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Abstract

A matrix analytic paradigm, termed Quasi-Birth-Death Markov chains on binomial-like trees,
is introduced and a quadratically converging algorithm to assess its steady state is presented.
In a bivariate Markov chain {(Xt, Nt), t ≥ 0}, the values of the variable Xt are nodes of a
binomial-like tree of order d, where the i-th child has i children of its own. We demonstrate
that it suffices to solve d quadratic matrix equations to yield the steady state vector, the form of
which is matrix geometric. We apply this framework to analyze the multilevel feedback schedul-
ing discipline, which forms an essential part in contemporary operating systems.

Keywords: QBD Markov chains, tree-like processes, matrix-analytic methods, multilevel feed-
back queues
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Over the last few decades, broad classes of frequently encountered queueing models have been
analyzed by matrix-analytic methods [3, 11, 12, 13]. The embedded Markov chains in these models
are two-dimensional generalizations of the classic M/G/1 and GI/M/1 queues, and quasi-birth-
death (QBD) processes. Matrix-analytic models include notions such as the Markovian arrival
process (MAP) and the phase-type (PH) distribution, both in discrete and continuous time. Con-
siderable efforts have been put into the development of efficient and numerically stable methods
for their analysis [3]. There is also an active search for accurate matching algorithms for both PH
distributions and MAP arrivals when modeling communication systems, e.g., [1, 5, 6, 9, 15].

One of the more recent paradigms within the field of matrix-analytic methods has been its
generalization to discrete-time bivariate Markov chains {(Xt, Nt), t ≥ 0}, in which the values of Xt

are the nodes of a d-ary tree (and Nt takes integer values between 1 and h). Depending on the
transitions allowed in such a tree-structured Markov chain, several classes have been identified: (a)
M/G/1-type [18], (b) GI/M/1-type [21], (c) QBD-type [20] and (d) tree-like processes [4], where
the latter two classes were shown to be equivalent [19]. In each of these models the transitions fulfill
a spacial homogeneity property, that is, the transition probability between two nodes depends only
on the spacial relationship between the two nodes and not on their specific values. Various iterative
algorithms to determine, among others, the steady state probability vector of these types of Markov
chains have been developed. As opposed to the standard M/G/1-, GI/M/1- and QBD-type chains
(which correspond to the case where d = 1) such algorithms exhibit either only linear convergence
or are quadratic, but require an iterative procedure at each step or the solution of a large system
of linear equations (e.g., [4]).

Instead of considering a state space that is organized as an infinite strip (the standard case)
or as an infinite d-ary tree, we consider a different type of state space, termed a binomial-like tree
(due to its similarity with binomial trees). A binomial-like tree consists of an infinite number of
nodes, where the root node has d children. Also, every node that is the i-th child of its parent node,
has i children of its own. Thus, when considering discrete-time Markov chains {(Xt, Nt), t ≥ 0} on
such a state space, the value of Xt can be represented as an decreasingly ordered string of integers
(between 1 and d). Indeed, let ∅ represent the root node and let Xt be the i-th child of a node
represented as J , then Xt can be written as J + i (where a + denotes the concatenation to the
right).

A QBD-type Markov chain on such a state space is obtained by restricting the transitions in a
manner similar to a tree-like process. However, to improve the flexibility of the framework, the range
of the variable Nt may depend on the rightmost integer of Xt. Apart from discussing the ergodicity
condition of such a Markov chain, we also develop an algorithm with quadratic convergence to
determine its steady state vector, by showing that the matrices needed to characterize this vector
can be obtained by solving a series of d quadratic matrix equations, for which various algorithms
and software tools exist (e.g., [2]).

We further demonstrate that this new type of Markov chain is very effective in analyzing
multilevel feedback queues, originally introduced in the late 1960s [16, 7, 10], which appear in many
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modern textbooks on operating systems, e.g., [17]. Also, many contemporary operating systems
support some form of multilevel feedback queues (e.g., Solaris). Multilevel feedback queues process
jobs in a round-robin order, but whenever a job completes its quantum, its level is increased by one
(all jobs start as level 0 jobs). Ongoing jobs are distributed over various FIFO queues, depending
on their current level and a strict priority mechanism is used to visit these queues (where queue 0
has the highest priority), see Section 3 for a more detailed description.

Feedback queues are inspired by the optimality of scheduling orders such as shortest-process-
next (SPN) or shortest-remaining-time-next (SRTN), which minimize the mean delay by favoring
short jobs, but do not rely on a priori knowledge of the job durations. Instead the service time
attained so far is used to determine the priority of a job. To avoid starvation effects for large
jobs, the quantum received by a level i job typically increases as a function of i. Other queueing
disciplines that are very closely related to multilevel feedback queues include least-attained-service,
foreground-background and shortest elapsed time. Many papers have been devoted to the analysis
of multilevel feedback queues, a detailed survey on this topic was written by Nuyens and Wierman
[14]. As can be seen from this survey, most of the work focuses on the limiting case where the
number of levels is infinite and the quantum q approaches zero.

