
Title Conditional lexicographic orders in constraint satisfaction
problems

Authors Wallace, Richard J.;Wilson, Nic

Publication date 2009-09

Original Citation Wallace, RJ, Wilson, N. (2009) 'Conditional lexicographic orders in
constraint satisfaction problems'. Annals of Operations Research,
171 (1): 3-25. doi: 10.1007/s10479-008-0385-3

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://link.springer.com/article/10.1007%2Fs10479-008-0385-3 -
10.1007/s10479-008-0385-3

Rights © Springer Science+Business Media, LLC 2008. The
final publication is available at http://link.springer.com/
article/10.1007%2Fs10479-008-0385-3

Download date 2024-04-27 15:33:24

Item downloaded
from

https://hdl.handle.net/10468/1115

https://hdl.handle.net/10468/1115


Ann Oper Res
DOI 10.1007/s10479-008-0385-3

Conditional lexicographic orders in constraint
satisfaction problems

Richard J. Wallace · Nic Wilson

© Springer Science+Business Media, LLC 2008

Abstract The lexicographically-ordered CSP (“lexicographic CSP” or “LO-CSP” for short)
combines a simple representation of preferences with the feasibility constraints of ordinary
CSPs. Preferences are defined by a total ordering across all assignments, such that a change
in assignment to a given variable is more important than any change in assignment to any less
important variable. In this paper, we show how this representation can be extended to handle
conditional preferences in two ways. In the first, for each conditional preference relation, the
parents have higher priority than the children in the original lexicographic ordering. In the
second, the relation between parents and children need not correspond to the importance
ordering of variables. In this case, by obviating the “overwhelming advantage” effect with
respect to the original variables and values, the representational capacity is significantly en-
hanced. For problems of the first type, any of the algorithms originally devised for ordinary
LO-CSPs can also be used when some of the domain orderings are dependent on assign-
ments to “parent” variables. For problems of the second type, algorithms based on lexical
orders can be used if the representation is augmented by variables and constraints that link
preference orders to assignments. In addition, the branch-and-bound algorithm originally
devised for ordinary LO-CSPs can be extended to handle CSPs with conditional domain
orderings.

Keywords Preference · Lexicographic · Constraint programming · Constraint satisfaction
problem

1 Introduction

An important contribution of artificial intelligence to the study of preferences has been the
development of methods for representing and handling conditional preferences. This work

R.J. Wallace (�) · N. Wilson
Cork Constraint Computation Center and Department of Computer Science, University College Cork,
Cork, Ireland
e-mail: r.wallace@4c.ucc.ie

N. Wilson
e-mail: n.wilson@4c.ucc.ie

mailto:r.wallace@4c.ucc.ie
mailto:n.wilson@4c.ucc.ie


Ann Oper Res

assumes that preference orderings are often context-dependent. Once one considers prefer-
ences in this way, many examples spring to mind. To take one such: what I prefer to eat may
depend on the country I am in, especially if I am inclined to ‘go native’. So in Spain I may
prefer paella and tortillas, while in Germany I may prefer bratwurst and sauerkraut.

The most widely discussed representation of conditional preferences is the “CP-net”,
which is characterized by ceteris paribus conditions on preferences between the different
values of an attribute Boutilier et al. (1999, 2004b). In the present work we describe an
alternative representation for conditional preferences based on lexicographic orders.

Lexicographic orders have appealing computational properties; in particular, comparing
alternatives is very efficient in contrast to CP-nets. Moreover, a single best solution can al-
ways be specified. Until now, however, the rigidity of the ordering, especially the inability
to handle tradeoffs due to the “overwhelming advantage” of more important attributes over
all less important ones (Fishburn 1974), has limited the usefulness of this form of represen-
tation.

In this paper, we introduce two forms of lexicographic ordering that are elaborated to
handle conditional preferences. In one case, we show that it is possible to support condi-
tionalities that oppose the basic importance ordering. (This is in contrast to CP-nets or to
TCP-nets, an extension of CP-nets which allows importance to be defined between specific
pairs of variables.) This has the surprising effect of avoiding the overwhelming advantage
feature with respect to particular attribute values without giving up a lexicographic order-
ing of alternatives. It, therefore, has the potential of greatly extending the application of
lexicographic ordering for preference representation.

In this work, conditional preferences are studied in the context of constraint satisfaction
problems (CSPs). This means that outcomes are “framed” in relation to domains of val-
ues associated with distinct variables (cf. Wellman and Doyle 1991). As with CP-nets, this
allows us to specify conditions of preferential independence between values in different do-
mains, which state which variables are irrelevant to the degrees of preference of values of a
given variable (Keeney and Raiffa 1993).

In earlier work, we investigated lexicographic orderings incorporated into a standard CSP
representation, which we termed the lexicographically ordered CSP (Freuder et al. 2003).
This is a special kind of soft constraint system in which a lexicographic ordering is imposed
on complete assignments, based on orderings of variables and domain values. Solutions are
compared first on the most important variable, and then, if they agree on that variable, they
are compared on the second most important variable, and so on. This means that a good
assignment for a more important variable is more significant than a good assignment for any
less important variable in deciding the overall ranking of solutions. The preference ordering
is assumed to be independent of any constraints that hold among these variables. The latter,
therefore, restrict the alternatives given by an ideal preference ordering to those that can be
realized.

Lexicographic CSPs represent problems in which preferences involve multiple objectives
and attributes and where feasibility constraints impose restrictions on assignments that are
actually possible. From the point of view of representation as well as computation they
offer significant benefits. This is partly because, like CP-nets (cf. Boutilier et al. 2004a),
they allow a radical decoupling of the preference structure from the feasibility conditions
Freuder et al. (2003). This allows users to concentrate on their preferences without regard to
feasibility constraints, which they may not know or understand.

When this form of lexicographic ordering is extended to conditional lexicographic or-
ders, the same type of ordering holds as in ordinary LO-CSPs, but domain orderings are
conditional on assignments chosen from other domains. We consider two classes of condi-
tional LO-CSPs. In the first, conditionalities respect the priority ordering of the variables;



Ann Oper Res

Fig. 1 Examples of conditional
lexicographic preference
orderings. As with CP-nets, a
directed graph represents
conditional preference relations
among variables. Conditional
preference tables are on the right.
In both cases, the more important
variable is above the less
important one. In (a) the
conditionality is consistent with
relative importance; in (b) the
two are opposed

in the second, they do not. For the first form of conditional preferences, we demonstrate an
important dominance relation between conditional lexicographic orders and CP-nets, which
allows us to obtain optimal solutions to combinatorial optimisation problems based on the
latter using the lexicographic form of representation.

In the latter case, despite complications engendered in the representation, the basic algo-
rithmic strategies devised for ordinary (unconditional) LO-CSPs can be extended to handle
these problems. Since these complications are formal and computational, they need not af-
fect usability or user comprehension. In fact, by removing the limitation on relative impor-
tance between parents and children, we impose fewer restrictions on the user, restrictions
that might distort the preference relations he or she would otherwise express.

In this paper, we illustrate these ideas with a simple example. Consider a situation in
which a customer is deciding among vacations. There are two seasons when he can travel:
spring and summer. For simplicity, we consider only two locations: Naples and Helsinki. In
the first scenario (“simple” conditional lexicographic ordering), location is more important
than time of travel and the preferred season depends on the location chosen. This is shown in
Fig. 1a, where following Boutilier et al. (1999), the conditional preferences are represented
as conditional preference tables (CPTs). The preference statement Naples: spring > sum-
mer, for example, means that if Naples is chosen, then spring is preferred to summer. The
associated preference ordering over complete assignments is:

〈Naples, spring〉 � 〈Naples, summer〉 � 〈Helsinki, summer〉 � 〈Helsinki, spring〉

In the second scenario (“extended” conditional lexicographic ordering), location is again
the primary feature, but the preference for location depends on the season chosen. Thus, our
customer prefers Naples in the spring and Helsinki in the summer; in addition, a vacation in
spring is preferred over one in the summer. In this case, it is not immediately obvious how
to order alternatives such as 〈 Naples, spring 〉 and 〈 Helsinki, summer 〉. If we are willing
to interpret this case as the alternatives being equally good as far as location is concerned,
while the former scores better on the season criterion, then the preference ordering is:

〈Naples, spring〉 � 〈Helsinki, summer〉 � 〈Helsinki, spring〉 � 〈Naples, summer〉



Ann Oper Res

On the other hand, an explicit ordering of tuples by the user may yield, for example,

〈Helsinki, summer〉 � 〈Naples, spring〉 � 〈Helsinki, spring〉 � 〈Naples, summer〉

which may also be acceptable. Note that in either case, choosing a specific value for the
more important attribute does not force the resulting alternative to be preferred over all
other alternatives having other values. Thus, in the first case, one alternative that includes
the city Naples is preferred over any other alternative while the other alternative with this
value is actually the least-preferred.

