Online Stochastic Reservation Systems

Pascal Van Hentenryck, Russell Bent, and Yannis Vergados

Department of Computer Science, Brown University,
Providence, R1 02912, USA

Abstract. This paper considers online stochastic reservation pnuhlevhere
requests come online and must be dynamically allocateahtioeld resources in
order to maximize profit. Multi-knapsack problems with otthlaut overbooking
are examples of such online stochastic reservations. Tper gudies how to
adapt the online stochastic framework and the consensusegnet algorithms
proposed earlier to online stochastic reservation syst@mshe theoretical side,
it presents a constant sub-optimality approximation oftrualapsack problems,
leading to a regret algorithm that evaluates each scendtticagingle mathemat-
ical programming optimization followed by a small numbedghamic programs
for one-dimensional knapsacks. On the experimental diégaper demonstrates
the effectiveness of the regret algorithm on multi-knaggarblems (with and
without overloading) based on the benchmarks proposeitearl

1 Introduction

In an increasingly interconnected and integrated worldineroptimization problems
are quickly becoming pervasive and raise new challengesgtimization software.
Moreover, in most applications, historical data or stai@tmodels are available, or
can be learned, for sampling. This creates significant dppities at the intersection of
online algorithms, combinatorial and stochastic optirtitzg and machine learning. In
fact, increasing attention has been devoted to these igs@egariety of communities
(e.g.,[10,1,6,11,9,5, 8)).

This paper considers online stochastic reservation systerd, in particular, the
stochastic multi-knapsack problems introduced in [1].i@gpapplications include, for
instance, reservation systems for holiday centers andrégement placements in web
browsers. These problems differ from the stochastic rgudimd scheduling considered
in, say, [10, 6,9, 5] in that online decisions are not aboldciimg the best request to
serve but rather about how best to serve a request.

The paper shows how to adapt our online stochastic frameworkthe consensus
and regret algorithms, to online stochastic reservatistesys. Moreover, in order to in-
stantiate the regret algorithm, the paper presents a atrsietor suboptimality approx-
imation for multi-knapsack problems using one-dimensi@napsack problems. As a
result, on multi-knapsack problems with or without overkiog, each online decision
involves solving a mathematical program and a series ofiymprograms. The algo-
rithms were evaluated on the multi-knapsack problems meg [1] with and with-
out overbooking. The results indicate that the regret @lgoris particularly effective,
providing significant benefits over heuristic, consensnd,expectation approaches. It



also dominates an earlier algorithm proposed in [1] (whigpligs the best-fit heuristic
within the expectation algorithm) as soon as the time cairds allows for 10 opti-
mizations for each online decision or between each two erdiecisions. The results
are particularly interesting in our opinion, because thesemsus and regret algorithms
have now be applied generically and successfully to onlirblpms in scheduling,
routing, and reservation using, at their core, either cairgtprogramming, mathemati-
cal programming, or dedicated polynomial algorithms. Tést of the paper introduces
online stochastic reservation problems in their simplesnf shows how to adapt our
online stochastic algorithms for them, presents the sulwraity approximation, and
describes the experimental results.

2 Online Stochastic Reservation Problems

2.1 The Offline Problem

The offline problem is defined in terms nfbins B and each bih € B has a capacity
Cy. It receives as input a sét of requests. Each request is typically characterized by
its capacity and its reward, which may or may not depend owrhwvhin the request are
allocated to. The goal is to find an assignment of a subsetR of requests to the bins
satisfying the problem-specific constraints and maxingizire objective function.

The Multi-Knapsack Problem The multi-knapsack problem is an example of a reser-
vation problem. Here each requess characterized by a rewatd(r) and a capacity
¢(r). The goal is to allocate a subsEtof the requests? to the binsB so that the ca-
pacities of the bins are not exceeded and the objectiveiamaet(T") = > ., w(r) is
maximized. A mathematical programming formulation of thelgem associates witch
each request and binb a binary variablez|r, b] whose value is 1 when the request is
allocated to birb and 0 otherwise. The integer program can be expressed as:

max Zr €RbER w(r) x[r,b]
such that
D el b <1 (reR)
> erc(r) zr,)) <Gy (be B)
z[r,b] € {0,1} (r € R,b€ B)

The Multi-Knapsack Problem with Overbooking In practice, many reservation sys-
tems allow for overbooking. The multi-knapsack problentwaterbooking allows the
bin capacities to be exceeded but overbooking is penaliztitkiobjective function. To
adapt the mathematical-programming formulation abowffices to introduce a non-
negative variable[b] representing the excess for each biznd to introduce a penalty
terma x y[b] in the objective function. The integer programming modetm@comes

max 3. c g pep W) b =2 hep oyl
suchthaty, ,z[r,b] <1 (reR)
ZreRC(T) x[r,b] < Cy +y[b] (b€ B)
zlr,b] € {0,1} (re R,be B)
ylb] >0 (be B)



This is the offline problem considered in [1].

