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Abstract

Graph transformations proved useful for many algorithmic problems. In the present
paper, we study this tool with respect to the maximum stable set problem. We first
review available results on this topic and then propose an approach to uniformly de-
scribe and systematically develop graph transformations that do not change the size
of a maximum stable set in the graph. The approach is illustrated by a number of
new transformations.
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1 Introduction

A subset of pairwise nonadjacent vertices in a graph G is called stable (or independent).
The cardinality of a maximum size stable set in G is called the stability number of G and
is denoted α(G). The problem of determining a stable set of maximum cardinality finds
important applications in various fields, including computer vision and pattern recognition.
We refer to [6] for a review concerning algorithms, applications, and complexity issues of
this problem.

A helpful tool to solve or simplify the maximum stable set problem is based on trans-
forming a given graph G into a new graph G′ in such a way that the difference α(G′)−α(G)
is easy to compute. A trivial example is given by the deletion of an isolated vertex, which
reduces the stability number by exactly one. A more sophisticated example comes from
matching theory and is known as the cycle shrinking (see e.g. [29]). This reduction is a
key tool to solve the maximum matching problem, which is equivalent to the problem of
finding a maximum stable set in a line graph.

The literature provides many more examples of graph transformations that can be
useful for the maximum stable set problem. We give an overview on this topic in Section
2. Originally, these transformations have been described in different terms and have been
obtained by different means. For instance, a good source of transformations preserving
the stability number is the area of pseudo-Boolean optimization [7, 15]. Several interesting
transformations of this type have been derived from Boolean arguments (see e.g. [24]).
In the present paper, we exploit a purely graph-theoretic approach. Our purpose is to
provide a uniform way to describe and develop graph transformations for the maximum
stable set problem. To this end, we employ the notion of transformation plan, introduced
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in [2], and elaborate it in a non-trivial way. This elaboration leads to generalization of
several previously known transformations.

2 An overview

Let us begin with the following simple introductory example. Assume a graph G contains
a vertex x of degree 1 with the only neighbor y. Then, obviously, every stable set S
containing y does not contain x, and hence, y can be replaced in S by x. Therefore,
the removal of y from the graph does not change its stability number. By means of this
operation any graph can be transformed into a graph that does not contain vertices of
degree 1 and has the same stability number as the initial graph. For some specific graphs,
such as trees, this leads to an efficient algorithm to solve the maximum stable set problem.
This simple reduction admits many interesting generalizations, some of which are listed
below.

1. Simplicial vertex reduction. A vertex x is said to be simplicial if the neigh-
borhood of x is a clique. For instance, every vertex of degree 1 is simplicial. With the
arguments similar to those used in the above introductory example, one can easily show
that α(G− y) = α(G) for any vertex y in the neighborhood of a simplicial vertex x.

This reduction provides a polynomial-time solution for the maximum stable set prob-
lem in the class of chordal graphs (a proper generalization of trees), as any chordal graph
contains at least two simplicial vertices.

2. Neighborhood reduction. Let x and y be adjacent vertices in a graph G.
Partition the remaining vertices of the graph into four subsets as follows (see Figure 1(a)
for an illustration):

cx, the subset of vertices adjacent to x and nonadjacent to y,

cy, the subset of vertices adjacent to y and nonadjacent to x,

cxy, the subset of vertices adjacent both to x and to y,

c∅, the subset of vertices adjacent neither to x nor to y.

If cx = ∅, then for any stable set S with y ∈ S, the set (S − {y}) ∪ {x} is stable too.
Therefore, the removal of y from the graph does not change its stability number. This
reduction has been discovered independently by many researchers under various names
such as neighborhood reduction or elementary compression. Notice that in the special
case when cxy is a clique the neighborhood reduction coincides with the simplicial vertex
reduction. In [28], the neighborhood reduction has been used to reduce any circular arc
graph to a special canonical form which allows a simple solution to the stable set problem,
thus providing an efficient algorithm to solve the problem in the class of circular arc graphs.

