to
impose the collective rationality to those imputations proposed as good allocations. This
idea was first suggested by (Gillies 1959) and later formalized (for scalar games) under the
name of core of the game.

Definition 3.1 The core of the partially ordered cooperative game (N, v) € P O"(R) is de-
fined as the set of allocations such that Xg:="; s Xi is as least as preferred as v(S), for
every coalition S and it is denoted by

core(N,v; =) ={X e I*(N,v)/Xs> v(S)VS C N}.

Notice that C stands for strict inclusion, while € will be used in the paper for the regular
inclusion.

Example 3.1 Let us consider the partially ordered lineal space of continuous functions
X :[0,2] — R such that X (¢) = Ijo,1;(¢) f1(t) + I;1.21(t) f2(¢) where f; i = 1,2 are affine

functions,
1) 1 ifr €A,
1) =
A 0 otherwise;

and the partial order given for any X, Y in this space by X > Y if X(¢) > Y (¢) for any
t €[0,2].
We consider the three-person game (N, v) whose characteristic function is given by:

s | {2} {3} {2y {13} {23} {1,2,3}
f1(®) 2 341 143t 6+t 3+3t 445t 10 + 21
@) | 3/24¢/2 T/2+¢t/2  T/2+¢t)2 7 S+t 17/241/2 12
It is clear that the allocation given by

‘ X1 X2 X3

fi@) 3 5—1 2+3t
H@® | 7/2—1t/2 7/241/2 5

belongs to core(N, v, >).

In order to characterize the core we need to introduce the coalitional dominance induced
by the relationship . Let X, Y € I*(N, v) and § C N a coalition. ¥ dominates X through S

s
according to - and we will denote Y domy- X if Y5 > X and v(S)5Ys. This concept leads
us to consider the notion of non-dominated imputation by allocations.
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Definition 3.2 An imputation X € I (N, v) of the game (N, v) is non-dominated by allo-
cations if for any coalition S € N it does not exist an allocation Y € I*(N, v) such that

s
Y domy- X. This set is given by:

s
NDIA(N,v, 7)) ={X € I(N, V)/ASCN, Y elI*(N,v),Y #X: Y domy- X}
This set exhibits a close relation with the concept of core given in Definition 3.1.
Theorem 3.1 The following relationship NDIA(N, v; ) = core(N, v; =) holds.
Proof Let us assume that X ¢ NDIA(N, v; ) then it must exist a coalition S C N and
Y € I*(N, v) such that:
U(S) ?\: YS > Xs.

This implies that X > v(S) does not hold and hence X ¢ core(N, v; >).

Conversely, let X & core(N, v; >). Then, it exists S € N such that Xs > v(S) does not
hold. Therefore, v(S) = Xs. Now, we can apply the densedness property (1) and it must
exists ¥ € R satisfying:

v(S) Y > X,
and hence X &€ NDIA(N, v; >). O

Our next result is a first sufficient condition for non-emptiness of the core. Let u be a
function u : ® — R satisfying for any X, X, € 8, X; > X, = u(X;) > u(X,). (u agrees
with the partial order >.) We define the set

C(N,v,) ={X € I"(N,v) :u(v(S)) <u(Xs), VS S N}.

It is worth noting that this set may be used as solution concept if players agree on allocating
the worth in the game through a utility function u.

Lemma 3.1 For any u that agrees with the partial order >, the relationship
core(N,v,>) S C(N, vy),
holds.

Proof Let us assume that X € core(N, v, =) but X € C(N, v,). Then, it must exist a coali-
tion S such that u(Xg) < u(v(S)). However, this is not possible because u agrees with the
partial order >. |

We can give alternative conditions on the non-emptiness of the core. Let us assume that
the partial order > is defined by the family of functions U. That means that X > Y <
u(X) > u(Y), Yu € U. Then, we can establish the following theorem.