We demonstrate that the behavior of a multilevel feedback queue can be captured by a QBD-type
Markov chain on a binomial-like tree, when jobs arrive in batches, have generally distributed service
times with finite support and the number of levels is large enough such that any job starting service
in the last level completes service before its quantum expires. Notice, due to the finite support
assumption, this corresponds to having an infinite number of levels. To the best of our knowledge,
it is the first time that the joint queue length distribution of a multilevel feedback queue is derived
in an analytical manner. Moreover, our model can be easily extended to the case where jobs receive
different service quanta depending on their current level.

In Section 1 we formally introduce binomial-like trees and the class of QBD Markov chains
having such a tree as their state space. A necessary and sufficient stability condition is established
in Section 2 and the stationary vector is shown to have a matrix geometric form, provided that
it exists. We also indicate how to develop a quadratically converging algorithm to compute the
steady state vector. In Section 3 we indicate how to model a multilevel feedback queue as a QBD
Markov chain on a binomial-like tree. We end with some illustrative numerical examples.

1 QBDs on Binomial-Like Trees

A binomial-like tree of order d consisting of an infinite set of nodes Ω is constructed as follows. Let
∅ ∈ Ω be the root node of the tree, having d children (i.e., neighbors) labeled 1 to d. Each i-th
child node with a label of the form J + i, has exactly i children of its own, labeled J + i + 1 to
J + i+ i. Thus, the set of all nodes is given by

Ω = {∅} ∪ {J |J = j1 j2 . . . jk, k ≥ 1, 1 ≤ jl ≤ d, jl ≥ jl′ , 1 ≤ l ≤ l′ ≤ k},
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that is, Ω includes all strings J of integers between 1 and d that are ordered descendingly. A
binomial-like tree differs from the well-known binomial tree of order d [8] in the sense that the
i-th child of a node has i children, instead of i − 1. Therefore, a binomial-like tree has an infinite
number of nodes, whereas a binomial tree of order d has exactly 2d nodes.

Define a discrete time bivariate Markov chain {(Xt, Nt), t ≥ 0} in which the values of Xt are
represented by nodes of a binomial-like tree of order d, for d ≥ 1, and where the range of Nt is
defined as {1, . . . , hf(Xt,1)}, where f(Xt, 1) represents the rightmost integer of the string Xt (and
as {1, . . . , h∅} if Xt = ∅). We will refer to Xt as the node and to Nt as the auxiliary variable of the
Markov chain (MC) at time t. With some abuse of notation, we shall refer to this MC as (Xt, Nt).
Notice, the number of states belonging to a node may depend on the rightmost integer of the node
label, meaning sibling nodes may contain a different number of states, but two nodes that are the
i-th child of some nodes J1 and J2 both hold exactly hi states. Throughout this paper, we use the
‘+’ to denote the concatenation on the right and ‘-’ to represent the deletion from the right. Let
f(J, k), for J 6= ∅, denote the k rightmost elements of the string J , then J − f(J, 1) represents the
parent node of J .

The following restrictions need to apply for a MC (Xt, Nt) to be a QBD on a binomial-like tree.
At each step the chain can only make a transition to its parent (i.e., Xt+1 = Xt − f(Xt, 1), for
Xt 6= ∅), to itself (Xt+1 = Xt), or to one of its own children (Xt+1 = Xt+s for some 1 ≤ s ≤ f(Xt, 1)
or 1 ≤ s ≤ d if Xt = ∅). Moreover, the chain’s state at time t+ 1 is determined as follows:

P [(Xt+1, Nt+1) = (J ′, j)|(Xt, Nt) = (J, i)] =

f i,j J ′ = J = ∅,
bi,jk J ′ = J 6= ∅, f(J, 1) = k,

di,j
k,l J 6= ∅, f(J, 2) = lk, J ′ = J − f(J, 1) = J − k,

di,j
k J = k, J ′ = ∅,
ui,j

k,s J 6= ∅, f(J, 1) = k, J ′ = J + s,

ui,j
s J = ∅, J ′ = s,

0 otherwise

Notice, the transition probability between two nodes depends only on the rightmost element of
their labels and not on their specific values. We can now define the h∅ × h∅ matrix F , the hk × hk

matrix Bk, the hk ×hl matrix Dk,l, the hk ×h∅ matrix Dk, the hk ×hs matrix Uk,s and the h∅×hs

matrix Us with their (i, j)th elements given by f i,j , bi,jk , di,j
k,l, d

i,j
k , ui,j

k,s and ui,j
s , respectively. This

completes the description of the tree-like process. Notice, a QBD on a binomial-like tree is fully
characterized by the matrices F , Bk, Dk,l, Dk, Uk,s and Us, for 1 ≤ s ≤ k ≤ l ≤ d, meaning in
general by 1 + d(d+ 4) matrices (see Figure 1).
Clearly, denoting e as a column vector of the appropriate dimension and with all its entries equal
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Figure 1: Structure of the first three levels of a binomial-like tree Markov chain and the matrices
characterizing its transitions

to one, we have

Bke+Dk,le+
k∑

s=1

Uk,se = e, (1)

Bke+Dke+
k∑

s=1

Uk,se = e, (2)

Fe+
k∑

s=1

Use = e, (3)

for 1 ≤ k ≤ l. This implies that Dke = Dk,le for all k ≤ l. Further notice, setting d = 1 reduces the
binomial-like tree to an infinite strip and the associated QBD to the classic QBD Markov chains
where the number of states at level 0 may differ from the number of states on level i > 0.