3. Magnet. As before, we consider two adjacent vertices x and y as represented in
Figure 1(a). Assume that every vertex in cx is adjacent to every vertex in cy. A pair of
vertices x, y with this property has been called in [21] a magnet. An important property of
a magnet is that the removal of y together with the edges of the form xz with z ∈ cx does
not change the stability number of the graph. We shall refer to this transformation as
magnet simplification. Clearly the neighborhood reduction is a special case of the magnet
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Figure 1: Partitioning a graph with respect to 2 (a) or 3 (b) vertices

simplification when cx is empty. Several interesting applications of the this reduction for
the computation of the stability number can be found in [25].

4. Vertex deletion. Now let vertices x, y and z induce a path P3 with edges xy and
xz. Partition the remaining vertices of the graph into eight subsets with respect to x, y, z
as shown in Figure 1(b). It has been observed in [5] that if cy ∪ cz ∪ cyz is a clique, then
the removal of x does not change the graph stability number.

5. Edge deletion. Several stability preserving transformations reducing the number
of edges have been proposed in [8]. We describe a single example that deals with three
vertices x, y, z inducing a P3 as shown in Figure 1(b). If cy = ∅, then the removal of the
edge xz from the graph does not change its stability number.

It is interesting to notice that the magnet simplification (Example 3) can be obtained
as a combination of the edge deletion and the neighborhood reduction. Indeed, if a pair
of vertices x, y forms a magnet in a graph, then for any vertex z ∈ cx, every neighbor of
y is adjacent either to x or to z and hence the edge xz can be deleted without changing
the stability number of the graph. After deletion of all edges connecting x to its private
neighbors (i.e., to the vertices in cx), the neighborhood reduction can be applied to the
pair x, y.

6. BAT-reduction. Alain Hertz [24] defined a BAT in a graph to be a subset of three
vertices x, y, z with the following properties:

(a) vertices x, y, z induce a P3 as shown in Figure 1(b);

(b) each vertex in cx is adjacent to each vertex in cy ∪ cyz ∪ cxy or (not exclusively) to
each vertex in cz ∪ cyz ∪ cxz;

(c) each vertex in cxz is adjacent to each vertex in cy ∪ cyz ∪ cxy;

(d) each vertex in cxy is adjacent to each vertex in cz ∪ cyz ∪ cxz.

Given a graph G = (V,E) and a BAT in G, we define G′ = (V ′, E′) as follows:
– the vertex set V ′ of G′ is obtained from V by removing the vertices x, y, z and by

adding two new vertices a and b;
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– the edge set E′ of G′ is obtained from E by removing all the edges incident to
x, y or z and by linking a to each vertex in cxyz, and by linking b to each vertex in
cy ∪ cxy ∪ cxyz ∪ cyz ∪ cxz ∪ cz.

It has been proved in [24] that α(G) = α(G′). We shall refer to the described trans-
formation as the BAT-reduction.

7. Stability changing transformations can be viewed as a special case of stability
preserving transformations. Indeed, if a certain transformation transforms a graph G into
a graph G′ with α(G) = α(G′) − k for some integer k, then the addition of k isolated
vertices either to G (if k is positive) or to G′ (if k is negative) makes the transformation
stability preserving.

Consider, for instance, the special case of the BAT-reduction with cx = cxy = cxz =
cxyz = ∅. In that case, the new vertex a is isolated in the graph G′ and hence the removal
of a from G′ decreases its stability number by exactly one. As a result, we obtain the
transformation illustrated in Figure 2:
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Figure 2: Vertex folding

This transformation is known as vertex folding. It was used to improve the worst case
time complexity for the vertex cover and stable set problems [11, 17].

Notice that the transformation inverse to vertex folding is applicable to any graph. It
was used in [1] under the name vertex splitting in order to reduce in polynomial time the
maximum stable set problem from the class of all graphs to some restricted classes. A
weaker version of vertex splitting was used in [34] to prove NP-hardness of the problem
in graphs with large girth.