Generic Formalization To formalize the online algorithms precisely and genelycil

is convenient to assume the existence of a dummyihivith infinite capacity to assign
the non-selected requests and to e to denoteB U {_L}. A solutiono can then
be seen as a functioR — B, . The objective function can be specified by a function
W over assignments and the problem-specific constraintseapdxified as a relation
over assignments giving us the problemx,. ¢(,) W (o). We uses[r — b] to denote
the assignment whereis assigned to bin, i.e.,

olr < b(r) =r

olr < b(r")y=0oc(r) ifr' #£r.
ando | R to denote the assignment where the requesisdne now unassigned, i.e.,

(clR)(r)=L ifreRr
(c | R)(r)=0o(r) if r ¢ R.

Finally, we user; to denote the assignment satisfyinge R : o(r) = L.

2.2 The Online Problem

In the online problem, the requests are not known a priorabeitevealed online during
the execution of the algorithm. For simplicity, we considgime horizonH = [1, k]
and we assume that a single request arrives at each tamié. (It is easy to relax these
assumptions). The algorithm thus receives a sequencewéseq = (¢4, ...,&,) over
the course of the execution. At timgthe sequencg; = (&1, ..., &) has beenrevealed,
the requestsy, ..., &1 have been allocated in the assignment; and the algorithm
must decide how to serve requést More precisely, step produces an assignment
o; = o;—1[& < b] that assigns a bih to &; keeping all other assignments fixed. The
requests are assumed to be drawn from a distribdtiand the goal is to maximize the
expected value

?[W(UJ_K-I — b17 v 7§h — bh])

where the sequende= (&1, ..., &) is drawn fromZ.

The online algorithms have at their disposal a procedureli@s or approximate,
the offline problem, and the distributidh The distribution is a black-box available
only for sampling. Practical applications often includeese time constraints on the
decision time and/or on the time between decisions. To mthdelrequirement, the
algorithms may only use the optimization proced@émes at each time step.

Itis interesting to contrast this online problem with thetgdied in [7, 5, 3]. Inthese
applications, the key issue was to select which requestri@ s¢ each step. Moreover,
in the stochastic vehicle routing applications, accepéeplests did not have to be as
signed a vehicle: the only constraint on the algorithm wasptomise to serve every
accepted request. The online stochastic reservationgmroisl different. The key issue
is not which request to serve but rather whether and how ttaniing request must be
served. Indeed, whenever a request is accepted, it mussigmed a specific bin and
the algorithm is not allowed to reshuffle the assignmentsagiently.



ONLINEOPTIMIZATION(E)

1 o0« oy;

for t € H do

3 b < CHOOSEALLOCATION(o¢—1,&¢);
4 Ut<_0't71[£t<_b]§

5 return op;

N

Fig. 1. The Generic Online Algorithm

The Generic Online Algorithm The algorithms in this paper share the same online
optimization schema depicted in Figure 1. They differ omlytie way they implement
function CHOOSEALLOCATION. The online optimization schema receives a sequence
of online requestg and starts with an empty allocation (line 1). At each decisime

t, the online algorithm considers the current allocatign; and the current request

and chooses the binto allocate the request (line 3), which is then included arbw
assignment; (line 4). The algorithm returns the last assignmeptwhose value is
W(o) (line 5). To implement functio@HOOSEALLOCATION, the algorithms have at
their disposal two black-boxes:

1. afunctionoPTSOL (o, R) that, given an assignmesatand aR of requests, returns
an optimal allocation of the requests ihgiven the past decisions in In other
words,oPTSOL (o, R) solves an online problem where the decision variables for
the requests i have fixed values.

2. afunctionGETSAMPLE(¢) that returns a set of requests over the inteftdl] by
sampling the arrival distribution.

To illustrate the framework, we specify a best-fit onlinecalthm as proposed in [1].

Best Fit (G): This algorithm assigns the requégb a bin that can accommoddatand
has the smallest capacity given the assignment

CHOOSEALLOCATION-G(0, &)
1 return argmin(b € B1 : C(c[§ < b))) Cp(0);

whereC}, (o) denotes the remaining capacity of the bia B, in o, i.e.,

Cp(o) =Cy — Z e(r).

re€R:o(r)=b

3 Online Stochastic Algorithms

This section reviews the various online stochastic algor. It starts with the expecta-
tion algorithm and shows how it can be adapted to incorpdirate constraints.