Next we introduce a number of matrices that play a crucial role when studying the stability
and stationary behavior of a QBD on a binomial-like tree. Let Vk denote the hk ×hk matrix whose
(i, j)th element is the taboo probability that starting from a state of the form (J+k, i), the process
eventually returns to node J + k by visiting (J + k, j), under the taboo of node J . These taboo
probabilities only depend on k as Dke = Dk,le, for all k ≤ l. One readily establishes that the
following relationships hold:

Vk = Bk +
k∑

s=1

Uk,s(I − Vs)−1Ds,k, (4)

Let the (i, j)th element of the hk × hs matrix Rk,s denote the expected number of visits to state
(J + ks, j) before visiting node J + k again, given that (X0, N0) = (J + k, i) and let Rs hold the
expected number of visits to state (s, j), under taboo of node ∅, given (X0, N0) = (∅, i). These
matrices obey the following equations:

Rk,s = Uk,s(I − Vs)−1, (5)
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Rs = Us(I − Vs)−1. (6)

Finally, define the (i, j)th entry of the matrix Gk,l as the probability that, starting from a state of
the form (J + lk, i), we eventually visit node J + l by visiting state (J + l, j). Similarly, let Gk hold
the probabilities that the root node is visited through state (∅, j) starting from state (k, i). The
G-matrices can be expressed in terms of the Vk matrices by observing that:

Gk,l = (I − Vk)−1Dk,l, (7)

Gk = (I − Vk)−1Dk. (8)

2 Steady State Analysis

Throughout this section, we assume that the QBD process {(Xt, Nt), t ≥ 0} defined in the previous
section is irreducible. In practice some transient states are allowed as their corresponding entries
in the steady state vector will automatically become zero when applying the proposed algorithm.
Clearly, the MC (Xt, Nt) is ergodic if and only if

Dke+ Vke = e,

for all 1 ≤ k ≤ d, which can be reformulated as Gk,le = e, for all k ≤ l, by rewriting it as
(I −Vk)−1Dke = e and using Dke = Dk,le, as well as equation (7). An alternate stability condition
will be given further on.

Define

πi(J) = lim
t→∞

P [Xt = J,Nt = i],

π(∅) = (π1(∅), π2(∅), . . . , πh∅(∅)),

π(J ′) = (π1(J ′), π2(J ′), . . . , πhf(J′,1)(J
′)),

for J ′ 6= ∅. As a direct consequence of [11, Theorem 5.2.1] the following matrix-geometric form can
be revealed for the components π(J) of the steady state vector:

π(s) = π(∅)Rs, (9)

π(J + ks) = π(J + k)Rk,s. (10)

The first set of balance equations can be rewritten as

π(∅) = π(∅)(F +
d∑

s=1

Us(I − Vs)−1Ds),

to provide us with the vector π(∅). Using (9) and (10), the normalization condition
∑

J π(J)e = 1

7



can be rewritten as

π(∅)

(
e+

d∑
s=1

RsΦs

)
= 1,

with

Φ1 = (I −R1,1)−1e, (11)

Φk = (I −Rk,k)−1

(
e+

k−1∑
s=1

Rk,sΦs

)
, (12)

for 1 ≤ k ≤ d. If the MC (Xt, Nt) is ergodic, then the series
∑

J π(J)e must converge, meaning
Φ1,Φ2, . . . ,Φd must converge, and this implies that the spectral radius of the matrices Rk,k, for
1 ≤ k ≤ d, is less than one and (I −Rk,k)−1 exists.

The steady state vectors π(J) can therefore be determined from the matrices Vk, for 1 ≤ k ≤ d.
Equation (4), for k = 1, equals

V1 = B1 + U1,1(I − V1)−1D1,1,

which has an identical form as the matrix equation for the U -matrix of a classic QBD Markov
chain [11]. Moreover, D1,1e + B1e + U1,1e = e, therefore V1 is the U -matrix of a QBD Markov
chain characterized by (D1,1, B1, U1,1). Thus, we can compute V1 by solving the quadratic matrix
equation

Y1 = D1,1 +B1Y1 + U1,1Y
2
1 ,

and setting V1 = B1 + U1,1Y1. Any algorithm, including the logarithmic or cyclic reduction algo-
rithm, to solve this type of equation can be used to obtain Y1 [2]. Rewriting equation (4) for Vk,
for k = 2, . . . , d gives

Vk =

(
Bk +

k−1∑
s=1

Uk,s(I − Vs)−1Ds,k

)
+ Uk,k(I − Vk)−1Dk,k.