To summarise, lexicographically ordered CSPs have some appealing features: the sim-
plicity of the inputs, the decisiveness of the ordering, and the fact that they support efficient
solving methods. The decoupling of preferences and feasibility constraints is also quite in-
tuitive. The present paper shows that this formulation can be extended to conditional prefer-
ences, which are natural in many situations. This enhances the expressiveness of LO-CSPs
while overcoming a major limitation (the “overwhelming advantage” effect). In addition,
we show that computationally these systems are still manageable, since problems are still
amenable to suitable extensions of the approaches developed earlier for ordinary LO-CSPs.

At the same time, our example suggests that there are interpretative issues with the ex-
tended form of conditional lexicographic ordering. As we will argue, there is a reasonable
interpretation using the positions or rankings of values, under which the first of the two or-
derings just presented is the only acceptable one. On the other hand, an interpretation based
on direct ordering of tuples of child and parent values may allow either ordering and possibly
others as well.

In the remainder of the paper, Sect. 2 defines LO-CSPs and CSPs with conditional lex-
icographic orders, and discusses relations with soft constraint representations. Section 3
discusses interpretations of extended conditional lexicographic orders. Section 4 discusses
relations with CP-nets and TCP-nets. Section 5 considers algorithms for simple conditional
LO-CSPs, Sect. 6 for extended conditional LO-CSPs. Section 7 describes the experimental
set up and discusses the experimental results. Section 8 gives conclusions.

The present paper is an extension of work reported earlier in Wallace and Wilson (2006),
Wallace (2006).

2 Background and definitions

In this section we recall a definition for lexicographic CSPs, and define two kinds of con-
ditional lexicographic orders, the first where the preference degree of a variable’s value can
depend only on the values of more important variables, the second where this assumption is
removed, i.e., the preference degree of a variable’s value can depend on any other variables.

Some basic definitions for ordering relations A relation � is said to be reflexive if α � α

holds for all α. It is transitive if α � β and β � γ implies α � γ . Relation � is antisymmetric
if α � β and β � α implies α = β . It is complete if for all α and β , either α � β or β �
α holds (or both). A pre-order is a reflexive and transitive relation. A partial order is an
antisymmetric pre-order. A total order is a complete partial order. A total pre-order is a
complete pre-order.



Ann Oper Res

2.1 Lexicographic and conditional lexicographic CSPs

Definition 1 (Lexicographic CSP) A finite CSP is defined in the usual way as a triple
〈V,D,C〉, where V is a set of variables, D is a set of domains each of which is associ-
ated with a member of V , and C is a set of constraints, or relations holding between subsets
of variables.

To specify a CSP as lexicographic, we introduce the following definitions. A labelling
of set V is a bijection between {1, . . . , |V |} and V . A lexicographic structure L over V is
a pair 〈λ, {>X: X ∈ V }〉, where the second component is a family of total orders, with >X

being a total order on the domain of X, and λ is a labelling of V . We write λ(i) as Xi , so
that the ordering of the variables is X1, . . . ,Xn. The associated lexicographic order >L on
(complete) assignments is defined as follows: α >L β if and only if α �= β and α(Xi) >Xi

β(Xi), where Xi is the first variable (i.e., with minimum i) such that α and β differ.
A lexicographic CSP is a tuple 〈V,D,C,λ, {>X: X ∈ V }〉, where 〈V,D, C〉 is a finite

CSP and 〈λ, {>X: X ∈ V }〉 is a lexicographic structure over V .
A solution to a lexicographic CSP is the unique assignment α such that

(i) α is a satisfying assignment, that is, it is consistent with, or satisfies, all constraints in
C, and

(ii) α >L β for any other satisfying assignment β .

As is well-known, we can embed a lexicographic ordering within a weighted CSP frame-
work:

Lexicographic CSP as a weighted CSP For each i = 1, . . . , n we define a unary weighted
constraint Wi over variable Xi , given by Wi(x) = kbn−i , where x is the kth best value in the
domain of Xi and b is the largest domain size. Then for assignments α and β , the sum of
weights associated to α is less than the sum associated to β if and only if α >L β .

Similar embeddings can be used for the conditional lexicographic and extended condi-
tional lexicographic cases.

The lexicographically-ordered CSP is a special case of the “lexicographic CSP” or “lex-
VCSP” as defined in Schiex et al. (1995). These authors also show that lex-VCSPs are
equivalent to a kind of weighted CSP. However, because of the character of the ordering in
our case, we do not need to represent preferences numerically, and we can build up partial
solutions correctly without reference to numerical operations such as addition. So, while
we follow (Schiex et al. 1995) in using the term “lexicographic CSP”, we are designating
a very special case of the class they describe, with implications both for its usefulness as
a representation in the context of preferences and its ability to support efficient algorithms.
For this reason, we also retain the term “lex-VCSP”, using it to refer to the more general
category of CSPs whose evaluations can be ordered lexicographically.

Definition 2 ((Simple) conditional lexicographic CSP) A conditional lexicographic net-
work over V is defined as a tuple K = 〈λ,G,CPT〉, where λ is a labelling of V , with λ(i)

being written Xi , and G is a directed acyclic graph on V which is compatible with λ, i.e.,
(Xi,Xj ) ∈ G implies i < j . If (Xi,Xj ) ∈ G then Xi is said to be a parent of Xj , and Xj

is a child of Xi . We define Ui to be the set of parents of Xi . CPT is a function which asso-
ciates a conditional preference table CPT(Xi) to each Xi ∈ V . As in CP-nets (Boutilier et
al. 2004b), each conditional preference table CPT(Xi) associates a total order >

Xi
u on the

domain of Xi with each instantiation u of the parents Ui of Xi (with respect to G). (If Xi has



Ann Oper Res

no parents, i.e., Ui = ∅, then we can write >
Xi
u as just >Xi , since this total order is then un-

conditional.) The associated conditional lexicographic order �K on assignments is defined
as follows: α �K β if and only if α �= β and α(Xi) >

Xi
u β(Xi), where Xi is the first variable

(i.e., with smallest i) such that α(Xi) �= β(Xi), and u = α(Ui) (which also equals β(Ui)). It
is easily seen that �K is a total order on assignments. In this definition, it is essential that the
graphical structure G is compatible with the importance ordering of the variables λ, as this
ensures that α(Ui) = β(Ui) in the above definition, since Ui consists only of more important
variables (i.e., variables Xj with j < i), and α and β agree on such variables.

The example in Fig. 1a can be represented with λ labelling location as X1 and season as
X2, graph G containing the arc from X1 to X2, and using the pair of conditional preference
tables in Fig. 1a, including for example, the following ordering: spring >

X2
Naples summer.

2.2 Extended conditional lexicographic orders

In this section we construct an extended form of conditional lexicographic order in which
the preferences regarding a variable can depend on the values of less important variables,
as well as on the values of more important variables. We again assume that an importance
ordering of the variables is part of the input, and also a directed graph to indicate which
variables each variable depends on. However, we require stronger input information than
conditional preference tables, namely the functions Qi defined below, where Qi is used
to represent an ordering of assignments to [Xi and its parents]. (A method of generating
function Qi from a conditional preference table is described in Sect. 3.1.)

Definition 3 (Conditional lexicographic CSP with extended conditional preference orders)
An extended conditional preference network involves a directed graph G and a labelling λ

which represents an ordering X1, . . . ,Xn of the variables. It also involves, for each variable
Xi , a function Qi which assigns a number Qi(x,u) for every value x of Xi and assign-
ment u to the parents Ui of Xi . If α is a complete assignment, we write also Qi(α) for
Qi(α(Xi),α(Ui)), where e.g., α(Xi) is the value that α assigns to Xi . The “Q” is short for
“quality”. For example, if Xi represents the location of a holiday, Qi can be considered as
representing the degree of quality of the location, that is, how good it is (with lower values
of Qi representing better quality). Qi(α) tells us about the quality of the choice α(Xi) of the
location variable Xi . This depends not just on Xi , but on other variables (the parents of Xi );
for example, how good a location is depends on the season.