Theorem 3.2 [t holds that:

core(N,v,>) = ﬂ C(N,v,).
uel
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Proof The inclusion core(N, v, =) €[,y C(N, v,) is clear by the definition of C(N, v,)
and Lemma 3.1.

Then, let us assume that X € (),.; C(N,v,) and X & core(N, v, >). Thus, it must ex-
ist S € N such that not(Xs > v(S)). This is equivalent to that it exists i € U such that
u(v(S)) > u(Xs). However, this means that X ¢ ﬂueU C(N,vy,). O

Let us consider a utility function u on R. Associated with u we define the following scalar
cooperative game (N, v,) where the characteristic function is given by v, (S) = u(v(S)) for
any S € N. Theorem 3.2 is particularly important when the cone that characterizes the
partial order > is finitely generated. (X > Y & u;(X) >u;(Y), j=1,...,k.) Then we get
the following lemma. (Recall that the core in a scalar cooperative game is not empty if and
only if the game is balanced. See Owen (1995).)

Lemma 3.2 core(N, v, =) = if the scalar game (N, v,;) is not balanced for some j =
1,..., k.

Notice that the very important case of a partial order defined by individual utilities, de-
scribed above, fits into this category. It is worth noting that for the core to be empty it suffices
that a game (N, v,,;) has empty core, although some other games (N, v,;), j # i may have
nonempty core.

Example 3.2 (Vector-valued games, Ferndndez et al. 2002a) Let us consider the space
(R¥, >), where for any x,y € RF, x > y means x; > y; fori =1, ..., k. The game (N, v)
whose characteristic function v is defined: v : 2¥ — R¥, v(@) = 0 is called vector-valued
game.

In this case the partial order is generated by the utility functions u; (x) =x;,i =1, ..., k.
Therefore, by Theorem 3.2 core(N, v, >) = ﬂle C(N,vy,).

In this particular case, any element X € core(N, v, >) is a k x n matrix whose i-th row
X' is a core allocation of the scalar game (N, Vy;)-

3.1 A necessary and sufficient condition for non-emptiness of the core

In the following we address a characterization of core(N, v, >) similar to the one known
as Bondareva—Shapley Theorem. First of all, we would like to recall the idea behind that
theorem. The theorem states a primal minimization problem whose feasible set defines the
imputations in the core while the objective function is just the value obtained by the grand
coalition with a given imputation. To this problem (primal feasibility problem) it is associ-
ated a dual maximization problem. The feasible set of this problem is taken as a definition
of balancedness. Proving strong duality between these two problems allows to characterize
the non-emptiness of the core as soon as the dual problem is bounded from above. This is
essentially what is done by Bondareva—Shapley theorem. This analysis is not only privative
of the family of games defined over the real line. In general, every time that we are able to
define the core of a game as the feasible set of a primal minimization problem and strong
duality is proven with respect to a dual maximization problem we can do a similar argument
and a necessary and sufficient condition for the core is generated. This is the argument in
our approach.

In order to be able to prove such characterization we assume that > is induced by a
convex cone Dy, thatis X > Y <& X — Y € Dy. We also consider the space Z being the
2" — 2-fold Cartesian product of the linear space R, i.e. Z = R?'~2. The space Z is partially
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ordered by the convex cone D; = (Dy)?' 2. (The reader may notice that this is not a re-
striction because all the interesting cases fall into the considered case.) Let 8* and Z* be
the topological dual of the spaces X and Z. For any ¥ € X and Y € 8* we denote by (Y,Y)
the pairing between the elements of the primal and the dual spaces, e.g. the action of the
continuous linear functional ¥ on Y. Therefore, ()A’ ,Y)= Y (Y). (The analogous definition
holds for the pairing between Z and Z*). The ordering cone of the topological dual space
R* is given by:

Dy :=1{Y eR*: (Y, Y) >0, VY € Dy}

and the quasi-interior of Dy« is given by:
DE :={Y eR*: (Y,Y) >0, VY € Dy \ {On}},

where Oy denotes the zero of the space N.
Let us define two linear mappings from R” into X and Z, respectively, as follows:

C: R — R

X=(X1,...X,) —  CX)=) X,
i=1

A: R —

z
X=(X,....X,) — AX) = (Zx) .
SCN

ieS

We denote by * applied to an operator its adjoint operator, namely C*, A* and T* denote the
adjoint mappings of C, A and T, respectively. Finally, let L(Z, R) be the linear space over
R of continuous linear mappings from Z into X.