Having obtained V1 to Vk−1, Vk is also a U -matrix of a classic QBD characterized by (Dk,k, B̄k, Uk,k),
where B̄k is defined as the expression between brackets. It is readily checked that Dk,ke + B̄ke +
Uk,ke = e whenever Vke + Dke = e. Hence, Vk = B̄k + Uk,kYk, where Yk solves the quadratic
equation

Yk = Dk,k + B̄kYk + Uk,kY
2
k .

In conclusion, to obtain the matrices Vk, it suffices to solve d quadratic matrix equations, each of
these can be solved using an algorithm with quadratic convergence.
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From the probabilistic interpretation of the Yk matrices, one finds that Yk = Gk,k. Also, if
the Gk,k matrices are stochastic, then so are all Gk,l matrices, for k < l, because of (7) and
Dk,ke = Dk,le. Therefore, using the classic QBD stability condition [11], we find that the MC
(Xt, Nt) is stable if and only if

θkDk,ke < θkUk,ke,

where θk is the stochastic invariant vector of the stochastic matrix Dk,k + B̄k + Uk,k. Notice, this
condition is not readily checked as the matrices Vk need to be determined first for k = 1, . . . , d− 1
in order to compute the matrices B̄2 to B̄d.

We end this section by introducing a simple procedure for some quantities that are useful when
deriving performance measures. Let Πk be the sum of all π(J) vectors for which f(J, 1) = k, then

Πd = π(∅)Rd(I −Rd,d)−1, (13)

Πk =

(
π(∅)Rk +

d∑
s=k+1

ΠsRs,k

)
(I −Rk,k)−1, (14)

for k = 1, . . . , d − 1. From these and the vectors Φk, the probability P [N(J, k) = t] of having t

integers k on the string can be expressed as, for t > 0:

P [N(J, k) = t] = Πk(I −Rk,k)Rt−1
k,k (I −Rk,k)Φk. (15)

This equation can be justified by noticing that Πk(I − Rk,k) =
(
π(∅)Rk +

∑d
s=k+1 ΠsRs,k

)
cor-

responds to the sum of all π(J) vectors for which f(J, 1) = k, but f(J, 2) 6= kk. As a con-
sequence, Πk(I − Rk,k)Rt−1

k,k equals the sum of all π(J) vectors for which f(J, t) = k . . . k, but

f(J, t+ 1) 6= kk . . . k. Multiplying this result with (I − Rk,k)Φk =
(
e+

∑k−1
s=1 Rk,sΦs

)
is therefore

exactly the probability of having t integers k on the string as stated in (15).

3 The Multilevel Feedback Queue

The multilevel feedback queue is a scheduling discipline introduced in the late 1960s [16, 7, 10],
that has become an important CPU scheduling principle found in many operating systems text-
books. The goal of a multilevel feedback queue scheduler is to fairly and efficiently schedule a
mix of processes with a variety of execution characteristics (e.g., I/O-bound or CPU-bound). By
introducing different priority levels and by controlling how a process moves between priority levels,
processes with different characteristics can be scheduled as appropriate. The scheduler attempts
to provide a compromise between several desirable metrics, such as response time for interactive
jobs, throughput for compute-intensive jobs, and fair allocations for all jobs. A multilevel feedback
queue gives preference to short and I/O-bound jobs and quickly establishes the nature of a process
and schedules it accordingly.
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In its pure form, the multilevel feedback queue uses a set of priority queues and operates as
follows. All new job arrivals are termed class-0 jobs and are placed in the priority 0 FIFO queue.
The scheduler processes these class-0 jobs in a time sharing manner, that is, each class-0 job is
processed for a maximum of q0 time units. If a job is not completed before the quantum q0 expires,
it becomes a class-1 job and is placed in the priority 1 FIFO queue, where it is set to wait until
the priority 0 queue is empty. When the scheduler finds the priority 0 queue empty, it continues
serving class-1 jobs. A class-1 job receives at most q1 time units of uninterrupted service before
becoming a class-2 job, etc. In general,

• A strict priority discipline is used between all FIFO queues.
• A class-k job can only receive service when there are no class-l jobs with l < k present.
• When a class-k job enters the CPU, it is allowed to occupy the processor for a maximum of
qk time units.

• If a class-k job does not end within its quantum of length qk, it becomes a class-(k + 1) job
and is placed at the back of the priority k + 1 FIFO queue.

• New jobs arriving while a class-k job, with k > 0, is in service will not preempt the class-k
job before it has received qk time units of service, unless the class-k job completes.

Thus, a multilevel feedback queue will favor short jobs, without having a priori knowledge about
the job lengths. Starvation of large jobs can be counteracted by assigning longer quanta qk to the
lower priority classes.

