
Online Stochastic Reservation Systems

Pascal Van Hentenryck, Russell Bent, and Yannis Vergados

Department of Computer Science, Brown University,
Providence, RI 02912, USA

Abstract. This paper considers online stochastic reservation problems, where
requests come online and must be dynamically allocated to limited resources in
order to maximize profit. Multi-knapsack problems with or without overbooking
are examples of such online stochastic reservations. The paper studies how to
adapt the online stochastic framework and the consensus andregret algorithms
proposed earlier to online stochastic reservation systems. On the theoretical side,
it presents a constant sub-optimality approximation of multi-knapsack problems,
leading to a regret algorithm that evaluates each scenario with a single mathemat-
ical programming optimization followed by a small number ofdynamic programs
for one-dimensional knapsacks. On the experimental side, the paper demonstrates
the effectiveness of the regret algorithm on multi-knapsack problems (with and
without overloading) based on the benchmarks proposed earlier.

1 Introduction

In an increasingly interconnected and integrated world, online optimization problems
are quickly becoming pervasive and raise new challenges foroptimization software.
Moreover, in most applications, historical data or statistical models are available, or
can be learned, for sampling. This creates significant opportunities at the intersection of
online algorithms, combinatorial and stochastic optimization, and machine learning. In
fact, increasing attention has been devoted to these issuesin a variety of communities
(e.g., [10, 1, 6, 11, 9, 5, 8]).

This paper considers online stochastic reservation systems and, in particular, the
stochastic multi-knapsack problems introduced in [1]. Typical applications include, for
instance, reservation systems for holiday centers and advertisement placements in web
browsers. These problems differ from the stochastic routing and scheduling considered
in, say, [10, 6, 9, 5] in that online decisions are not about selecting the best request to
serve but rather about how best to serve a request.

The paper shows how to adapt our online stochastic framework, and the consensus
and regret algorithms, to online stochastic reservation systems. Moreover, in order to in-
stantiate the regret algorithm, the paper presents a constant-factor suboptimality approx-
imation for multi-knapsack problems using one-dimensional knapsack problems. As a
result, on multi-knapsack problems with or without overbooking, each online decision
involves solving a mathematical program and a series of dynamic programs. The algo-
rithms were evaluated on the multi-knapsack problems proposed in [1] with and with-
out overbooking. The results indicate that the regret algorithm is particularly effective,
providing significant benefits over heuristic, consensus, and expectation approaches. It

also dominates an earlier algorithm proposed in [1] (which applies the best-fit heuristic
within the expectation algorithm) as soon as the time constraints allows for 10 opti-
mizations for each online decision or between each two online decisions. The results
are particularly interesting in our opinion, because the consensus and regret algorithms
have now be applied generically and successfully to online problems in scheduling,
routing, and reservation using, at their core, either constraint programming, mathemati-
cal programming, or dedicated polynomial algorithms. The rest of the paper introduces
online stochastic reservation problems in their simplest form, shows how to adapt our
online stochastic algorithms for them, presents the sub-optimality approximation, and
describes the experimental results.

2 Online Stochastic Reservation Problems

2.1 The Offline Problem

The offline problem is defined in terms ofn binsB and each binb ∈ B has a capacity
Cb. It receives as input a setR of requests. Each request is typically characterized by
its capacity and its reward, which may or may not depend on which bin the request are
allocated to. The goal is to find an assignment of a subsetT ⊆ R of requests to the bins
satisfying the problem-specific constraints and maximizing the objective function.

The Multi-Knapsack Problem The multi-knapsack problem is an example of a reser-
vation problem. Here each requestr is characterized by a rewardw(r) and a capacity
c(r). The goal is to allocate a subsetT of the requestsR to the binsB so that the ca-
pacities of the bins are not exceeded and the objective function w(T) =

∑
r∈T w(r) is

maximized. A mathematical programming formulation of the problem associates witch
each requestr and binb a binary variablex[r, b] whose value is 1 when the request is
allocated to binb and 0 otherwise. The integer program can be expressed as:

max
∑

r ∈ R, b ∈ B w(r) x[r, b]

such that∑
b∈B x[r, b] ≤ 1 (r ∈ R)∑
r∈R c(r) x[r, b] ≤ Cb (b ∈ B)

x[r, b] ∈ {0, 1} (r ∈ R, b ∈ B)

The Multi-Knapsack Problem with Overbooking In practice, many reservation sys-
tems allow for overbooking. The multi-knapsack problem with overbooking allows the
bin capacities to be exceeded but overbooking is penalized in the objective function. To
adapt the mathematical-programming formulation above, itsuffices to introduce a non-
negative variabley[b] representing the excess for each binb and to introduce a penalty
termα× y[b] in the objective function. The integer programming model now becomes

max
∑

r ∈ R, b ∈ B w(r) x[r, b]−
∑

b∈B α y[b]

such that
∑

b∈B x[r, b] ≤ 1 (r ∈ R)∑
r∈R c(r) x[r, b] ≤ Cb + y[b] (b ∈ B)

x[r, b] ∈ {0, 1} (r ∈ R, b ∈ B)
y[b] ≥ 0 (b ∈ B)

This is the offline problem considered in [1].