Expectation (E): Informally speaking, algorithm E generates future requbgtsam-
pling and evaluates each possible allocation against tin@lsa. A simple implemen-
tation can be specified as follows:



CHOOSEALLOCATION-E(0¢—1, &)
forbe B, do
f(b) < 0;
fori—1...0/|B.|do
Riy1 < GETSAMPLE(t + 1);
forbe By : C(o4—1[& < b]) do
o* «— OPTSOL(0¢—1[& « b, Ret1);
F(b) — £(b) + W(o");
return argmaz(b € B1) f(b);

O~NOO UL WN P

Lines 1-2 initialize the evaluatiofi(b) of each requedt The algorithm then generates
O/|B.| samples of future requests (lines 3—-4). For each such saitplecessively
considers each available Withat can accommodate the requggtven the assignment
o¢—1 (line 5). For each such bid, it scheduleg; in bin b and applies the optimiza-
tion algorithm using the sampled requefts;; (line 6). The evaluation of bi is
incremented in line 7 with the weight of the optimal assigntne®. Once all the bin
allocations are evaluated over all samples, the algorittarms the bib with the high-
est evaluation. Algorithm E perforng® optimizations but uses oni§/| B, | samples.
WhenQ is small (due to the time constraints), each request is ordjuated with re-
spect to a small number of samples and algorithm E does nlotiyiech information.
To cope with tight time constraints, two approximations ofdansensus and regret,
were proposed.

Consensus (C): The consensus algorithm C was introduced in [7] as an alistnac
of the sampling method used in online vehicle routing [&].K¢y idea is to solve each
sample once and thus to exami@desamples instead aP/|B, |. More precisely, in-
stead of evaluating each possible bin at titmeith respect to each sample, algorithm
C executes the optimization algorithm once per sample. Tinéobwhich request is
allocated in optimal solutioa™ is creditedV(c*) and all other bins receive no credit.
Algorithm C can be specified as follows:

CHOOSEALLOCATION-C(0¢—1, &)
forbe B, do
f(b) < 0;
fori—1...0do
Ry «— {&} U GETSAMPLE(t + 1);
0" «— OPTSOL(0¢—1, Ry);
f(o7(&)) — f(o™(&)) + W(o™);
return argmax(b € By) f(b);

NOoO A~ WNPRE

The core of the algorithm are once again lines 4—6. Line 4 dstine sek, of requests
that now includes; in addition to the sampled requests. Line 5 calls the optiion
algorithm witho;_; and R;. Line 6 increments only the bia* (&) The main appeal
of Algorithm C is its ability to avoid partitioning the avaible samples between the
requests, which is a significant advantage wieis small and/or when the number of
bins is large. Its main limitation is itslitism. Only the best allocatation is given some
credit for a given sample, while other bins are simply igore



Regret (R): The regret algorithm R is the recognition that, in many agglons, it

is possible to estimate the loss of sub-optimal allocati@adied regrets) quickly. In
other words, once the optimal solutieti of a scenario is computed, algorithm E can
be approximated with one optimization [5, 2].

Definition 1 (Regret). Let o be an assignmenf; be a set of requests,be a request
in R, andb be a bin. The regret of a bin allocation < b wrt ¢ and R, denoted by
DEVIATION (o, R, r < b), is defined as

| W(oPTSOL(0, R)) — W(OPTSOL(a[r < b], R\ {r}))) | -

Definition 2 (Sub-Optimality Approximation). Let o be an assignmenff be a set
of requestsy be a request ik, andb be a bin. Assume that algorithoPTSOL (o, R)
runs in timeO(f,(R)). A sub-optimatily approximation runs in tin@(f,(R)) and,
given the solutiom™ = optSol(c, R), returns, for each bi € B, , an approximation
SUBOPT(c*,0, R,r < b) to all regretsREGRETc, R, r < b).

Intuitively, the| B | regrets must not take more time than the optimization. Weesady
to present the regret algorithm R:

CHOOSEALLOCATION-R(0¢—1, &)
1 forbe B, do

f(b) < 0;
fori —1...0do

Ry — {&:} U GETSAMPLE(t + 1);

0" +— OPTSOL(0¢—1, Rt);

f(o7(&)) — f(o7 (&) + W(o™);

for b € B \{O‘(ft) : C(O'tfl[ft — b])} do

f(b) «— f(b) + W(c™) — SUBOPT(c™, 0¢—1, R¢, & < b));

return argmax(b € By) f(b);

©CoOo~NOOTh~,WN

Its basic organization follows algorithm C. However, irssteof assigning some credit
only to the bin selected by the optimal solution, algorithnfliRes 7-8) uses the sub-
optimality approximation to compute, for each available@dtioné; < b, an approx-
imation of the best solution that allocatgsto b. Hence every available bin is given an
evaluation for every sample at timtdor the cost of a single optimization (asymptoti-
cally). Observe that algorithm R perforréisoptimizations at time.

4 Generalizations of the Framework
This section discusses two generalizations: precomputatid cancellations.

Precomputation Many reservation systems require immediate responsesjteses,
giving only limited time to the online algorithm for decisionaking. However, as is
the case in vehicle routing, there is time between decidiorgenerate scenarios and
optimize them. This idea can be accommodated in the framlelwiseparating the
optimization phase from the decision-making phase in thimemlgorithm. This is es-
pecially attractive for consensus and regret where eagtasices solved exactly once.
Details on this separation can be found in [4] in the contéxte original framework.



