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Abstract We confront a practical cutting stock problem from a production plant

of plastic rolls. The problem is a variant of the well-known one dimensional cutting

stock, with particular constraints and optimization criteria defined by the experts of

the company. We start by giving a problem formulation in which optimization criteria

have been considered in linear hierarchy according to expert preferences, and then

propose a heuristic solution based on a GRASP algorithm. The generation phase of

this algorithm solves a simplified version which is rather similar to the conventional one

dimensional cutting stock. To do that, we propose a Sequential Heuristic Randomized

Procedure (SHRP). Then in the repairing phase, the solution of the simplified problem

is transformed into a solution to the real problem. For experimental study we have

chosen a set of problem instances of com-mon use to compare SHRP with another

recent approach. Also, we show by means of examples, how our approach works over

instances taken from the real production process.
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1 Introduction

In this work we confront a real cutting stock problem of a company that manufactures

plastic rolls. The process starts by generating big rolls of about 6000 mm. width and

a variable length that are then cut into small rolls of the same length whose width

ranges from about 300 mm. to 1200 mm. according to customer requirements. Figure 1

shows a schema of the cutting machine. The big roll is set on the cutting machine and

unrolled so that the film band passes through the cutter knives and splits into thinner

bands that are then rolled into smaller rolls of a given length. The set of rolls generated

in this way is called a cut, and the configuration of the knives is the cutting pattern.

Normally, a large number of cuts can be obtained from a big roll, and moreover if the

big roll finishes before a cut is completed, a new big roll can be set in the machine

and the film joined with the previous roll. Thus the big roll may be supposed to be

infinite. In order to ensure the quality of the first and last rolls of the cut, a small

amount of film of about 100 mm. should be discarded at each side of the big roll due

to plastic defects in the borders, so that there is a maximum width of the big roll that

is actually useful. Additionally, due to the fixed width of the required rolls, some more

plastic should be discarded in each cut. This is the trim-loss that should be minimized

by the pattern generation procedure. Due to technical characteristics of the machine,

there is a maximum trim-loss that the machine is able to manage, so that there is also

a minimum width that each cut should consume. In practice, these values are fixed

to about 5800 mm. and 5500 mm. respectively. During a cut, each roll is supported

by a pressure-roller that avoids the generation of folds. The width of a pressure-roller

depends on the width of the supported roll, and its weight is of about 30 kg. A pres-

sure-roller of a given width may support rolls in a small range of width. For example

a roller of 800 mm. is suitable for rolls from 750 to 790 mm. And for a given roll,

only one pressure-roller width serves. The setting of pressure-rollers is made manually

by the machine technicians, so minimizing these settings is an important objective, in

addition to minimizing the number of cuts and the cost of setups or changeovers. In

this work we suppose that the setup cost between two cutting patterns is mainly due

to the number of pressure-rollers that have to be put in and taken off, and also due to

the difference in the number of cutting knives.

The problem has also a number of constraints and optimization objectives that

make it different from the conventional formulations of the one dimensional cutting

stock problem given in the literature. For example neither underproduction nor over-

production is allowed for any of the orders, which together with the constraints of

maximum and minimum width, makes it difficult, even impossible in some cases, to

reach a valid solution. In the last case, the only way to build up an acceptable solu-

tion is to produce a number of additional rolls, whose width and number should be

explicitly permitted by the expert, to be stored in the shop stock. Once a cut is com-

pleted, the rolls are packed into stacks. The stack size is fixed for each roll width, so a

given order is composed by a number of stacks, maybe the last one being uncompleted.

Naturally, only when a stack is completed is it taken away from the proximity of the

cutting machine. So, minimizing the number of open stacks is also convenient in order

to facilitate the production process. Moreover, some orders have more priority than
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Fig. 1 Working schema of the cutting machine

others. Consequently the delivery time of orders weighted by the client priority is an

important criterion as well.

The remainder of the paper is organized as follows. In section 2, we review the

classical formulation of the one dimensional cutting stock problem and a number of

approaches proposed for this problem over the years. In section 3, we formulate the

problem faced herein. First, in section 3.1 we define the main problem that models the

actual problem of a company that produces plastic rolls; and then, in section 3.2, we

define a simplified problem by relaxing some constraints of the main problem and also

simplifying some data. In section 4 we present our approach to the problem: a GRASP

algorithm. Section 4.1 describes the generation phase of this algorithm, which consists

in a sequential procedure (SHRP) that solves the simplified problem; and section 4.2

describes the repairing phase that consists in transforming a solution for the simplified

problem into a solution for the main problem. In section 5, we report results from an

experimental study over a benchmark taken from the literature, in order to compare

SHRP with another recent procedure with similar characteristics. Finally, in section 6

we summarize the main conclusions of our work and also we propose some ideas for

the future
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2 Literature Review

In Gilmore and Gomory (1961) and Gilmore and Gomory (1963) the first model is

proposed for the One Dimensional Cutting-Stock Problem, also denoted 1D-CSP. The

problem is defined by the following data: (m, L, l = (l1, . . . , lm), b = (b1, . . . , bm)),

where L denotes the length of each stock piece (here the width of the big roll), m

denotes the number of piece types (orders) and for each type i = 1, . . . , m, li is the

piece length (roll width), and bi is the order demand. A cutting pattern describes how

many items of each type are cut from a stock length. Following Belov and Scheithauer

(2006), let Z+ denote the set of positive integers and let the column vectors Aj =

(a1j , . . . , amj) ∈ Zm
+ , j = 1, . . . , n, represent all possible valid cutting patterns, i.e.

those satisfying
m∑

i=1

aij li ≤ L (1)

where aij is the number of pieces of order i that are generated by one application of the

cutting pattern Aj . Let xj , j = 1, . . . , n, be the frequencies, i.e. the number of times

each pattern is applied in the solution. The model of Gilmore and Gomory aims at

minimizing the number of stock pieces, or equivalently minimizing the trim-loss, and

is stated as follows

z1D−CSP =min

n∑

j=1

xj

s.t.:

n∑

j=1

aijxj ≥ bi, i = 1, . . . , m

xj ∈ Z+, j = 1, . . . , n.

(2)

Even though this model is the most common in the literature, the problem is often

formulated in different ways. In Valério de Carvalho (2002) several formulations of

the one-dimensional cutting stock are reviewed, and its particular case called the bin-

packing problem, and the relations between their relaxations are analysed.

As is pointed in Umetani et al (2003), this problem is often formulated as an integer

programming (IP) problem, and its linear programming (LP) relaxation is exploited

in many heuristic algorithms; e.g. first solve the LP and then modify the LP solu-

tion to an integer solution heuristically. In this approach, however, it is impractical to

consider all feasible cutting patterns, which correspond to the columns in an LP for-

mulation. Gilmore and Gomory also proposed a procedure to find out cutting patterns

to improve the LP solution by solving the associated knapsack problem. Since then,

many approaches have been proposed to optimize the number of cuts that are usu-

ally based on branch-and-bound and column generation algorithms, for example the

branch-and-cut-and-price algorithm proposed in Belov and Scheithauer (2006). Also,

there are heuristic approaches like for example the simulated annealing heuristic pro-

posed in Chen et al (1996). In Gradisar et al (2002) an experimental study of various

methods aimed at minimizing trim-loss is presented.