Generic Formalization To formalize the online algorithms precisely and generically, it
is convenient to assume the existence of a dummy bin⊥ with infinite capacity to assign
the non-selected requests and to useB⊥ to denoteB ∪ {⊥}. A solutionσ can then
be seen as a functionR → B⊥. The objective function can be specified by a function
W over assignments and the problem-specific constraints can be specified as a relation
over assignments giving us the problemmaxσ: C(σ)W(σ). We useσ[r ← b] to denote
the assignment wherer is assigned to binb, i.e.,

σ[r ← b](r) = r
σ[r ← b](r′) = σ(r′) if r′ 6= r.

andσ ↓ R to denote the assignment where the requests inR are now unassigned, i.e.,

(σ ↓ R)(r) = ⊥ if r ∈ R
(σ ↓ R)(r) = σ(r) if r /∈ R.

Finally, we useσ⊥ to denote the assignment satisfying∀r ∈ R : σ(r) = ⊥.

2.2 The Online Problem

In the online problem, the requests are not known a priori butare revealed online during
the execution of the algorithm. For simplicity, we considera time horizonH = [1, h]
and we assume that a single request arrives at each timet ∈ H . (It is easy to relax these
assumptions). The algorithm thus receives a sequence of requestsξ = 〈ξ1, . . . , ξh〉 over
the course of the execution. At timei, the sequenceξi = 〈ξ1, . . . , ξi〉 has been revealed,
the requestsξ1, . . . , ξi−1 have been allocated in the assignmentσi−1 and the algorithm
must decide how to serve requestξi. More precisely, stepi produces an assignment
σi = σi−1[ξi ← b] that assigns a binb to ξi keeping all other assignments fixed. The
requests are assumed to be drawn from a distributionI and the goal is to maximize the
expected value

E

ξ
[W(σ⊥[ξ1 ← b1, . . . , ξh ← bh])

where the sequenceξ = 〈ξ1, . . . , ξh〉 is drawn fromI.
The online algorithms have at their disposal a procedure to solve , or approximate,

the offline problem, and the distributionI. The distribution is a black-box available
only for sampling. Practical applications often include severe time constraints on the
decision time and/or on the time between decisions. To modelthis requirement, the
algorithms may only use the optimization procedureO times at each time step.

It is interesting to contrast this online problem with thosestudied in [7, 5, 3]. In these
applications, the key issue was to select which request to serve at each step. Moreover,
in the stochastic vehicle routing applications, accepted requests did not have to be as-
signed a vehicle: the only constraint on the algorithm was the promise to serve every
accepted request. The online stochastic reservation problem is different. The key issue
is not which request to serve but rather whether and how the incoming request must be
served. Indeed, whenever a request is accepted, it must be assigned a specific bin and
the algorithm is not allowed to reshuffle the assignments subsequently.

ONLINEOPTIMIZATION(ξ)
1 σ0 ← σ⊥;
2 for t ∈ H do
3 b← CHOOSEALLOCATION(σt−1, ξt);
4 σt ← σt−1[ξt ← b];
5 return σh;

Fig. 1. The Generic Online Algorithm

The Generic Online Algorithm The algorithms in this paper share the same online
optimization schema depicted in Figure 1. They differ only in the way they implement
function CHOOSEALLOCATION. The online optimization schema receives a sequence
of online requestsξ and starts with an empty allocation (line 1). At each decision time
t, the online algorithm considers the current allocationσt−1 and the current requestξt

and chooses the binb to allocate the request (line 3), which is then included in the new
assignmentσt (line 4). The algorithm returns the last assignmentσh whose value is
W(σh) (line 5). To implement functionCHOOSEALLOCATION, the algorithms have at
their disposal two black-boxes:

1. a functionOPTSOL(σ, R) that, given an assignmentσ and aR of requests, returns
an optimal allocation of the requests inR given the past decisions inσ. In other
words,OPTSOL(σ, R) solves an online problem where the decision variables for
the requests inσ have fixed values.

2. a functionGETSAMPLE(t) that returns a set of requests over the interval[t, h] by
sampling the arrival distribution.

To illustrate the framework, we specify a best-fit online algorithm as proposed in [1].

Best Fit (G): This algorithm assigns the requestξ to a bin that can accommodateξ and
has the smallest capacity given the assignmentσ:

CHOOSEALLOCATION-G(σ, ξ)
1 return argmin(b ∈ B⊥ : C(σ[ξ ← b))) Cb(σ);

whereCb(σ) denotes the remaining capacity of the binb ∈ B⊥ in σ, i.e.,

Cb(σ) = Cb −
∑

r∈R:σ(r)=b

c(r).

3 Online Stochastic Algorithms

This section reviews the various online stochastic algorithms. It starts with the expecta-
tion algorithm and shows how it can be adapted to incorporatetime constraints.