Now let us return to the vertex folding and observe that this transformation admits a
wide generalization. Given a graph G and a vertex x in G, we transform G by deleting
x together with all its neighbors and by introducing a new vertex for every pair of non-
adjacent vertices in the neighborhood of x. With an appropriate connection of the new
vertices to each other and to the vertices in the rest of the graph, this transformation
reduces the stability number of the graph by exactly one. Repeated applications of this
transformation lead to a general approach to compute the stability number of an arbitrary
graph. This approach was proposed in [16] and was called there the struction method.
Unfortunately, the number of vertices is generally increasing when the transformation
is applied. However, specialized versions of the struction method have been designed to
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compute the stability number of graphs in particular classes in polynomial time [19, 20, 22].
Some restricted versions of the struction method have been applied to the maximum stable
set problem in [4, 17]. More on the struction method can be also found in [14, 27].

A generalization of the struction method has been proposed in [3]. It is based on a
transformation which, given a graph G and an induced subgraph H of G, substitutes H
together with its neighbourhood by a new graph in such a way that the stability number
of the resulting graph is exactly α(H) less that that of G. This generalization includes
several particular graph transformations studied in the literature, such as

crown reduction (was used to prove fixed-parameter tractability of the minimum
vertex cover problem [12]),

cycle shrinking (a key tool to solve the maximum matching problem, which is equiv-
alent to the maximum stable set problem in the class of line graphs [29]),

clique reduction (was used to derive polynomial time algorithms for the maximum
stable set problem in several particular classes of graphs [13, 26, 23]. Also, the edge
projection, which is a specialization of the clique reduction when restricted to edges,
has been used in [32, 33] to develop some heuristics for the stable set problem).

We refer the reader to [2, 10, 30] for more examples of transformations preserving or
changing the stability number by a constant.

8. Related transformations. Several examples of graph transformations helpful for
the maximum stable set problem can be found in the literature devoted to some related
problems. We mentioned already vertex folding and crown reduction that have been
originally developed for the minimum vertex cover problem.

Another example can be found in [18] where the authors propose a transformation that
preserves the clique number. One more example is known as the even pair contraction,
an operation that has been used to solve the vertex coloring problem in some classes of
perfect graph (see e.g. [31]). Since in a perfect graph G, the chromatic number equals the
clique number, the same transformation solves the maximum clique problem in G, and
hence, the maximum independent set problem in the complement of G.

3 A transformation plan

Having examined a number of particular examples in the previous section, we now turn to
the problem of general description of graph transformations. To this end, we first propose
a formalization of the notion of graph transformation. While we apply our transformations
to simple graphs only, the formalism we introduce below involves the notion of a hyper-
graph, i.e., a pair (V, E), where V is a set of vertices and E ⊆ 2V is a set of hyperedges.
For a hyperedge e ∈ E , we denote by |e| the number of vertices in e. A hyperedge e with
|e| = 1 will be called trivial. A subset of vertices of a hypergraph will be called stable if it
does not contain nontrivial hyperedges.

For a (hyper)graph G, we denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. If U ⊆ V (G) is a subset of vertices of a (hyper)graph G, then G[U ]
denotes the subgraph of G induced by U , i.e., the (hyper)graph with the vertex set U and
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the edge set consisting of those edges of G that are subsets of U . Also, by G−U we denote
the subgraph of G induced by the set V (G)− U .

In a (hyper)graph G, a vertex x will be called a neighbor of a vertex y if there is a
(hyper)edge containing both x and y. By N(x) we denote the neighborhood of x, i.e.,
the set of all neighbors of x. Also, if U and W are two subsets of vertices of G, then
NU (x) = N(x) ∩ U is the neighborhood of x in the set U , N(W ) =

⋃
x∈W NV (G)−W (x) is

the neighborhood of the subset W , and NU (W ) = N(W ) ∩ U is the neighborhood of W
in the subset U . Finally, we let NU (W ) = U −NU (W ).

Let Z = (C, E) be a hypergraph with a set of vertices C and a set of hyperedges E ,
and let X and Y be two hypergraphs such that

V (X) ∩ V (Y ) = C, (1)

X[C] = Y [C] = Z, (2)

|e| = 2 for any e ∈ (E(X)− E) ∪ (E(Y )− E). (3)

Definition 1. An ordered pair of hypergraphs (X, Y ) satisfying (1)-(3) will be called
a transformation plan with the center Z = (C, E).

We shall say that a plan Σ = (X, Y ) is applicable to a simple graph G if the following
three conditions hold:

(1.1) G contains a subset of vertices A inducing a subgraph isomorphic to the graph
X − C. For simplicity, we shall assume that A = V (X) − C. Also, we shall denote
B := V (Y )− C, and R := V (G)−A.