Definition 3.3 The partially ordered cooperative game (N, v, >) is balanced if for any Ye
DE, there exists T € L(Z, R) such that:

L. (C=TA)*(Y) e (Ds)",
2. T*(Y) € Dy,
3. v(N) = T ((v(S))scn) and does not exist 7" such that 7" ((v(S))scn) = T ((v(S))scn)

We note in passing that the above balancedness condition is similar to the one in the
scalar case and reduces to the usual one when we consider scalar cooperative games. It
states that it must exist a maximal (non-dominated by the partial order >) element 7' being
inferior that v(N). It is based on a feasibility condition on a dual problem that will appear
in the proof of the characterization theorem. The reader may notice that there exist in the
literature some other extensions of the concept of balancedness to class of games without
side payment as for instance in (Billera 1970; Kannai 1992; Keiding and Thorlund-Petersen
1987; Shapley 1973) and the more recent by (Predtetchinski and Herings 2004) where a
necessary and sufficient condition on the non-emptiness of the core of a cooperative game
without side payment is given.

Let us consider the following set

FA={XeR": A(X) — (v(S)scn) € Dz, X € (Dy)"}.
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First of all, we assume that (v(S))scy # ©z. Moreover, we impose that our continuous
linear map A verifies the Slater type stability condition (see Jahn 1983, p. 346), i.e. there

exists (Xi, ..., X,) € 8" such that A(X) — (v(S))scy €Dy, the topological interior of D.
These are stability conditions to ensure a certain type of duality defined on the game payoff
function. We assume further that

{C(X): X € FA} + Dy is convex with non-empty algebraic interior. 2)

This hypothesis ensures that any minimal element of the set {C(X) : X € FA} is properly
minimal (see Jahn 1984). It is worth noting that our problem always fulfills condition (2) in
finite dimension spaces. Thus, in the scalar case it always holds without explicitly imposed.

Theorem 3.3 The game (N, v, >) is balanced if and only if core(N, v, >) # (.

Proof Let us consider the following problem:

(P): “min” C(X)
s.t.: A(X) — (U(S))ScN € Dy,
X € (Dy)"

where “min” must be understood in the sense of minimal points in the order >. Under our
hypothesis on stability of the map A we can apply the dual by (Jahn 1983) which for problem
(P) turns out to be:

(D): “max” T ((v(S))scn)
st: (C—TA*Y) e (Dy)",
T*(Y) € Dz,
T € L(Z,R), Y € D..

These two dual problems satisfy that any maximal solution of (D) corresponds to a
properly minimal element of (P) and conversely any properly minimal element of (P) is a
maximal element of (D) by (2).

Let us assume that (N, v, >) is balanced with 7'. This element corresponds to a maximal
solution of (D). Then, by duality there exists a feasible solution X to (P) such that it is
properly minimal and C(X) = T ((v(S))scy). Therefore, we have v(N) — C(X) = Oy; and
there exists a core allocation in core(N, v, >).

Conversely, assume w.l.o.g. that v(N) is a minimal element of (P). Since we have im-
posed the condition (2) on (P) any minimal element is properly minimal. Then, by duality
there exists a maximal element 7' of (D) such that v(N) = T ((v(S))scn)- This implies that
the game is balanced. O

The application of this characterization to the well-known componentwise partial order
of R™ is natural. The reader should notice that for m = 1 it reduces to the standard case of
R with the natural order, and therefore the definition of balancedness will give us the classic
one for real valued cooperative games.

