N
N

N

HAL

open science

How good are SPT schedules for fair optimality criteria

Eric Angel, Evripidis Bampis, Fanny Pascual

» To cite this version:

Eric Angel, Evripidis Bampis, Fanny Pascual. How good are SPT schedules for fair optimality criteria.
Annals of Operations Research, 2008, 159 (1), pp.53-64. 10.1007/s10479-007-0267-0 . hal-00341351

HAL Id: hal-00341351
https://hal.science/hal-00341351
Submitted on 19 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00341351
https://hal.archives-ouvertes.fr

HOW GOOD ARE SPT SCHEDULES FOR FAIR
OPTIMALITY CRITERIA

Eric Angel,' Evripidis Bampis,' Fanny Pascual !

1LaMI, CNRS UMR 8042, Université d’Evry, Tour Evry 2, 523, Place des Terrasses 91000
Evry, France

{angel, bampis, fpascual}@lami.univ-evry.fr

Abstract We consider the following scheduling setting: a set of n tasks have to be exe-
cuted on a set of m identical machines. It is well known that shortest processing
time (SPT) schedules are optimal for the problem of minimizing the total sum
of completion times of the tasks. In this paper, we measure the quality of SPT
schedules, from an approximation point of view, with respect to the following
optimality criteria: sum of completion times per machine, global fairness, and
individual fairness.

1. Introduction

We are given a set of n tasks, 11, 15, - - - , T,,, with execution times l1, 2, - - - ,
[, and a set of m identical machines (or processors) B, P»,--- , P,,. Given
a schedule we denote by C; the completion time of task 7}, and by X (resp.

7) the completion time vector whose " coordinate is the completion time of
task 7; (resp. where the coordinates of X have been reordered in non increas-
ing order). For each instance Z we define V(Z) to be the set of all vectors
that are induced by some feasible schedule. One of the most popular opti-
mality criteria in scheduling theory is the sum of completion times criterion
defined as > ; C;. An optimal solution to the problem of minimizing the
sum of completion times can be constructed by using the shortest execution
time (or Smith’s) rule [1]: sort the tasks in non decreasing processing time
order and schedule the tasks greedily on the machines following this order:
when a machine becomes idle it executes the smallest unscheduled task. A
broader class of optimal schedules for the sum of completion times criterion
is the following class of schedules that are defined using the notion of rank
[1]. Roughly speaking, a task is at the /" rank if its execution time is smaller
than or equal to the execution times of the tasks at a largest rank, and largest
than or equal to the execution times of the tasks scheduled at a smallest rank.

2

More formally, we denote by ¢ the ordered collection (/.. .,[,) and we as-
sume that the indexing is chosen so that [} < Iy < --- < [,,. Our scheduling
instance Z is completely defined by the system (£, m), where m is the num-
ber of (identical) processors. Let 7; be a collection of processing times de-
fined by T = {ln, ln—la ce aln—m-i—l}’ Tp—1 = {ln—ma PN aln—2m+l}’ ceey
71 = {ln—(k—1)ms---» 11}, Wwhere k = [2]. The collection 7; is called the ith
rank of tasks with respect to (£, m). Consider a schedule obtained by schedul-
ing the tasks rank-by-rank in the order m, 7o, ..., 7 and such that no two
tasks of the same rank are scheduled on the same processor. Notice that any
permutation of the tasks of the same rank assures the optimality of the sched-
ule with respect to the sum of completion times criterion. This is the family of
schedules that we call SPT schedules in the sequel.

We are interested to know whether among the SPT schedules, which are
the optimal schedules for the sum of completion times criterion, it is possible
to obtain good solutions for the following optimality criteria:

- the maximum sum of completion times per machine: max C;.
1<i<m J
- j ep;
This measure captures the wish of distributing as much as possible the

total sum of completion times among the m machines of the system.

- the global fairness [4]: For two vectors X, Y € V(Z), we write X Y
if X; < Yj for all +. The global approximation ratio of X, denoted

by cgpi(X), is the smallest « such that X < oY forall Y € V(Z).