(1.2) For any vertex x ∈ R, there is a vertex c(x) ∈ C, called the image of x, such that
NA(c(x)) = NA(x). For a subset of vertices P ⊆ R, we denote c(P ) =

⋃
x∈P

c(x).

(1.3) For any subset P ⊆ R with |P | > 1, if c(P ) ∈ E , then P is not a stable set in G.

Let Σ be a plan applicable to a graph G. Application of Σ to G consists of the following
three steps:

(2.1) Delete from G the set of vertices A (together with all incident edges).

(2.2) Add to the remainder G[R] of G the graph Y [B].

(2.3) For every vertex x ∈ R, link x to each vertex in NB(c(x)) by an edge.

A graph obtained from G by application of a plan Σ will be denoted GΣ. Observe that
there may exist different graphs GΣ obtained from G by application of Σ.

Example. Let Σ = (X, Y ) be a transformation plan described by two graphs X and
Y shown in Figure 3. The center of this plan is the graph induced by four vertices
cx, cy, cxy, c∅. The only edge of the center is {cx, cy}. It is not difficult to see that this
plan describes the magnet simplification.
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Figure 3: Graphs X and Y for the magnet simplification

4 α-preserving transformation plans

In this section, we characterize those transformation plans that preserve the stability
number.

Definition 2. A plan Σ will be called α-preserving if α(G) = α(GΣ) for any graph
GΣ obtained from a graph G by application of the plan Σ.

Theorem 1. Let Σ = (X, Y ) be a transformation plan with a center Z = (C, E), and
let A = V (X)− C, B = V (Y )− C. Then Σ is α-preserving if and only if

α(X[NA(T0) ∪ T1]) = α(Y [NB(T0) ∪ T1]) (4)

for any stable set T in the graph Z, where T1 = {x ∈ T : {x} ∈ E} and T0 = T − T1.
Proof. In order to prove the sufficiency, let us consider a plan Σ satisfying (4), and

let GΣ be a graph obtained from a graph G by application of Σ. Consider a stable set S
in the graph G, and denote SA := S∩A and P := S−SA. Since P ⊆ R, we can determine
the set T = c(P ). Let us show that T is a stable set in the graph Z. Indeed, if T contains
a nontrivial hyperedge e, then the set of preimages for e in P consists of more than one
vertex and hence, by (1.3), is not a stable set in G, which contradicts the definition of P .
Taking into account (1.2), we can also conclude that the set SA ∪ T is stable in X.

The partition T = T0 ∪ T1 induces a respective partition P = P0 ∪ P1, i.e., Ti = c(Pi)
(i = 1, 2). Let x and y be two distinct vertices in P1. Since c(x) and c(y) belong to T1, we
conclude that {c(x)} and {c(y)} are hyperedges in Z. Therefore, c(x) 6= c(y), otherwise x
would be adjacent to y in G (by (1.3)). Consequently,

|P1| = |T1|. (5)

Denote U := NA(T0) ∪ T1 and W := NB(T0) ∪ T1. Clearly SA ∪ T1 ⊆ U . By the
assumption, α(X[U ]) = α(Y [W ]). Therefore, W contains a subset of vertices F which is
stable in Y and has cardinality

|F | = |SA ∪ T1|. (6)

Denote FB := F ∩B, F1 := F ∪ T1. And let PF
1 be the set of preimages for F1 in P1, i.e.,

c(PF
1 ) = F1. As before, it follows from (1.3) that

|PF
1 | = |F1|. (7)
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By the construction, P0 ∪ PF
1 ∪ FB is a stable set in GΣ. Taking into account (5)-(7), we

conclude that its cardinality is

|P0 ∪ PF
1 ∪ FB| = |P0 ∪ F1 ∪ FB| = |P0 ∪ F | = |P0 ∪ SA ∪ T1| = |P0 ∪ SA ∪ P1| = |S|.

Therefore, α(G) ≤ α(GΣ). The inverse inequality can be proved in a similar way. Thus,
α(G) = α(GΣ).