More recently, the cost of factors other than trim-loss, such as the cost of pattern

changes or setups or the cost due to open stacks, have become very important as

well. Various types of algorithms have been proposed to deal with the cost of pattern

changes. Algorithms of the first class are based on pattern generation procedures such
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as the one proposed in Suliman (2001). One of the first approaches of this class was a

greedy heuristic algorithm, called the sequential heuristic procedure (SHP) proposed

in Haessler (1975) and Haessler (1991), that sequentially adds new patterns to the

current partial solution until all demands are satisfied. In each step, it generates a

number of cutting pattern candidates and selects one with small trim-loss and high

frequency. In Vahrenkamp (1996) a variant of SHP is proposed in which a new pattern

is calculated by a randomized algorithm. Basic ideas of these and other algorithms are

summarized in Haessler (1991). Recently, in Belov and Scheithauer (2007) an adaptive

sequential heuristic, termed sequential value correction (SVC), is proposed that aims

at minimizing not only the number of setups but also the number of open stacks.

However they consider a simplified model in which an order is packed into only one

stack, while in real situations it is usual that more than one stack is required for each

order. Moreover, they consider a multi-objective search using pareto criterion.

Algorithms of the second type are based on pattern combinations. The first propos-

als are Johnston (1986) and Goulimis (1990). Both start from a solution obtained by

an LP based approach, and then the number of different patterns is reduced by com-

bining two different patterns into one pattern that covers the same amount of product.

More recently, in Foerster and Wscher (1999) an algorithm of this type proposed,

called KOMBI, which uses many types of combinations; for example three patterns are

replaced with two new ones, etc.

The third type is comprised of exact algorithms such as the algorithm proposed in

Vanderbeck (2000). This algorithm minimizes the number of different cutting patterns

for a given maximum number of stock rolls. It uses a branch-and-bound algorithm in

combination with a column generation technique. According to experimental results, it

can obtain optimal solutions for many small problems, but fails for several instances of

moderate size. In Belov and Scheithauer (2003) a more simple and flexible method is

proposed that produces slightly worse solutions in the same amount of time, but it has

the capability for reducing the number of setups if the material input is not restricted

to the minimum. Moreover, in Belov and Scheithauer (2006) a branch and price schema

enhanced with general purpose cutting planes is proposed. With this schema Belov and

Scheithauer were able to solve almost all instances of a set with 200 orders each and

many instances with 400 orders.

Although the three types commented above are the most classic approaches to

setup minimization, there are others, for example, the iterated local search algorithm

with adaptive pattern generation proposed in Umetani et al (2003) called ILS-APG.

The main components of this algorithm are a procedure to build up an initial solution

and a local search method. The local search is first applied to the initial solution, and

then to new solutions obtained by randomly perturbing the best solution obtained so

far. The neighbourhood of the local search is given by a subset of cutting patterns

which have prospect of improving the current solution. As shown in the experimental

study reported in Umetani et al (2003), the performance of ILS-APG is comparable to

SHP and KOMBI algorithms.

Summarizing, the best current approaches are branch and bound methods such as

those proposed in Belov and Scheithauer (2006) and in Vanderbeck (2000). These algo-

rithms can solve exactly many of the instances of practical interest, even though is some

cases within a large running time. In spite of that, heuristic methods are also of great

interest due to their flexibility and capacity to obtain a variety of solutions in a short

time. As pointed in Belov and Scheithauer (2003), these methods result more flexible

when optimization criteria other than the number of cuts and the number of patterns
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are considered. Moreover the heuristic methods can be used in conjunction with exact

algorithms to obtain new upper bounds and to round up non integer solutions, as it is

done for example in Belov and Scheithauer (2006).

3 Problem Formulation

As we have pointed out above, our problem is a variant of the 1D-CSP. The classic

formulation given in Gilmore and Gomory (1961) and Gilmore and Gomory (1963) is

not directly applicable to our case mainly due to the non-overproduction constraint,

but it can be easily adapted as we will see in the sequel. We start by giving a detailed

formulation of the main problem; that considering all characteristics and optimization

criteria relevant from the point of view of the experts. As the number of optimization

criteria is too large to deal with all of them at the same time, and also as the search

space could be very large, we have opted by introducing a simplified problem; i.e. a

problem with a lower number of objective functions and also with a smaller search

space in general. Once the simplified problem is solved, the solution will be adapted

to the original problem; in this process all the objectives will be considered. Table 1

summarizes the main notation used from now on to describe the problem data and its

solutions.

Table 1: List of notation used across the paper to represent input data

and solutions.

Lmax, Lmin, Cmax Maximum and minimum widths, and maximum

number of rolls of a cutting pattern.

Wmax, Wmin, ∆W Maximum and minimum widths of a single roll and

increment from a valid width to the next one.

SC Cost magnitude for operations intervening setup

PR = {PR1, . . . , PRp}, FPR Types of pressure rollers and mapping from allowed

roll widths to pressure rollers.

FST Mapping from allowed roll widths to stack sizes.

M = {1, . . . , m} Index set of orders of the main problem.

b = (b1, . . . , bm) bi is the number of rolls of order i.

l = (l1, . . . , lm) li is the width of the rolls of order i.

p = (p1, . . . , pm) pi is the priority of order i.

S = {m + 1, . . . , m + s} Stock types allowed for overproduction.

bs = (bm+1, . . . , bm+s) bm+i is the maximum number of rolls of stock type

m + i that may be produced.

ls = (lm+1, . . . , lm+s) lm+i is the width of rolls of stock type m + i.

A Set of feasible cutting patterns for the main problem.

Aj = (a1j , . . . , amj , A feasible cutting pattern, aij is the number of items

a(m+1)j , . . . , a(m+s)j) of order or stock of type i in pattern Aj .

Lj , Cj , Dj = Lmax − Lj Total width, number of rolls and trim-loss of pattern

Aj .
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(Π, x) A cutting plan for the main problem, i.e. a list of dif-

ferent cutting patterns Π = (A1, . . . , A|Π|) ∈ A|Π|

and their frequencies x = (x1, . . . , x|Π|) ∈ Z|Π|+ .

si The number of rolls of stock i ∈ S in the solution.

Aj
l Cut due to the lth application of pattern Aj accord-

ing to plan (Π, x).

CI(Aj
l ) The index of a cut in the sequence of cuts defined

by a cutting plan (Π, x).

CUstart(i), CUend(i) Indexes of the first and last cuts of order i in the cut

sequence.

SU(Aj−l, Aj) The setup cost from pattern Aj−1 to pattern Aj .

R(i, Aj
l ) The number of rolls of order i generated from the

beginning up to completion of cut Aj
l .

OS(i, Aj
l ) Logical variable indicating if after cut Aj

l there is an

open stack of order i.

L = {le, e ∈ M ∪ S}, |L| = ms Set of different widths of orders and stock types in

the main problem, ms denotes its cardinal.