Informally cgp (X)) is the smallest o for which X isan a-approximation,
in the coordinate-wise sense, to every vector Y € V(Z). The best global
approximation ratio achievable on the instance Z is then defined as

cn (L) = Xg&f&l) cgbi (X)-

- the individual fairness: The individual happiness factor compares the
completion time of a task with the smallest possible completion time
of the same task in any feasible schedule. More formally, we define
¢ind(X) to be the smallest « such that X < oY forallY € V(Z). The
best approximation ratio achievable on the instance Z is then defined as

c:nd (I) = Xér\l/f&I) Cind(X)'

Our approach is in the same vein as the one of Bruno et al. [3] who con-
sidered the following question: among all optimal schedules for the sum of

How good are SPT schedules for fair optimality criteria 3

Pil1 1 3 Pl1|1]1

P, 1 5 7 P, 5 |
max. sum of completion times = 7 max. sum of completion times = 6
(total) sum of completion times = 10 (total) sum of completion times = 11

Figure 1. Instance for which the optimal solutions to the problems Minimize Z?:l C; and
MiN Max SCT are different.

completion times, is it possible to compute one that minimizes the makespan?
(They proved that the problem is N'P-hard.) For a related problem, see also

[6].

Organization of the paper and our contribution In Section 2, we consider
the problem of minimizing the maximum completion time per machine (MIN
Max SCT). We first show that contrarily to the sum of completion times, the
problem MIN MAX SCT is NP-hard. Furthermore, we show that an SPT
schedule is a (3 — 3/m + 1/m?)-approximation algorithm for the MIN MAX
SCT problem and that there are instances for which any SPT schedule cannot
achieve an approximation guarantee better than 2 — ﬁ In Section 3, we
consider the global approximation ratio and we prove that SPT schedules have
an approximation ratio of 2 — 1/m (and that no algorithm can have a better
approximation ratio if m = 2). Philips et al. [5] presented a 3-approximation
for the same problem when release dates are taken into account. For the in-
dividual happiness factor however the performance ratio cannot be bounded
by any constant but we prove that a SPT schedule obtains the best possible
performance guarantee. Finally, we focus on a more restricted version of the
individual happiness factor where the obtained solutions are compared with
respect to the family of SPT schedules and we prove a 2-approximation bound.

2. The Min Max SCT problem

We first remark that the problem of minimizing the sum of completion times
and the MIN MAX SCT problem are different. To see that consider the fol-
lowing instance: three tasks of length 1 and a task of length 5 on two identical
processors (see Figure 1). The optimal solution for the problem of minimizing
the sum of completion times consists in putting two tasks of length 1 on a pro-
cessor, and the other two tasks on the other processors (total sum of completion
times = 10, maximum sum of completion times per processor = 7). The op-
timal solution of MIN MAX SCT consists in putting the three tasks of length
1 on a processor, and the task of length 5 on the other processor (total sum of
completion times = 11, maximum sum of completion time per processor = 6).

4

2.1 Hardness
We prove in this section that the MIN MAX SCT problem is N/P-hard.

THEOREM 2.1 MIN MAX SCT is N'P-hard.

Proof: Consider the decision version of the MiN MAX SCT problem:

MiN Max SCT problem: Given a system (£, m), and a number k. Does
there exist a schedule such that its maximum sum of completion times
is smaller than or equal to &7

We will show that the PARTITION problem which is known to be NP-hard
[2] can be phrased in terms of problem MiN Max SCT.

PARTITION problem: Given a collection C' = {x1, x9, ..., z,} of integers.
Does there exist a partition (A, B) of C,i.e. AUB =C and AN B = {,

suchthat . z=> _pz?

Given an instance of PARTITION with a collection C' = {1, z2, ...,z } of
non decreasing integers x; < z9 < --- < x,, we define a system (£, 2) and a
limit k£ such that the MIN MAX SCT instance admits a solution if and only the
instance of PARTITION admits a solution. Letk = 3(Y1, ;) —> 1, e
We now define the system (£, 2): we have 2n tasks 77, T», . . . , Tb, to schedule
on 2 processors P; and P. Let [; denote the execution time of task 7;. Let the

execution times & = {l1,l2,...,l2,} be such that ly;_; = Z{;Il nfii+1 and

loj = Y1) 7. forj € {1,2,...,n}.
For example, (if n > 6),1; =0, [= %+

_z x4 m>

s 9?1’14; no el m T3

15274‘“,1,[6:7"‘?4‘?7
xro —1

lon1 =%+ + -+ 75,

Let us now show that there is a solution of the MIN MAXx SCT problem if
and only if there is a solution of PARTITION.