Most work in this area has focused on systems with an infinite number of classes and on the
limiting case where qk = q → 0 for all k. Using the framework introduced in the previous sections,
we demonstrate how one can analyze the multilevel feedback queue under the following assumptions:

1. Time is slotted and all quanta qk are expressed as multiples of the time unit.
2. The quanta qk = 1 for all k. This assumption can be relaxed without great difficulty, we

restrict ourselves to qk = 1 to simplify the Markov chain description.
3. A (possibly empty) batch of jobs arrives at each slot boundary. The batch size in consecutive

slots is assumed independent and identically distributed. We denote bi as the probability
of having a size i batch, for i ≥ 0. Without much effort, one can also incorporate a batch
Markovian arrival process (D-BMAP), if needed.

4. The processing time S of all jobs is independent and identically distributed. Denote si =
P [S = i] as the probability that a job requires i time units of processing. This general
distribution is assumed to have a finite support, i.e., there exists some d such that P [S >

d+ 1] = 0.
5. The number of classes is (greater than or) equal to d + 1 and are labeled class-0 to class-d.

Notice, a class-d job always ends after one time unit of processing.
6. All class-k queues have a finite buffer size equal to N .
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3.1 Markov Model

Denote cit as the number of class-i jobs present in the system at time t. When observing the system
just prior to the slot boundaries, a Markov chain (Ct)t≥0 is obtained by keeping track of the queue
contents cit of all d+ 1 queues at the end of time slot t. Let m(t) be the smallest index i such that
cit > 0 (or d if no such index exists). We represent the tuple (cm(t)+1

t , . . . , cdt ) as an ordered string
of integers Jt = ψ(cm(t)+1

t , . . . , cdt ) between 1 and d as follows:

ψ(cm(t)+1
t , . . . , cdt )

def.
=

cd
t︷ ︸︸ ︷

d . . . d

cd−1
t︷ ︸︸ ︷

(d− 1) . . . (d− 1) . . .

c
m(t)+1
t︷ ︸︸ ︷

(m(t) + 1) . . . (m(t) + 1) . (16)

Thus, the tuple (Jt, (m(t), cm(t)
t )) fully characterizes the system at time t and provides us with

a Markov chain having a binomial-like tree of order d as its state space. Let us consider the
different transitions that might occur in such a Markov chain, for now assume all queues are of
infinite size (N = ∞). In all cases, the job in progress at time t will finish with probability
pm(t)+1 = P [S = m(t) + 1|S > m(t)].

Assume there are no new job arrivals at time t. (A1) If cm(t)
t > 1 and the job in progress

finishes, m(t+1) = m(t), cm(t+1)
t+1 = c

m(t)
t −1 and Jt+1 = Jt. If the job in progress did not complete,

m(t) + 1 needs to be added to the string Jt to get Jt+1. (A2) On the other hand, if cm(t)
t = 1 and

the job completes at time t, we will delete1 all the integers equal to m(t + 1) = f(Jt, 1) from the
string Jt to obtain Jt+1 and set cm(t+1)

t+1 equal to number of integers removed. If the job does not
complete, m(t+1) = m(t)+1 and we remove all (if any) integers equal to m(t)+1 from the string
Jt, while setting cm(t+1)

t+1 equal to one plus the number of removed m(t)+1 values. Clearly, some of
these transitions are not allowed in a QBD MC, as multiple integers are potentially deleted from
the string Jt at once.

If one or multiple new jobs do arrive, we distinguish between having (B1) m(t) = 0 and (B2)
m(t) > 0, in both cases m(t+ 1) = 0. (B1) In this particular case we simply increase the value of
c
m(t)
t taking into account the new arrivals and add a 1 to the string Jt if the job in progress did not

complete. (B2) If there were no class-0 jobs present, we first add a single m(t) + 1 (if there is no
job completion) followed by a series of cm(t)

t − 1 integers m(t). cm(t+1)
t+1 will hold the number of new

arrivals. Again, the QBD does not allow us to add a series of integers at once to the string Jt.
To reduce the Markov chain (Jt, (m(t), cm(t)

t )) to a QBD having a binomial-like tree as its
state space, we will slightly expand the state space of the chain. Currently, we have Jt ∈ Ω and
(m(t), cm(t)

t ) ∈ {(k, n)|k = 0, . . . , f(Jt, 1) − 1, n = 1, . . . , N} if Jt 6= ∅. Otherwise (m(t), cm(t)
t ) ∈

{(k, n)|k = 0, . . . , d, n = 0, . . . , N}. Remark that the number of states of a node depends on the
rightmost integer of the string identifying the node. By limiting the range of the variable cm(t)

t to
N , we automatically enforce that all queues have a finite capacity equal to N . Although the string
Jt might contain more than N identical integers i, the ones that should have been deleted earlier
(due to a buffer overflow), are deleted as soon as service is provided to the class-i queue (because

1Provided that the string J 6= ∅, otherwise the string remains identical to ∅.
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all these integers need to be stored into the cm(t)
t variable first).