The associated ordering, the extended conditional preference order, is then defined as
follows: to compare complete assignments α and β we find the first Xi (i.e., with smallest
i) such that Qi(α) is not equal to Qi(β); if Qi(α) is less than Qi(β), we prefer α to β;
else we prefer β to α. If, on the other hand, there exists no such Xi—so that for all i =
1, . . . , n, Qi(α) = Qi(β)—then α and β are equivalent with respect to the ordering; neither
is (strictly) preferred to the other. We write α �E β if α is strictly preferred to β , and we
write α �E β if α is either strictly preferred to β , or α and β are equivalent. So α �E β

holds if and only if β ��E α.
Therefore, we compare assignments α and β by first seeing how good their values of X1

are, i.e., by comparing Q1(α) and Q1(β), and then considering X2, and so on.
Suppose, as in the example in Sect. 1, we are choosing a holiday destination. We consider

that the quality of the location is more important than the season, so we let variable X1

represent the city, and let X2 be the season. We prefer spring to summer unconditionally,



Ann Oper Res

which can be represented by setting, for example, Q2(spring) = 1, Q2(summer) = 2 (the
numbers are not important apart from the relative ordering, that Q2(spring) < Q2(summer)).
We might set Q1(Naples, spring) = Q1(Helsinki, summer) = 1 and Q1(Helsinki, spring) =
Q1(Naples, summer) = 2 to indicate that, as far as the criterion of location is concerned,
Naples in the spring is equally good as Helsinki in the summer, and both are better than
Naples in the summer, which is equally good as Helsinki in the spring. The uniquely most
desirable alternative is then Naples in the spring. It is preferred to Helsinki in the summer
since they are equally good regarding the quality of the location Q1 (the more important
criterion), but 〈Naples, spring〉 has a better season (the less important criterion).

Alternatively, we might represent a different view on the quality of the location by defin-
ing, for example, Q1(Helsinki, summer) = 1, Q1(Naples, spring) = 2, Q1(Helsinki, spring)

= Q1(Naples, summer) = 3. This gives the second ordering shown in the Introduction under
the assumptions of Fig. 1b.

An important difference between the approaches for the extended conditional lexico-
graphic case and that for the simple case, is that in the simple case the conditional preference
statements respect a ceteris paribus interpretation which is like that used in CP-nets and re-
lated formalisms. In Fig. 1a the unconditional preference for Naples over Helsinki implies
that an alternative involving Naples is preferred to an alternative involving Helsinki which
agrees with the first alternative on other variables; this would hold even if location were a
less important variable. However, the preference for spring over summer in Fig. 1b is not
interpreted in the same ceteris paribus manner: we may well have Helsinki in summer being
preferred to Helsinki in spring. The preference for spring over summer only comes into play
if two alternatives are equally good with regards to the more important location variable:
equal quality of location replaces the equality of value of the location variable in the usual
ceteris paribus interpretation.

It is revealing—in particular, for computational reasons—to consider another way of
viewing the construction of the ordering �E : we are converting each assignment α =
(x1, . . . , xn) to an n-tuple of numbers α∗ = (Q1(α1), . . . ,Qn(αn)), i.e., (Q1(x1, u1), . . . ,

Qn(xn,un)), where ui is the assignment α makes to Ui . The extended conditional lexico-
graphic order �E is then essentially the standard lexicographic order on these n-tuples of
numbers: α is strictly preferred to β if and only if α∗ is lexicographically better than β∗,
and they are equivalent in the order if and only if α∗ = β∗. This implies that �E is a total
pre-order, i.e., it is reflexive, transitive and complete. It is not necessarily a total order since
we can have α �E β �E α for α �= β , which happens when α∗ = β∗.

Because the order on tuples of assignments depends only on the ordering of the values of
each Qi , each function Qi in the definition of an extended conditional preference network
could be replaced by a total pre-order ≥i on the set of assignments to {Xi}∪Ui , where xu ≥i

x ′u′ if and only if Qi(x,u) ≤ Qi(x
′, u′). The values of Qi are not important in themselves:

only the relative ordering of them.

3 Derivations of Q-values for extended conditional lexicographic orders

This section considers a situation where we would like to generate an extended conditional
lexicographic network (and hence its associated ordering on solutions), but instead of the
Qi functions we are given similar input as for a simple conditional lexicographic network,
i.e., an importance ordering of the variables X1, . . . ,Xn (expressed by labelling λ), a DAG
G and a conditional preference table function CPT. To obtain the extended conditional pref-
erence network we will need to generate, for each variable Xi , a function Qi from this input
information.



Ann Oper Res

Now, a function Qi gives stronger information than a conditional preference table CPTi :
the function Qi orders (using a total pre-order) all tuples of the form (x,u), where x is
an assignment to Xi , and u is an assignment to Ui , the parents of Xi . On the other hand,
CPTi orders, for each u, all the values of Xi using relation >

Xi
u . There is therefore a basic

coherence condition between (the input) CPTi and (the desired output) Qi :

(a) Underlying Order Rule. For any values x, x ′ of Xi , and any assignment u to Ui , if
x >

Xi
u x ′ then Qi(x,u) < Qi(x

′, u). (Recall that smaller values of Qi indicate more
preferred tuples.) Thus, the ordering of all tuples of {Xi} ∪Ui expressed by Qi , must be
consistent with each ordering based on a specific set of parent values.

Thus, given the information in Fig. 1b, we must have Q1(Naples, spring) less than
Q1(Helsinki, spring), since given spring, the city Naples is preferred to Helsinki in the con-
ditional preference table.

For the case where the importance ordering is compatible with the dependency graph G,
so that parents are always more important than children, suppose we choose Qi in any way
such that the Underlying Order Rule is satisfied. It is easy to see that any such choice leads
to the same ordering on solutions, which is equal to that generated by the simple conditional
lexicographic network 〈λ,G,CPT〉.

More generally, when the children can be more important than the parents, there can
be many non-equivalent functions Qi which satisfy the Underlying Order Rule, and which
generate very different orderings on solutions. In the next section we consider one way of
generating Qi from CPTi . In Sect. 3.2 we discuss some further conditions that one might
make on Qi , which are compatible with the approach of Sect. 3.1.

3.1 Q-values based on ranking of values

There is a straightforward way to derive Q-values directly from the importance ordering and
the CPTs, that we refer to as the index- or rank-based interpretation. The method is to assign
Q-values according to the rankings of values in their respective conditional preference or-
derings. Therefore we set Qi(x,u) = 1 if x is the best value of Xi according to >

Xi
u , we set

Qi(x,u) = 2 if x is the second best value of Xi , and so on. In the example in Fig. 1b, where
Naples >

X1
u1 Helsinki when it is spring and Helsinki >

X1
u2 Naples when it is summer, the rank-

ing is 1 for Naples and 2 for Helsinki in the first case and 1 for Helsinki and 2 for Naples
in the second. For spring and summer, the respective ranking is 1 and 2 unconditionally.
So, we have Q1(Naples, spring) = Q1(Helsinki, summer) = 1 and Q1(Naples, summer) =
Q1(Helsinki, spring) = 2, and Q2(spring) = 1 and Q2(summer) = 2.

When ranks are listed according to the importance ordering of the variables, one obtains
an ordering on the tuples of ranks associated with each assignment that is lexicographic. In
the present example, the rank tuples are: 〈Naples, spring〉 (1,1), 〈Helsinki, summer〉 (1,2),
〈Helsinki, spring〉 (2,1), 〈Naples, summer〉 (2,2). Ordering by ranks from left to right gives
the ordering. This is the first ordering of choices shown in the Introduction under the as-
sumptions of Fig. 1b.

By construction, the ranking interpretation satisfies the Underlying Order Property (a).
Since it generates a unique tuple of Qi values for each assignment, it generates a total order
on complete assignments.

However, this indexing derivation involves a strong assumption, that the values of a child
variable are regarded as equivalent with respect to preference when they have the same rank
with respect to their respective orderings. (Thus, Helsinki in summer is treated as equivalent
to Naples in spring in the example.) This doesn’t require that the decision maker consider



Ann Oper Res

them identical in quality; a weaker interpretation would be that when their ranks are equal
one cannot decide between two tuples on the basis of these values alone.

3.2 Q-values based on orderings of child-parent tuples

As remarked at the end of Sect. 2.2, Q-values can be viewed as an ordering of the tuples
formed by each value of a child together with each possible set of values of its parent vari-
ables. In our running example, this would simply consist of ordering the two sets of (two)
tuples associated with each parent value. In doing this, the user would assign numbers to
each tuple consistent with the ordering; these would form the Q-values for the child vari-
able.

A potential issue with the tuple-order derivation stems from the fact that it involves an
ordering that goes beyond those in the basic definition of a LO-CSP. In this case, the tuple
ordering could come into conflict with the other evidence regarding importance and depen-
dency.

To illustrate the problem, we consider several possible orderings using our running ex-
ample:

(i) 〈Naples, summer〉 > 〈Helsinki, spring〉 > 〈Naples, spring〉 > 〈Helsinki, summer〉

(ii) 〈Helsinki, summer〉 > 〈Naples, summer〉 > 〈Naples, spring〉 > 〈Helsinki, spring〉

(iii) 〈Naples, spring〉 > 〈Helsinki, spring〉 > 〈Helsinki, summer〉 > 〈Naples, summer〉

(iv) 〈Naples, spring〉 > 〈Helsinki, summer〉 > 〈Helsinki, spring〉 > 〈Naples, summer〉

(v) 〈Helsinki, summer〉 > 〈Naples, spring〉 > 〈Helsinki, spring〉 > 〈Naples, summer〉

(vi) 〈Helsinki, summer〉 > 〈Naples, spring〉 > 〈Naples, summer〉 > 〈Helsinki, spring〉

In each case, if the ordering is deemed acceptable, we assign increasing Q-values, e.g. 1,
2, 3 and 4, respectively, to successive tuples. This contrasts with the assignment of Q-values
from the ranks associated with entries in the CPTs, which would only involve two distinct
values. (In our running example, this completely orders the outcomes, but this is not the
case in general.) But before doing this, we need to decide on the acceptability of the tuple
ordering, given other preference information, in particular, the CPTs.