If a partition (A, B) exists for C' then there is a solution of the MIN MAX
SCT problem: we can obtain for our system (&,2) a schedule whose maxi-
mum sum of completion times is 3 (Y7, ;) — iy 7=%7. This schedule
can be obtained by assigning tasks 75;_1 and T5; at rank j: assign task 75; to
Py and T5;_; to P if z; € A, otherwise assign T5; to P and Tpj_1 to P;.
Indeed, the execution time of a task added at the /" rank will be counted
n — j + 1 times in the sum of the completion times of its processor. For ex-

ample, the execution time of the last task of a processor will be counted only

How good are SPT schedules for fair optimality criteria 5

once, whereas the execution time of the first task of a processor will be counted
n times (because there are n tasks on each processor). Thus the contribution
to the sum of completion times per processor of the task 13;_1 (resp. Tb;),
assigned at the j rank, is (n — j + 1) X lyj—1 (resp. (n —j + 1) x lp; =
(n—7+1)x (lgj—1+ %)) The difference between these two contributions
isthen z;: if z; € A (i.e. Tb; is assigned to ;) then the contribution of the gt
task of P, is equal to the contribution of the 5 task of P, plus zj. Likewise,
if z; € B (i.e. Ty; is assigned to /%) then the contribution of the jth task of P
is equal to the contribution of the j** task of Py, plus z j

Thus, the sum of the completion times of the tasks of A is 2?21 Ty; 1 +

Zm]_ c 4 ¥, and the sum of the completion times of the tasks of I3 is Z?Zl Toj—1
+ 2 4,ep ¥j- Moreover i Tojo1 = (n=1) 2 +(n—2) ;2 +- -+ 751 =
w1 = by — By wpan — T = 300 @i — Y - So the
sum of the completion times of the tasks of P is (D2;; z; — D i) niy) +
a4 %j» and the sum of the completion times of the tasks of B is o zi—

n €T, .
>imt 7oi1) T 2ajen Ti-
If there is partition of C' (i.e. Zm]‘EA = Zm]-GB =
sum of completion times per processor is equal to (3 i_; zi — Y iy 7=7) +
Lo 3(Yo xi) — > i — k. Thus, if there is a solution of

2 2 i=1 n—i+1
PARTITION, there is a solution of the MIN MAx SCT problem.

by

n)
ﬁTl%) then the maximum

Let us now show that if there is a solution of the MIN MAX SCT problem,
then there is also a solution of PARTITION. If the maximum sum of the comple-
tion times per processor is smaller than or equal to % (i i) =D s
then we have a SPT schedule. Indeed, the total sum of the completion times of

a SPT schedule is S = 2 x (%(Sorxi) = oy nf;“), as we saw it above,
and a schedule has a minimum total sum of completion times if and only if it is
a SPT schedule [3]. Since the total sum of completion times cannot be greater
than twice the maximum sum of completion times per processor, a schedule
which is a solution of the MIN MAX SCT problem is a SPT schedule. In
any SPT schedule, the tasks of length ly; and I, are at the ith rank, because
h <l <lI3 < ... l2j_1 < l2j < l2j+1 < l2j+2 < --- <y So,in any
SPT schedule, the sum of completion times of P, minus the one of P; is equal
t0 > 1y, ep Tj — 21y ep, ¥j- If there is a solution of the MIN Max SCT

problem with k = 3(30, z;) — >0, 777 then the sum of the completion
times of P; is equal to the sum of the completion times of % (otherwise the
sum of completion times of all the tasks would be smaller than S), and then
> omyep, Tj = 21y ep, T there is a partition of ' and we can construct this

partition (A, B) by placing z; in A if Ty; is assigned to P, and z; in B if Ty;

6

is assigned to P. O

2.2 Approximation

In this section, we show that an optimal algorithm for the sum of comple-
tion times criterion gives a 3-approximate solution for the MiN MaAx SCT
problem. Consider the following algorithm, denoted by SPTyrecdy:

Order tasks by non decreasing execution times. At each step 7,
for 1 < ¢ < n, schedule the current task on the processor which
has the smallest completion time.