To prove the necessity, consider a stable set T = {c1, . . . , ck, ck+1, . . . , cl} in the graph
Z with c1, . . . , ck ∈ T1 and ck+1, . . . , cl ∈ T0. Let G be a graph with the vertex set
A ∪ D1 ∪ . . . ∪ Dl, where |D1| = · · · = |Dk| = 1 and |Dk+1| = · · · = |Dl| > max{|A|, |B|},
and the edge set consisting of all edges of the graph X[A] and the edges linking every
vertex in Di to every vertex in NA(ci) (i = 1, . . . , l). Clearly the plan Σ is applicable to
the graph G.

Denote D1 := D1 ∪ . . . ∪ Dk and D0 := Dk+1 ∪ . . . ∪ Dl. Since Di > |A| for i > k, no
maximum stable set in the graph G contains a vertex in NA(D0). Hence, every maximum
stable set in G is of the form D0 ∪P , where P is a maximum stable set in the graph G∗ =
G[NA(D0) ∪ D1]. Since NA(Di) = NA(ci) for i = 1, . . . , l and |Di| = 1 for i = 1, . . . , k,
it is not hard to see that the graph G∗ is isomorphic to the graph X∗ = X[NA(T0) ∪ T1].
Therefore, α(X∗) = α(G∗) = |P |.

Now let GΣ be a graph obtained from G by application of the plan Σ. Similarly, every
maximum stable set in GΣ is of the form D0 ∪ P ′, where P ′ is a maximum stable set
in the graph GΣ∗ = GΣ[NB(D0) ∪ D1]. As before, the graph GΣ∗ is isomorphic to the
graph Y ∗ = Y [NB(T0) ∪ T1]. Therefore, α(Y ∗) = α(GΣ∗) = |P ′|. By the assumption,
α(G) = α(GΣ), which implies |P | = |P ′|, and therefore, α(X∗) = α(Y ∗). �

5 Development of stability preserving transformations

In this section, we show how the results of Theorem 1 can be used to create new stability
preserving transformations. In order to construct a plan Σ = (X, Y ), we start from graphs
X[A] and Y [B] and then proceed to the center Z = (C, E) and to the two sets of edges
E(A,C) = {ac ∈ E(X) : a ∈ A, c ∈ C} and E(B,C) = {bc ∈ E(Y ) : b ∈ B, c ∈ C}.

It follows from Theorem 1 that for any α-preserving plan, α(X[A]) = α(Y [B]). This
is the only restriction on the graphs X[A] and Y [B]. Therefore, we may choose any two
graphs with the same stability number as X[A] and Y [B]. A plan with the given X[A]
and Y [B] will be called an (A,B)-plan.

Example. For an illustration, let X[A] be the graph with the vertex set A = {x, y, z}
and the edge set {xy, xz}, and Y [B] be the graph with the vertex set B = {a, b}
and with no edges. Clearly, α(X[A]) = α(Y [B]).

For simplicity of the illustration, we shall assume that for any subset P ⊆ A, there
is at most one vertex of C, denoted cP , with NA(cP ) = P . In this case, the set of edges
E(A,C) is completely determined by the set of vertices C. Therefore, to construct an
α-preserving (A,B)-plan Σ, we only have to construct the graph Z = (C, E), and the set
of edges E(B,C).

For the construction of Z = (C, E), the following observation is useful. Let Σ1 and Σ2

be two (A,B)-plans with centers Z1 = (C1, E1) and Z2 = (C2, E2), respectively. It is not
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hard to see that if C2 ⊆ C1 and E1 ⊆ E2, then the applicability of Σ2 to a graph G implies
the applicability of Σ1 to G. Therefore, in order to construct an (A,B)-plan with the
largest applicability, we start with E being empty and C being maximal, i.e. we assume
that for any subset P ⊆ A, the set C contains a vertex cP with NA(cP ) = P . The process
of the creation of the plan now reduces to determining the set E(B,C) and revising the
sets C and E , if necessary.

Example continued. As instructed above, we start with C := {c∅, cx, cy, cz, cxy, cxz,
cyz, cxyz}, and E := ∅.