In fact, the first tuple ordering can be dismissed at once because it contradicts the condi-
tional preference orders shown in Fig. 1b; it disobeys Rule (a) above. The second tuple or-
dering is not only consistent with season being more important than city, which might seem
to conflict with the original importance ordering, but it also favours summer over spring, in
contrast with the specified preference ordering for season. The third tuple ordering favours
spring over summer, but it is still compatible with season being more important than city.
Orderings (iv)–(vi) are compatible with Rule (a) and the importance ordering, although the
order of assignments is different in each case.

These examples suggest two things: (i) if Q-values are derived directly from tuple orders,
further conditions must be specified to ensure coherence among different sources of infor-
mation, in particular between the tuple orders and the CPTs, (ii) when Q-values are derived
in this fashion, the ordering that they are derived from need not be unique, in contrast to the
rank-based interpretation.



Ann Oper Res

One way of addressing these issues is by stipulating further “coherence rules” that limit
the kinds of tuple orderings that are deemed acceptable. The underlying rationale for these
rules is that these orderings should be compatible with the other inputs. The further rules
make use of the notion of rank of a value in a total order, introduced in Sect. 3.1. The rank
of x in total order > is equal to 1 if x is the best value according to >, and equal to 2 if x is
the second best value, and so on.

(b) Equal Child Values Rule. For any value x of Xi , and any assignments u,u′ to Ui , if the
rank of x in the total order >

Xi
u is less than the rank in >

Xi

u′ , then it should not be the case
that Qi(x,u) > Qi(x,u′). In other words, when a child value occurs in different places
in the orderings of the domain of Xi under two sets of parent values, the Q-values of
the two corresponding child-parent tuples should be consistent with the rankings of the
child value in the respective orders. (This rule is violated by orderings (i), (ii), and (iii)
above.)

(c) Incomparability Rule. For any values x, x ′ of Xi , and any assignments u,u′ to Ui , if
the rank of x in >

Xi
u is the same as the rank of x ′ in >

Xi

u′ , and for any assignment z

to the parents of Ui , we have u >
Ui
z u′, then Qi(x,u) ≤ Qi(x

′, u′). (For simplicity,
we are restricting ourselves to the case where |Ui | = 1, although the specification can
be extended.) The basic thrust of this rule is that, when two values occur in the same
location in the orderings of the domain of Xi , they are considered incomparable and
are excluded from consideration in deciding whether the ordering under consideration
is acceptable. For example, in comparing 〈Naples, spring〉 and 〈Helsinki, summer〉, the
ordering cannot be justified on the basis of the difference in cities. In this case, we
reject the ordering if information about preferences between parent values contradicts
the tuple ordering unconditionally. (This rule is violated by orderings (i), (ii), (v), and
(vi) above.)

A further rule is considered in Wallace (2006); since it is subsumed by Rule (b), the same
results obtain when the present set of rules is applied as in the earlier paper.

It is easily shown that each of the rules is consistent with the rank-based method de-
scribed in Sect. 3.1 cf. Wallace (2006). Rules (b) and (c) are closely related to a rank-based
interpretation of Q-values, which may limit their acceptability given the assumptions re-
quired by the latter. Nonetheless, they have a certain force, especially in extreme cases.

Rule (b) pertains to cases where there are two child domain orderings, and in one instance
a child value is judged to be better than in another with respect to the same set of other child
values. It says that in such situations, according to the ordinal style of evaluation, the tuple
of child-and-parent values (Xi,Ui values) in the first instance should be preferred to those
in the other instance, ceteris paribus. Consider, for example, a case where in one of the two
tuples the child value in question is top-ranked (e.g. Naples in the spring). This means that
in this context it is taken to be the best in the set, while in the other context it is only the kth
best (e.g. Naples in summer). In an extreme case, ignoring this rule would mean that a tuple
in which the child value is the worst value for that variable under one set of conditions could
be preferred to a tuple in which the same child value is the best value for that variable.

Rule (c) is related to Rule (b), most obviously in cases with identical child values that
are in the same position in their respective rankings. In this case, Rule (b) does not apply,
and because both the values and the rankings are the same, it seems reasonable to refrain
from choosing between the tuples on the basis of these values. In that case, acceptability can
be determined by the values of other, less important variables, if their domains are ordered
unconditionally. Without Rule (c), however, such conformance is not guaranteed. The same



Ann Oper Res

argument holds, though perhaps with less force, when the child values are not identical. For
our vacation example this rule prevents the following,

〈Helsinki, summer〉 > 〈Naples, spring〉,
since in this case season is the only basis for comparison and spring > summer uncondi-
tionally.

In this case, in fact, use of the three rules leads to a unique outcome ordering:

〈Naples, spring〉 � 〈Helsinki, summer〉 � 〈Helsinki, spring〉 � 〈Naples, summer〉
However, this is not true generally (Wallace 2006). Hence, unless one requires that the tuple
ordering conform completely to the ranking of domain values, which could be considered
a stronger and less justifiable rule, derivations of extended conditional lexicographic order-
ings from tuple-orderings can allow more than one ordering of assignments. This situation
does not seem unreasonable, and all such tuple orderings result in an extended conditional
lexicographic order, by virtue of the manner of constructing Q-values.

4 Conditional lexicographic CSPs and CP-nets

In recent years, the most widely discussed method for representing conditional preferences
within the AI community has been the conditional preference network with ceteris paribus
assumptions, or CP-net (Boutilier et al. 1999, 2004b). A more recent variant, the TCP-
net (Brafman and Domshlak 2002), Boutilier et al. (2006), includes elaborations to handle
relations of importance between the features of user-selections (this relates to, but is weaker
than, the ranking of variables in lexicographic CSPs, Wilson 2004b); another variant, CP-
theories (Wilson 2004b), generalises CP-nets, TCP-nets and lexicographic orders.

CP-net structures are based on assignments of values to variables, or “features”. The con-
ditional preferences related to a variable Xi are encoded in a “conditional preference table”
(CPT) (see Sect. 2), examples of which are shown in Fig. 1. TCP-nets also encode a form
of conditional importance relations between variables (one could also extend lexicographic
CSPs to handle conditional importance cf. Wilson 2006).

A critical feature of (T)CP-nets is that preferences are only defined under “ceteris
paribus” conditions. If, for example, features A and B each have two values, a1, a2 and
b1, b2, respectively, and a1 >XA

a2 and b1 >XB
b2, then we can deduce from ceteris paribus

assumptions that a1b1 >N a2b1 and a2b1 >N a2b2, etc, but we cannot order a1b2 and a2b1

on this basis. As a result of this feature, preference orders can be established on the basis of
“flipping sequences”; e.g., the sequence of two “flips” a1b1 � a2b1 � a2b2 enables us to de-
duce the preference a1b1 � a2b2. This is still true of TCP-nets, although in this case adjacent
outcomes in a sequence can be separated by a “double flip” of two variables.

An acyclic CP-net over variables V = {X1, . . . ,Xn} is a directed acyclic graph G over
V whose nodes are annotated with conditional preference tables CPT(Xi) for each Xi ∈ V .
Associated with an acyclic CP-net is a partial order �N on complete assignments. α �N β

holds if and only if there exists a sequence of worsening flips from α to β . There is a
worsening flip from α to γ if α and γ differ on exactly one variable Xi , and α(Xi) >

Xi
u

γ (Xi), where u = α(Ui) = γ (Ui) and Ui is the set of parents of Xi with respect to G.
It was shown in Wilson (2004a) that, except in some trivial cases, the order on assign-

ments generated by a CP-net, or by a TCP-net, is never a lexicographic order. The reason
for this is that flipping sequences require that consecutive elements in the ordering differ



Ann Oper Res

by at most one (CP-nets) or two (TCP-nets) elements. However, consecutive elements in a
lexicographic ordering can differ by up to |V | elements.

Perhaps the most important implication of these differences is that, while determining
whether solution α is preferred to solution β is easy for lexicographic orderings, since it is
based on successive comparisons of values of a variable, this is much more problematic with
(T)CP-nets, since it depends on finding flipping sequences that transform one alternative
into another. Although there are special cases where this problem is polynomial Domshlak
and Brafman (2002), Boutilier et al. (2004b), it appears, in general, to be an extremely
hard problem Goldsmith et al. (2005). On the other hand, CP-nets allow a weaker form
of comparison, which can sometimes be used to show that for two solutions α and β , the
preference of the latter over the former is not entailed by the CP-net structure. If the CP-net
is acyclic, this comparison can be carried out in low order polynomial time (Boutilier et al.
2004b).