This algorithm gives an optimal solution for the problem of minimizing the
sum of completion times of the tasks. Let us show that this algorithm is a
B-2+ #)—approximation algorithm for MiN Max SCT.

In order to let SPTgreeqy be deterministic when several processors have the
smallest execution time, we will refer in the proofs to the following algorithm,
which is a greedy SPT algorithm (Proposition 2.1 shows that we add at each
step a task on a processor which has the smallest completion time):

Order tasks by non decreasing execution times. At each step
i, for 1 < ¢ < n, schedule the current task on the processor
P; mod m-

PROPOSITION 2.1

a) At the beginning of step i of SPTgeqy, the processor P modq m is the
processor which has the smallest completion time and the smallest sum
of completion times.

b) At the end of step i of SPTgreeay, the processor P; mod m IS the processor
which has the largest sum of completion times.

Proof:

a) We are at the beginning of step 7. Let ¢ be the processor F, 1,04 m, and
let p denote its completion time. Let us show that ¢ has the smallest
completion time:

— Foreach k£ > 1 mod m, processor P has a completion time greater
than or equal to p. Indeed Fj has the same number of tasks as c
and, for each 7 such that 1 < ¢ < number of tasks on ¢, the i-th task
of Py is greater than or equal to the i-th task of ¢, by construction.

How good are SPT schedules for fair optimality criteria 7

— Foreach k£ < 1 mod m, processor P has a completion time greater
than or equal to p. Indeed the number of tasks on F; is equal to the
number of tasks on c plus one, and, for each ¢ such that 1 < 7 <
(number of tasks on ¢), the (7 + 1)-th task of F is greater than or
equal to the i-th task of ¢, by construction.

We use the same reasoning to show that c has the smallest sum of com-
pletion times.

b) We are at the end of step i. Let ¢ be the processor F, 04 m, and let p
denote its sum of completion times at this step. Let us show that ¢ has
the largest sum of completion times:

— For each & > ¢ mod m, processor P, has a sum of completion
times smaller than or equal to p. Indeed B, has one task less than
c and, for each 7 such that 1 < 7 < number of tasks on ¢, the i-th
task of Py is smaller than or equal to the (i 4+ 1)-th task of ¢, by
construction.

— For each £ < ¢ mod m, processor P has a sum of completion
times smaller or equal to p. Indeed B, has the same number of
tasks as ¢ and, for each 7 such that 1 < 7 < number of tasks on c,
the ¢-th task of P} is smaller than or equal to the ¢-th task of ¢, by
construction.

PROPOSITION 2.2 Let OPT be the maximum sum of completion times of a
solution of MIN MAX SCT. We have:

Min(>-"_, C;

o s M52, C5)
m

where Min(z:‘?:1 C;) is the optimal value for the problem of minimizing the

sum of completion times.

Proof: We will prove this proposition by contradiction. Let us suppose that we
have OPT < Min(2. -1)

= .
By definition each processor has a sum of completion times smaller than or

equal to OPT: Vi € {1,...,m}, ZTjEPi C; < OPT.

S0, > 5-1Cj = Xt Xryep, € < m x OPT, and OPT >

Min(X7, C))
m

E;-L:l Cj
m

>

, a contradiction. O

8

THEOREM 2.2 The algorithm SPTgecqy achieves an approximation guaran-
tee of (3 — = + —L3) for MIN Max SCT.

Proof: Before we add the last task 7,,, the processor P, on which 7T;, will be
scheduled has the smallest sum of completion times, denoted by p, and the
smallest completion time, denoted by e (Proposition 2.1 a). Let , denote the
execution time of task 7;,. The processor on which the last task is scheduled
has the largest sum of completion times (Proposition 2.1 b), so:

maxi<i<m ZTjEPi C] = ZT EPz =p+te+ l

< TG4,

Since SPTgrecdy gives an optimal solution of the minimum sum of comple-
tion times problem, and since the completion time of 7, in SPTgreeqy iS € + I,
we have:

Min(37_, C5)—(e+1)

m

Min Ej:l Gj
m

IA

+e+1,
+(1- %)(e%—ln).

maxi<i<m 2p,ep, Cj

<

Since e+ lﬁ" < OPT (because e is the minimum completion time at step n—1),
and [,, < OPT, we have:

etly = etlqmolh
< (14m 1)OPT
< (2 —)OPT
Min 37

. 1 C; ..
Moreover, since —=2=— < OPT (Proposition 2.2), we have:

OPT + (1-L)2- LyoprT

maxi<i<m Y p;ep; Cj
(3= 2 + 7z)OPT.