The transitions described in step (A2) can be avoided by adding a set of states {(−, n)|0 ≤
n ≤ N} to each node variable Jt. Whenever we need to remove a series of k > 1 identical integers
m(t+1) from the string Jt, we can remove them one at a time. First, we enter the state (−, 0) after
which the first m(t+1) is removed from Jt and a transition to state (−, 1) is made, subsequently we
visit the states (−, 2), (−, 3) to (−, k−1), each time removing one m(t+1) from the string.2 While
removing the last m(t + 1) we enter state (m(t + 1), k). Notice, such transitions can be captured
by a QBD as a transition to a parent node may depend on the rightmost integer of both the node
and its parent, thus we can stay in states of the form (−, x) as long as both these integers remain
identical. As a consequence, there is no need to store the class m(t + 1) in the auxiliary variable
when removing a series of identical integers, which is beneficial for the block size of the matrices
involved.

The transitions of step (B2) are slightly more complicated in the sense that we add a list of k
identical integers m(t) possibly preceded by a single m(t) + 1. To distinguish between these two
scenario’s we add two sets of additional states: {(+, n)|1 ≤ n ≤ N} ∪ {(+1, n)|1 ≤ n ≤ N}. For
such transitions, the variable cm(t+1)

t+1 will hold the nonzero size of the batch arrival. If needed,
we start by adding m(t) + 1 to the string Jt and setting the auxiliary variable equal to (+1, k),
to indicate that k identical integers need to be added to the string. The value of these integers
can be deduced by subtracting one from the rightmost element of the string (hence, the 1 in the
notation). Subsequently, we visit states (+, k − 1) to (+, 1) and each time add a single integer to
the string (the value of which is identical to the current rightmost element of the string, except
for the first step where we might need to subtract one). Finally, we enter state (0, x), where x is
drawn from the batch size distribution, knowing it concerns a nonempty batch. Thus, we postpone
determining the batch size until we add the last element to the string. We can support all these
transitions by the QBD framework as a transition to a child node is allowed to depend on the
rightmost element of the current node. For reasons of completeness, the matrices Bk, Dk,l, Uk,s, F ,
Dk and Us, for 1 ≤ s ≤ k ≤ l ≤ d, describing the QBD on the binomial-like tree are presented in the
appendix. Having obtained the steady state vectors π(J) of this expanded (QBD) Markov chain,
we can deduce the steady state of the chain (Jt, (m(t), cm(t)

t ) by applying a censoring argument.

3.2 Performance Measures

To conclude this section, we present some illustrative numerical examples. In these examples, we
take a closer look at the influence the batch size and the processing time distribution have on the
queue length of each queue individually and the average buffer occupancy of the entire system.
The average response times (per job length) is also discussed. Consider a multilevel feedback queue
with 10 priority classes where each buffer can store at most N = 30 jobs.
The processing time of a job follows a discrete uniform distribution with P [S = i] = 0.1, for

2Remark that there is no real need to include state (−, 0), however it allows us to give a somewhat easier description
of the transition matrices.
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(b) Dispersion of the queue length distribution

Figure 2: Queue lengths in a multilevel feedback queue with 10 priorities and different arrival
characteristics

i = 1, . . . , 10. The mean arrival rate equals 0.12 jobs per slot, resulting in a total load of ρ = 0.66.
We consider 4 different arrival processes, given by

A1 : b0 = 0.88, b1 = 0.12, and, bi = 0, for i > 1,

A2 : b0 = 0.94, b1 = 0.03, bi = 0.01, for 2 ≤ i ≤ 4, and, bi = 0, for i > 4,

A3 : b0 = 0.98, b6 = 0.02, and, bi = 0, for i /∈ {0, 6},

A4 : b0 = 0.99, b12 = 0.01, and, bi = 0, for i /∈ {0, 12}.

Notice, A1 ≤cx A2 ≤cx A3 ≤cx A4 in the convex ordering sense. Figure 2(a) shows the average
queue length for each of the 10 priority classes. As the batch size distribution becomes larger, the
average queue length increases for each queue. Furthermore, the priority of the queue attaining the
highest average occupancy increases with the burstiness of the arrival process. From Figure 2(b)
it can be observed that the coefficient of variation, i.e., the ratio of the standard deviation to the
mean, is larger for queues with a lower priority. Furthermore, for a burstier arrival process, the
coefficient of variation of the queue length is slightly smaller.