M ′ = {1, . . . , m′} Index set of orders of the simplified problem.

b′ = (b′1, . . . , b′m′) b′i is the number of rolls of order i in the simplified

problem.

l′ = (l′1, . . . , l′m′) li is the width of the rolls of order i in the simplified

problem.

S′ = {m′ + 1, . . . , m′ + s} Stock types allowed for overproduction, type m′ + i

being the same as type m + i of S.

bs′ = (b′m′+1, . . . , b′m′+s) b′m′+i is the maximum number of rolls of stock type

m′ + i that may be produced.

ls′ = (l′m′+1, . . . , l′m′+s) lm′+i is the width of rolls of stock type m′ + i of

the simplified problem, they are different from each

other, but it may happen that l′ ∩ ls′ 6= ∅.
E Set of feasible cutting patterns for the simplified

problem.

Ej = (e1j , . . . , ems j) A feasible cutting pattern for the simplified problem,

eij is the number of items of either order or stock of

type i in pattern Ej .

(Π ′, x′) A cutting plan for the simplified problem, i.e. a list

of different cutting patterns Π ′ = (E1, . . . , E|Π
′|) ∈

E|Π
′| and their frequencies x′ = (x′1, . . . , x′|Π′|) ∈

Z|Π
′|

+ .

s′i The number of rolls of stock i ∈ S′ in the simplified

solution.
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3.1 The Main Problem

In order to clarify the problem definition, we present the data of the machine environ-

ment and the clients’ orders, the form and semantics of a problem solution, the problem

constraints and the optimization criteria in the hierarchical order usually considered

by the expert.

Data

– The set of parameters of the cutting machine: the maximum width of a cut Lmax,

the minimum width of a cut Lmin, the maximum number of rolls that can be gen-

erated in a cut Cmax, the minimum and the maximum width of a single roll, Wmin

and Wmax respectively, and the increment of width ∆W between two consecutive

permitted roll widths.

– The setup costs. There is an elementary setup cost SC and some rules given by

the expert that allows calculating the total setup cost from a configuration of the

cutting machine to the next one. The setup cost is due to roller and cutter changes

as follows. The cost of putting in or taking off a pressure-roller is SC. The cost of

putting in an additional knife is 3SC and the cost of dismounting a knife is 2SC,

as this operation takes a lower time. Here is important to remark that the costs of

displacing an installed knife to other position has a null cost due to this process is

done by the machine without technicians intervention. Also, moving a roller inside

the machine is considered to have null cost, even though this process is done by

a technician. Of course, this is a simplified view of the actual setup cost and is

founded on agreement of technicians with experts.

– The types of pressure-rollers PR = {PR1, . . . , PRp} and the mapping FPR from

roll widths to pressure-rollers.

– The mapping FST from roll widths to stack sizes or number of rolls in each stack

unit.

– The orders description given by (M = {1, . . . , m}, b = (b1, . . . , bm), l = (l1, . . . , lm),

p = (p1, . . . , pm)) where for each order i = 1, . . . , m, bi denotes the number of rolls,

li denotes the width of the rolls and pi the order priority.

– The stock allowed for overproduction (S = {m + 1, . . . , m + s}, bs = (bm+1, . . . ,

bm+s), ls = (lm+1, . . . , lm+s)) where for each i = 1, . . . , s, bm+i denotes the num-

ber of rolls of type m + i allowed for overproduction and lm+i denotes the width

of these rolls.

– The set of feasible cutting patterns, for the orders and stock given, A where each

Aj ∈ A is, Aj = (a1j , . . . , amj , a(m+1)j , , a(m+s)j) ∈ Zm+s
+ and denotes that, for

each i = 1, . . . , m + s, aij rolls of order i are cut each time the cutting pattern

Aj is applied. A cutting pattern Aj is feasible if and only if both of the following

conditions hold

Lmin ≤ Lj =
∑

i∈M∪S

aij li ≤ Lmax (3)

Cj =
∑

i∈M∪S

aij ≤ Cmax (4)

where Lj and Cj are the total width and the number of rolls of pattern Aj respec-

tively. Dj = Lmax−Lj de-notes the trim-loss of the cutting pattern. Moreover, we
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only consider proper cutting patterns, i.e. patterns with aij ≤ bi, i = 1, . . . , m + s,

Aj ∈ A.

Goal

The objective is to obtain a cutting plan (Π, x), where Π = (A1, . . . , A|Π|) ∈ A|Π|

and x = (x1, . . . , x|Π|) ∈ Z|Π|+ denotes the pattern frequencies. The cutting patterns

of Π are applied sequentially, each one the number of times indicated by its frequency.

Aj
l , 0 ≤ j ≤ |Π|, 0 ≤ l ≤ xj , denotes the lth cut corresponding to pattern Aj and

CI(Aj
l ) is the cut index defined as

CI(Aj
l ) =

j−1∑

k=1

xk + l. (5)

Given an order i ∈ M its first roll is generated in cut Aj
1 such that Aj is the first

pattern of Π with aij 6= 0, this cut is denoted CUstart(i). Analogously, the last roll of

order i is generated in cut Ak
xk so that Ak is the last pattern of Π with aik 6= 0, this

cut is denoted CUend(i).

Constraints

As we have considered feasible cutting patterns, the only constraint that should be

required for a solution is the following

– The set of rolls generated by the application of the cutting plan (Π, x) should be

composed of all rolls from the orders and, eventually, of a number of rolls from the

stock. That is, let si be the number of rolls of stock i ∈ S in the solution

∀i ∈ S, si =
∑

Aj∈Π

aijxj . (6)

Then, the constraint can be expressed as follows:

∀i ∈ M,
∑

Aj∈Π

aijxj = bi, (7)

∀i ∈ S, 0 ≤ si ≤ bi. (8)

Optimization criteria

Regarding the objective functions, as we have remarked, we consider a number of them

in hierarchical ordering according to the expert preferences. Therefore, we will try to

optimize the first one, in the case of a tie we will try to optimize the second one, and

so on. The objective functions are the following.

1. Minimize the number of cuts, given by
∑|Π|

j=1 xj . The optimum value is denoted

z1D−CSP .

2. Minimize the setup cost, given by
∑|Π|

j=1 SU(Aj−1, Aj), where SU(Aj−1, Aj) de-

notes the setup cost from pattern Aj−1 to pattern Aj calculated as it was indicated

above in the data section. Configuration A0 refers to the situation of the cutting

machine previous to the first cut.
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3. Maximize the amount of stock generated,
∑

i∈S lisi, in this way the actual trim-loss

is minimized for a given number of cuts.

4. Minimize the completion times of orders weighted by their priorities given by

∑

i∈M

piCI(CUend(i)). (9)

5. Minimize the maximum number of open stacks along the cut sequence. Let R(i, Aj
l )

denote the number of rolls of order i generated from the beginning up to the

completion of cut Aj
l

R(i, Aj
l ) =

j−1∑

k=1

aikxk + aij l, (10)

and let OS(i, Aj
l ) be 1 if after cut Aj

l there is an open stack of order i and 0

otherwise, i.e.