<
<

Lower bound for SPTgceqy. We now show that SPTeeqy does not achieve
an approximation guarantee better than 2 — mfm Consider the following
instance: m processors, m x (m — 1) tasks of length 1 and a task of length

1
B = le_m";+)

SPTgeedy Will schedule m — 1 tasks of length 1 on each processor, and the
task of length B will be the last task of the first processor (see Figure 2). The

How good are SPT schedules for fair optimality criteria 9

Por1j1]1 P11 6
Plr1]1 P11

P, 6 Pil1 1

max. sum of completion times = 6 max. sum of completion times = 11

Figure 2. SPTeedy does not achieve an approximation guarantee better than (2 — Eﬁiﬁ):
example with m=3

maximum sum of completion times is then 22_11 i+ (m —1) + B, which is
equal to 2(3 ", i) — 1.

An optimal solution for MIN Max SCT would be the following one:
schedule m tasks of length 1 on each of the (m — 1) first processors, and
the task of length B on the last processor. The maximum sum of completion
times in this solution is then >, i.

So the ratio between the maximum sum of completion times of these two

schedules is %, which is equal to 2(1 — ﬁ), which tends towards
i=1

2 when m gets large.

3. Fairness measures

In this section we will consider fairness measures in order to compare a
schedule given by the greedy SPT algorithm, SPTgeedy, to any other schedule.

3.1 Global fairness measure

We will first use the fairness measure introduced in [4], namely the global
approximation ratio. We prove that SPTgeeqy has a global approximation ratio
of 2 — L for the problem that we consider (and which is denoted by P || all),
and that no algorithm can achieve a better global approximation ratio if m = 2.

THEOREM 3.1 One has cp,(T) < 2 — % for all instances T of schedul-
ing on m identical parallel machines (P || all), for any m > 1. Moreover

the completion times vector X of a schedule returned by SPlyecqy verifies
1
Cgbl(X) <2- me

Proof: Let us consider an instance Z of tasks 7; (i € {1,...,n}) ordered by
increasing lengths. Let MR be the maximal ratio between a schedule Xgpr

returned by SPTgreeqy and any schedule Y: MR = maxy X—S?Z’E, where %

10

. Yoo —
means max; % So we have VY € V(I), X—Sf?{ﬁ < MR, and then Xgpr <

MR 7 So MR = cgp (X spr). We will show that MR cannot be greater than
—
2— % Let us consider that this ratio is the & coordinate of X g p7, divided by

the i coordinate of ¥ (i €{l,...,n}).

The worst ratio can be achieved if the completion time of the #" task is
as large as possible in the SPTgecqy schedule. By construction, in a schedule
returned by SPTgreedy, the i™ completion time is the completion time of the task
T;, and T; is started after the tasks from 13 to T;_1, and before the tasks from
T;y1 to T, Since SPTgpeeqy is a greedy algorithm, the worst completion time
of the 7" task is achieved when the (i — 1) first tasks are completed when the "

i—1
task start to be executed: in this case, the completion time of 7; is %ll] +1;.
i—1
So the worst completion time of 7; in an SPTgeeqy schedule is # + ;.

Let us now find the minimal value which can be taken by the " coordinate
of 7, an ordered completion time vector of a schedule of Z. Note that this
value cannot be smaller than [;: indeed 71 is the ¢ completion time and is
then greater or equal to (i — 1) other completion times, and j; is the length of

. LS PR
the ™ smallest task. Note also that 7Z cannot be smaller than =="—: indeed

this is the minimum completion time of the 7 smallest tasks (when no processor
is idle). Therefore, we have:
il

MR < T

—_— i‘_ l_ .
ma,x(= li>

Ll . .
Let A denote =Z=*~, We now consider the two possible cases:

m
Tish At
m Suppose that [; > A, we have: MR < - L < . L < lé_—i— 1-—
1 1
m <2
Ty, oalliyg,
= Suppose that [; < A, we have: MR < —2— 2 <1+