ONLINEOPTIMIZATION(E, €)

1 o9« o0g;

2 forte Hdo

3 Ot—1 — 0¢—1 | (3

4 b «— SELECTALLOCATION(0¢—1, &t);
5  or—oafl s

6 return op;

Fig. 2. The Generic Online Algorithm with Cancellations

CHOOSEALLOCATION-C(oy—1, &)

1 forbe B, do

2 f(b) <0

fori—1...0do
(Rt41, Zy41) < GETSAMPLE(t + 1);
o* «— OPTSOL(0t—1 | Zt4+1,{&t} U Reg1);
f(0"(&)) < flo™ (&) + W(o™);

return argmax(b € By) f(b);

~No ok w

Fig. 3. The Consensus Algorithm with Cancellations

Cancellations Most reservation systems allow requests to be cancelled thiey are
accepted. The online stochastic framework can accommadatllations by simple
enhancements to the generic online algorithm and the sagyptocedure. It suffices to
assume that an (often empty) set of cancellatigris revealed at stepin addition to

the reques{; and that the functioGETSAMPLE return pair(R, Z) of future requests

R and cancellation. Figure 2 presents a revised version of the generic onlige-al
rithm: its main modification is in line 3 which removes the caltations(; from the
current assignmennt, _; before allocating a bin to the new request. Figure 3 shows the
consensus algorithm with cancellations, illustrating ¢éidanced sampling procedure
(line 4) and how cancellations are taken into account whéimgahe optimization.

5 The Suboptimality Approximation

This section describes a sub-optimality algorithm apprating multi-knapsack prob-
lems within a constant factor. Given a set of requddtsa request € R, and an
optimal solutions* to the multi-knapsack problem, the sub-optimality algoritmust
return approximations to the regrets of allocatinig binb € B, . The sub-optimality
algorithm must run within the time taken by a constant nunab@ptimizations.

The key idea behind the suboptimality algorithm is to soheenall number of one-
dimensional knapsack problems (which takes pseudo-potiaddime). There are two
main cases to study: either requess allocated to a bin it in solutions™* or it is not
allocated (i.e., it is allocated tb. In the first case, the algorithm must approximate the
optimal solutions in which- is allocated to other bins (proceduREGREFSWAP) or
not allocated (procedurREGREFSWAP-OUT). In the second case, the request must be
swapped in all the bins (proceduke GREFSWAP-IN). The rest of this section presents
algorithms for the non-overbooking case; they generatizee overbooking case.



REGREFSWAR(3, 1,2)
A —bin(l,0%) Ubin(2,c")UU(c") \ {i};
if C1 — c(i) > Cs then
bin(1,0%) «— knapsack(A,Cr — c(i)) U {i};
bin(2,0%) «— knapsack(A\ bin(1,0%),C2);
else
bin(2,0%) — knapsack(A, Cs);
bin(1,0%) «— knapsack(A\ bin(2,0%),C1 — c(i)) U {i};
e — argmazx(r € bin(1,0%) \ bin(1..2,0%) : ¢(r) > max(C1 — ¢(2), C2)) w(r);
if e exists& w(e) > max(w(bin(1,0%)), w(bin(2,c%))) then
j <« argmaz(j € 3..n) Cjy;
bin(j,o®) — knapsack(bin(j,o®) U{e}, Cj);

RPOOWOO~NOOUD WNBE

B

Fig. 4. The Suboptimality Algorithm for the Knapsack Problem: Spiag : from Bin 2 to Bin 1.

Since the names of the bins have no importance, we assuntaélatre numbered
1..n. Moreover, without loss of generality, we formalize thealthms to move request
¢+ from bin 2 to bin 1, to swap requestut of bin 1, and to swap requestnto bin
1. We uses™ to represent the optimal solution to the multi-knapsackofamm, o° to
denote the optimal solution in which requésis assigned to bin IREGREFSWAP
andREGREFSWAP-OUT) or is not allocatedREGREFSWAP-IN), ando® to denote the
sub-optimality approximation. We also usie. (b, o) to denote the requests allocated to
bin b and generalize the notation to sets of bins. The solutioheoonhe-dimensional
knapsack problem of for a bin with capacityC' is denoted bytnapsack (R, C'). We
also use:(R) to denote the sum of the capacities of the requesfs andU (o*) the
requests that are not allocated in the optimal solutibn

Swapping a Request Between Two Bind-igure 4 depicts the algorithm to swap re-
questi from bin 1 to bin 2. The key idea is to consider all requesiscalted to bins 1
and 2 inc* and to solve two one-dimensional problems for bin 1 (withtbetcapacity
taken by reques) and bin 2. The algorithm always starts with the bin whoseaiamg
capacity is largest. After solving these two one-dimenasidmapsacks, if there exists
arequest € bin(1,0*) not allocated irbin(1..2, 0*) whose value is higher than the
values of these two bins, the algorithm solves a third knelppaoblem to place this
request in another bin if appropriate. This is importanetjuest is of high value but
cannot be allocated in bin 1 due to the capacity taken by stque

Theorem 1. AlgorithmREGRETFSWAP s a constant-factor approximation.