In considering the algorithmics of CP-nets, the emphasis has been on cases where the
set of dependencies forms an acyclic graph. In particular, algorithms developed for solv-
ing constrained optimisation problems are based on this assumption (Boutilier et al. 2004a;
Brafman and Domshlak 2002). In many cases, this seems natural, but as we have seen,
when importance relations are mixed with conditional preference relations it is sometimes
reasonable to consider cases where the two do not always correspond. As we will see, for
conditional lexicographic orderings this does not appear to be as important as for CP-nets,
since the basic algorithms can be extended, in some cases without marked effects on perfor-
mance.

For acyclic networks, a CP-net ordering can be extended to a conditional lexicographic
ordering:1 we choose a conditional lexicographic network with the same conditional prefer-
ence tables and the same directed acyclic graph G as the CP-net, ordering the variables in
any way compatible with the graphical structure G of the CP-net. (Similarly, the preference
ordering corresponding to an acyclic conditional preference theory (Wilson 2004a) can be
extended to a conditional lexicographic ordering.)

Proposition 1 Let N be a CP-net with associated DAG G and conditional preference table
function CPT. Let λ be any labelling of V compatible with G. Define conditional lexico-
graphic order KN,λ to be the tuple 〈λ,G,CPT〉. Then, relation �KN,λ

contains relation �N ,
i.e., α �N β implies α �KN,λ

β .

The idea is simple: clearly, if one can reach β from α by a worsening flip in the CP-
net, then α is better according to the conditional lexicographic order. If α is better than
β according to the CP-net, then, by definition, β can be reached from α by a sequence
of worsening flips, and so, α is better than β according to the conditional lexicographic
ordering, by transitivity of the latter.

Proof Suppose complete assignment δ can be reached by a worsening flip from complete
assignment γ . Then there exists variable Xi such that for all j �= i, γ (Xj ) = δ(Xj ), and
γ (Xi) >

Xi
u δ(Xi), where u = γ (Ui) = δ(Ui). Therefore, γ �KN,λ

δ holds, because γ and δ

agree on variables X1, . . . ,Xi−1. Now suppose that α �N β . By definition, there exists a
worsening flipping sequence α1, . . . , αk , with α = α1 and αk = β , and, for j = 1, . . . , k − 1,

1Similar techniques are used in Boutilier et al. (2004b), for ordering queries, and proving consistency of an
acyclic CP-net.



Ann Oper Res

assignment αj+1 being a worsening flip from αj . So, by the above argument, αj �KN,λ
αj+1.

Hence, by transitivity of �KN,λ
, we have α �KN,λ

β , as required. �

Suppose we want to generate a solution α to a CSP on V which is maximal with respect to
CP-net partial order �N , i.e., it is such that there does not exist solution β with β �N α. One
way of generating such a solution is to choose any labelling λ compatible with the DAG G

associated with N , and find the solution α which is maximal with respect to the conditional
lexicographic order �KN,λ

. This α will be maximal also with respect to �N since, if β were
a solution such that β �N α, then, by the last proposition, β �KN,λ

α, contradicting the
�KN,λ

-maximality of α. This means that if one wants to find a solution of a set of constraints
C which is optimal with respect to a CP-net, one can generate an associated conditional
preference order, as described above, and find the optimal solution with respect to this. The
above result implies that this solution will also be optimal with respect to the CP-net. Hence,
constrained optimisation algorithms for conditional lexicographic orders can be used for
finding a single optimal solution of a constrained optimisation problem for an acyclic CP-
net.

5 Constrained optimisation algorithms for conditional LO-CSPs

5.1 Methods for solving ordinary LO-CSPs

In earlier work, we showed that this form of lexicographic representation of preferences for
CSPs offers wide scope for developing optimisation algorithms (see Freuder et al. 2003,
2007 for detailed descriptions). The most successful algorithms were,

1. Lexical search: ordinary CSP algorithms that follow the importance ordering of the vari-
ables and the preference ordering for each domain. These work very well when problems
are not too strongly constrained, but are inefficient for problems in the critical complexity
region.

2. Branch and bound algorithm: This is intended for problems in the critical complexity
region. It is assumed that this algorithm will be used with a variable ordering heuristic
that is non-lexical, i.e. one that does not follow the importance ordering; otherwise, there
is no need for branching and bounding.

3. “Staged lexical” algorithm: This is a specialized iterative algorithm in which, on the kth
restart, the kth variable in the importance ordering is instantiated according to the pref-
erence order on its domain, while typical variable ordering heuristics such as minimum
domain size are used to select the remaining variables. This algorithm works almost as
well as branch and bound for problems in the phase transition region and tends to be
more effective than the latter as the number of solutions increases.

For the branch and bound procedure, the cost function (based on the representation in
terms of weighted constraints; cf. the discussion of embeddings in Sect. 2) gives large values
for any but very small problems; however we do not need to calculate it directly. Instead, we
simply compare successive values following the importance ordering of the variables until
we encounter a difference. Suppose that variable Xk is the variable currently being consid-
ered for instantiation and is the kth most important variable in the ordering. To evaluate the
current partial solution, we start from the first variable X1 with respect to the importance or-
dering. If X1 has been assigned, we check this against its instantiation in the best assignment
found so far; if it does not yet have an assignment, we check the best remaining value in its



Ann Oper Res

Fig. 2 Pseudocode for staged
lexical algorithm with LO-CSP

k = 0
while k ≤ n

assign optimal values to variables 1 to k − 1 and propagate
level = k

while remaining-variables //search for next solution
if level == k

select kth variable in importance order
else

select next-variable according to some heuristic
while values remain and viable assignment not found

if level == k

select value according to preference ordering
else

select value according to some heuristic
if all assignments failed

backtrack and decrement level
else

level = level + 1
if level > n

save assignment made at level k //this is optimal
k = k + 1

domain against the best assignment. If this favours the best assignment found so far, then
search can back up; if it favours the other value, we know that search cannot be bounded at
this point, so we stop checking. (In either case, no further combination of cost differences
can match the present difference by virtue of the properties of lexicographic ordering.) Oth-
erwise, if they are equal on X1 we perform a similar check on X2 (and so on). (In addition
to the references cited above, more detail on bounding conditions is given in Sect. 6.3.)

In staged lexical search, search is done repeatedly, in each case until the first solution is
found, and for each repetition, or stage, one more variable is chosen according to the impor-
tance ordering, beginning with X1 at stage 1. Values of the current variable Xk are chosen in
best-first order. After the kth stage, when we have found a feasible solution, we know that
the assignment for Xk is optimal, so we retain it for the remaining stages. Pseudocode for
this procedure in shown in Fig. 2. Although developed independently, this algorithm is, in
fact, a special case of preference-based search (Junker 2002), where the criteria on which
search is based form a total order.

5.2 Algorithms for simple conditional lexicographic CSPs

When the parent-child order is compatible with the importance order of the variables, any of
our methods for constrained optimisation can be used to return a solution that is optimal for
the conditional LO-CSP. In particular, the staged lexical algorithm can be applied in exactly
the same way as before to the conditional lexicographic case, since at stage k we know the
ordering of the values of Xk , as its parents have already been instantiated. For branch and
bound, if a child is chosen for instantiation before its parents, bounding can be done provided
the ordering of the parent values can be established. This is because for any ancestor Xi of
the child variable, either the ordering is the same on its domain for the candidate and current
best assignment, or its ancestor is different, in which case this latter difference overrides the
values of Xi by virtue of the importance ordering.



Ann Oper Res

6 Search algorithms for extended conditional lexicographic orders

By adding extra variables and constraints (doubling the number of variables), an extended
conditional lexicographic order can be related to an ordinary lexicographic order; this en-
ables one to generalise the algorithms for lexicographic orders to the conditional case.

Auxiliary variables representation Let Ri be the set of all values taken by Qi , i.e., the set
of numbers Qi(x,u) over all values x of Xi and all assignments u to the parents Ui of Xi .
For each variable Xi , create a new variable Yi with domain Ri . Variable Yi can be considered
as telling us how good the value of Xi is. We create a constraint with scope Ui ∪ {Xi,Yi}
consisting of all tuples uxq with Qi(x,u) = q , where x is a value of Xi , u is an assignment
to Ui and q ∈ Ri . Let B be the set of these extra constraints. Let V ′ = V ∪ {Y1, . . . , Yn}.
Each assignment α to V clearly extends uniquely to an assignment α′ to V ′ satisfying these
extra constraints B: we define, for each i = 1, . . . , n, α′(Xi) = α(Xi) and α′(Yi) = Qi(α).
Hence α′ is essentially α extended with α∗ (as defined in Sect. 2).