Expectation (E): Informally speaking, algorithm E generates future requests by sam-
pling and evaluates each possible allocation against the samples. A simple implemen-
tation can be specified as follows:

CHOOSEALLOCATION-E(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O/|B⊥| do
4 Rt+1 ← GETSAMPLE(t + 1);
5 for b ∈ B⊥ : C(σt−1[ξt ← b]) do
6 σ∗ ← OPTSOL(σt−1[ξt ← b], Rt+1);
7 f(b)← f(b) +W(σ∗);
8 return argmax(b ∈ B⊥) f(b);

Lines 1-2 initialize the evaluationf(b) of each requestb. The algorithm then generates
O/|B⊥| samples of future requests (lines 3–4). For each such sample, it successively
considers each available binb that can accommodate the requestξ given the assignment
σt−1 (line 5). For each such binb, it schedulesξt in bin b and applies the optimiza-
tion algorithm using the sampled requestsRt+1 (line 6). The evaluation of binb is
incremented in line 7 with the weight of the optimal assignment σ∗. Once all the bin
allocations are evaluated over all samples, the algorithm returns the binb with the high-
est evaluation. Algorithm E performsO optimizations but uses onlyO/|B⊥| samples.
WhenO is small (due to the time constraints), each request is only evaluated with re-
spect to a small number of samples and algorithm E does not yield much information.
To cope with tight time constraints, two approximations of E, consensus and regret,
were proposed.

Consensus (C): The consensus algorithm C was introduced in [7] as an abstraction
of the sampling method used in online vehicle routing [6]. Its key idea is to solve each
sample once and thus to examineO samples instead ofO/|B⊥|. More precisely, in-
stead of evaluating each possible bin at timet with respect to each sample, algorithm
C executes the optimization algorithm once per sample. The bin to which requestξ is
allocated in optimal solutionσ∗ is creditedW(σ∗) and all other bins receive no credit.
Algorithm C can be specified as follows:

CHOOSEALLOCATION-C(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O do
4 Rt ← {ξt} ∪ GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1, Rt);
6 f(σ∗(ξt))← f(σ∗(ξt)) +W(σ∗);
7 return argmax(b ∈ B⊥) f(b);

The core of the algorithm are once again lines 4–6. Line 4 defines the setRt of requests
that now includesξt in addition to the sampled requests. Line 5 calls the optimization
algorithm withσt−1 andRt. Line 6 increments only the binσ∗(ξt) The main appeal
of Algorithm C is its ability to avoid partitioning the available samples between the
requests, which is a significant advantage whenO is small and/or when the number of
bins is large. Its main limitation is itselitism. Only the best allocatation is given some
credit for a given sample, while other bins are simply ignored.

Regret (R): The regret algorithm R is the recognition that, in many applications, it
is possible to estimate the loss of sub-optimal allocations(called regrets) quickly. In
other words, once the optimal solutionσ∗ of a scenario is computed, algorithm E can
be approximated with one optimization [5, 2].

Definition 1 (Regret).Let σ be an assignment,R be a set of requests,r be a request
in R, andb be a bin. The regret of a bin allocationr ← b wrt σ andR, denoted by
DEVIATION(σ, R, r ← b), is defined as

| W(OPTSOL(σ, R))−W(OPTSOL(σ[r ← b], R \ {r}))) | .

Definition 2 (Sub-Optimality Approximation). Let σ be an assignment,R be a set
of requests,r be a request inR, andb be a bin. Assume that algorithmOPTSOL(σ, R)
runs in timeO(fo(R)). A sub-optimatily approximation runs in timeO(fo(R)) and,
given the solutionσ∗ = optSol(σ, R), returns, for each binb ∈ B⊥, an approximation
SUBOPT(σ∗, σ, R, r ← b) to all regretsREGRET(σ, R, r ← b).

Intuitively, the|B⊥| regrets must not take more time than the optimization. We areready
to present the regret algorithm R:

CHOOSEALLOCATION-R(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O do
4 Rt ← {ξt} ∪ GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1, Rt);
6 f(σ∗(ξt))← f(σ∗(ξt)) +W(σ∗);
7 for b ∈ B⊥ \ {σ(ξt) : C(σt−1[ξt ← b])} do
8 f(b)← f(b) + (W(σ∗)− SUBOPT(σ∗, σt−1, Rt, ξt ← b));
9 return argmax(b ∈ B⊥) f(b);

Its basic organization follows algorithm C. However, instead of assigning some credit
only to the bin selected by the optimal solution, algorithm R(lines 7-8) uses the sub-
optimality approximation to compute, for each available allocationξt ← b, an approx-
imation of the best solution that allocatesξt to b. Hence every available bin is given an
evaluation for every sample at timet for the cost of a single optimization (asymptoti-
cally). Observe that algorithm R performsO optimizations at timet.

4 Generalizations of the Framework

This section discusses two generalizations: precomputation and cancellations.