Proof. Let o° be the sub-optimal solutiom;* be the regret solution, ang* be the
optimal solution. Consider the following sets

I =0°No" I; = (bin(2,0°)\ o*) Nbin(1,0%)

I, = (bin(1,0%) \ o*) NU(c*) Is = (bin(2,0°) \ o) Nbin(2,0%)

Is = (bin(2,0°%) \ o*) NU(c*) Iy = (bin(3..n,0%) \ o%) N bin(1,0*)
I, = (bin(3..n,0%) \ c*) NU(c*) I19 = (bin(3..n,0°) \ o) Nbin(2,0%)
Is = (bin(1,0°) \ 0*) Nbin(l,0*) I;; = (bin(l..n,0%) \ 0®) Nbin(3..n,0*)
Is = (bin(1,0°) \ o) Nbin(2,0%).



The suboptimal solution® can be partitioned inte® = ,1;1 1}, and the proof shows
thatw(Ix) < ¢ w(c®) (1 <k < 13) which implies thatv(c®) < ¢ w(c®) for some
constant = ¢; + ... c11. The proof of each inequality typically separates two cases

A: Cl — C(Z) > Cg;
B: ¢ — C(Z) < Cs.

Observe also that the proof th&t(7;) < K () is immediate. We now give the proofs
for the remaining sets. In the proofs; denote<”; — ¢(i) and K (E, C) is defined as
follows:

K(E,C) = w(knapsack(E,C)).

I,.A : By definition of I; and by definition obin(1,0%) in line 3,
K(I,,C}) < K(U(0"),C}) < K (bin(1,0%),C}) < w(o®).
I,.B : By definition of I, C} < C4, and by definition obin(2,o%) in line 6
K(I,C1) < K(U(c%),C]) < K(U(c"),Cq) < K(bin(2,0%),C2) < w(c?).
I5.A : By definition of I5, C} > C>, and by definition obin(1, %) in line 3
K(I3,02) < K(U(0%),C2) < K(U(c"),C1) < K(bin(1,0%),C) < w(c?).
I5.B : By definition of I3 and by definition obin(2,c%) in line 6
K(I3,Cs) < K(U(0"),Ca) < K (bin(2,0"),Cs) < w(o®).
I, : Assume thatv(Iy) > w(o®). This implies

w(ly) > w(bin(l,0%)) + w(bin(2,0)) + w(bin(3..n,0%))
> w(bin(3..n,0%)) > w(bin(3..n,0))

which contradicts the optimality ef* sincely C U(c*).
I5.A : By definition of I5 and line 3 of the algorithm

K(I5,C}) < K(bin(1,0"),C1) < K(A,C}) <w(bin(1,0%)) < w(a®).
I5.B : By definition of I5, C; > C5, and line 6 of the algorithm

K(I;,C}) < K (bin(1,0%),C})
< K(bin(2,0%), Cy)

< K(bin(1,0%),Cq) < K(A,Cs)
< w(o®)
Is.A : By definition of I and line 3 of the algorithm

K(Is,C1) < K(bin(2,0") \ {i},C}) < K (bin(1,0%),C7) < w(c®)
Is.B : By definition of I and line 6 of the algorithm.

K(Is,C}) < K (bin(2,0) \ {i}, ) < K (bin(2,0%), Cz) < w(0®)



I7.A : by definition ofI7, C; < Cf, and line 3 of the algorithm,
K(I7,03) < K(I7,C) < K(bin(1,0%),C1) < K(bin(1,0%),C7) < w(c®).
I;.B : By definition of I7, C> > C{, and line 6 of the algorithm
K(I7,C) < K(bin(1,0%),C3) < K(bin(2,0%),02) < w(a®).
Is.A : By definition of Is, Cy < C, and line 3 of the algorithm
K(Is,Cy) < K(Ig,C1) < K(bin(2,0%),C1) < K(bin(1,0%),C7) < w(c®)
I3.B : by definition ofIg, C; > C1, and line 6 of the algorithm,
K(Is,Cs) < K(bin(2,0"),C3) < K(bin(2,0%),C3) < w(o?).
Iy.A : Consider

T = knapsack(bin(1,0%),CY);
L =bin(l,0")\T

and lete = arg-max_; w(e). By optimality of ", we know that(T") + c(e) > C{
and, sincéin(1,0*) = T U L, we have that(L \ {e}) < c(i).
If w(e) < max(w(bin(1l,0%)), w(bin(2,0%))), then

w(ly) <w(T)+w(L\ {e}) +wle)
< w(bin(l,0%)) + w(bin(2,0%)) + w(e)
< 2(w(bin(1l,0%)) + w(bin(2,0%))) < 2w(c?).
Otherwise, by optimality obin(1,0%) andbin(2,0®), we have that
cle) > O & c(e) > Cy
and the algorithm executes lines 10-11:(H) < C}, then

w(ly) < w(T) +w(L\ {e}) + w(e)
< w(bin(l,0%)) + w(bin(2,0%)) + w(bin(j, o)) < w(o?).