OS(i, Aj
l ) =





1, if
((

R(i, Aj
l ) mod FST (li)

)
> 0

)
and

(
Aj

l 6= CUend(i)
)

,

0, otherwise
(11)

Then, the maximum number of open stacks along the cut sequence is given by

max
j=1,...,|Π|
l=0,...,xj

∑

i=M

OS(i, Al
j). (12)

3.2 The Simplified Problem

In the main problem, as formulated in previous section, it is often the case that two or

more orders have the same width or a stock has the same width as one of the orders.

So, from the point of view of the cutting process, two cutting patterns Ai and Aj are

equivalent if both patterns define the cutting of the same number of rolls of the same

sizes, i.e. given the set of widths L = {le, e ∈ M ∪ S}, with cardinality |L| = ms,

ms ≤ m + s.

Ai ≡ Aj ⇔
m+s∑

k=0
lk=l

aki =

m+s∑

k=0
lk=l

akj , ∀l ∈ L (13)

Now the simplified problem can be stated as follows

Data

– The set of parameters of the cutting machine: as it is in the main problem.

– The setup costs: as they are in the main problem.

– The types of pressure-rollers and mapping FPR: as they are in the main problem.

– The mapping function FST : as it is in the main problem.
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– The simplified orders description given by (M ′ = {1, . . . , m′}, b′ = (b′1, . . . , b′m′),

l′ = (l′1, . . . , l′m′)), where for each order i = 1, . . . , m′, b′i denotes the number of

rolls and l′i ∈ L denotes the width of the rolls. The simplified orders list b′ are

obtained from the original order list b so as

b′i =

m∑

k=1
lk=l′i

bk (14)

Here it is important to remark that all orders are available at the time of computing

a cutting plan, i.e. dynamic planning is not considered.

– The stock allowed for overproduction (S′ = {m′ + 1, . . . , m′ + s}, bs′ = (b′m′+1,

. . . , b′m′+s), l′s = (l′m′+1, . . . , l′m′+s)) where for each i = 1, . . . , s, b′m′+i = bm+i

denotes the number of rolls of type m′ + i allowed for overproduction and l′m′+i =

lm+i ∈ L denotes the width of these rolls (notice that two different stock orders

cannot have the same width). Here both l′ and ls′ are lists with no repeated ele-

ments, so they can be seen as sets such that l′∪ ls′ = L, although, it is possible that

l′∩ ls′ 6= ∅ . In what follows, we assume L to be ordered, beginning with l′1, . . . , l′m′

followed by the elements from ls′ that do not belong to l′. L = (l′1, . . . , l′ms),

ms ≤ m′ + s.

– The set of simplified feasible cutting patterns for the simplified orders and stock

given, E, obtained from the set of feasible cutting patterns for the original problem

A, |E| ≤ |A|, where every Ej ∈ E is Ej = (e1j , . . . , emsj ) ∈ Zms
+ meaning that, for

each i = 1, . . . , ms, eij rolls of width l′i are cut each time the cutting pattern Ej is

applied. In other words, each element of E is an equivalence class of the quotient

set of A with the above relation, so it is a simplified representation of a number of

cutting patterns of A.

Goal

The objective is to obtain a simplified cutting plan (Π ′, x′), where Π ′ = (E1, . . . , E|Π
′|)

∈ E|Π
′| and x′ = (x′1, . . . , x′|Π′|) ∈ Z

|Π′|
+ denotes the pattern frequencies.

Constraints

As all the simplified cutting patterns are feasible, the only additional constraint that

should be required to a solution is the following

– The set of rolls generated by the application of the simplified cutting plan (Π ′, x′)
should be composed of all rolls from the orders and, eventually, of a number of

rolls from the stock. That is, let s′i the number of rolls of stock of width l′i in the

solution, being 0 if there is no m′ + k ∈ S′ such that l′i = l′m′+k,

∀i ∈ {m′ + 1, . . . , ms}, s′i =
∑

Ej∈Π′
eijx

′
j (15)

Then, the constraint can be expressed as follows:

∀i ∈ M ′,
∑

Ej∈Π′
eijx

′
j = b′i + s′i, (16)

0 ≤ s′i ≤ b′m′+k (17)
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Optimization criteria

1. Minimize the number of cuts calculated by
∑|Π′|

j=1 x′j .
2. Minimize the number of simplified cutting patterns |Π ′|.
3. Maximize the amount of stock generated, that is

∑ms
i=1 l′is

′
i, so the trim-loss is

minimized for a given number of cuts.

Now let us clarify how a solution of the simplified problem can be transformed into

a solution to the main problem. To do so, we have to map each simple cut from a

simplified pattern Ej to any of the cuts of pattern Ak of the equivalence class defined

by Ej . In doing so, we can consider different orderings in the simplified cutting plan,

and also different orderings between the single cuts derived from a simplified cutting

pattern, in order to satisfy all the optimization criteria of the main problem. As we can

observe, objectives 1 and 3 are the same in both problems, but objective 2 is different.

The reason to consider objective 2 in the simplified problem is that in minimizing the

number of patterns |Π ′| it is expected that the setup cost of the main problem is to

be minimized as well. This is because the setup cost between two consecutive cuts Ak

and Al of the main problem is null if both Ak and Al belongs to the same equivalence

class Ej .

4 A GRASP Algorithm for the Cutting Stock Problem

According to the problem formulation, we have developed a procedure to solve it that

works in two steps. First, a set of solutions is calculated for the simplified problem;

then a selection of these solutions is transformed into solutions to the main problem,

as shown in Algorithm 1. Here we describe this algorithm as a GRASP (Greedy Ran-

domized Adaptive Search Procedure), even though it differs from the general structure

of GRASP described in Resende and Ribeiro (2002). The main difference is that in a

general GRASP, once a solution is obtained by a stochastic method, this solution is

repaired by a local search algorithm before obtaining the next stochastic solution, and

this process is iterated a number of times. In our approach, all the stochastic solutions

are first calculated and only a selection of them is passed to the repairing algorithm.

We proceed in this way in order to save time. As the repairing algorithm will never

reduce the number of cuts of a solution, only those solutions of the simplified problem

with the lowest number of cuts are considered for repairing. Moreover, the repairing

mechanism may be implemented by strategies other than local search, such as greedy

or even an evolutionary algorithm.

Input An instance (m, L, l, b, S) of a 1D-CSP
Output A set of feasible solutions Π

Calculate a set of solutions Π′ for the simplified 1D-CSP (Algorithm 2);
Repair the simplified solutions Π′ to obtain a set of solutions Π to the main problem
(Algorithm 3);

Algorithm 1: GRASP Algorithm for the Main 1D-CSP
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4.1 Solving the simplified problem

The simplified problem is solved by means of a Sequential Heuristic Randomized Proce-

dure (SHRP) very similar to the Sequential Value Correction (SVC) proposed in Belov

and Scheithauer (2007). These procedures construct a solution pattern after pattern

and assign a frequency to each one. Various solutions are calculated iteratively and,

in each iteration, some information from previous solutions is used. In principle, to

obtain the next pattern to be included in a solution, we consider the residual problem

and search for a feasible pattern having the minimum trim-loss and the maximum fre-

quency. However, this strategy does not lead to a good solution in most cases. It often

happens that the last patterns have a large trim-loss because the first ones consume

those rolls that can be combined easily to obtain good patterns. So, in general, it is

better not to select the best patterns at the beginning, in order to have the chance to

obtain good patterns at the end as well. In order to do so, in Belov and Scheithauer

(2007) the SVC procedure is proposed, which is based on the concept of pseudo-price.