Precomputation Many reservation systems require immediate responses to requests,
giving only limited time to the online algorithm for decision making. However, as is
the case in vehicle routing, there is time between decisionsto generate scenarios and
optimize them. This idea can be accommodated in the framework by separating the
optimization phase from the decision-making phase in the online algorithm. This is es-
pecially attractive for consensus and regret where each scenario is solved exactly once.
Details on this separation can be found in [4] in the context of the original framework.

ONLINEOPTIMIZATION(ξ, ζ)
1 σ0 ← σ⊥;
2 for t ∈ H do
3 σt−1 ← σt−1 ↓ ζt;
4 b← SELECTALLOCATION(σt−1, ξt);
5 σt ← σt−1[ξt ← b];
6 return σh;

Fig. 2. The Generic Online Algorithm with Cancellations

CHOOSEALLOCATION-C(σt−1, ξt)
1 for b ∈ B⊥ do
2 f(b)← 0;
3 for i← 1 . . .O do
4 〈Rt+1, Zt+1〉 ← GETSAMPLE(t + 1);
5 σ∗ ← OPTSOL(σt−1 ↓ Zt+1, {ξt} ∪ Rt+1);
6 f(σ∗(ξt))← f(σ∗(ξt)) +W(σ∗);
7 return argmax(b ∈ B⊥) f(b);

Fig. 3.The Consensus Algorithm with Cancellations

Cancellations Most reservation systems allow requests to be cancelled after they are
accepted. The online stochastic framework can accommodatecancellations by simple
enhancements to the generic online algorithm and the sampling procedure. It suffices to
assume that an (often empty) set of cancellationsζt is revealed at stept in addition to
the requestξt and that the functionGETSAMPLE return pairs〈R, Z〉 of future requests
R and cancellationsZ. Figure 2 presents a revised version of the generic online algo-
rithm: its main modification is in line 3 which removes the cancellationsζt from the
current assignmentσt−1 before allocating a bin to the new request. Figure 3 shows the
consensus algorithm with cancellations, illustrating theenhanced sampling procedure
(line 4) and how cancellations are taken into account when calling the optimization.

5 The Suboptimality Approximation

This section describes a sub-optimality algorithm approximating multi-knapsack prob-
lems within a constant factor. Given a set of requestsR, a requestr ∈ R, and an
optimal solutionσ∗ to the multi-knapsack problem, the sub-optimality algorithm must
return approximations to the regrets of allocatingr to bin b ∈ B⊥. The sub-optimality
algorithm must run within the time taken by a constant numberof optimizations.

The key idea behind the suboptimality algorithm is to solve asmall number of one-
dimensional knapsack problems (which takes pseudo-polynomial time). There are two
main cases to study: either requestr is allocated to a bin inB in solutionσ∗ or it is not
allocated (i.e., it is allocated to⊥. In the first case, the algorithm must approximate the
optimal solutions in whichr is allocated to other bins (procedureREGRET-SWAP) or
not allocated (procedureREGRET-SWAP-OUT). In the second case, the request must be
swapped in all the bins (procedureREGRET-SWAP-IN). The rest of this section presents
algorithms for the non-overbooking case; they generalize to the overbooking case.

REGRET-SWAP(i, 1, 2)
1 A← bin(1, σ∗) ∪ bin(2, σ∗) ∪ U(σ∗) \ {i};
2 if C1 − c(i) ≥ C2 then
3 bin(1, σa)← knapsack(A,C1 − c(i)) ∪ {i};
4 bin(2, σa)← knapsack(A \ bin(1, σa), C2);
5 else
6 bin(2, σa)← knapsack(A,C2);
7 bin(1, σa)← knapsack(A \ bin(2, σa), C1 − c(i)) ∪ {i};
8 e← argmax(r ∈ bin(1, σ∗) \ bin(1..2, σa) : c(r) > max(C1 − c(i), C2)) w(r);
9 if e exists& w(e) > max(w(bin(1, σa)), w(bin(2, σa))) then

10 j ← argmax(j ∈ 3..n) Cj ;
11 bin(j, σa)← knapsack(bin(j, σa) ∪ {e}, Cj);

Fig. 4.The Suboptimality Algorithm for the Knapsack Problem: Swapping i from Bin 2 to Bin 1.

Since the names of the bins have no importance, we assume thatthey are numbered
1..n. Moreover, without loss of generality, we formalize the algorithms to move request
i from bin 2 to bin 1, to swap requesti out of bin 1, and to swap requesti into bin
1. We useσ∗ to represent the optimal solution to the multi-knapsack problem,σs to
denote the optimal solution in which requesti is assigned to bin 1 (REGRET-SWAP

andREGRET-SWAP-OUT) or is not allocated (REGRET-SWAP-IN), andσa to denote the
sub-optimality approximation. We also usebin(b, σ) to denote the requests allocated to
bin b and generalize the notation to sets of bins. The solution to the one-dimensional
knapsack problem onR for a bin with capacityC is denoted byknapsack (R, C). We
also usec(R) to denote the sum of the capacities of the requests inR andU(σ∗) the
requests that are not allocated in the optimal solutionσ∗.