Otherwise, ifc(e) > Cj, e ¢ o® and
w(ly) <w(T) +w(L\{e}) < w(bin(l,0%)) + wbin(2,0%)) < w(c?).
Iy.B : Consider

T = knapsack(bin(1,c"), Cs);
L =bin(1,0")\ T

and lete = arg-max_; w(e). If w(T') > w(L), we have that

w(bin(l,0)) < 2w(T) < 2w(bin(2,0%)) < 2w(o?).



REGREFSWAP-0OUT(3, 1)
1 A<bin(l,c")UU(c")\ {i};
2 bin(l,0%) « knapsack(A, C1);

Fig. 5. The Suboptimality Algorithm for the Knapsack Problem: Spiag i out of Bin 1.

Otherwisec(L) > Cs by optimality of 7" and thusc(L) > c¢(i) sinceCq > c(i).
By optimality of 7', ¢(T U {e}) > Cy > Cj and, sincein(1l,0*) = T U L, it
follows thate(L \ {e}) < ¢(i) Hencew(L \ {e}) < w(T') by optimality of 7" and

w(ly) <w(T)+w(L\{e}) +w(e) < 2w(T) +w(e) < 2w(bin(2,0%)) + w(e).

If wle) < w(bin(2,0%)), w(ly) < 3w(bin(2,0%)) < 3w(c®) and the result fol-
lows. Otherwise, by optimality dfin(2,0%), c¢(e) > C2 > Cf and the algorithm
executes lines 10-11.de) < Cj, then

w(ly) < 2w(bin(l,0)) +w(bin(j,o?)) < w(c?).
Otherwise, ifc(e) > Cj, e ¢ o® and
w(ly) < w(T) +w(L\ {e}) < 2w(bin(2,0)) < 2u(o?).
Ip.A : By definition of I, C7 > Cs, and line 3 of the algorithm
w(lp) < w(bin(2,0%)) —w(i) < w(bin(l,0%)) < w(c?).
I,0.B : By definition of I;5 and by line 6 of the algorithm
w(ho) < w(bin(2,0%)) — w(i) < w(bin(2,0%)) < w(o®).

I1; : By definition of the algorithm (bin(3..n,0*)) < K(3..n,0%).
O

Swapping a Request Out of a BinThe algorithm to swap a requesbut of bin 1 is
depicted in Figure 5. It consists of solving a one-dimenai@napsack with the requests
already in that bin and the unallocated requests. The psafilar, but simpler, to the
proof of Theorem 1.

Theorem 2. AlgorithmREGRETFSWAP-OUT is a constant-factor approximation.

Swapping a Request Into a BinFigure 6 depicts the algorithm for swapping a request
7 in bin 1, which is essentially simila&@EGREFSWAP but only uses one bin. It assumes
that request can be placed in at least two bins since otherwise a singl¢iaual op-
timization suffices to compute all the regrets. Once agasplives a one-dimensional
knapsack for bin 1 (after having allocated requgstith all the requests ihin(1,c*)

and the unallocated requests. If the resulting knapsadhkasvajuality (i.e., the remain-
ing requests fronbin(1,c*) have a higher value tharin(1,0")), REGREFSWAP-IN
solves an additional knapsack problem for the largestabiglbin. The proof is once
again similar to the proof of Theorem 1.

Theorem 3. Assuming thatitemcan be placed in at least two bins, AlgoritiREGRETF
SWAP-IN is a constant-factor approximation.



REGRETFSWAP-IN(%, 1)
A —bin(l,0")UU(c");
bin(1, R) « knapsack(A,C1 — c(3)) U {i};
L — bin(1,0%) \ bin(1,0%);
if w(L) > w(bin(1,0%)) then
j «— argmaz(j € 2..n) Cjy;
bin(j,0%) «— knapsack(bin(j, o) U L, Cj);

OO0 hAWNPE

Fig. 6. The Suboptimality Algorithm for the Knapsack Problem: Spiag 7 into Bin 1.
6 Experimental Results

The Instances The experimental results use the benchmarks proposed iR¢fjuests
are classified itk types. Each type is characterized by a weight, a value, tporgential
distributions indicating how frequently requests of thgie arrive and are cancelled,
and an overbooking penalty. We generated ten instanced lbasthe master problem
proposed in [1]. The goal was to try to produce a diverse sgtrolblems revealing
strengths and weaknesses of the various algorithms. Thréddems are named (A-J)
here. Problem A scales the master problem by doubling thghteind value of the
request types in the master problem, as well as halving thebeuof items that arrive.
Problem B further scales problem A by increasing the weigldt ealue of the types.
Problem C considers 7 types of items whose cost ratio takefotim of a bell shape.
Problem D looks at the master problem and doubles the nuniitbénowhile dividing
their capacity by 2. Problem E considers a version of the @nggbblem with bins of
variable capacity. Problem F depicts a version of the mastdlem whose items arrive
three times as often and cancel three times as often. Prableomsiders a much larger
problem with 35 requests types who cost ratio is also shapedbiell. Problem H is
like problem G, the main difference is that the cost ratiqpehia reversed. Problem | is
a version of G with an extra bin. Problem J is a version of H éthier bins.