The idea is quite simple; at the beginning each roll has a price equal to its width li.

The algorithm constructs sequentially a number of solutions, where each solution is

constructed pattern after pattern. In each step, the pattern with the largest value is

calculated, where the value of a pattern is obtained by adding the values of its rolls.

In the subsequent iterations the price (or pseudo-price) of the rolls is updated in the

following way. Each time a pattern is calculated, the prices of the rolls contained in

the pattern are augmented in direct ratio with the trim-loss of the pattern. In this way

those rolls that are difficult to combine gradually get a higher price so that, after a

number of iterations, they have the chance of being combined at the beginning, giving

rise to acceptable patterns.

Our approach differs from that of Belov and Scheithauer mainly in the following

aspects. Firstly, we do not calculate the optimal pattern in each step, but use a heuristic

algorithm that produces a sub-optimal pattern instead. Also, we do not modify the

price of the rolls. Moreover, we use some heuristic strategies aimed at facilitating the

generation of good patterns at the end. One of these heuristics consists in penalizing

the number of rolls when the price or value of a pattern is calculated. In this way we

expect to have, at the beginning, patterns with few rolls of large width, thus leaving for

the last patterns many of the smaller rolls that are expected to be easier to combine.

Hence, the value of a pattern Ej is calculated by

VALUE(Ej , p) = Cp
m′∑

i=1
b′′i >0

eij l
′
i (18)

where C is the number of rolls of the pattern, p is a parameter and b′′i is the number

of rolls of order i in the residual problem. In this way those rolls of pattern Ej that

are taken from the stock S′, and consequently do not correspond to any of the orders,

do not contribute to the value of the pattern.

As it can be expected, the best value of p depends on the problem structure and

is not easy to envisage a priori. Hence, for the first solutions the value of p is selected

before starting to construct a cutting plan in direct ratio with the square root of

|p|, from an interval [−P, 0], with 1 ≥ P > 0. Then, in subsequent solutions those

values that have produced the best solutions will be given a larger probability of being

selected.
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When a cutting pattern must be obtained in the process of building a solution,

we propose a heuristic algorithm that searches for a pattern with both a large value

and a large frequency. Furthermore, we will try to consume the rolls uniformly in

order to avoid situations where many rolls of the same order remain unpacked when

constructing the last patterns. If this were the case, these rolls might be difficult to

combine. To avoid this situation, we consider the residual problem b′′ and generate a

suitable subset of feasible patterns SE ⊂ E; then we choose the pattern of SE with

the largest value, breaking ties using pattern frequency.

The maximum cardinality of set SE is fixed before calculating each pattern. First,

a fixed value that depends on both the value of a parameter SEmin and the size of

the residual problem is given. Then, a random value which is controlled by parameter

SEgap is added. Hence, it is calculated as

|SE| = 0.1 ∗ SEmin + 0.9 ∗ (SRP /SOP ) ∗ SEmin + Rand(0, SEgap), (19)

where SOP and SRP represent the size of the original problem and the size of the

residual problem respectively calculated as

SOP =

m′∑

i=1

b′il
′
i, (20)

SRP =

m′∑

i=1

b′′i l′′i . (21)

The construction of a cutting plan is aborted if the sum of a lower bound of the number

of cuts of the residual problem, LB(b′′), plus the actual number of cuts reaches the

current upper bound. Here we have used a trivial lower bound calculated as SRP /L.

The scheme of the whole method is given in Algorithm 2. The function Rand(r1, r2)

returns, in principle, real numbers uniformly in the interval [r1, r2], but as long as

improving solutions appear, the probability distribution is modified so as the values

that have produced the last improvements get a larger probability in the short term.

In practice these values are given probability 1 for the next five consecutive times. The

set of solutions Π is updated so that at the end it contains the solutions with the

minimum number of cuts. These are the solutions that will be transformed into actual

solutions to the original problem by the repairing procedure.

4.2 Repairing simplified solutions

The repairing mechanism that produces solutions to the main problem from solutions to

the simplified problem depends on the expert criteria about the evaluation functions.

In any case, the first criterion, that is the number of cuts, is the most important;

but there could be differences in the remaining functions. Here, we have assumed a

hierarchy among the five objectives as they are declared in Section 3.1. The number

of cuts and the amount of stock generated are fixed in the simplified solutions and in

any case cannot be modified by the repairing procedure. On the other hand, the value

of the remaining evaluation functions is determined by the repairing method.
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Input An instance (m′, L, l′, b′) of a 1D-CSP,
A set of parameters {P, SEmin, SEgap, IterationsLimit}

Output A set of feasible solutions Π′
Initialize Π′ = 0; UB = ∞;
repeat

b′′ = b′; π = 0; x = 0; p = Rand(−P, 0);
repeat

SE = subset of random patterns of E suitable for b′′;
E = arg max{VALUE(E, p), E ∈ SE};
xE = mini:ei>0{bb′′i /eic};
x = x + xE ; π = π + E;
b′′ = b′′ − xEE;

until (b′′i = 0,∀1 ≤ i ≤ m′) or (
∑

i xi + LB(b′′) < UB);
if (π, x) is a solution then

if
∑

i xi ≤ UB then
update UB and Π′ with (π, x);

if (π, x) is an improving solution then
augment the probability of value p;

until IterationsLimit is exceeded;

Algorithm 2: Sequential Heuristic Randomized Procedure for the simplified problem

Given a solution of the simplified problem (Π ′, x′), where Π ′ = (E1, . . . , E|Π
′|) ∈

E|Π
′| and x′ = (x′1, . . . , x′|Π′|) ∈ Z

|Π′|
+ , with a number of cuts

z =

|Π′|∑

i=1

x′i, (22)

we first consider the equivalent extended solution, that containing each pattern as many

times as its frequency in the simplified solution, denoted as Π ′
ext = (E1

1 , . . . , E1
x′1

, . . . ,

E
|Π′|
1 , . . . , E

|Π′|
x′|Π′|

) = (E1, . . . , Ez). This extended solution is transformed into a solu-

tion to the main problem. In this process the rolls of the simplified cutting patterns are

assigned to orders of the main problem according to their priorities, leaving the last

rolls for stock. This aims at minimizing the weighted completion times. In the sequel,

we explain this process more formally. Given a simplified pattern Ej = (e1j , . . . , ems j)

of Π ′
ext, eij 1 ≤ i ≤ ms denotes a simplified cut whose width is l′i. If 1 ≤ i ≤ m′,

the rolls correspond to order i and, maybe, to the stock and if m′ + 1 ≤ i ≤ ms

they are just stock rolls. Let ei be the ordered list of simplified cuts with width l′i, i.e.

ei = (ei1, . . . , eiz). Now let ki = (k1, . . . , kl) be the orders of the main problem whose

width is l′i, sorted by their priorities, i.e. pk1 ≥ · · · ≥ pkl
, and let m + i′, i′ ≤ s, be the

stock type of the main problem with the same width, i.e lk1 = · · · = lkl = lm+i = l′i.
The rolls from the simplified list of cuts ei are distributed among the orders from ki

and the stock m + i′ so that the following two conditions hold:

– For all k′, k′′ ∈ ki with k′ < k′′ and for all ea, eb ∈ ei with ea < eb, if order k′ has

a roll from eb, then order k′′ has none of the rolls from ea.