Swapping a Request Between Two BinsFigure 4 depicts the algorithm to swap re-
questi from bin 1 to bin 2. The key idea is to consider all requests allocated to bins 1
and 2 inσ∗ and to solve two one-dimensional problems for bin 1 (withoutthe capacity
taken by requesti) and bin 2. The algorithm always starts with the bin whose remaining
capacity is largest. After solving these two one-dimensional knapsacks, if there exists
a requeste ∈ bin(1, σ∗) not allocated inbin(1..2, σa) whose value is higher than the
values of these two bins, the algorithm solves a third knapsack problem to place this
request in another bin if appropriate. This is important if requeste is of high value but
cannot be allocated in bin 1 due to the capacity taken by request i.

Theorem 1. AlgorithmREGRET-SWAP is a constant-factor approximation.

Proof. Let σs be the sub-optimal solution,σa be the regret solution, andσ∗ be the
optimal solution. Consider the following sets

I1 = σs ∩ σa I7 = (bin(2, σs) \ σa) ∩ bin(1, σ∗)
I2 = (bin(1, σs) \ σa) ∩ U(σ∗) I8 = (bin(2, σs) \ σa) ∩ bin(2, σ∗)
I3 = (bin(2, σs) \ σa) ∩ U(σ∗) I9 = (bin(3..n, σs) \ σa) ∩ bin(1, σ∗)
I4 = (bin(3..n, σs) \ σa) ∩ U(σ∗) I10 = (bin(3..n, σs) \ σa) ∩ bin(2, σ∗)
I5 = (bin(1, σs) \ σa) ∩ bin(1, σ∗) I11 = (bin(1..n, σs) \ σa) ∩ bin(3..n, σ∗)
I6 = (bin(1, σs) \ σa) ∩ bin(2, σ∗).

The suboptimal solutionσs can be partitioned intoσs =
⋃11

k=1 Ik and the proof shows
thatw(Ik) ≤ ck w(σa) (1 ≤ k ≤ 13) which implies thatw(σs) ≤ c w(σa) for some
constantc = c1 + . . . c11. The proof of each inequality typically separates two cases:

A: C1 − c(i) ≥ C2;
B: C1 − c(i) < C2.

Observe also that the proof thatK(I1) ≤ K(σa) is immediate. We now give the proofs
for the remaining sets. In the proofs,C′

1 denotesC1 − c(i) andK(E, C) is defined as
follows:

K(E, C) = w(knapsack(E, C)).

I2.A : By definition ofI2 and by definition ofbin(1, σa) in line 3,

K(I2, C
′
1) ≤ K(U(σ∗), C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa).

I2.B : By definition ofI2, C′
1 < C2, and by definition ofbin(2, σa) in line 6

K(I2, C
′
1) ≤ K(U(σ∗), C′

1) ≤ K(U(σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I3.A : By definition ofI3, C′
1 ≥ C2, and by definition ofbin(1, σa) in line 3

K(I3, C2) ≤ K(U(σ∗), C2) ≤ K(U(σ∗), C′
1) ≤ K(bin(1, σa), C′

1) ≤ w(σa).

I3.B : By definition ofI3 and by definition ofbin(2, σa) in line 6

K(I3, C2) ≤ K(U(σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I4 : Assume thatw(I4) > w(σa). This implies

w(I4) > w(bin(1, σa)) + w(bin(2, σa)) + w(bin(3..n, σa))

> w(bin(3..n, σa)) > w(bin(3..n, σ∗))

which contradicts the optimality ofσ∗ sinceI4 ⊆ U(σ∗).
I5.A : By definition ofI5 and line 3 of the algorithm

K(I5, C
′
1) ≤ K(bin(1, σ∗), C′

1) ≤ K(A, C′
1) ≤ w(bin(1, σa)) ≤ w(σa).

I5.B : By definition ofI5, C′
1 ≥ C2, and line 6 of the algorithm

K(I5, C
′
1) ≤ K(bin(1, σ∗), C′

1) ≤ K(bin(1, σ∗), C2) ≤ K(A, C2)

≤ K(bin(2, σa), C2) ≤ w(σa)

I6.A : By definition ofI6 and line 3 of the algorithm

K(I6, C
′
1) ≤ K(bin(2, σ∗) \ {i}, C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa)

I6.B : By definition ofI6 and line 6 of the algorithm.

K(I6, C
′
1) ≤ K(bin(2, σ∗) \ {i}, C2) ≤ K(bin(2, σa), C2) ≤ w(σa)

I7.A : by definition ofI7, C2 ≤ C′
1, and line 3 of the algorithm,

K(I7, C2) ≤ K(I7, C
′
1) ≤ K(bin(1, σ∗), C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa).