In the following example, we keep the arrival process fixed, while varying the job processing
times. New jobs enter the multilevel feedback queue according to the second arrival process dis-
cussed in the previous example, i.e., b0 = 0.94, b1 = 0.03, bi = 0.01, for 2 ≤ i ≤ 4, and bi = 0 for
i > 4. Furthermore, we consider four different job processing time distributions given by:

S1 : P [S = i] = 0.1 for 1 ≤ i ≤ 10,

S2 : P [S = i] = 0.05 for 1 ≤ i ≤ 3, 8 ≤ i ≤ 10, P [S = i] = 0.175 for 4 ≤ i ≤ 7,

S3 : P [S = i] = 0.025 for 1 ≤ i ≤ 4, 7 ≤ i ≤ 10, P [S = i] = 0.4 for i ∈ {5, 6},

S4 : P [S = i] = 0.01 for 1 ≤ i ≤ 4, 7 ≤ i ≤ 10, P [S = i] = 0.46 for i ∈ {5, 6}.
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(b) Dispersion of the queue length distribution

Figure 3: Queue lengths in a multilevel feedback queue with 10 priorities under varying processing
time distributions

Each of these distributions has an average, resp. maximum, processing time of 5.5, resp. 10, slots.
Also, S1 ≥cx S2 ≥cx S3 ≥cx S4 in the convex ordering sense. The queue length results obtained
for these scenarios are presented in Figure 3. It can be observed that for the uniform processing
time distribution, the average queue length is more spread out over the different queues compared
to a processing time distribution where the probability mass is more centered around the mean.
Considering the coefficient of variation, we observe larger values for the queues with a lower priority
similar to the previous example.

In Table 3.2 we present the average queue lengths over all 10 priority queues for each of the
discussed scenarios (as well as the total loss rate ν due to the finite nature of the queues). How
this loss rate can be computed, will be discussed later on. As mentioned earlier, the average queue
length increases together with the burst size of newly arriving jobs. Considering the processing
time distribution, we observe that the average queue length is minimal for the uniform distribution
and increases for distributions where the probability mass is less spread out.

scenario avg queue length loss rate scenario avg queue length loss rate
A1 2.041 jobs 1.93e-7 S1 4.650 jobs 1.38e-4
A2 4.650 jobs 1.38e-4 S2 4.896 jobs 2.55e-4
A3 8.789 jobs 2.08e-3 S3 5.378 jobs 9.72e-4
A4 12.566 jobs 8.90e-3 S4 5.732 jobs 1.48e-3

Table 1: Average queue length in the 10-class multilevel feedback queue

From the average queue length we can also deduce the average response time for the different
jobs in the system. Denote jobs with a required processing time of i+ 1 slots as type-i jobs, i.e., a
type i job has to pass through priority queues 0, . . . , i before leaving the system. Using Little’s law
we can compute the average response time of a type-i job who was allowed to enter the first queue.
We start by determining the input rate of the different buffers, taking into account jobs that leave
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the system after having received their required processing time as well as jobs that are dropped
due to buffer overflow. For priority queue 0, the input rate equals the average rate at which a job
arrives in the system, that is, λ0 =

∑∞
i=1 ibi. The input rate λi of queue i (i > 0) can be obtained

from the output rate µi−1 of queue i− 1, which can be computed by

µi−1 = πi−1(∅)e+
d∑

j=i

Πj,i−1e, (17)

with

πk,l(J) = lim
t→∞

P [Xt = J, (m(t), cm(t)
t ) = (k, l)],

πk(J) = (πk,1(J), . . . , πk,N (J)),

π(J) = (π0(J), . . . , πd(J)),

and Πk,l is defined as the sum off all vectors πl(J) for which f(J, 1) = k, analogous to equations
(13) and (14). That is, in (17) we sum all probabilities corresponding to states where queue i− 1
is active. The arrival rate λi is then given by λi = (1− pi)µi−1.

Applying Little’s law to each of these d+ 1 queues, we see that the mean time spent in queue
i of all jobs passing through queue i equals Ni/µi (notice, as the queue is finite, we have to use µi

and not λi). As the type of a type-j job with j ≥ i is irrelevant for the time it spends in queue
i, this mean value is correct for all type-j jobs passing through queue i. We denote the average
response time of a type-i job that entered our system as RTi. Thus, if a type-i job is only partially
processed, it also contributes to RTi. As all the type-0 jobs entering the system get processed by
queue 0, we have RT0 = N0/µ0. For the type-1 jobs, there are two components: N0/µ0 for the
mean time a class-1 customer spends in queue 0, plus the mean time it spends in queue 1, provided
that it enters queue 1. The probability that a type-1 job enters this queue is µ1/λ1. In conclusion,
RT1 = N0/µ0 +N1/λ1. Similarly, one establishes that

RTi =
N0

µ0
+

i∑
k=1

Nk

λk
.

Figure 4 presents the average response time of the different types of jobs in the 8 scenarios. As
could be expected, the burstiness of the arriving jobs has a large influence on this average response
time. For the processing time distributions we observe that the distribution that leads to the
smallest average response time depends on the type of customer. For example, for a customer with
a required processing time of 6 slots, a larger distribution in the convex ordering sense leads to a
smaller average response time, whereas for a customer of type 10, the opposite observation can be
made.

From the input and output rate of each queue we can also obtain the different loss rates, i.e.,
the loss rate νi (i > 0) of queue i is given by νi = µi − λi. The total loss rate of the system then
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Figure 4: Average response time of type t customers in a multilevel feedback queue with 10 priorities
under varying arrival characteristics and with different processing time distributions

equals ν =
∑d

k=0 νk. In Table 3.2 this total loss rate is presented for the different scenarios under
consideration.