– For all k ∈ ki and for all ea, eb ∈ ei with ea < eb, if order k has a roll from eb, then

the stock m + i′ has none of the rolls from ea.

In doing so, each simplified cut eij of Ej is transformed in a set of actual cuts

ai1j , . . . , ailj , a(m+i′)j . Therefore, each instance of Ej in Π ′
ext is transformed in an



16

actual pattern, i.e. an element of the equivalence class Ej . And, finally, Π ′
ext is trans-

formed in an extended plan Πext = (A1
1, . . . , A1

x′1
, . . . , A

|π′|
1 , . . . , A

|Π′|
x′|Π′|

). The patterns

of Πext can be sorted in order to improve the changeovers or the number of open stacks,

maybe at the cost of worsening the weighted completion time. After that, Πext becomes

a sequence of patterns of the form (A1
1, . . . , A1

x1 , . . . , Ai
1, . . . , Ai

xi
, . . . , An

1 , . . . , An
xn

),

(Ai
1, . . . , Ai

xi
) being a sequence of xi instances of the same pattern Ai. Hence, we finally

obtain the cutting plan given by (Π, x), where Π = (A1, . . . , An) and x = (x1, . . . , xn),

with n = |Π| ≥ |Π ′|.

Input A solution (Π′, x′) of the simplified problem
Output A solution (Π, x) of the main problem

Order Π′, and x′ , in increasing, or decreasing, order of number of rolls by pattern;
Π′

ext = Extended solution of the simplified problem obtained from Π′;
Πext = Extended solution of the main problem obtained from Π′

ext;
(Π, x) = Actual solution to the main problem obtained from Πext;

Algorithm 3: Transforming a solution to the simplified problem into a solution of the

main problem

Let us clarify how Algorithm 3 works by means of a simple example. The problem

data and final results are displayed similarly as they are by the developed application.

Table 2 shows an instance and the corresponding simplified problem. A real instance is

given by a set of orders, each one defined by a client name, a client identification num-

ber, the number of rolls (#Rolls), the width of the rolls and the order priorities(OP).

Additionally, the maximum and minimum allowed width of a cut should be given, in

this case 5500 and 5700 respectively and also a stock description to choose a number

of rolls from if it is necessary to obtain valid cutting patterns. In this example up to 10

rolls of each width 1100, 450 and 1150 could be included in the cutting plan. Further-

more, some other parameters (not shown in Figures) are necessary, for instance, two

additional data items should be given to evaluate the number of open stacks and setup

cost: the number of rolls that fit in a stack (mapping FST ) and the correspondence be-

tween the size of pressure rollers and the width of the supported rolls (mapping FPR).

Here we have supposed that every stack contains 4 rolls and that the correspondence

between pressure roller types and width rolls is the following: type 1 (0-645), type 2

(650-1045), type 3 (1050-1345), type 4 (1350-1695). All the allowed widths are multi-

ples of 5 and the minimum width of a roll is 250 while the maximum is 1500. Finally,

the maximum number of rolls in a pattern is 10.

As we can observe in Table 2, the main instance with 10 orders is reduced to a

simplified instance with only 6 orders. This simplified instance is actually a conventional

1D-CSP instance with two additional constraints: the maximum number of rolls in a

pattern and the minimum width of a pattern. Table 3 shows a solution to the simplified

problem with 21 cuts and 4 different patterns, where 3 stock rolls have been included

in order that the last pattern to be valid.

Table 4 shows the final solution to the main problem obtained from the simplified

solution of Table 3 by application of Algorithm 3. The upper part of this figure shows

the cutting plan. As we can observe each pattern shows the roll widths and there are

various patterns with the same roll widths. These patterns are not actually the same

as the rolls correspond to different orders. The middle part of Table 4 shows the order
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Table 2 An example of problem data

Main Problem Stock Simplified Problem

#Rolls Width Order Client OP #Rolls Width #Rolls Width

20 600 20001 Client 1 1 10 1500 30 600
10 600 20002 Client 2 2 10 550 28 850
15 850 20003 Client 3 1 10 1150 15 950
13 850 20004 Client 4 1 14 1350
15 950 20005 Client 5 1 20 550
14 1350 20006 Client 6 1 33 900
20 550 20007 Client 7 1
18 900 20008 Client 8 1
15 900 20009 Client 9 2

Table 3 A cutting plan for the simplified instance of Table 2

FREQUENCY 14 3 3 1

PATTERNS 600 550 950 900
900 950 950 600
1350 950 900 600
850 550 900 1500
600 900 950 1500
850 900 900 550
550 900

PATTERN WIDTH 5700 5700 5550 5650

OBJECTIVE FUNCTIONS

Trim loss 500
0 0 150 50

Number of Patterns 4
Number of Cuts 21

identifiers, where 0 represents to the stock. Here all patterns are different. The bottom

of Table 4 shows the values of the evaluation functions. The changeover of each pattern

refers to the cost of put in and out cutting knives and pressure rollers from the previous

pattern to the current one. As we can observe the first pattern has a changeover cost of

24 because it is assumed that it is necessary to put in all the cutting knives and pressure

rollers before this pattern. In practice this is not often the case as a number of cutting

knives and pressure rollers remain in the machine from previous cuts. Regarding open

stacks, each column of Table 4 shows the number of them that remain incomplete in

the proximity of the machine from a cut to the next one, i.e. when a stack gets full

after a cut, or it is the last stack of an order, it is not considered.