Example 3.3 (Balancedness of vector-valued games with the componentwise order of R™)

The elements in the case of & = R™ with the componentwise order given by the cone
Dy =R are the following. The dual space 8* = R™, and the dual cone Dy« = R’/. This
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implies that Z = R”?"~?_ The map C : R — R™*! is given by C = (c/);_\.
j=l...mxn
where

Ci

;|1 ifj=Gk—Dm+i, fork=12,...n,
" 10 otherwise.

The map A : R"™>! — RM@'=2)x1 ig given by A = (As)§_y (* denotes the transpose),
where for any S C N, Ag = (aij.s)i:l,..m » and

j=1l...m-n

i 1V ifj=(k—-Dm+i, fork=1,2,...n, andke S
%5710 otherwise.

Notice that since we consider the componentwise order in R™, in the adapted problem (P)
(see page 150), there are m constraints per each coalition § C N \ . Therefore, the dimen-
sion of A is ((2" —2) -m) X (m - n).

Finally, T is an element of L(Z,RR™), the space of continuous linear maps from Z to
R™. This means that 7" is a matrix of dimensions m x [(2" — 2) - m]. To simplify, we write
T=(T,...,T,) where T, = (T)scy € R¥"2m and TS = (¢77/) ,_,,, e R,

In order to compute G := C — T'A, we must compute the matrix £ :=T x A =
(A, TZA, ..., T,A)", being

ZA — Z T;-SAS = Rlx(mn).
ScN
Notice that the row vector T; A := (ef )j=1..m 18 given by:

m

e{ = ZZtiS’rais, forj=1...mn.

SCN r=1
According to the definition of a,j, 5 we obtain that

alg=1 iff j=(k—Um+r, forsomek=1,2,...,n, andk €S,

and thus

eij — Z liS.(k l)m—H.

SCN

keS
Hence, we obtain G :=(C —TA):=(g/)=(c] —€)i_1. m

j=1l...mxn

Here the adjoint G* of G is the transpose matrix, e.g. G* = G’. Now we are in conditions
to write down the balancedness conditions. For the sake of simplicity we first write condi-
tions 2, and 3, and then condition 1.

(2) For any Ye R\ {0}, T'Y > 0. This is equivalent to tis’j >0 foranyi, jand SCN.
(3) Foranyi=1,...,m it must hold

»(N) > Z Xn:[is,(k—l)n1+i vi(S).

SCN k=1
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(1) For any Ye R\ {0}, G'Y > 0. Satisfying this condition for any vector Yis equivalent
to satisfy it for the elements of the canonical basis of R”. Applying to the elements in
this basis, the condition is equivalent to

1-— Z tiS‘(k_l)m+i20, foranyi=1...m, k=1...mn.

SCN
keS

Notice that the payoffs can be considered zero-normalized without loss of generality. In
addition, since conditions (2), and (3) hold then it suffices to check for equality in the
expression above. Thus, condition (1) is

1 — Z tl-s’(kfl)m“:O, foranyi=1...m, k=1...mn.

SCN
keS

Example 3.4 (Balancedness for scalar games) Finally, when m = 1 the conditions (1), (2),
and (3) reduce to:

M Y f=1, fork=1...n;

SCN
keS

2) t5>0, forSCN,
B3) vN) =Y rfu(s),
SCN

the balancedness condition for standard cooperative games.

More sophisticated partial orders give rise to different balancedness conditions although
in any case all of them are derived under the same theory developed above.

Remark 3.1 Checking balancedness for this class of games can be very difficult. Thus, other
properties of these games may be more useful to ensure non-emptiness of the core. We prove
that the natural extension of convexity is sufficient.