There is a natural lexical order on assignments to V ′ defined by variables Y1, . . . , Yn in
that order of importance, and where variables X1, . . . ,Xn are all of less importance. Assign-
ments to V ′ which agree on all variables Yi—so differ only on Xi variables—are considered
to be equal in the lexical order. α �E β holds if and only if α′ is lexically better than β ′
according to this lexical order (which is if and only if α∗ is lexically better than β∗). In par-
ticular, α is an optimal solution of C with respect to the extended conditional lexicographic
network if and only if α′ is a lexically optimal solution of constraints C ∪ B . Therefore, the
strategies mentioned earlier for finding optimal solutions with respect to a lexical order can
be elaborated to produce algorithms for finding optimal solutions for extended conditional
lexicographic orders, as we describe in the following sections.

6.1 Extending lexical search

We can adapt lexical search for extended conditional lexicographic optimisation by using
auxiliary variables to represent Q-values and adding constraints to represent acceptable
parent-child assignments given a particular value for the child. The key idea is that the
Q-values can serve as the basis for a lexically-ordered search. In other words, search can
be done in a way that is lexicographic on the Q-values rather than on the decision variables
themselves, even though the domains of the latter have no a priori preference order.

Recall that Ri is the set of all values taken by Qi . For any q ∈ Ri , we define constraint
c

q

i on variables Ui ∪ {Xi} to be the constraint Qi = q , i.e., xu is a tuple in c
q

i if and only if
Qi(x,u) = q .

The search tree for the lexical search can be defined as follows: A node N at level j ,
for j = 0, . . . , n has an associated set of constraints CN of the form C ∪ {cq1

1 , . . . , c
qj

j },
where for each i ≤ j , qi is an element of Ri . The initial node, which is the root node of the
search tree, is at level 0. A node at level n is said to be a complete node; the other nodes
are said to be partial nodes. At each partial node we will need to maintain some form of
partial consistency. If we deduce that the associated set of constraints CN is inconsistent
then we can backtrack at this point. Otherwise, we branch on constraints c

q

j+1, for q ∈ Rj+1;
that is, for each q ∈ Rj+1 we generate a child node of N with associated set of constraints
CN ∪ {cq

j+1}. The child corresponding to the smallest element q of Rj+1 is explored first, in
a depth-first manner. When we reach a complete node N , we determine if CN has a solution;
if it does, we return the solution and stop; otherwise we backtrack. This algorithm will return
an optimal solution, given that the initial set of constraints C has a solution.



Ann Oper Res

If the Qi ’s are one-to-one functions, each constraint of the form c
qi

i just contains a single
tuple which is an instantiation of Xi and the parents of Xi . The algorithm then behaves in a
fairly similar way to standard lexical search.

On the other hand, if the Qi ’s have many ‘ties’ so that added constraints of the form
c

q

i include several tuples, then we may find that, e.g., maintaining arc consistency is not
sufficiently strong to prune the search effectively, since we are not directly instantiating the
variables Xi . For example, it could happen that an initial constraint c

q1
1 is inconsistent with

constraints C, but we might only discover this at complete nodes, when we have generated
values of all the other qi , and we test the consistency of the associated set of constraints
C ∪ {cq1

1 , . . . , c
qn
n }. This will tend to make the algorithm extremely slow in such situations.

For this reason, it is natural to consider the use of stronger forms of consistency checking at
each node. In particular, we can use a search to check global consistency at a node; this then
becomes an extended staged lexical algorithm, as described in the next section.

6.2 Extending the staged lexical algorithm

Unlike the lexical search algorithm, the staged lexical algorithm can be done without back-
tracking over Yi variables. These are instantiated in order over successive stages, in each
stage before any Xi variables are instantiated. The latter can be instantiated using any heuris-
tic ordering.

Let C0 be the original set of constraints C, which we assume to be satisfiable. Let α be an
optimal solution, and let α∗ be the corresponding n-tuple of numbers, as defined in Sect. 2.
The fact that C0 is satisfiable implies that there exists some q ∈ R1 such that C0 ∪ {cq

1 } is
satisfiable, since R1 includes all possible values of Q1. We find minimal value q1 ∈ R1 such
that C0 ∪ {cq1

1 } is satisfiable. (By definition of α∗, we have q1 = α∗(X1), since q1 is the best
feasible value of Q1.) This can be found by starting with the lowest (i.e., best) value in R1

and continuing until we find q1 with C0 ∪ {cq1
1 } satisfiable. The checks of satisfiability can

be performed by a search using a dynamic variable ordering (they don’t need to instantiate
variables in order of importance).

We then add this constraint c
q1
1 to the set of constraints, setting C1 = C0 ∪ {cq1

1 } (and
we will not backtrack over this decision). (With the auxiliary variable representation this
amounts to setting Y1 = q1.) We move on to optimising Q2: we find minimal value q2 ∈ R2

such that C1 ∪ {cq2
2 } is satisfiable. We set C2 = C1 ∪ {cq2

2 }. We continue this until we have
generated minimal qn ∈ Rn such that Cn−1 ∪ {cqn

n } is satisfiable; we let Cn = Cn−1 ∪ {cqn
n },

which, by construction, is satisfiable.
It is easy to see that any optimal solution α is a solution of Cn (or else α would be worse

than a solution of Cn). Also, if β is any other solution of Cn then α and β have exactly the
same Qi -values, so β is also optimal. This leads to the following result which shows that a
solution of the set of constraints Cn (in particular, the one found when checking that Cn is
satisfiable) is an optimal solution of the constraints C.

Proposition 2 With the above notation, complete assignment α is an optimal solution of C

if and only if α is a solution of the set of constraints Cn.

Proof Consider i ∈ {1, . . . , n}. By definition, complete assignment β satisfies the constraint
c

qi

i if and only if Qi(β) = qi , which is if and only if β∗(Xi) = qi . Therefore β is a solution
of Cn if and only if β satisfies the input constraints C0, and for each Xi , β∗(Xi) = qi .

Let α be an optimal solution. We claim that for all i, α∗(Xi) = qi . Suppose otherwise,
and let j be the smallest i with α∗(Xi) �= qi . Let q ′

i = α∗(Xj ). Then α is a solution of Cj−1,



Ann Oper Res

since for all i < j , α∗(Xi) = qi ; and α satisfies constraint c
q ′
j

j , so α satisfies Cj−1 ∪ {cq ′
j

j }.
By minimality of qj , we have qj ≤ q ′

j and so qj < q ′
j . Let β be any solution of Cn. Then

β∗(Xi) = α∗(Xi) for all i < j and β∗(Xj ) = qj < q ′
j = α∗(Xj ). Hence β is a better solution

than α, contradicting the optimality of α.
Putting these parts together, we have that any optimal solution α satisfies α∗(Xi) = qi

for all i = 1, . . . , n, and hence satisfies Cn. Conversely, any solution β of Cn satisfies the
input constraints C0 and is such that for all i, β∗(Xi) = qi , and so β∗ = α∗ for any optimal
solution α, showing that β is also optimal. �

6.3 Branch and bound algorithm

Like the lexically-based search algorithms, this variation of branch-and-bound (Fig. 3) re-
lies on the fact that for lexicographic orderings, value orderings can be indexed by Q-values.
This means that bounds can be checked in terms of Q-values, thereby comparing a candi-
date assignment with previous assignments even when the preference ordering for the past
assignment is different from the present ordering.

conditional-bnb (partial-solution, remaining-variables)
if remaining-variables ≡ nil

save partial-solution as new best-solution
and continue //backtrack

else
select next-variable and remove from remaining-variables
for each value in its ordered domain

if instantiating next-variable with this value gives arc consistent problem
and
bounds-check(next-variable, next-value) returns true //under bound

conditional-bnb (new-partial-solution, remaining-variables)
continue //backtrack

bounds-check (candidate-var, candidate-value)
while variables remain to be compared

select next-variable in order
get value next-best for this variable from current best-solution
if next-variable == candidate-var

curr-assign = candidate-value
else if next-variable is instantiated

curr-assign = current assignment of next-variable
//perform comparisons

if next-variable �∈ any child-set
compare curr-assign or best value in current-domain with next-best

else if domain of next-variable can be ordered
compare curr-assign or best value in current-domain with next-best

else if candidate-var is the only uninstantiated parent of next-variable
get domain-order associated with parent values
compare curr-assign or best value in current-domain with next-best

else
set comparison to succeeded and bound to not-exceeded

if comparison has succeeded break
if comparison succeeded and bound was exceeded

return false
else

return true

Fig. 3 Branch and bound pseudocode for CSP with extended lexicographic ordering



Ann Oper Res

Regardless of the search order, bounds testing always proceeds according to the priority
ordering of the variables (until the current variable is reached), and the decision to bound
depends on the first difference found between the current partial assignment and the best
solution α. Note that for the latter all Qi(x,u) are known.