To obtain the solution of Table 4 from the simplified solution of Table 3, the first

step is to assign an order identifier to each roll. To do so, the simplified cuts are

considered in the order derived from the simplified solution, i.e. 14 cuts of the first

pattern followed by 3 cuts of the second, and so on. Then, each roll is assigned to the

available order with the largest priority. For example, the rolls of width 600 of the first

4 cuts are assigned to order 20002 which has a larger priority than order 20001. In
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Table 4 Final solution to the main problem of Table 2

FREQUENCY

1 4 2 1 7 2 1 3

PATTERNS

900 600 600 600 600 550 550 950
600 900 900 900 900 950 950 950
600 1350 1350 1350 1350 950 950 900
1500 850 850 850 850 550 550 900
1500 600 600 600 600 900 900 950
550 850 850 850 850 900 900 900

550 550 550 550 900 900

PATTERN WIDTH

5650 5700 5700 5700 5700 5700 5700 5550

ORDER IDENTIFIERS

20009 20002 20001 20001 20001 20007 20007 20005
20002 20009 20009 20009 20009 20005 20005 20005
20002 20006 20006 20006 20006 20005 20005 20008

0 20004 20004 20004 20003 20007 0 20008
0 20002 20001 20001 20001 20008 20008 20005

20007 20004 20004 20003 20003 20008 20008 20008
20007 20007 20007 20007 20008 20008

OBJECTIVE FUNCTIONS

Trim Loss 500
50 0 0 0 0 0 0 150

Changeovers 41
24 5 0 0 0 0 4 5

Open Stacks 55
3 4-4-2-3 5-3 2 3-4-4-3-2-4-1 3-1 2 1-1-0

Weighted Time 934
Num. of Cuts 21

this way, the pattern with frequency 14 in the simplified solution is transformed into

four patterns with frequencies 4, 2, 1 and 7 respectively in the final solution (columns

2-5 in Table 4). Then, the patterns are sorted by a greedy algorithm that tries to

minimize changeovers. This algorithm starts by selecting one of the patterns with the

largest number of rolls; then, it tries each one of the remaining patterns just after

and before the partial plan. The pattern yielding lowest changeover is selected in the

corresponding position (i.e. before or after the previously selected patterns), and so on.

In the case of tie, the pattern with the largest priority (given by summing up the rolls’

priorities) is selected to appear before. As the open stacks cannot be estimated until

the cutting plan is completed, this criterion is only used, in principle, as the last one

in the hierarchy of the objective functions for the purpose of comparing solutions.
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5 Experimental Study

In this section we describe the experimental study that we have done to test the

Sequential Heuristic Randomized Procedure (SHRP) and to compare it with other re-

cent approaches. To do this, we have chosen the Sequential Value Correction (SVC)

procedure and the benchmark problems proposed in Belov and Scheithauer (2007).

These problems can be downloaded from http://www.math.tu-dresden.de/˜capad/.

The set contains 9 classes of problems (m, L, l, b) with 100 instances each; with pa-

rameters L = 10000, m ∈ {20, 50, 150}, li ∈ [v1L, v2L) ∩ Z uniformly distributed with

v = (v1, v2) ∈ {v1 = (0.01, 0.02), v2 = (0.01, 0.4), v3 = (0.01, 0.7), v4 = (0.2, 0.4), v5 =

(0.2, 0.7)}; and bj ∈ Sj uniformly distributed with S1 = [1, 10] ∩ Z, S2 = [1, 100] ∩ Z,

S3 = [50, 100] ∩ Z. The basic class was (m = 50, v = v3 = (0.01, 0.7), bi ∈ S3). By

varying one of the parameters, all 9 classes are obtained. In the first set of exper-

iments, we have considered only the classes 1, 4 and 9 (as was done in Belov and

Scheithauer (2007) for some preliminary experiments) that correspond to the parame-

ters (m = 20, v = v3, bi ∈ S3), (m = 50, v = v4, bi ∈ S3) and (m = 150, v = v3, bi ∈ S3)

respectively.

In order to compare SHRP with SVC over the previous instances, we have to do

some simplifications in the SHRP strategy. First, the value of Lmin is set to 0, because

SVC searches for patterns without this restriction. Also, there is no stock available

because SVC does not consider this possibility either. In spite of these simplifications,

there is still an important difference among these methods. SVC aims at minimizing

the number of cuts only, while SHRP aims at minimizing the number of patterns too.

Table 5 summarizes the results of SVC across classes 1, 4 and 9, as they are reported

in Belov and Scheithauer (2007). In this experimental study, Belov and Scheithauer

consider different values of a parameter ρ that controls the value or pseudo-price of

a pattern. They experiment with values of ρ ∈ {1.005, 1.01, 1.02, 1.03, 1.04}, and run

the algorithm up to 200 iterations for each value of ρ. Also, they experiment with a

random choice of ρ according to a uniform distribution from the interval [1.01, 1.03).

The computer was Athlon 1400 MHz with 512 MB of RAM. As can be observed in

Table 5, SVC is quite sensitive to the value of ρ. For each class of problems, there is a

value that seems to be the best one, and this value differs from one problem to another.

Moreover, a random selection over an interval is good in some cases, as for class 1, but

it is clearly worse in other cases, as in class 9. Similar results are reported in Belov

and Scheithauer (2007) for the remaining classes. In any case, with random selection

the SVC does not reach much better solutions even if it is run for a larger number of

iterations.

We have conducted similar experiments with SHRP on a computer Pentium IV

1700 MHz with 512 of RAM. In order to compare with SVC, we have considered that

our cpu is 1.16 times faster than Athlon 1400, in accordance with some experimental

results from the CASE laboratory (http://www.caselab.okstate.edu). Hence, we pa-

rameterized SHRP so as to run for a similar period of time. From a set of preliminary

experiments, we have chosen 600 iterations in all cases, and parameters (SEmin, SEgap)

as (40,20), (300,100) and (600,300) for sizes 20, 50 and 150 respectively. Here is impor-

tant to remark that SHRP runs faster than SVC because the stochastic algorithm that

calculates patterns in SHRP is expected to be faster than the exact algorithm used in

SVC. The value of parameter P is 0.5 for all instances. Table 6 summarizes the results

of SRHP. In all three cases, it reaches a number of cuts between the best and worst

results reached by SVC in 5 experiments, over 200 iterations each, with different values
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Table 5 Summary of results of SVC over the problem classes 1, 4 and 9

class 1 4 9

z1D−CSP 373.02 896.9 2669.56
[best, worst] [373.66, 374.18] [897.74, 898.92] [2670.94, 2672.53]
[ρ best, ρ worst] [1.04, 1.005] [1.03, 1.005] [1.02, 1.005]
time (sec.) 200 it. 7.2 39.6 456.0

ρ ∈ [1.01, 1.03) chosen uniformly every 100 iterations, 2000 iterations all

373.48 899.24 2676.71

ρ ∈ [1.01, 1.03) chosen uniformly every 5 iterations, 200 iterations all

373.52 899.31 2676.77

of parameter ρ. Moreover, SHRP outperforms SVC when this procedure iterates 2000

times, the parameter ρ varying uniformly every 100 iterations. As SHRP uses the same

parameters for instances of equal size, in particular the same value of parameter P in

all cases, we claim that SRHP is less dependent on parameter adjustment than SVC.

Moreover, as we can observe in Table 6, even with a number of 50 iterations, SHRP

is able to reach reasonably good solutions in all cases. Also, for SVC to reach better

solutions than SHRP, it seems to be necessary to invest a considerable amount of time

and effort in parameter tuning.

In Table 6, we also report results from similar experiments with SHRP by com-

puting the set SE, of candidate patterns, by uniform selection of widths instead of

selecting them in proportional ratio with the order’s size. The results on number of

cuts were a little bit better with the first method; even though for class 6, the results

were better with the second one; but the number of patterns is clearly lower with

the first method in all cases, with only one exception in class 7 where both methods

produce similar results. Here it is important to remark that instances of class 7 have

orders of small size as they take values uniformly in S1 = [1, 10] ∪ Z.