Analogous to the concept for standard games, convexity of the game (N, v, >) can be
defined in terms of monotonicity, in the considered order, of the first differences. We define
the marginal contribution, d;, of player i in the game v, as:

di : 2V — R,

V(S Ui —u(S) ifigs,

v(S) —v(S\{i}) otherwise. @)

S—>di(S)={

The game (N, v, >) is said to be >-convex, if for eachi € N,
di(T) = d;(S)

holds forany S C T'.
Using now the standard argument one can proof that for any permutation 7 of N, the
marginal worth vector d” € X" defined by

df =v(PTU{i}) —v(P[), forallieN, )
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where P ={j € N : m(j) < m(i)}; belongs to core(N, v, >). Thus, we can state the fol-
lowing result.

Theorem 3.4 [f the game (N, v, =) is >=-convex, the core(N, v, >) # (.

4 The extended Shapley value

The analysis of the core of partially ordered cooperative games has shown that it may be
empty (as it also happens in the standard case). This fact leads us to consider another kind
of solution concept. In this occasion we look for point solutions rather that for solution sets.
The use of a partial order > induced by Dy modifies the standard analysis of point solutions
for this class of games. In this case, there are two different relations that play an important
role. On the one hand, there is the ‘=" relation between elements of 8. On the second hand,
there is the ~ relation, x ~ y iff x > y and y > x. In the scalar case the natural order of
the reals implies that given two reals x and y, they are equivalent in the order, i.e. x ~ y
if and only if x = y. In the general case this might not be the case. Nevertheless, from the
preference induced by Dy, if x ~ y there is no reason to prefer x over y nor the other way
around. In this sense, the order modifies our perception of the space identifying many points
as equivalent. As for applications of the extended Shapley value, one can think of coalitions
sharing stock options which payoffs are clearly random variables. Depending on the partial
order considered on the space L!(R), each player will have a unique portfolio or a set of
indifferent portfolios given by his extended value.

First of all, we note that the binary operator ~ induces an equivalence relation on X. Let
us consider the set [~] := {x € 8 :x ~ ©Oy}. This set is a linear subspace of R, therefore the
quotient space 8/[~] is also a linear space where the cone Dy~ induces a strict partial
order, i.e. for any x, y € 8/[~], the following relation holds: x ~ y iff x = y.

Now, looking for point solutions means that we are interested in functions ¢ defined on
the set of all the partially ordered cooperative games on R such that for any v € P O"(R)
we have ¢(v) € R". The reader may notice that in fact, in the original space, these point
solutions are sets of the form ¢(v) + [~].

Among all of those functions we consider the most widely accepted: the Shapley value.
According to the usual definition given by Shapley (1953), we define the extended Shapley

value of v € PO"(R) as the unique function ¢ = (¢, ..., ¢,) such that:
@t —Dln—1)! . .
pilvl~ Y (M) —u(T =P, i=1,...n )
n!
TCN
ieN

Formula (5) coincides with the Shapley value for games defined on R when the linear
space considered is the real line.

Example 4.1 Let us consider a vector valued game on & = R? with the partial order induced
by the cone Dy = {x = (x1, x2, x3) € R3:x; + x>0, x5 >0}

Let (v, {1, 2, 3}) be a three player partially ordered cooperative game with characteristic
function given by:

|9 {1} {2 {3t {12} (1,3} {2,3} N
0\ /0 1 -2 5 6 3 10
ofo] o] | -1 2 5 4 -3 0
0/ \o 0 0 12) \1/3) \1/4 1
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In this situation, we have that [~] = {x = (x1, x2,0) € R? : x| + x, = 0}, and therefore,
R/[~]=R? and Dy;~) = (RT)?. The game v induced by v on ¥/[~] is given by:

| ¥ () {2) (3} (1,2} {1,3}) (2,3} N
0\ (0 [0\ (0\[10Y/10)/ 0\ /10
(o) (5) (o) (5) (12) (3) (1) (V)

Hence, the Shapley value of v is:

(2073 (53 (53
<ﬂ1[v]—<7/18>, </>2[v]—<25/72)7 (ps[v]—<l9/72)-

Finally, the extended Shapley value of v is:

v

pilv]l = {x e R’ 1 x; + xo =20/3, x3 = 7/18},
ol ={x e R® 1 x) + x2 =5/3, x3 =25/72},
ps[v]={x eR® 1 x; +x,=5/3, x3=19/72}.