Q(I_L)<2_L

m/’/ — m

In both cases, we have MR < 2 — % Since MR = ¢4 (Xspr), and since
Xspr is the completion time vector of the SPTyeeqy schedule of Z, we proved
that a schedule X returned by SPTyreeqy verifies cgp(X) < 2 — %, and so that
chu(T) <2— o O

How good are SPT schedules for fair optimality criteria 11

P11 P 1] 2
P2 2 P21

completion times vector: X1=(1, 2,2) completion times vector: X2=(1, 1,3)

3|

Figure 3. Example where we have ¢,/ (Z) = 2 =2 —

Let us now show that it is not possible to have ¢ (Z) < 2 — L for all
instances Z of (P || all). Indeed, if m = 2, it is not possible to have always
C;lob(z) < %:

THEOREM 3.2 It is not possible to have ¢, (T) < 3 for all instances T of
scheduling on two identical parallel machines.

Proof: let us consider a system with two processors, /4 and P. Let us con-
sider the following instance 7 : a task 73 of length 1, 75 of length 1, and 73 of
length 2. Consider the two completion times vector X; = (1,2,2) (obtained
by putting 77 and 75 on P; and T3 on Py: see Figure 3) and X, = (1,1, 3)
(obtained by putting 77 and T3 on P; and T on P»). We have: cg(X;) = 2,

— =
and cgp (X2) = % For each vector Y € V(Z), we have X; < 7 orXo<XY.

So for each vector Y € V/(Z), we have ¢y (Y) > 2, and so cou(Z) = 3. o

3.2 Individual fairness measure

In this section, we will compare the completion time of each task in a so-
lution given by SPTgeeqy to the best completion time this task could have in
another schedule.

THEOREM 3.3 ¢} ,(Z) < 1 + nW_I for all instances T of scheduling on
m identical parallel machines (P || ind_all), for any m > 1. Moreover
the completion times vector X of a schedule returned by SPlyecqy verifies

cina(X) <1+ nW_I

Proof: Let us consider an instance Z of tasks 7; (i € {1,...,n}) ordered by
non decreasing lengths. It is easy to see that G, q(Xspr) is the maximal ratio
between a schedule Xgpr returned by SPTyeeqy and any schedule Y. We will
show that ¢;,4(Xspr) cannot be greater than 1 + % Let us consider that
this ratio is the i coordinate of Xgp7, divided by the i coordinate of YV
(te{l,...,n}).

The worst ratio can be reached if the completion time of I; is as large as
possible in the SPTyceqy schedule. Since SPTgpeeqy is a greedy algorithm, this

12

is achieved when the (i — 1) first tasks are completed when 7; start to be
iy)
+1;. So the maximal
i1
j=1

value which can be taken by the i coordinate of Xgpr is % + ;. The

minimal value which can be taken by the " coordinate of Y is [;: this is
achieved in a schedule in which 7; is in the first position. We have:

executed: in this case, the completion time of ’7; is

il i—1 .

2=l g, = 1) 1

Cind(XSPT)SmiZSI-F@SI-FuSI-Fn)
l; ml; ml; m

Since ¢;ng(Xspr) <1+ "7_1, we have ¢} ,(Z) <1+ "W_l O

THEOREM 3.4 It is not possible to have ¢, ,(T) < 1 + "=L for all instances
T of scheduling on m identical parallel machines (P || ind_all).

Proof: Let us consider a system with m processors and the following instance
T : m + 1 tasks of length 1. We have ¢, ,(Z) = 2 because at least one of the
tasks will have a completion time of 2. Since ¢, ,(Z) = 2 = 1 4+ 21, it is not

possible to have ¢, ,(Z) < 1 + "L for all instances Z. O

33 Individual fairness measure among SPT schedules

In this section, we will compare the completion time of each task in an
SPTgeedy schedule to the best completion time this task could have in another
SPT schedule.

In addition to the notations introduced in the last sections, we define V5 pp
as the set of all completion times vectors that are induced by some SPT so-
lutions of the instance. We also define cspr(X) to be the smallest @ such
that X < oY forall Y € Vgpp(Z). This can be informally viewed as the
global approximation ratio of X: it is the smallest « for which X is an -
approximation to every vector Y € Vspp(Z). The best approximation ratio
achievable on the instance Z is then defined as

cspr(Z) Xe\}gT(I)CSPT(X)'
THEOREM 3.5 ¢§pp(Z) < 2 for all instances I of scheduling on m identical
parallel machines (P || ind_allspr). Moreover any SPT schedule X verifies

cspr(X) < 2.