Testing is restricted to the following conditions:

• Variable k has no parents, in which case either its current assignment or the best as-
signment available can be used for comparing with the current best assignment for this
variable (in this case, the Qk(x,u) are independent of other assignments).

• The ordering for variable k has been specified (because its parents have assignments), in
which case the Qk(x,u) are known.

• Variable k has one uninstantiated parent, which is the current variable, in which case the
Qk(x,u) can be determined for a candidate value of variable k.

Bounding is not done unless these conditions are met for all comparisons up to the first dif-
ference found. Then, if the first difference found favours the current best solution, since this
is also the first difference in the lexicographic order, no extension of the current assignment
can produce a solution β such that β �E α. (If there is no such difference, then, of course,
we cannot bound search at this point.) This guarantees the correctness of the present algo-
rithm. (A minor point. In the actual code, bounds checking is avoided until a first solution
has been found.)

The present branch and bound algorithm has one difference from that used for CSPs with
simple conditional lexicographic orderings. In the latter case, comparisons can also be made
during bounds testing if the domain of each remaining uninstantiated parent of the variable
being compared (“next-variable” in Fig. 3) can be ordered. In this case, a comparison is
made using an ordering for next-variable based on the best possible parent values. Because
the parents will have been checked already, their best values must have been equal to the
corresponding values of best-solution, since a bounding decision could not be made. In this
case, for the variable currently under consideration the preference ordering over the domain
is the same for the best solution and the current assignment. For extended conditional lex-
icographic orders, where the parent is not necessarily more important than the child, this
implication does not always hold.

7 Experimental tests

We present results of experimental tests with random binary CSPs and with problems based
on a real-world configuration problem to show comparative performance of the different
algorithms described above. Since in previous work (Freuder et al. 2003, 2007) a MAC-
based algorithm proved to be much more effective than forward checking, the former is
used in all tests reported here. Algorithms were coded in lisp and run using Xlisp on a Dell
Work Station PWS 330 running at 1800 MHz. For each condition, solutions were compared
for the different algorithms to verify that the implementations were correct.

7.1 Problem generator

For these tests, CSPs with conditional lexicographic orders were generated with a program
written by the first author. This program starts with an existing CSP and transforms it into a
conditional LO-CSP by selecting variables for conditional preferences and building a CPT
for each relation. Each CPT is built by generating all possible tuples of parent values (or-
dered by descending importance of the parent variables), and for each parent tuple, and for



Ann Oper Res

each child, randomly re-ordering the domain of child values. (Re-ordering is done indepen-
dently for each parent tuple and child.) Q-values are derived from successive positions of
successive domain elements within an ordering, so they do not have to be generated explic-
itly. (In other words, the generator (and solvers) implicitly use the rank-based interpretation
of Sect. 3.1, although, of course, they could be generalised.)

Before creating conditional lexicographic orderings for a set of problems, the user spec-
ifies the following parameters: (i) number of preference relations, (ii) maximum number of
parents per relation, (iii) maximum number of children per relation, (iv) maximum num-
ber of attempts to make a relation with p parents and c children, since at some point in
generation it may not be possible to do this under the given restrictions. (If this number is
ever exceeded, the program writes a message to standard-output, but continues with problem
generation.) In addition, the following restrictions are made during generation:

1. A child-variable only appears as such in one preference relation (otherwise the CPT is
ill-defined).

2. The graph of conditional relations is directed-acyclic, so there is no directed path from a
node back to itself.

3. A variable occurs in no more than one single-parent relation. This restriction was made to
prevent selection from undermining the maximum-child specification since k singleton-
parent relations involving the same parent variable are indistinguishable from a single
relation with one variable and k children.

There are two further restrictions that the user can specify optionally:

1. That parent-child relations always correspond to the priority ordering of the variables.
(This specifies that the conditional LO-CSP is of the simpler type.)

2. That the parents and children in a relation do not have parents in common. (This option
was not used in the experiments reported here.)

An example of output from the generator is shown in Fig. 4. In this case, there is one
relation, where variable 1, with domain {0,1,2,3} is the parent, and variables 3 and 4, with
domains {0,1,2} and {0,1,2 3} are the children. (The parent-child relation is indicated on
the line labelled “conpref”, which also tags the relation (here with a 1) for bookkeeping
purposes.)

For problems used in the present tests, there was a maximum of two parents and two
children per relation. The number of relations per problem was set to be 3, 7 or 11 in dif-
ferent experiments. With 7 relations, 70–80% of the variables were included in at least one
conditional relation (i.e. were either parents or children in at least one relation); with 11 it
was approximately 100%.

(TITLE (GRAPH-1 CONFIGTEST3.1))
(PARAMS NUMVARS 4 DMAX 4 TYPE GAC-CONFIG)
(PARAMS-PREF NUM-RELS 1 MAX-PARENTS 2 MAX-CHILDREN 2)
(conpref 1 (1) (3 4))
(CPT 1 (0)((0 2 1) (0 1 2 3))

(1)((2 1 0) (2 3 0 1))
(2)((1 2 0) (1 3 2 0))
(3)((0 2 1) (3 0 2 1)))

Fig. 4 Output from generator of conditional relations for LO-CSPs



Ann Oper Res

7.2 Results with random CSPs

Performance comparisons are given in Table 1. (Note that the number of values per domain
is large in comparison with problems typically considered in this area and that there are
numerous hard constraints. In addition, since the same Q-values were used for all domains,
these constitute particularly difficult problems for algorithms like the staged lexical method
where constraint size is related to number of different Q-values (cf. Sect. 6.1).) There are
some striking differences due to problem difficulty and to the character of the conditional
lexicographic ordering, and no single algorithm is superior overall.

Results for simple conditional lexicographic orderings were quite similar to those found
for similar problems for the unconditional case. In addition, increasing the number of con-
ditional relations had very little effect on search efficiency. For hard problems of this type,
branch and bound and staged lexical were comparable, and both were better than straight
lexical as domain size increased. For easy problems, either of the lexically-based search
strategies outperformed branch and bound.

For the extended lexicographic orderings, performance differences depended on the num-
ber of constraints and number of conditional preference relations, as well as the heuristic
used to order decision variables. For hard problems, the difference was decisive with branch
and bound outperforming the staged lexical search by about an order of magnitude. For
easy problems, staged lexical search was sometimes more efficient than branch and bound.
This depended on the search order heuristic as well as the number of conditional preference
relations (Table 1).

7.3 Results with configuration problems

These tests are based on a configuration problem obtained from the Configuration Bench-
marks Library maintained by the Computational Logic and Algorithms Group at the Univer-
sity of Copenhagen (ESVS Benchmark, #72). The original problem has 26 variables (with
domain sizes ranging from two to 61) and 11 constraints with a maximum arity of five.

In constructing preference problems, we first discarded six variables that were discon-
nected. (They were not of interest in the present context since the most preferred value would
always be available.) Then the remaining 20 variables were labelled lexically (following the
order of listing in the source file), and 100 LO-CSPs were constructed with different lexical
orders on these variables by renaming the variables according to random permutations of
the original labels. (This particular strategy allowed us to continue using the lexical labels
as indicators of importance in the solver code.) Doing this, we were able to test our algo-
rithms over a large sample of possible importance orderings with respect to configuration
components. This also served to test the ease of finding optimal solutions with each method
when variables with very different domain sizes and constraint relations were either lower or
higher in the importance ordering. Finally, the problem generator described above was used
to create problems with conditional preference relations, using the same parameter values
as those used with the random CSPs. For each algorithm, the solver code was the original
code updated with code for generalised arc consistency; hence the algorithm employed a
generalised form of MAC3.

The results of these experiments are shown in Table 2. Constraint checks are not included
because of differences in the manner of checking binary and n-ary constraints. Instead, we

2http://www.itu.dk/research/cla/externals/clib/esvs.pm

http://www.itu.dk/research/cla/externals/clib/esvs.pm


Ann Oper Res

Table 1 Search efficiency comparisons

Domain/tight Hard problems Easy problems

10/.35 20/.45 20/.40

Simple conditional lexicographic

lex stg bb lex stg bb lex stg bb

P3 Nodes 348 390 217 9083 2334 2020 276 363 1346

ccks(000) 161 128 115 6505 2260 2124 118 148 949

P7 Nodes 349 390 219 9063 2329 2020 269 365 1297

ccks(000) 161 128 116 6492 2255 2123 115 149 927

P11 Nodes 348 391 218 9098 2330 2022 269 362 1408

ccks(000) 161 128 116 6514 2256 2125 117 148 985

Extended conditional lexicographic

stg/lex stg/dm bb stg/lex stg/dm bb stg/lex stg/dm bb

P3 Nodes 2396 3547 439 29445 27743 3496 12085 73652 47428

ccks(000) 1104 1645 203 18905 30294 3660 6833 47508 17219

P7 Nodes 5283 4397 587 103380 43790 5078 98031 106701 87209

ccks(000) 1594 2043 267 57692 46330 5241 36832 66849 29578

P11 Nodes 14072 6038 957 140285 38344 6801 213311 97095 123614

ccks(000) 4045 2927 416 66466 40415 7050 59348 62312 44385

Notes. 20-variable problems with density = 0.5. Data are means for 100 problems. “Hard problems” are
near the critical complexity peak. “Easy problems” are near the edge of the hard region. Branch and bound
employed min domain variable ordering; this was also used for staged lexical search for simple conditional
lexicographic orderings. (For the extended case, decision variables, Xi , were either ordered in this way or
ordered lexically, as indicated.) “Pk” is number of conditional preference relations per problem

show runtimes. The pattern of results corresponds in some respects to those of the previous
experiments, although the differences are more striking. Again, when problems have many
feasible solutions (3.1 million in this case), branch and bound algorithms are relatively in-
efficient. In addition, with these problems certain importance orderings wreak havoc with
ordinary variable ordering heuristics, leading to very high means for performance measures.