Example 3.1 (Continued) In this example, [~] = (. Therefore, & = X/[~] and thus, the
induced game coincides with the original one. The extended Shapley value is an element in
83 given by:

(121 [ 92+1/2 [ 2+51)2
sm(v)—( 5/ ) ¢2(“)—<21/4_,/4)’ g"3(”)_(17/4+z/4>‘

This is clearly an imputation of the game but it does not belong to core(N, v, >).

Remark 4.1 If the game (N, v, >) is >-convex then formula (5) states the relationship be-
tween the extended Shapley value and the core of these games. Since the extended Shapley
value is a convex combination of all marginal worth vectors (see (4) for a definition), it
belongs to core(N, v, >=). (See Theorem 3.4.)

In the following for the sake of readability and without loss of generality, we will denote
the quotient space R/[~] as R, and Dy/[~) as Dy; thus assuming that the partial order is
strict.

Originally Shapley in his paper (Shapley 1953) introduced his value axiomatically. The
original proof makes use of the existence of a finite basis of the linear space of the n-player
cooperative games: the unanimity games. In the class of games considered in this paper this
kind of analysis is clearly not possible. In infinite dimension linear spaces the argument
based on a basis can not be applied simply because there may not exist such a basis (neither
finite nor infinite). Nevertheless, we justify the extended Shapley value using a different
approach based on an extension of the concept of potentials (see Hart and Mas-Colell 1989).
This approach leads us to two different characterizations that extend the ideas of preservation
of differences and consistency as introduced in (Hart and Mas-Colell 1989). Finally, we also
analyze how to extend Shapley’s axioms to the case of partially ordered cooperative games.
‘We show that for those spaces X where there exist Schauder bases it is still possible to define
anew class of unanimity games that permit a characterization of the extended Shapley value
with almost the same original Shapley’s axioms.
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Let P O (R) be the class of all the games (N, v) defined on 8. A function P : PO(R) — R
with P (¥, v) = Oy is called an extended potential if it satisfies the equation:

D P(N,v) = PN\ {i}, v) ~ v(N), (6)
ieN
for all games (N, v) € P O(R). Usually, the difference P(N, v) — P(N \ {i}, v) is called the
marginal contribution of player i in the game and is abbreviated as:

D'P(N,v)~ P(N,v) — P(N\{i}, v).

Once more, extended potentials reduce to usual potential in the sense of Hart and Mas-
Colell (1989) when the linear space X equals R.

First of all, it is straightforward to check that the expression (6) can be equivalently
rewritten as:

1 ,
P(N,v)~=|v(N)+ Y P(N\{i},v) |- )
n ieN
The first theorem in this section proves the existence and uniqueness of the extended
potential function. Moreover, its marginal contribution vector is the extended Shapley value.

Theorem 4.1 There exists a unique potential function P whose expression for any game
(N,v) e POR) is:

PN, v~ Wuw). ®)

SCN

The resulting marginal contribution vector (D P');cy is the extended Shapley value of the
game (N, v).

Proof The proof for existence and uniqueness of the extended potential function is similar
to the one for the potential, although we include it for completeness. As usual, |N| =n and
S| =s.

We can assume without loss of generality that the order > is strict. Otherwise we con-
sider the quotient space. Starting with P (¥, v) = Oy and applying the formula (7) we can
determine uniquely P (N, v) for any v. Indeed, this is done applying recursively the formula
to (S,v) forany S C N.

Now, it remains to prove that the potential has the expression given in (8). Notice that
it suffices to prove that formula (8) satisfies the expression (7) that uniquely defines the
potential. Replacing (8) into (7) we get:

(s — DI(n — 9! (s — D(n —s)!
Z e 5] 3 )
SCN ieN Lsch\{i)
and this can be rewritten as,
N)(n —1)! — D!(n—s)!
v(N)(n—1) +Z (s )n(!n s) o(8)

n!
SCN

U(N) [Z (S—l) (n—9)! oS+t 3 U= (S—l)'(n—S)' (S)].