I7.B : By definition ofI7, C2 > C′
1, and line 6 of the algorithm

K(I7, C2) ≤ K(bin(1, σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I8.A : By definition ofI8, C2 ≤ C′
1, and line 3 of the algorithm

K(I8, C2) ≤ K(I8, C
′
1) ≤ K(bin(2, σ∗), C′

1) ≤ K(bin(1, σa), C′
1) ≤ w(σa)

I8.B : by definition ofI8, C2 > C′
1, and line 6 of the algorithm,

K(I8, C2) ≤ K(bin(2, σ∗), C2) ≤ K(bin(2, σa), C2) ≤ w(σa).

I9.A : Consider

T = knapsack(bin(1, σ∗), C′
1);

L = bin(1, σ∗) \ T

and lete = arg-maxe∈L w(e). By optimality ofT , we know thatc(T)+ c(e) > C′
1

and, sincebin(1, σ∗) = T ∪ L, we have thatc(L \ {e}) < c(i).
If w(e) ≤ max(w(bin(1, σa)), w(bin(2, σa))), then

w(I9) ≤ w(T) + w(L \ {e}) + w(e)

≤ w(bin(1, σa)) + w(bin(2, σa)) + w(e)

≤ 2(w(bin(1, σa)) + w(bin(2, σa))) ≤ 2w(σa).

Otherwise, by optimality ofbin(1, σa) andbin(2, σa), we have that

c(e) > C′
1 & c(e) > C2

and the algorithm executes lines 10–11. Ifc(e) ≤ Cj , then

w(I9) ≤ w(T) + w(L \ {e}) + w(e)

≤ w(bin(1, σa)) + w(bin(2, σa)) + w(bin(j, σa)) ≤ w(σa).

Otherwise, ifc(e) > Cj , e /∈ σs and

w(I9) ≤ w(T) + w(L \ {e}) ≤ w(bin(1, σa)) + w(bin(2, σa)) ≤ w(σa).

I9.B : Consider

T = knapsack(bin(1, σ∗), C2);

L = bin(1, σ∗) \ T

and lete = arg-maxe∈L w(e). If w(T) ≥ w(L), we have that

w(bin(1, σ∗)) ≤ 2w(T) ≤ 2w(bin(2, σa)) ≤ 2w(σa).

REGRET-SWAP-OUT(i, 1)
1 A← bin(1, σ∗) ∪ U(σ∗) \ {i};
2 bin(1, σa)← knapsack(A, C1);

Fig. 5. The Suboptimality Algorithm for the Knapsack Problem: Swapping i out of Bin 1.

Otherwise,c(L) > C2 by optimality ofT and thusc(L) > c(i) sinceC2 ≥ c(i).
By optimality of T , c(T ∪ {e}) > C2 > C′

1 and, sincebin(1, σ∗) = T ∪ L, it
follows thatc(L \ {e}) ≤ c(i) Hencew(L \ {e}) ≤ w(T) by optimality ofT and

w(I9) ≤ w(T) + w(L \ {e}) + w(e) ≤ 2w(T) + w(e) ≤ 2w(bin(2, σa)) + w(e).

If w(e) ≤ w(bin(2, σa)), w(I9) ≤ 3w(bin(2, σa)) ≤ 3w(σa) and the result fol-
lows. Otherwise, by optimality ofbin(2, σa), c(e) > C2 ≥ C′

1 and the algorithm
executes lines 10–11. Ifc(e) ≤ Cj , then

w(I9) ≤ 2w(bin(1, σa)) + w(bin(j, σa)) ≤ w(σa).

Otherwise, ifc(e) > Cj , e /∈ σs and

w(I9) ≤ w(T) + w(L \ {e}) ≤ 2w(bin(2, σa)) ≤ 2w(σa).

I10.A : By definition ofI10, C′
1 ≥ C2, and line 3 of the algorithm

w(I10) ≤ w(bin(2, σ∗))− w(i) ≤ w(bin(1, σa)) ≤ w(σa).

I10.B : By definition ofI10 and by line 6 of the algorithm

w(I10) ≤ w(bin(2, σ∗))− w(i) ≤ w(bin(2, σa)) ≤ w(σa).

I11 : By definition of the algorithm,K(bin(3..n, σ∗)) ≤ K(3..n, σa).
ut

Swapping a Request Out of a BinThe algorithm to swap a requesti out of bin 1 is
depicted in Figure 5. It consists of solving a one-dimensional knapsack with the requests
already in that bin and the unallocated requests. The proof is similar, but simpler, to the
proof of Theorem 1.

Theorem 2. AlgorithmREGRET-SWAP-OUT is a constant-factor approximation.

Swapping a Request Into a BinFigure 6 depicts the algorithm for swapping a request
i in bin 1, which is essentially similarREGRET-SWAP but only uses one bin. It assumes
that requesti can be placed in at least two bins since otherwise a single additional op-
timization suffices to compute all the regrets. Once again, it solves a one-dimensional
knapsack for bin 1 (after having allocated requesti) with all the requests inbin(1, σ∗)
and the unallocated requests. If the resulting knapsack is of low quality (i.e., the remain-
ing requests frombin(1, σ∗) have a higher value thanbin(1, σa)), REGRET-SWAP-IN

solves an additional knapsack problem for the largest available bin. The proof is once
again similar to the proof of Theorem 1.