7.4 Discussion

Taken together, these results indicate that simple conditional lexicographic orders pose no
special problems for these algorithms. In the extended conditional lexicographic case, it
is important to have some form of lexically-based search—because branch and bound is
adversely affected when the number of feasible solutions becomes large, while the effects
on lexical or staged lexical search are often not as severe. This is shown most strikingly in
the experiments using a real-world configuration problem, and this effect is possibly quite
general for these kinds of problems. With our present suite of algorithms, we are thus able to
solve problems efficiently under a wide range of conditions despite the reduced restrictions
on conditional relations.

These algorithms can also accommodate cases where preference relations are restricted
to a subset of the CSP variables, as demonstrated in work with LO-CSPs (Freuder et al.



Ann Oper Res

Table 2 Search efficiency comparisons—configuration problems

Simple conditional

lex stage bb

P3 mn. nodes 20 210 40606

mdn. nodes 20 210 822

mn. time .01 .04 9.62

P7 mn. nodes 20 210 40747

mdn. nodes 20 210 761

mn. time .01 .04 9.85

P11 mn. nodes 20 210 43165

mdn. nodes 20 210 1364

mn. time .01 .05 10.69

Extended conditional

stage/lex stage/dom bb

P3 mn. nodes 1198 459400 370576

mdn. nodes 904 10499 6407

mn. time 0.23 80 57

P7 mn. nodes 1957 195753 1066066

mdn. nodes 1180 6492 46290

mn. time 0.33 36 174

P11 mn. nodes 2373 354420 1070914

mdn. nodes 1905 10769 345247

mn. time 0.43 51 178

Notes. 20-variable configuration problem with 100 different importance orderings. “mn” and “mdn” are
means and medians, respectively, Branch and bound employed min domain variable ordering. This was also
used for staged lexical search with simple conditional lexicographic orderings, while for the extended case,
decision variables, Xi , were chosen either lexically or by (min) domain size. “Pk” is number of conditional
preference relations per problem. Times are seconds

2007). In this case, lexically ordered search considers the non-preference variables after
the others using any CSP heuristic, while branch and bound only bounds search when the
current variable is in the preference set (and only considers the k preference variables when
bounding). Again, after choosing the kth variable by importance, staged lexical search can
use any appropriate search heuristic until it has found a solution for this stage.

8 Conclusions

Lexicographic orders allow a very simple and basic representation of preferences in com-
binatorial problems. The assumptions are strong, but the user inputs are of an easily under-
standable form, and there are powerful algorithmic approaches for constrained optimisation.

In many situations, preferences are naturally conditional, i.e., context-dependent, and
there has been a good deal of recent work in the AI literature on qualitative frameworks
for conditional preferences, especially, CP-nets and their extensions. In this paper we de-
fine conditional lexicographic orders, which gives a simple approach for reasoning with



Ann Oper Res

conditional preferences, and which has computational advantages over more sophisticated
methods. We also show how algorithms for constrained optimisation for ordinary LO-CSPs
can be extended to handle conditional orderings. Somewhat unexpectedly, this can be done
even when conditional preference relations do not correspond to the relative importance of
the variables. Therefore, efficiency of search in combinatorial optimisation can be main-
tained despite the additional complexity of this form of representation, in some cases to a
surprising degree. These algorithms can also be used for finding a single optimal solution of
a constrained optimisation problem for an acyclic CP-net.

Acknowledgements This work received support from Science Foundation Ireland under Grant 00/PI.1/
C075. We are grateful to the editors and referees for their comments and suggestions, which helped improve
the exposition of this paper.

References

Boutilier, C., Brafman, R. I., Hoos, H. H., & Poole, D. (1999). Reasoning with conditional ceteris paribus
preference statements. In Proc. fifteenth annual conf. on uncertainty in artif. intell. (pp. 71–80).

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004a). Preference-based constrained
optimization with CP-nets. Computational Intelligence, 20(2), 137–157.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., & Poole, D. (2004b). CP-nets: A tool for rep-
resenting and reasoning with conditional ceteris paribus preference statements. Journal of Artificial
Intelligence Research, 21, 135–191.

Boutilier, C., Domshlak, C., & Shimony, E. (2006). On graphical modeling of preference and importance.
Journal of Artificial Intelligence Research, 25, 389–424.

Brafman, R. I., & Domshlak, C. (2002). Introducing variable importance tradeoffs into CP-nets. In Proc.
eighteenth annual conf. on uncertainty in artif. intell. (pp. 69–76).

Domshlak, C., & Brafman, R. I. (2002). CP-nets—reasoning and consistency testing. In Proc. eighth conf. on
principles of knowledge representation and reasoning (pp. 121–132).

Fishburn, P. (1974). Lexicographic orders, utilities and decision rules: A survey. Management Science, 20(11),
1442–1471.

Freuder, E. C., Wallace, R. J., & Heffernan, R. (2003). Ordinal constraint satisfaction. In Fifth internat.
workshop on soft constraints—SOFT’02.

Freuder, E. C., Heffernan, R., Wallace, R. J., & Wilson, N. (2007). Lexicographically-ordered constraint
satisfaction problems (submitted).

Goldsmith, J., Lang, J., Truszczynski, M., & Wilson, N. (2005). The computational complexity of dominance
and consistency in CP-nets. In Proc. nineteenth internat. joint conf. on artif. intell. (pp. 144–149).

Junker, U. (2002). Preference-based search and multi-criteria optimization. In Proc. eighteenth nat. conf. on
artif. intell. (pp. 34–40).

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives. Preferences and value tradeoffs.
Cambridge: Cambridge University Press.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy prob-
lems. In Proc. fourteenth internat. joint conf. on artif. intell. (pp. 631–637).

Wallace, R. J. (2006). Interpretation of preferences based on extended conditional lexicographic orders. In
U. Junker, W. Kiessling (Eds.), ECAI 2006 multidisciplinary workshop on advances in preference han-
dling (pp. 141–147).

Wallace, R. J., & Wilson, N. (2006). Conditional lexicographic orders in constraint satisfaction problems. In
J. C. Beck & B. M. Smith (Eds.), Lecture notes in computer science: Vol. 3990. Proc. third internat. conf.
on integration of AI and OR techniques in constraint programming (pp. 258–272). Berlin: Springer.

Wellman, M. P., & Doyle, J. (1991). Preferential semantics for goals. In Proc. ninth nat. conf. on artif. intell.
(pp. 698–703).

Wilson, N. (2004a). Extending CP-nets with stronger conditional preference statements. In Proc. nineteenth
nat. conf. on artif. intell. (pp. 735–741).

Wilson, N. (2004b). Consistency and constrained optimisation for conditional preferences. In Proc. sixteenth
Europ. conf. on artif. intell. (pp. 888–892).

Wilson, N. (2006). An efficient upper approximation for conditional preference. In Proc. seventeenth Europ.
conf. on artif. intell. (pp. 472–476).


	Conditional lexicographic orders in constraint satisfaction problems
	Abstract
	Introduction
	Background and definitions
	Some basic definitions for ordering relations
	Lexicographic and conditional lexicographic CSPs
	Lexicographic CSP as a weighted CSP

	Extended conditional lexicographic orders

	Derivations of Q-values for extended conditional lexicographic orders
	Q-values based on ranking of values
	Q-values based on orderings of child-parent tuples

	Conditional lexicographic CSPs and CP-nets
	Constrained optimisation algorithms for conditional LO-CSPs
	Methods for solving ordinary LO-CSPs
	Algorithms for simple conditional lexicographic CSPs

	Search algorithms for extended conditional lexicographic orders
	Auxiliary variables representation
	Extending lexical search
	Extending the staged lexical algorithm
	Branch and bound algorithm

	Experimental tests
	Problem generator
	Results with random CSPs
	Results with configuration problems
	Discussion

	Conclusions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