! |
S:le l) S:nes l)
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Both sides of the equation above are equal. Thus, the formula (8) defines the potential func-
tion.

Finally, using this formula the marginal contribution vector (D’ P);cy is easily seen to
satisfy D' P = ¢; foralli € N. O

It is important to remark that there is a subtle difference in this derivation of Shapley value
with respect to the original one by Hart and Mas-Colell (1989). In their original approach
they reduce their construction to unanimity games to get an expression of the potential func-
tion in terms of the Harsanyi’s dividend of all the coalitions. (See the proof of Theorem A
in (Hart and Mas-Colell 1989).) That approach makes use of the existence of a basis of the
linear space of the games (for a fixed number of players). Obviously this approach is avoided
with the argument followed in the proof of Theorem 4.1 where no existence of any basis of 8
is required. In this regard, this proof seems to give more generality to the potential analysis
of games: it can be applied not only to games with a continuum of players as already noted
in (Hart and Mas-Colell 1989) but also to games where the payoffs are different from the
reals.

We have proven the existence of a unique extended potential function whose marginal
contribution vector coincides with the extended Shapley value in the class of partially or-
dered cooperative games. This result allows us to obtain the extended Shapley value using
those characterizations based on potential. This is the case for the preservation of differences
principle (see Hart and Mas-Colell 1989 for a discussion on this principle).

Let x(S) be the payoff of player i in the game (S, v) for i € S. Consider a set of differ-
ences {d"/} C \ where

d7 =x"(N\ {j}) —x/(N\{i}), foralli,j.

The following theorem characterizes the extended Shapley value. Its proof follows the
line of Theorem 3.4 in (Hart and Mas-Colell 1989) and is therefore omitted.

Theorem 4.2 The extended Shapley value is the unique payoff vector (x');ey C N that sat-
isfies:

1. Ziein(N) =v(N).

2. x*(N) —x/(N)=d" foralli,j.

In the same way the extended Shapley value can also be characterized as the unique point
solution ¢ that satisfies the properties of consistency with respect to the reduced game and
is standard for two-person games. The interested reader is referred to the paper by Hart and
Mas-Colell (1989) for the definitions of these properties. For the sake of brevity the proof
and the details of these results are omitted.

4.1 Axiomatic approach to the extended Shapley value

In the sequel we address an axiomatic characterization of the extended Shapley value that
resembles very much the original derivation given by Shapley (1953). In doing that we con-
sider a set of three axioms dummy player, symmetry, and linear-continuity. Before to proceed
we would like to point out some important remarks. First of all, the reader may have noticed
that comparing with the standard Shapley value we have added a certain form of continuity.
It will be clear later that it is crucial because we may have to deal with spaces of infinite di-
mension. Second, we have to mention the scope of this approach. This characterization uses
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the existence of a basis in the linear space where the game takes its values. Therefore, its
applicability confines to those spaces having basis. In particular, it applies to all the spaces
of finite dimension, any Hilbert space, separable spaces, spaces having Schauder basis (as
for instance the spaces of continuous functions of any order), etcetera.

It is clear that this approach is more restrictive than the one based on potentials. On the
other hand, it applies to the important class of vector valued games (Ferndndez et al. 2002a)
(i.e. those games whose values are taken on R™). In addition, it is also interesting because it
shows us what unanimity games mean in the class of partially ordered cooperative games.

Let v € PO"(R) be an n-person partially ordered cooperative game defined on RX. The
game (N, v) can be identified with a vector X € R x = Xy Xps ooor X5y, X))
such that v(S) = X € R. Itis clear that P O"(R) has structure of linear space over the reals.
Assume that & admits a basis B = {p'};c;. Therefore for any x € R there exists a unique
sequence A', i € I (possibly infinite) such that x =Y, _, A’ p'.