A Appendix A: Transition Matrices

In this appendix we will briefly describe the transition matrices of the expanded QBD Markov chain
(Jt, (m(t), cm(t)

t )). Since three types of additional states were added, we have hk = (3 + k)N + 1,
for k = 1, . . . , d. The first block row corresponds to a transition from an additional state of type
(−, n), with 0 ≤ n ≤ N , the second and the third block row to a transition from a state of type
(+1, n), respectively (+, n), with 1 ≤ n ≤ N . The first block row will therefore consist of N + 1
rows, whereas the other block rows have only N rows. To reduce the notational complexity, we
introduce the following matrices of which the appropriate dimension depends on the context:

• Mi,j is a zero matrix with a one in row i, column j.

• ei is a zero column vector with a one on entry i.

• b1 = (b1, b2, . . . , bN ), where bj = 0 if j exceeds the maximum batch size.

• B1
T denotes an upper triangular Toeplitz matrix with its first row equal to b1.

• I+ denotes a zero matrix with ones on the upper diagonal.

• I= denotes a zero matrix with ones on the main diagonal.

• I− is a zero matrix with ones on the lower diagonal.

• I−− is a zero matrix with ones on the diagonal below the lower diagonal.
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Remark, for ∗ ∈ {+,=,−,−−}, I∗ is not necessarily a square matrix. The hk×hk matrix Bk covers
the transitions where Jt+1 = Jt and f(Jt, 1) = k. Hence,

Bk =



0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0

p1b0M1,1 0 0 p1(B1
T + b0I

−) 0 0 · · · 0
p2b0M1,1 0 0 p2e1b

1 p2b0I
− 0 · · · 0

p3b0M1,1 0 0 p3e1b
1 0 p3b0I

− · · · 0
...

...
...

...
...

...
. . .

...
pkb0M1,1 0 0 pke1b

1 0 0 · · · pkb0I
−


.

The hk×hl matricesDk,l contain the transition probabilities between state (−, i) and state (−, i+1),
where f(Jt, 1) = k and f(Jt+1, 1) = l. Therefore,

Dk,k =


I+ +MN+1,N+1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

Dk,l =


0 · · · 0 I= +MN+1,N 0 · · · 0
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0

 ,

for l > k. The non-zero entries of the matrix Dk,l are positioned on the (k+ 4)-th block column of
the first block row since m(t+ 1) = k. The hk × hs matrices Uk,s represent the situations in which
an integer is added to the string Jt and are given by

Uk,1 = ∆k,1



0 0 0 0
0 0 I− e1b1

1−b0

0 0 I− e1b1

1−b0

b0M11 0 0 B1
T + b0I

−

0 0 (1− b0)I−− e2b
1

0 0 0 0
...

...
...

...
0 0 0 0


,

17



Uk,s = ∆k,s



0 0 0 0 0 · · · 0
0 0 I− e1b1

1−b0
0 · · · 0

0 0 I− e1b1

1−b0
0 · · · 0

0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0
b0M11 (1− b0)I− 0 e1b

1 0 · · · b0I
−

0 0 (1− b0)I−− e2b
1 0 · · · 0

0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0



,

with s 6= 1 and ∆k,s a diagonal matrix represented by

∆k,s = diag(et, 1{k=s+1}e
t, 1{k=s}e

t, et, . . . , (1− ps)et, ps+1e
t, et, . . . , et),

where et denotes the transposed vector of e. In the matrix Uk,s the non-zero (and in ∆k,s the
non-one) entries are located on the block rows 2, 3, s+3, and s+4. Finally, the following equations
describe the matrices F , Us and Dk:

F =



b0 b1 0 0 · · · 0 0
p1b0e1 p1(B1

T + b0I
−) 0 0 · · · 0 0

p2b0e1 p2e1b
1 p2b0I

− 0 · · · 0 0
p3b0e1 p3e1b

1 0 p3b0I
− · · · 0 0

...
...

...
...

. . .
...

...
pdb0e1 pde1b

1 0 0 · · · pdb0I
− 0

b0e1 e1b
1 0 0 · · · 0 b0I

−


,

Dk =


0 · · · 0 I+ +MNN 0 · · · 0
0 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 0

 ,

U1 = ∆1



0 0 0 0
b0M11 0 0 B1

T + b0I
−

0 0 (1− b0)I−− e2b
1

0 0 0 0
...

...
...

...
0 0 0 0


,
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Us = ∆s



0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0
b0M11 (1− b0)I− 0 e1b

1 0 · · · b0I
−

0 0 (1− b0)I−− e2b
1 0 · · · 0

0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0



,

for s 6= 1 and where ∆s = diag(et, . . . , et, (1 − ps)et, ps+1e
t, et, . . . , et). Remark, there are no

additional states in the root node, hence hφ = (d + 1)N + 1. The first row of the matrices F and
Us corresponds to a transition from an idle system.
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