Theorem 3. Assuming that itemi can be placed in at least two bins, AlgorithmREGRET-
SWAP-IN is a constant-factor approximation.

REGRET-SWAP-IN(i, 1)
1 A← bin(1, σ∗) ∪ U(σ∗);
2 bin(1, R)← knapsack(A,C1 − c(i)) ∪ {i};
3 L← bin(1, σ∗) \ bin(1, σa);
4 if w(L) > w(bin(1, σa)) then
5 j ← argmax(j ∈ 2..n) Cj ;
6 bin(j, σa)← knapsack(bin(j, σa) ∪ L, Cj);

Fig. 6. The Suboptimality Algorithm for the Knapsack Problem: Swapping i into Bin 1.

6 Experimental Results

The InstancesThe experimental results use the benchmarks proposed in [1]. Requests
are classified ink types. Each type is characterized by a weight, a value, two exponential
distributions indicating how frequently requests of that type arrive and are cancelled,
and an overbooking penalty. We generated ten instances based on the master problem
proposed in [1]. The goal was to try to produce a diverse set ofproblems revealing
strengths and weaknesses of the various algorithms. The tenproblems are named (A-J)
here. Problem A scales the master problem by doubling the weight and value of the
request types in the master problem, as well as halving the number of items that arrive.
Problem B further scales problem A by increasing the weight and value of the types.
Problem C considers 7 types of items whose cost ratio takes the form of a bell shape.
Problem D looks at the master problem and doubles the number of bins while dividing
their capacity by 2. Problem E considers a version of the master problem with bins of
variable capacity. Problem F depicts a version of the masterproblem whose items arrive
three times as often and cancel three times as often. ProblemG considers a much larger
problem with 35 requests types who cost ratio is also shaped in a bell. Problem H is
like problem G, the main difference is that the cost ratio shape is reversed. Problem I is
a version of G with an extra bin. Problem J is a version of H withfewer bins.

The mathematical programs are solved with CPLEX 9.0 with a time limit of 10 sec-
onds. The optimal solutions can be found within the time limit for all instances but I and
J. Every instance is executed under various time constraints, i.e.,O = 1, 5, 10, 25, 50,
or 100, and the results are the average of 10 executions.

It is important to highlight that, on the master problem and its variations, the best-fit
heuristic performs quite well. On the offline problems, it is5% off the optimum in the
average and is never worse than 10% off. This will be discussed again when the regret
algorithm is compared to earlier results.

Comparison of the Algorithms Figure 7 describes the average profit (left) and loss
(right) of the various online algorithms as a percentage of the optimal offline solution.
The loss sums the weights of the rejected requests and the overbooking penalty (if any);
it is often used in comparing online algorithms as it gives a sense of the “price” of
uncertainty. The results clearly show the value of stochastic information as algorithms
R, C, E recovers most of the gap between the online best-fit heuristic (G) and the
offline optimum (which cannot typically be achieved in an online setting). Moreover,
they show that algorithms R and C achieve excellent results even with small number
of available optimizations (tight time constraints). In particular, algorithm R achieves

Fig. 7.Experimental Results over All Instances with Overbooking Allowed.

Fig. 8. Experimental Results over All Instances with Overbooking Disallowed.

about 89% of the offline optimum with only 10 samples and 91% with 50 optimiza-
tions. It also achieves a loss of 28% over the offline optimum for 25 optimizations and
34% for 10 optimizations. The regret algorithm clearly dominates the expectation algo-
rithm E which performs poorly for tight time constraints. Itbecomes reasonable for 50
optimizations and reaches the quality of the regret algorithm for 100 optimizations.

Figure 8 shows the same results when no overbooking is allowed. These instances
are easier in the sense that fewer optimizations are necessary for the algorithms to con-
verge. But they exhibit the same pattern as when overbookingis allowed. These results
are quite interesting and shows that the benefits of the regret algorithm increase with
the problem complexity but are significant even on easier instances.

Comparison with Earlier Results As mentioned earlier, the best-fit algorithm is only
5% below the optimal offline solution in these problems. It isthus tempting to replace
the IP solver in algorithm E by the best-fit heuristic to evaluate more samples. The
algorithm, denoted by BF EXP, was proposed in [1] and was shown to be superior
to several approaches including yield management and an hybridization with Markov
Models [12]. Because the best-fit algorithm is so fast, BF EXP can easily be run with
10,000 samples and remedies the limitations of algorithm E under tight time constraints.

Figure 9 compares algorithms BF EXP, R, and C when overbooking is allowed. The
results show that BF EXP indeed produces excellent results but is quickly dominated
by R as time increases. In particular, the loss of BF EXP is above 40%, although it
goes down to 34% for 10 optimizations and 28% for 25 optimizations in algorithm R.