The mathematical programs are solved with CPLEX 9.0 witima timit of 10 sec-
onds. The optimal solutions can be found within the timetliiani all instances but | and
J. Every instance is executed under various time consstaiet,0 = 1,5, 10, 25, 50,
or 100, and the results are the average of 10 executions.

Itis important to highlight that, on the master problem asd/ariations, the best-fit
heuristic performs quite well. On the offline problems, 6% off the optimum in the
average and is never worse than 10% off. This will be disaiagain when the regret
algorithm is compared to earlier results.

Comparison of the Algorithms Figure 7 describes the average profit (left) and loss
(right) of the various online algorithms as a percentagéefdptimal offline solution.
The loss sums the weights of the rejected requests and thieamkeng penalty (if any);

it is often used in comparing online algorithms as it givesasg of the “price” of
uncertainty. The results clearly show the value of stodhasftormation as algorithms
R, C, E recovers most of the gap between the online best-fiidtieu(G) and the
offline optimum (which cannot typically be achieved in anioalsetting). Moreover,
they show that algorithms R and C achieve excellent resuia @ith small number

of available optimizations (tight time constraints). Inrtpaular, algorithm R achieves



Nonnalized Averages _ B
Normalized Averages - Reservation Loss

b + Penalty
.95 J\ {\
§ 1754 —&— Optimal

P e Optimal

TR R ——— a —— Gready

i e o 1.55

5 : = —— Expectation
——Consercis 4

fos [(/ ot 5 135 —&- Consensus

3: i —— Regret
0.85 F—— T
0 50 100

0 20 @ 60 & o Maximum Number of
Maodi mum Number of Optimizations Optimizations

Fig. 7. Experimental Results over All Instances with Overbookirlpwed.

Normalized Average of Variations Normalized Average of Varistions - Resznation Liss

1pee +

17

nas
18

03

o ‘ r a1
. PR . .

[ 20 an e E 100 0 = a @ @ 1m

Mexiraurn Number of Optimizations Masimum Number of Optimizatiors

Fig. 8. Experimental Results over All Instances with Overbookirigallowed.

about 89% of the offline optimum with only 10 samples and 91%\&D optimiza-
tions. It also achieves a loss of 28% over the offline optiman®b optimizations and
349% for 10 optimizations. The regret algorithm clearly doates the expectation algo-
rithm E which performs poorly for tight time constraintsbEcomes reasonable for 50
optimizations and reaches the quality of the regret allgoritor 100 optimizations.

Figure 8 shows the same results when no overbooking is alloWeese instances
are easier in the sense that fewer optimizations are negdssshe algorithms to con-
verge. But they exhibit the same pattern as when overboagiaipwed. These results
are quite interesting and shows that the benefits of the ratgerithm increase with
the problem complexity but are significant even on easi¢aites.

Comparison with Earlier Results As mentioned earlier, the best-fit algorithm is only
5% below the optimal offline solution in these problems. lthiss tempting to replace
the IP solver in algorithm E by the best-fit heuristic to e@dumore samples. The
algorithm, denoted by BF ¥, was proposed in [1] and was shown to be superior
to several approaches including yield management and andigdtion with Markov
Models [12]. Because the best-fit algorithm is so fast, B& Ean easily be run with
10,000 samples and remedies the limitations of algorithmdeutight time constraints.
Figure 9 compares algorithms BE, R, and C when overbookingis allowed. The
results show that BF ¥ indeed produces excellent results but is quickly dominated
by R as time increases. In particular, the loss of BFPEs above 40%, although it
goes down to 34% for 10 optimizations and 28% for 25 optiniwes in algorithm R.



Normalized Averages Normalized Averages - Reservation Loss + Penalty

0ss 16—t

o

ast
15
o FA
z W 145
% oer = = (el 8
g b
1 08 & 14
: =) e
—oBF Bp
E 9 5o - .
st
13
o7

o

0 El a0 o £ 1m0 a 20 40 80 a0 100

Mssd U Number of Optimizstions: Maximuam Number of Optimizations

Fig. 9. Comparison with Earlier Results: Average Results for Ims¢s with Overbooking

Similarly, the profit increases by 4% in the average staréing5 optimizations. BF
Exp is also dominated by algorithm C but only for 50 optimizat@r more.