Now we proceed to the set of edges E(B,C). Any choice of this set leads to a valid
transformation plan. However, some choices may require revisions of the sets C and E .
Indeed, by Theorem 1, for any vertex c ∈ C, there must be valid either the equality

α(X[A−NA(c)]) = α(Y [B −NB(c)]) (8)

if {c} 6∈ E , or the equality

α(X[A ∪ {c}]) = α(Y [B ∪ {c}]) (9)

if {c} ∈ E .
Therefore, if the set E(B,C) is chosen so that neither (8) nor (9) is valid for some

vertex c ∈ C, then c must be excluded from C. If (9) is valid but (8) is not, then
{c} must be included in the set E as a trivial hyperedge. Observe that validity of (8)
implies validity of (9). Indeed, α(X[A ∪ {c}]) = max{α(X[A]), α(X[A − NA(c)]) + 1},
and similarly, α(Y [B ∪ {c}]) = max{α(Y [B]), α(Y [B −NB(c)]) + 1}. By the assumption,
α(X[A]) = α(Y [B]). Therefore, (8) implies (9).

Example continued. We propose the following two possible solutions for the set
E(B,C) leading to two different transformation plans, which we distinguish by in-
dexing the respective sets where necessary:

E1(B,C) = {acxyz, bcy, bcxy, bcxyz, bcyz, bcxz, bcz}.

E2(B,C) = {acxyz, acy, acxy, acyz, bcxyz, bcyz, bcxz, bcz}.

In the first plan, equality (8) is satisfied for each vertex in C, and hence neither C
nor E1 is revised at this stage.

In the second plan, equality (8) is not satisfied for cyz. However, in this case equality
(9) is valid. Therefore, in the second plan we do not modify the set C but we must
include {cyz} as a trivial hyperedge in the set E2.

In the last stage of the procedure, we have to determine nontrivial hyperedges in
E . Starting with k = 2, we verify equality (4) for all stable sets T of cardinality k in
the current graph Z = (C, E). If T does not satisfy (4), it must be included in E as a
hyperedge. After the inspection of all stable sets of cardinality k, we proceed to stable
sets of cardinality k + 1, and so on.
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Example continued. Following the instructions, we conclude that

E1 = {{cxy, cyz}, {cxy, cz}, {cxy, cxz}, {cyz, cxz}, {cxz, cy}, {cx, cyz}, {cx, cy, cz}}.

E2 = {{cyz}, {cyz, cy}, {cyz, cz}, {cy, cz}}.

This completes the construction of two transformations plans.

It is not hard to verify that the first of the two constructed plans generalizes the
BAT-reduction (Example 6 of Section 2). Indeed, according to the structure of the graphs
X[A], Y [B] and the set E1(B,C), application of the first plan consists of the same steps
as the BAT-reduction. However, the class of graphs to which this plan is applicable is
wider than the class of graphs containing a BAT. The condition (a) in the definition of
BAT is clearly satisfied by the choice of X[A], the condition (d) corresponds to the first
three hyperedges in the set E1, the condition (c) corresponds to the hyperedges 3,4,5 in
E1. The requirement that every vertex in cx must be adjacent to every vertex in cyz

(condition (b) in the definition of BAT) corresponds to the edge {cx, cyz} ∈ E1, while the
rest of condition (b) is a particular case of the requirement provided by the hyperedge
{cx, cy, cz} ∈ E1. Indeed, this edge does not allow three vertices u ∈ cx, v ∈ cy and w ∈ cz

form a stable set. Clearly this requirement is satisfied whenever condition (b) holds. But
the converse is generally not true.

Similarly, one can verify that the second plan constructed in this section is a general-
ization of Example 4 of Section 2. It generalizes Example 4 in the sense that cy and cz

need not to be cliques anymore.

6 Conclusion

In this paper, we proposed a formalization for the notion of graph transformation and
characterized those transformations that preserve the stability number. This formalization
allows to develop new stability preserving transformations in a systematic way. New
transformations can be used to distinguish larger classes of graphs with polynomial-time
solvable stable set problem or faster algorithms for this problem in general graphs. They
can also be used to compute better combinatorial bounds on the size of a maximum stable
set. Taking into account close relationship of the graph stability problem with pseudo-
Boolean optimization, we also believe that the results obtained in this paper will find
applications far beyond graph theory.
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