Proof: Let us consider an instance Z of tasks 7; (i € {1,...,n}) ordered by
increasing lengths.

How good are SPT schedules for fair optimality criteria 13

11 13 11 4
P, |e 1 P, |e 1
P, 1-¢ | 1 A
T2 T4 T2 T3
completion times vector: (e,1 —e,e +1,2 —¢) completion times vector: (¢,1 —¢,2 — e,& + 1)

Figure 4. Example where c§ p(Z) tends towards 2 when ¢ tends towards 0.

It is easy to see that cgpy(X) is the maximal ratio between a SPT schedule
X and any SPT schedule Y. We will show that ¢gpp(X) cannot be greater
than 2. Let us consider that this ratio is the " coordinate of X, divided by the
i coordinate of Y (i € {1,...,n}). Let P;x (resp. P;y’) be the processor on
which T; is scheduled in the solution X (resp Y), and let ; denote the rank on
which the task 7; is scheduled.

The worst ratio is reached if the completion time of 7; is as large as possible
in the schedule X . This is achieved when the tasks before I} on P,x are as
large as possible: each largest task on each rank smaller than 7 is on P;x in
the solution X. Let B,,, denote the execution time of these tasks. B, is the
execution time of the tasks on the processor 7, in an SPTgeeqy schedule. In
the same way, the worst ratio is reached if the completion time of 7; is as small
as possible in the schedule Y': each smallest task on each rank smaller than 7 is
on P,y in the solution Y. Let B; denote the execution time of these tasks. B;
is the execution time of the tasks on the processor /§ in an SPTgeeqy schedule.
So the difference between the completion time of 7} in X and in Y is equal
to = B,, — B1. This number is smaller than or equal to the length of each
task in the rank 7;, and then is smaller than or equal to [;, the length of I; (this
property is a direct consequence of Proposition 2.1). We have:

B, +1; Bi+0+1;
c X) < < < 2.
SPT() - B +li - B +li -

For any SPT schedule X of an instance Z, we have: cgpp(X) < 2, and so
cspr(T) < 2. O

Let us now show that this bound is the best possible.

THEOREM 3.6 Let € be any small number such that € > 0. It is not possible
to have cp(T) < 2 — € for all instances T of scheduling on m identical
parallel machines (P || ind_allspr).

Proof: For the ease of presentation we give a proof for a system with two pro-
cessors. Let us consider the following instance 7 : a task 7] of length €, T of

14

length 1 — ¢, and two tasks 73 and T} of length 1. Assume that ¢ < 1. The
completion times vectors corresponding to the two possible SPT schedules are
X, =(e,1—e,1+¢,2—¢)and Xy = (e,1 —€,2 —,1 +) (see Figure 4).
We have: ¢t pp(Z) = cspr(Xi) = cspr(Xa) = %—jri < 2 — ¢, which tends
towards 2 when ¢ tends towards 0. If m > 2, the proof is the same except that
we add m — 2 tasks of length 1 — € and m — 2 tasks of length 1 to the instance

described for the case where m = 2. O

References

[1] R.W. Conway, W.L. Maxwell, and L.W. Miller, Theory of scheduling. Addison-Wesley
(1967).

[2] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. W H Freeman & Co.

[3] J.Bruno, E.G. Coffman Jr., and R. Sethi, Algorithms for minimizing mean flow time. Pro-
ceedings of IFIP Congress 74, 504-510, Stockholm, Sweden, August 5-10, 1974, North-
Holland, (1974).

[4] A. Kumar and J. Kleinberg, Fairness Measures for Resource Allocation. Proceedings of
41st IEEE Symposium on Foundations of Computer Science, 75-85 (2000).

[5] C. Phillips, C. Stein and J. Wein, Scheduling jobs that arrive over time. Proceedings of
the Fourth Workshop on Algorithms and Data Structures, LNCS 955, Springer, 86-97
(1995).

[6] C. Stein and J. Wein, On the existence of schedules that are near-optimal for both

makespan and total weighted completion time. Operations Research Letters 21 (3), 115-
122 (1997).