Finally, we report results from similar experiments with parameter P = 0, i.e.

without penalizing the number of rolls in the value of a pattern. In this case the results

were really bad, as can be observed in the last rows of the table. Not only the number

of cuts and patterns were much worse, but the required running times were much larger

as well.

We have also experimented with the remaining set of instances. The results are

summarized in Table 7. Here we report results from all instances of size 50 (instances

2 to 8) that correspond to classes (50, v1, S2), (50, v2, S2), (50, v3, S2), (50, v4, S2),

(50, v5, S2), (50, v3, S1) and (50, v3, S3) respectively. In particular, we show the best

and worst results from SVC when it iterates 200 times, with fixed values of ρ and with

this parameter varying uniformly every 5 iterations, and also the results from SHRP

running with the above parameters. As in Table 7 we can observe that the number of

cuts is also between the best and worst values reached by SVC with only one exception

in class 5. Here it is worth to remark the variations of time consumed by procedures for

different instances. The time required by SVC over class 2 is much larger than the time

for the remaining ones. This is because instances of class 2 have orders with low widths

in average, as they are taken uniformly in the interval [0.01L, 0.2L)∩Z. Thus, feasible
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Table 6 Summary of results of SHRP over the problem classes 1, 4 and 9

class 1 4 9

z1D−CSP 373.02 896.90 2669.56

600 iterations

Number of cuts 373.32 898.63 2671.92
Number of patterns 18.30 46.16 134.03
time (sec.) 600 it. 3.75 21.02 320.00

3000 iterations

Number of cuts 373.18 898.24 2671.42
Number of patterns 18.47 45.74 134.06

50 iterations

Number of cuts 373.68 898.68 2673.24
Number of patterns 19.28 46.92 134.65

600 iterations, computing SE by uniform selection

Number of cuts 373.29 898.66 2672.07
Number of patterns 18.97 48.17 141.62
time (sec.) 600 it. 3.49 20.00 323.10

600 iterations, P = 0

Number of cuts 381.23 944.91 2855.65
Number of patterns 21.23 52.58 149.51
time (sec.) 600 it. 4.86 76.21 770.16

patterns have a larger number of items than patterns of the remaining instances, and

so the exact procedure used in SVC to compute the next pattern has a larger number

of possibilities to choose from. However, this fact is not an inconvenient for SHRP, as

it takes a similar time than in other classes. In general, SHRP takes a time in direct

ratio with the number of patterns.

6 Final Remarks

In this work, we have modelled a real problem, from a company that manufactures

plastic rolls, as a variant of the one dimensional cutting stock problem (1D-CSP). The

formulation extends the 1D-CSP by considering that different orders might have the

same width, a number of additional constraints, and also four objective functions, in

addition to the number of cuts, which is the main one. The new constraints establish

that overproduction should be restricted to a predefined stock and also that in a pattern

there are a minimum width and a maximum number of items. The new objective

functions, according to the hierarchical order given by the experts, are the setup cost,

the amount of stock generated, the completion times weighted by orders’ priority and

the number of open stacks. The setup cost is not computed simply as the number of

different patterns. Instead, we consider the actual cost of changing cutting knives and

pressure rollers in the real machine, as it is considered by the technicians. The amount

of stock generated is taken as an objective function to be maximized because, after
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Table 7 Summary of results of SVC and SHRP over the problem classes 2, 3, 4, 5, 6, 7, 8

class 2 3 4 5 6 7 8

z1D−CSP 261.56 510.21 896.90 749.44 1173.18 90.10 1341.48

SVC

Best No. of cuts 261.56 510.24 897.74 749.85 1173.65 90.18 1342.60
Worst No. of cuts 261.69 510.91 899.31 750.09 1179.29 90.29 1345.05
Time (sec.) 200 it. 134.40 55.20 39.60 60.00 39.60 30.00 40.80

SRHP (selection in direct ratio with b′i)
No. of cuts 261.59 510.59 898.63 751.89 1174.02 90.26 1344.26
No. of patterns 30.56 38.98 46.16 46.94 49.05 32.64 47.26
Time (sec.) 600 it. 12.32 11.72 21.02 14.35 20.72 16.03 21.58

SRHP (uniform selection)

No. of cuts 261.58 510.58 898.66 751.85 1173.39 90.27 1344.80
No. of patterns 38.50 43.79 48.17 48.78 49.07 32.57 49.23
Time (sec.) 600 it. 16.15 13.52 20.00 15.65 19.16 16.15 18.22

minimizing the number of cuts, it is a good idea to make use of some of the trim-loss

for generating stock rolls that will probably serve for future orders.

In order to solve the problem, we have developed a software application based on a

GRASP algorithm. The generation phase of this algorithm solves a simplified version by

means of a heuristic procedure termed SHRP, and in the repairing phase the simplified

solution is transformed into a real solution. We have showed how the GRASP algorithm

works on a small real instance. The application has been integrated in the information

system of the company and is currently under exploitation. It has been registered as

a trade mark of the company ERVISA with title “An intelligent system to compute

cutting plans in manufacturing plastic rolls”. The application allows the expert to

select a set of pending orders of the same product from the database and also to define

a stock. Then, it computes a number of cutting plans. The selected cutting plan is

saved and passed to the technicians to program the cutting machine. All orders are

given before the cutting plan is obtained and dynamic planning was not considered.

However, this possibility could be easily introduced as the time required for the ma-

chine to perform a cut is usually much longer than the time required for calculating a

new plan. Typically, a cut takes a time of about 20 minutes and a cutting plan includes

a number of cuts between 30 and 1000.

The key component of the software application is the procedure SHRP. This is sim-

ilar in many aspects to other recent heuristic approaches, like SVC proposed by Belov

and Scheithauer (2007) for the classic 1D-CSP, and the sequential heuristic proposed in

Song et al (2006) for a variant termed 1.5-dimensional cutting stock problem. For the

purpose of comparing SHRP with other approaches of the literature, we have applied

it to the classic 1D-CSP and compare with SVC on the benchmark problems proposed

in Belov and Scheithauer (2007). The results reported in section 5 show that SHRP

produces results comparable to SVC and that SHRP is less dependent on parameter

adjustment.

As future work, we plan to develop new strategies to transform simplified solutions

into real solutions. To do so, we will consider the problem in the framework of multi-
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objective optimization and will use some strategy, such as a genetic algorithm, to

obtain the set of non-dominated solutions. In this way, the experts could choose the

appropriate solution in function of their preferences at a given time. Also, we plan

developing a branch and bound algorithm similar to the algorithm proposed in Belov

and Scheithauer (2007) for the 1D-CSP. In this algorithm we will use SHRP to obtain

upper bounds along the search, as Belov and Scheithauer used SVC in their branch-

and-cut-and-price algorithm. We expect SHRP to be an efficient method to obtain

upper bounds as it reaches good solutions even when running for a small number of

iterations. In order to improve SHRP, we will try to design a systematic method to

establish parameters from problem characteristics. In this work, we have given values

for parameters such as P , SEmin and SEgap, that worked well for a family of problems,

but the values could be different for instances with different characteristics. Therefore,

a systematic method that helps us to establish these values should be very interesting.
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