What is quite remarkable here is that the 5% difference itityuzetween the best-
fit heuristic and the offline algorithm translates into a smdifference in quality in
the online setting. Moreover, when looking at specific ins&s, one can see that BF
Exp is often comparable to R but its loss (resp. profit) may beiggmtly higher
(resp. lower) on instances that seem particularly difficTitis is the case for instances
E and G, where the gap between the offline solutions and tiieo$ by algorithm R
is larger. This seems to indicate that the harder the prabteemore beneficial algo-
rithm R becomes. This in fact confirms our earlier resultstoolsastic vehicle routing
where the algorithms use a large neighborhood heuristit3]3,ndeed, using a sim-
pler, lower-quality, heuristic on more samples did not proelhigh-quality results in an
online setting. The results presented here also show thaidtiitional information pro-
duced by a more sophisticated solver quickly amortizesoitsputational cost, making
algorithm R particularly effective and robust for many peshs.

7 Conclusion

This paper adapted our online stochastic framework andigiges to online stochastic
reservations initially proposed in [1]. These problemspadicore can be modelled as
multi-knapsacks, are significant in practice and are alferént from the scheduling
and routing applications we studied earlier. Indeed thenrdatision is not which re-
quest to select next but rather how best to serve a request fimited resources. The
paper shows that the framework and its associated algasittaturally apply to on-
line reservation systems. It also presented a constattrfsigh-optimality approxima-
tion of multi-knapsack problems that only solves one-digiemal knapsack problems,
leading to a regret algorithm that uses both mathematicaramming and dynamic
programming algorithms. The algorithms were evaluatechemtulti-knapsack prob-
lems proposed in [1] with and without overbooking. The resinidicate that the regret
algorithm is particularly effective, providing significeimenefits over heuristic, consen-
sus, and expectation approaches. It also dominates aaresdgorithm proposed in [1]
(which applies the best-fit heuristic with algorithm E) asrsas the time constraints al-
lows for 10 optimizations at decision time or between decisi Even more interesting



perhaps, the regret algorithm has now been applied to ostiiedastic problems where
the offline problem is solved by either constraint programgninteger programming,
or (special-purpose) polynomial algorithms, indicatitepversatility and benefits for a
wide variety of applications.

References

1.

10.

11.

12.
13.

T. Benoist, E. Bourreau, Y. Caseau, and B. Rottembourgwaf@s stochastic constraint
programming: A study of online multi-choice knapsack witgredlines. InProceedings of
the Seventh International Conference on Principles anafa of Constraint Programming
(CP’01), pages 61-76, London, UK, 2001. Springer-Verlag.

R. Bent, I. Katriel, and P. Van Hentenryck. Sub-Optinya{pproximation. InEleventh
International Conference on Principles and Practice of €maint Programming Stiges,
Spain, 2005.

R. Bent and P. Van Hentenryck. A Two-Stage Hybrid Localr8eéor the Vehicle Routing
Problem with Time WindowsTransportation Scienceé(4):515-530, 2004.

R. Bentand P. Van Hentenryck. Online Stochastic and R@ytsmization. InProceeding of
the 9th Asian Computing Science Conference (ASIAN@HRNg Mai University, Thailand,
December 2004.

R. Bent and P. Van Hentenryck. Regrets Only. Online Swtah&®ptimization under Time
Constraints. InProceedings of the 19th National Conference on Artificiakliigence
(AAAI'04), San Jose, CA, July 2004.

R. Bent and P. Van Hentenryck. Scenario Based Planningddially Dynamic Vehicle
Routing Problems with Stochastic CustomePperations Resear¢lhb2(6), 2004.

R. Bent and P. Van Hentenryck. The Value of Consensus im®@tochastic Scheduling.
In Proceedings of the 14th International Conference on Auteth®lanning & Scheduling
(ICAPS 2004)Whistler, British Columbia, Canada, 2004.

R. Bent and P. Van Hentenryck. Online Stochastic Optitiirawithout Distributions .
In Proceedings of the 15th International Conference on Auteth®lanning & Scheduling
(ICAPS 2005)Monterey, CA, 2005.

A. Campbell and M. Savelsbergh. Decision Support for Qores Direct Grocery Initiatives.
Report TLI-02-09, Georgia Institute of Technolpg®02.

H. Chang, R. Givan, and E. Chong. On-line Scheduling \dia@ing. Artificial Intelligence
Planning and Scheduling (AIPS’Q@ages 62—71, 2000.

B. Dean, M.X. Goemans, and J. Vondrak. ApproximatingStechastic Knapsack Prob-
lem: The Benefit of Adaptivity. IrProceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Sciengmges 208-217, Rome, Italy, 2004.

M. PutermanMarkov Decision Processedohn Wiley & Sons, New York, 1994.

P. Shaw. Using Constraint Programming and Local Searthddis to Solve Vehicle Routing
Problems. IfProceedings of Fourth International Conference on the Eiptes and Practice
of Constraint Programming (CP’'98pages 417-431, Pisa, October 1998.