Forany p € Band S C N, let the unanimity game w’ be defined by

iel

oy S¢ET,

Py
Ys (T)—{pf ifSCT.

Remark 4.2 Notice that unanimity games must be a basis of P O"(RX). Thus, their values
must be the elements of the basis . This is an important difference with respect to standard
case where the games take value on the reals. The usual unanimity games take values 0, 1
since a basis for R is 1. It is also interesting to point out that the standard cooperative games
take value on the linear space R over the field R. (The linear space coincides with the field
over which it is defined. This is a very particular structure.)

Axioms. Let ¢ be a value and (N, u), (N, v) two partially ordered cooperative games.
Al. Dummy player.
> eilvl~v(S),
ieS
for any S such that v(S) =v(SNT) forall T € N. (S is a carrier for v.)
A2. Symmetry. For any permutation 77, and i € N,
@zl ~ @ilv],

where the game 7 v means the game u such that, forany S = {i\, ..., is}, u({w(iy), ...,
7 (is)}) =v(S).
A3. Linearity.

@ilu + vl ~ @ilul + ¢;[v].
A4. Continuity. ¢; must be continuous, i.e. for any sequence (x"),>; C N it holds
@i lim x") = lim gi(x").
n—0o0o n—0oQo
The reader may notice that axioms A3 and A4 imply the following new axiom:

A3’ Linear-Continuity. Let (u"),eny C P O"(R) be a denumerable sequence of partially or-
dered cooperative games then

¢ <Zu"> =) e,

neN neN
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Remark 4.3 We assume that the games are normalized with respect to the cone cone(B),
induced by the positive linear combinations of the elements of the basis of X. This means
that v({i}) &€ —cone(B) for any i € N. Notice that it does not mean loss of generality since
we can translate all the payoffs by a fix vector maintaining the ordering relationships among
them.

Theorem 4.3 The extended Shapley value is the unique value defined on all the partially
ordered cooperative games satisfying Axioms Al, A2, and A3'.

Proof 1t is clear that if S is a carrier for w} " then any superset 7 such that S C T is also a
carrier. Thus, by axiom Al we get that Y, _; ¢; [ng] = p/ forany S C T. This fact together

with Remark 4.3 implies that ¢;[w gj] = Oy for i & S. Now, by using A2 and the linearity
implied by A3’ we can deduce that for any ¢ > 0

i |2 ifies
gilewf 1=1 "+ :
Oy otherwise.
s :
Let Ps = (Op,...s Py, 0n) € R% 71 it is clear that since B is a basis of & then

= (pY)ier scn is a basis of Nz -1,

For any game (N, v) € {’O"(N), let (dgi)igl’sgj\l be the unique set of scalar in the repre-
sentation of v in the basis B. This is,

b= Y dfl pi
pieBSEN
Let U C N be any coalition, then

=Y > alp =y Z( > (—1)S_t>d§’ipi,

pi TCU pi TSU “NScU
saT

=3 Z(Z(—l)*‘*’d?i)p'

pi SCU “TCS
CEENCIRTSED 3 WD D) BTG
TCS pi SCU pi SCN
Therefore, using axiom A3’ we have

ool =33 1= o

pz SCN pr SCN
jeSs

pi
- X (e )i =S r( X o)
pi ScN TCSS pi TEN SCN
jes TU{jlcs
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1 ) i i
<let)/j(T)= Z (—1)”§>= p' Z vi(Dldy —drp(;)]

SCN pl TCN
TU{jics jeT
. t—D!n—-10)! t—=D'n -1 i i ;
<s1nce yi(T)= — )= Z —a Z[d; —d}’\(j]]p
’ TCN ’ Pl
jeT

— D)l —1)!

=y CEDOEO Gy —ur .
TeN n.
jer

Therefore, the extended Shapley value is uniquely characterized by axioms Al, A2,
and A3’ d
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