Fig. 9.Comparison with Earlier Results: Average Results for Instances with Overbooking

Similarly, the profit increases by 4% in the average startingat 25 optimizations. BF
EXP is also dominated by algorithm C but only for 50 optimizations or more.

What is quite remarkable here is that the 5% difference in quality between the best-
fit heuristic and the offline algorithm translates into a similar difference in quality in
the online setting. Moreover, when looking at specific instances, one can see that BF
EXP is often comparable to R but its loss (resp. profit) may be significantly higher
(resp. lower) on instances that seem particularly difficult. This is the case for instances
E and G, where the gap between the offline solutions and the solutions by algorithm R
is larger. This seems to indicate that the harder the problems the more beneficial algo-
rithm R becomes. This in fact confirms our earlier results on stochastic vehicle routing
where the algorithms use a large neighborhood heuristic [3,13]. Indeed, using a sim-
pler, lower-quality, heuristic on more samples did not produce high-quality results in an
online setting. The results presented here also show that the additional information pro-
duced by a more sophisticated solver quickly amortizes its computational cost, making
algorithm R particularly effective and robust for many problems.

7 Conclusion

This paper adapted our online stochastic framework and algorithms to online stochastic
reservations initially proposed in [1]. These problems, whose core can be modelled as
multi-knapsacks, are significant in practice and are also different from the scheduling
and routing applications we studied earlier. Indeed the main decision is not which re-
quest to select next but rather how best to serve a request given limited resources. The
paper shows that the framework and its associated algorithms naturally apply to on-
line reservation systems. It also presented a constant-factor sub-optimality approxima-
tion of multi-knapsack problems that only solves one-dimensional knapsack problems,
leading to a regret algorithm that uses both mathematical programming and dynamic
programming algorithms. The algorithms were evaluated on the multi-knapsack prob-
lems proposed in [1] with and without overbooking. The results indicate that the regret
algorithm is particularly effective, providing significant benefits over heuristic, consen-
sus, and expectation approaches. It also dominates an earlier algorithm proposed in [1]
(which applies the best-fit heuristic with algorithm E) as soon as the time constraints al-
lows for 10 optimizations at decision time or between decisions. Even more interesting

perhaps, the regret algorithm has now been applied to onlinestochastic problems where
the offline problem is solved by either constraint programming, integer programming,
or (special-purpose) polynomial algorithms, indicating its versatility and benefits for a
wide variety of applications.

References

1. T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourg. Towards stochastic constraint
programming: A study of online multi-choice knapsack with deadlines. InProceedings of
the Seventh International Conference on Principles and Practice of Constraint Programming
(CP’01), pages 61–76, London, UK, 2001. Springer-Verlag.

2. R. Bent, I. Katriel, and P. Van Hentenryck. Sub-Optimality Approximation. InEleventh
International Conference on Principles and Practice of Constraint Programming, Stiges,
Spain, 2005.

3. R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Local Search for the Vehicle Routing
Problem with Time Windows.Transportation Science, 8(4):515–530, 2004.

4. R. Bent and P. Van Hentenryck. Online Stochastic and Robust Optimization. InProceeding of
the 9th Asian Computing Science Conference (ASIAN’04), Chiang Mai University, Thailand,
December 2004.

5. R. Bent and P. Van Hentenryck. Regrets Only. Online Stochastic Optimization under Time
Constraints. InProceedings of the 19th National Conference on Artificial Intelligence
(AAAI’04), San Jose, CA, July 2004.

6. R. Bent and P. Van Hentenryck. Scenario Based Planning forPartially Dynamic Vehicle
Routing Problems with Stochastic Customers.Operations Research, 52(6), 2004.

7. R. Bent and P. Van Hentenryck. The Value of Consensus in Online Stochastic Scheduling.
In Proceedings of the 14th International Conference on Automated Planning & Scheduling
(ICAPS 2004), Whistler, British Columbia, Canada, 2004.

8. R. Bent and P. Van Hentenryck. Online Stochastic Optimization without Distributions .
In Proceedings of the 15th International Conference on Automated Planning & Scheduling
(ICAPS 2005), Monterey, CA, 2005.

9. A. Campbell and M. Savelsbergh. Decision Support for Consumer Direct Grocery Initiatives.
Report TLI-02-09, Georgia Institute of Technology, 2002.

10. H. Chang, R. Givan, and E. Chong. On-line Scheduling Via Sampling.Artificial Intelligence
Planning and Scheduling (AIPS’00), pages 62–71, 2000.

11. B. Dean, M.X. Goemans, and J. Vondrak. Approximating theStochastic Knapsack Prob-
lem: The Benefit of Adaptivity. InProceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 208–217, Rome, Italy, 2004.

12. M. Puterman.Markov Decision Processes. John Wiley & Sons, New York, 1994.
13. P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing

Problems. InProceedings of Fourth International Conference on the Principles and Practice
of Constraint Programming (CP’98), pages 417–431, Pisa, October 1998.

